JP5151554B2 - Liquid crystal display device and manufacturing method thereof - Google Patents
Liquid crystal display device and manufacturing method thereof Download PDFInfo
- Publication number
- JP5151554B2 JP5151554B2 JP2008049315A JP2008049315A JP5151554B2 JP 5151554 B2 JP5151554 B2 JP 5151554B2 JP 2008049315 A JP2008049315 A JP 2008049315A JP 2008049315 A JP2008049315 A JP 2008049315A JP 5151554 B2 JP5151554 B2 JP 5151554B2
- Authority
- JP
- Japan
- Prior art keywords
- alignment film
- liquid crystal
- display device
- crystal display
- outside
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 135
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000000758 substrate Substances 0.000 claims description 130
- 238000000034 method Methods 0.000 claims description 76
- 239000003566 sealing material Substances 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 43
- 238000001035 drying Methods 0.000 claims description 36
- 238000004140 cleaning Methods 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 27
- 238000001179 sorption measurement Methods 0.000 claims description 19
- 238000004380 ashing Methods 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 14
- 125000004427 diamine group Chemical group 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 213
- 238000012360 testing method Methods 0.000 description 26
- 150000002500 ions Chemical class 0.000 description 20
- 239000011159 matrix material Substances 0.000 description 17
- 229920005575 poly(amic acid) Polymers 0.000 description 15
- 239000000356 contaminant Substances 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- 238000003848 UV Light-Curing Methods 0.000 description 12
- 239000007888 film coating Substances 0.000 description 12
- 238000009501 film coating Methods 0.000 description 12
- 238000003466 welding Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 229920000297 Rayon Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000001723 curing Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002964 rayon Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000006358 imidation reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
Description
本発明は、液晶表示装置及びその製造方法に関し、特に、基板の表面に形成される配向膜に特徴を有する液晶表示装置及びその製造方法に関する。 The present invention relates to a liquid crystal display device and a manufacturing method thereof, and more particularly to a liquid crystal display device characterized by an alignment film formed on a surface of a substrate and a manufacturing method thereof.
AV機器やOA機器の表示装置として、薄型、軽量、低消費電力等の利点から液晶表示装置が広く用いられている。この液晶表示装置は、TFT(Thin Film Transistor)等のスイッチング素子がマトリクス状に形成された一方の基板(以下、TFT基板と呼ぶ。)と、カラーフィルター(CF)やブラックマトリクス(BM)等が形成された他方の基板(以下、CF基板と呼ぶ。)との間に液晶が挟持された液晶パネルと、液晶パネルにバックライト光を照射するバックライトユニットなどを備えている。 As display devices for AV equipment and OA equipment, liquid crystal display devices are widely used because of their advantages such as thinness, light weight, and low power consumption. This liquid crystal display device includes one substrate (hereinafter referred to as a TFT substrate) in which switching elements such as TFT (Thin Film Transistor) are formed in a matrix, a color filter (CF), a black matrix (BM), and the like. A liquid crystal panel in which liquid crystal is sandwiched between the other formed substrate (hereinafter referred to as a CF substrate), a backlight unit for irradiating the liquid crystal panel with backlight light, and the like are provided.
図10は、従来の液晶パネルを構成するCF基板又はTFT基板の構成を示す平面図である。液晶パネルの製造に際して、配向膜塗布工程において、CF基板及びTFT基板の双方に配向材を塗布し、配向膜を形成している。この配向膜の形成方法としては、配向膜印刷方式、インクジェット方式などが挙げられ、両方式ともに配向膜塗布後、仮乾燥工程を経て配向膜本焼成を行うことで熱イミド化し、必要とする配向膜を得ている。この配向膜は、一般的に、シール材4を塗布するシール領域より内側の表示領域を覆うように形成される(上記配向膜の形成に関しては、例えば、下記特許文献1、2参照)。 FIG. 10 is a plan view showing a configuration of a CF substrate or a TFT substrate constituting a conventional liquid crystal panel. In manufacturing a liquid crystal panel, an alignment material is formed on both the CF substrate and the TFT substrate in an alignment film application step to form an alignment film. Examples of the method for forming the alignment film include an alignment film printing method, an ink jet method, and the like. Both types are applied to the alignment film, then subjected to a temporary drying step and then subjected to alignment film main baking to thermally imidize, and the required alignment. I have a membrane. This alignment film is generally formed so as to cover the display area inside the seal area to which the sealing material 4 is applied (for example, refer to Patent Documents 1 and 2 below regarding the formation of the alignment film).
図11に、従来の液晶パネルの端部〜表示領域間の断面構造を示す。図11に示すように、TFT基板2及びCF基板3の対向面には、表示領域を覆うように配向膜6が形成されているが、液晶パネルにバイアスが印加されると、シール材4からの残存不純物イオンが表示領域内に侵入し、配向膜6表面上に吸着してしまう。また、液晶パネルにバイアスが印加されると、シール材4の未硬化成分も経時的に染み出しが発生し、表示領域内の配向膜6に吸着してしまう。その結果、残存不純物イオンや未硬化成分などの汚染物質が定着した画素内にはシミ、ムラなどの表示不良が発生してしまう。 FIG. 11 shows a cross-sectional structure between an end portion and a display region of a conventional liquid crystal panel. As shown in FIG. 11, an alignment film 6 is formed on the opposing surfaces of the TFT substrate 2 and the CF substrate 3 so as to cover the display area. When a bias is applied to the liquid crystal panel, the alignment material 6 The remaining impurity ions enter the display region and are adsorbed on the surface of the alignment film 6. Further, when a bias is applied to the liquid crystal panel, the uncured component of the sealing material 4 is also exuded with time and is adsorbed to the alignment film 6 in the display region. As a result, display defects such as spots and unevenness occur in the pixels to which contaminants such as residual impurity ions and uncured components are fixed.
そこで、上記特許文献1では、シール材4と表示領域の間の基板表面に凹凸を形成し、汚染物質が表示領域に到達する前に吸着される配向膜の表面積を増大させる方法を開示している。図12に、特許文献1の液晶パネルの端部〜表示領域間の断面構造を示す。図12に示すように、基板表面に形成した凹凸部10で配向膜6の表面積を大きくすることによって汚染物質を吸着させる効果を高めることはできるが、この方法では、汚染物質の表示領域への侵入を十分に抑制することはできない。 Therefore, Patent Document 1 discloses a method of forming irregularities on the substrate surface between the sealing material 4 and the display area and increasing the surface area of the alignment film that is adsorbed before the contaminants reach the display area. Yes. FIG. 12 shows a cross-sectional structure between the end portion of the liquid crystal panel and the display region of Patent Document 1. As shown in FIG. 12, it is possible to increase the effect of adsorbing contaminants by increasing the surface area of the alignment film 6 with the uneven portions 10 formed on the substrate surface. Invasion cannot be sufficiently suppressed.
また、上記特許文献2では、TFT基板の表示領域とシール材の形成領域とで囲まれた領域に形成した配向膜と、CF基板の表示領域とシール材の形成領域とで囲まれた領域に形成した配向膜とで特性が異なる、即ち配向膜が対向面で帯電特性が異なることにより、表示領域とシール材の形成領域とで囲まれた領域と表示領域とに電位差を生じさせ、表示領域とシール材の形成領域とで囲まれた領域に不純物イオンを吸着させる方法を開示している。図13に、特許文献2の液晶パネルの端部〜表示領域間の断面構造を示す。図13に示すように、配向膜6a、6bに電位差を生じさせることで不純物イオンと異なる電荷を示す配向膜表面部にはその不純物イオンを吸着させる効果をもたらすことは出来るが、同一の電荷を示す配向膜側においては吸着が阻害され、不純物イオンは画素内に拡散することが考えられる。その結果、長期の信頼性試験により最終的に画素内にシミ、ムラなどの表示不良が発生する可能性がある。 In Patent Document 2, an alignment film formed in a region surrounded by a TFT substrate display region and a sealing material formation region, and a region surrounded by a CF substrate display region and a sealing material formation region. Due to the different characteristics of the alignment film formed, that is, the charging characteristics of the alignment film differing from each other on the opposite surface, a potential difference is generated between the display area and the area surrounded by the sealing material formation area, and the display area. And a method of adsorbing impurity ions in a region surrounded by a sealing material formation region. FIG. 13 shows a cross-sectional structure between the end portion of the liquid crystal panel and the display region of Patent Document 2. As shown in FIG. 13, by causing a potential difference between the alignment films 6a and 6b, an effect of adsorbing the impurity ions can be exerted on the surface of the alignment film that shows charges different from the impurity ions. On the alignment film side shown, adsorption is hindered, and impurity ions may be diffused into the pixel. As a result, there is a possibility that display defects such as spots and unevenness will eventually occur in the pixel by a long-term reliability test.
このように、少なくとも一方の基板において、表示領域からシール材4の間に形成させた配向膜は表示領域内の配向膜と膜構造が同一である為、シール材4からの残存不純物イオン及びシール材4の未硬化成分が表示領域内まで侵入し易く、最終的に配向膜表面上に吸着され、これによって表示品質が低下するという問題があった。 As described above, in at least one substrate, the alignment film formed between the display region and the sealing material 4 has the same film structure as that of the alignment film in the display region. There is a problem that the uncured component of the material 4 easily penetrates into the display region and is finally adsorbed on the surface of the alignment film, thereby reducing the display quality.
本発明は、上記問題に鑑みてなされたものであって、その主たる目的は、シール材の残存不純物イオンや未硬化成分に起因する表示不良を抑制し、信頼性を格段に向上させることができる液晶表示装置及びその製造方法を提供することにある。 The present invention has been made in view of the above problems, and its main purpose is to suppress display defects caused by residual impurity ions and uncured components of the sealing material, and to significantly improve reliability. An object of the present invention is to provide a liquid crystal display device and a manufacturing method thereof.
上記目的を達成するため、本発明は、一対の基板の対向面に配向膜が形成され、少なくとも一方の基板の表示領域の外側にシール材が形成され、前記一対の基板間に液晶材が封入される液晶表示装置において、前記配向膜は、少なくとも前記表示領域を覆うように形成される第1の配向膜と、前記第1の配向膜の外側かつ前記シール材の内側の領域に形成される第2配向膜とで構成され、前記第2の配向膜は、ポーラスな膜構造を有し、前記第1の配向膜よりもイオン性不純物の吸着性が高いものである。 In order to achieve the above object, according to the present invention, an alignment film is formed on opposite surfaces of a pair of substrates, a sealing material is formed outside a display region of at least one substrate, and a liquid crystal material is sealed between the pair of substrates. In the liquid crystal display device, the alignment film is formed in at least a first alignment film formed so as to cover the display region, and a region outside the first alignment film and inside the sealing material. The second alignment film has a porous film structure, and has higher ionic impurity adsorptivity than the first alignment film.
前記ポーラス膜の確認には、前記第1の配向膜と前記第2の配向膜とを各々切り出し、自動ガス吸着量測定装置(日本ベル(株)製 Belsorp 18 plus-T)を用いて測定する。得られた吸脱着等温線から細孔分布及び細孔容積を、細孔径2nm以下をMolecular-Probe法(MP法)、細孔径2nm〜200nmをDollimore-Heal法(DH法)により求めることが可能である。 For confirmation of the porous film, the first alignment film and the second alignment film are cut out and measured using an automatic gas adsorption amount measuring device (Belsorp 18 plus-T manufactured by Nippon Bell Co., Ltd.). . From the obtained adsorption / desorption isotherm, the pore distribution and pore volume can be determined by the Molecular-Probe method (MP method) when the pore size is 2 nm or less, and the Dollimore-Heal method (DH method) when the pore size is 2 nm to 200 nm. It is.
また、本発明においては、前記第2の配向膜中の主鎖となるジアミン鎖は、前記第1の配向膜中の主鎖となるジアミン鎖よりも長い構成とすることができる。前記ジアミン鎖の確認には、前記第1の配向膜と前記第2の配向膜とを採取し、ガスクロマトグラフ質量分析計(日本電子(株)製 JMS−GCmateII)、液体クロマトグラフ質量分析計(日本電子(株)製 JMS−T100LC型)を用いて測定する。これよりジアミン鎖の構造情報が得られる。 In the present invention, the diamine chain serving as the main chain in the second alignment film may be longer than the diamine chain serving as the main chain in the first alignment film. For the confirmation of the diamine chain, the first alignment film and the second alignment film are collected, and a gas chromatograph mass spectrometer (JMS-GCmate II manufactured by JEOL Ltd.), a liquid chromatograph mass spectrometer ( Measured using JEOL Co., Ltd. JMS-T100LC type. Thereby, structural information of the diamine chain can be obtained.
また、本発明においては、前記第2の配向膜の焼成後のイミド化率は、前記第1の配向膜の焼成後のイミド化率よりも低い構成とすることができる。前記イミド化率の確認には、前記第1の配向膜と前記第2の配向膜とを採取し、フーリエ変換赤外分光光度計(日本分光(株)製 FT/IR-610)を用いて測定する。採取した配向膜をKBr錠剤法にてIRスペクトルを測定し、イミド環由来のピーク高さ比よりイミド化率を算出することが可能である。 Moreover, in this invention, the imidation rate after baking of the said 2nd alignment film can be set as the structure lower than the imidation rate after baking of the said 1st alignment film. In order to confirm the imidization rate, the first alignment film and the second alignment film are collected, and a Fourier transform infrared spectrophotometer (FT / IR-610 manufactured by JASCO Corporation) is used. taking measurement. It is possible to measure the IR spectrum of the collected alignment film by the KBr tablet method and calculate the imidization ratio from the peak height ratio derived from the imide ring.
また、本発明においては、前記第2の配向膜の膜厚は、前記第1の配向膜の膜厚よりも大きい構成とすることができる。前記配向膜の膜厚の確認には、前記第1の配向膜と前記第2の配向膜とを各々切り出し、FIB-SEM複合装置(SII(株)製 SMI3050SE)を用いて測定する。これより配向膜の膜厚情報が得られる。 In the present invention, the film thickness of the second alignment film may be larger than the film thickness of the first alignment film. In order to confirm the film thickness of the alignment film, the first alignment film and the second alignment film are cut out and measured using a FIB-SEM composite apparatus (SMI 3050SE, manufactured by SII). Thereby, film thickness information of the alignment film can be obtained.
また、本発明は、少なくとも、基板表面に配向膜を塗布する塗布工程と、前記配向膜を仮乾燥する仮乾燥工程と、前記配向膜を焼成する焼成工程と、ラビング工程と、ラビング洗浄工程と、をこの順に有する液晶表示装置の製造方法において、前記塗布工程では、少なくとも表示領域を覆うように前記配向膜を形成し、前記仮乾燥工程では、前記表示領域外側の乾燥温度を局所的に上げ、前記表示領域外側にポーラスな配向膜を形成し、前記仮乾燥工程から前記ラビング洗浄工程までの間に、前記表示領域外側の前記配向膜を改質し、吸着性を付与するものである。 Further, the present invention includes at least a coating process for applying an alignment film on the substrate surface, a temporary drying process for temporarily drying the alignment film, a baking process for firing the alignment film, a rubbing process, and a rubbing cleaning process. In the manufacturing method of the liquid crystal display device having the above, in the coating step, the alignment film is formed so as to cover at least the display region, and in the temporary drying step, the drying temperature outside the display region is locally increased. A porous alignment film is formed on the outer side of the display area, and the alignment film on the outer side of the display area is modified between the temporary drying process and the rubbing cleaning process to impart adsorptivity.
また、本発明においては、前記焼成工程から前記ラビング洗浄工程までの間に、前記表示領域外側に対してプラズマアッシングを局所的に行い、前記表示領域外側にポーラスな配向膜を形成する構成とすることができる。 In the present invention, plasma ashing is locally performed on the outer side of the display region between the baking step and the rubbing cleaning step, and a porous alignment film is formed on the outer side of the display region. be able to.
また、本発明は、少なくとも、基板表面に配向膜を塗布する工程と、前記配向膜を仮乾燥する工程と、前記配向膜を焼成する工程と、ラビング工程と、ラビング洗浄工程と、をこの順に有する液晶表示装置の製造方法において、前記塗布工程では、表示領域内側に対向する部分よりも前記表示領域外側に対向する部分の方が、表面のレリーフ数又はレリーフ凸部面積が小さい配向版、又は、レリーフ高さが大きい配向版を使用して、前記表示領域外側の前記配向膜を厚く印刷し、前記表示領域外側の前記配向膜の吸着性を高めるものである。 Further, the present invention includes at least a step of applying an alignment film on the substrate surface, a step of temporarily drying the alignment film, a step of baking the alignment film, a rubbing step, and a rubbing cleaning step in this order. In the manufacturing method of the liquid crystal display device having, in the coating step, the portion facing the outer side of the display region has a smaller number of reliefs on the surface or the area of the relief convex portion than the portion facing the inner side of the display region, or Then, using an alignment plate having a large relief height, the alignment film outside the display area is printed thickly to enhance the adsorptivity of the alignment film outside the display area.
このように、CF基板及びTFT基板の双方に形成する配向膜を、少なくとも表示領域を覆う第1の配向膜と、第1の配向膜よりも外側かつシール材よりも内側の第2の配向膜とで構成し、第2の配向膜を、第1の配向膜に比べてイオン性不純物の吸着性が高い膜質とすることにより、第2の配向膜でシール材からの不純物イオンの侵入或いは経時的なシール材成分の染み出しを抑制することができ、信頼性が格段に向上した高品質の液晶表示装置を提供することが可能となる。 As described above, the alignment film formed on both the CF substrate and the TFT substrate includes the first alignment film covering at least the display region, and the second alignment film outside the first alignment film and inside the sealing material. And the second alignment film has a higher quality of adsorption of ionic impurities than the first alignment film. It is possible to provide a high-quality liquid crystal display device that can suppress the leakage of a typical sealing material component and has greatly improved reliability.
本発明の液晶表示装置及びその製造方法によれば、少なくとも表示領域を覆う配向膜よりも外側の領域にポーラス構造の配向膜を形成することにより、シール材からの汚染物質が表示領域内に侵入、定着しないようにすることができる。また、ポーラス構造の配向膜の膜厚を厚くすることにより、汚染物質を吸着させる実効表面積を増加させることができ、汚染物質の吸着効率を向上させることが可能となる。 According to the liquid crystal display device and the method of manufacturing the same of the present invention, a pollutant from the sealing material enters the display region by forming a porous alignment film in a region outside at least the alignment film covering the display region. , Can be fixed. Further, by increasing the thickness of the alignment film having a porous structure, the effective surface area for adsorbing contaminants can be increased, and the adsorption efficiency of contaminants can be improved.
そして、この効果により、信頼性が格段に向上した高品質の液晶表示装置を提供することが可能となる。また、液晶パネルの狭額縁構造を維持しながら実効的な不純物の吸着効率を向上させることもできる。更に、同一配向材料を使用することにより簡易な工程で本発明の構造を実現することができ、品種切り替えの手間を省いて、使用量の削減、リードタイムの短縮を図ることもできる。 This effect makes it possible to provide a high-quality liquid crystal display device with significantly improved reliability. In addition, the effective impurity adsorption efficiency can be improved while maintaining the narrow frame structure of the liquid crystal panel. Furthermore, by using the same alignment material, the structure of the present invention can be realized in a simple process, and the amount of use and the lead time can be shortened by eliminating the trouble of changing the type.
従来技術で示したように、液晶パネルにバイアスが印加されると、シール材からの残存不純物イオンが表示領域内に侵入し、また、シール材4の未硬化成分も経時的に染み出し、これらの不純物イオンや未硬化成分などの汚染物質が表示領域内の配向膜6に吸着してしまい、汚染物質が定着した画素内にはシミ、ムラなどの表示不良が発生するという問題があった。 As shown in the prior art, when a bias is applied to the liquid crystal panel, residual impurity ions from the sealing material penetrate into the display region, and uncured components of the sealing material 4 ooze out over time. Contaminants such as impurity ions and uncured components are adsorbed to the alignment film 6 in the display region, and display defects such as spots and unevenness occur in the pixels where the contaminants are fixed.
ここで、汚染物質等の配向膜への吸着原理として、配向膜中のポリアミック酸(未反応成分)に不純物イオンが引き寄せられていることが考えられる。すなわち、通常、配向膜焼成工程によりポリアミック酸からポリイミドを生成させるのであるが、この熱イミド化された配向膜にはポリアミック酸が残渣として少なくとも10〜15%は存在している。 Here, as a principle of adsorption of contaminants and the like on the alignment film, it is considered that impurity ions are attracted to the polyamic acid (unreacted component) in the alignment film. That is, usually, polyimide is generated from polyamic acid by an alignment film baking step, but at least 10 to 15% of polyamic acid is present as a residue in the thermally imidized alignment film.
図5(a)にポリアミック酸の分子構造例を示す。ポリアミック酸はカルボニル基を有しており、CO−OH基に不純物イオンであるNa、Kが引き寄せられることで吸着する。また、不純物イオン以外の汚染物質においては微細な孔に入り込み、各々の分子量サイズに応じた細孔に物理的に吸着している。 FIG. 5A shows an example of the molecular structure of polyamic acid. The polyamic acid has a carbonyl group, and adsorbs by attracting Na and K, which are impurity ions, to the CO—OH group. In addition, contaminants other than impurity ions enter fine pores and are physically adsorbed in pores corresponding to the respective molecular weight sizes.
そこで、本発明では、少なくとも表示領域を覆うように形成される配向膜の外側に、該配向膜に比べてイオン性不純物の吸着性が高い膜質を有するポーラス配向膜を形成し、このポーラス配向膜によって汚染物質を表示領域の外側で効率的に吸着し、表示領域内に汚染物質が侵入、定着しないようにする。以下、図面を参照して説明する。 Therefore, in the present invention, a porous alignment film having a film quality with higher ionic impurity adsorption than the alignment film is formed outside the alignment film formed so as to cover at least the display region. Thus, the contaminant is efficiently adsorbed outside the display area, and the contaminant is prevented from entering and fixing in the display area. Hereinafter, description will be given with reference to the drawings.
図1は本発明の一実施の形態に係る液晶パネルを構成するCF基板又はTFT基板の構成を示す平面図であり、図2は、図1のX−X’部分の構造を示す断面図である。また、図3は、図2の丸で囲んだ部分を拡大した図である。 FIG. 1 is a plan view showing a configuration of a CF substrate or a TFT substrate constituting a liquid crystal panel according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of the XX ′ portion of FIG. is there. FIG. 3 is an enlarged view of a circled portion of FIG.
図1及び図2に示すように、配向膜塗布工程においては、一般にCF基板及びTFT基板の表面に配向材を塗布して配向膜を形成する。このとき、画素がマトリクス状に配列される表示領域を覆うように配向膜6を形成すると共に、配向膜6の外側の領域、例えば表示領域とシール材4で囲まれるシール領域との間に、配向膜6に比べて不純物の吸着性の高いポーラスな膜構造のポーラス配向膜7を形成し、不純物を表示領域の外側で効率的に吸着できるようにする。なお、配向膜6は、少なくとも表示領域を覆う領域に形成されていればよく、ポーラス配向膜7は、表示領域の外側に形成されていればよい。 As shown in FIGS. 1 and 2, in the alignment film application step, an alignment material is generally formed by applying an alignment material on the surfaces of the CF substrate and the TFT substrate. At this time, the alignment film 6 is formed so as to cover the display area in which the pixels are arranged in a matrix, and the area outside the alignment film 6, for example, between the display area and the seal area surrounded by the seal material 4, A porous alignment film 7 having a porous film structure with higher impurity adsorption than the alignment film 6 is formed so that impurities can be efficiently adsorbed outside the display region. The alignment film 6 only needs to be formed in a region covering at least the display region, and the porous alignment film 7 only needs to be formed outside the display region.
ここで、液晶材5を封入することで液晶材5とシール材4の表層部は接触し、シール材4の表層部よりNa、K、Clなどの残存不純物イオンが液晶材5中へと移動し始める。この残存不純物イオンは液晶パネルにバイアスが印加されるとより顕著に移動し、配向膜表面に吸着する。また、液晶パネルにバイアスが印加された状態の場合には、シール材4の未硬化成分などが経時的に溶出し始め、同様に配向膜表面に吸着する。 Here, by enclosing the liquid crystal material 5, the liquid crystal material 5 and the surface layer portion of the sealing material 4 come into contact with each other, and residual impurity ions such as Na, K, Cl move from the surface layer portion of the sealing material 4 into the liquid crystal material 5. Begin to. The residual impurity ions move more significantly when a bias is applied to the liquid crystal panel, and are adsorbed on the alignment film surface. In addition, when a bias is applied to the liquid crystal panel, uncured components of the sealing material 4 begin to elute with time and are similarly adsorbed on the alignment film surface.
しかしながら、本実施形態の構造では、表示領域よりも外側の領域にポーラス配向膜7が形成されているため、残存不純物イオンや未硬化成分などの汚染物質はポーラス配向膜7に効率的に吸着され、表示領域内へ侵入・定着することを防止することが出来る。その結果、信頼性が格段に向上した高品質の液晶表示装置を提供することが可能となる。 However, in the structure of this embodiment, since the porous alignment film 7 is formed in the region outside the display region, contaminants such as residual impurity ions and uncured components are efficiently adsorbed on the porous alignment film 7. Intrusion / fixation into the display area can be prevented. As a result, it is possible to provide a high-quality liquid crystal display device with significantly improved reliability.
図3(a)は上記ポーラス配向膜7の構造を模式的に示した図であり、ポーラス配向膜7は、その表面のみならず、内部にも細孔9を有し、イオン吸着層8として機能する。Na、K、Clなどの残存不純物イオンに対しては、略50nm以下の細孔9の径(メソ孔からマイクロ孔)が効果的に吸着させられ、シール材4の未硬化成分に対しては、20nm〜200nmの細孔9の径(メソ孔からマクロ孔)が効果的に吸着させられるので、細孔9の径としてはこの範囲に設定すると良い。本発明であるこのポーラス配向膜7の細孔9の径は略50nm以下が好ましく、メソ孔からマイクロ孔まで幅広い細孔分布を有しているものが特に有効である。 FIG. 3A is a diagram schematically showing the structure of the porous alignment film 7. The porous alignment film 7 has pores 9 inside as well as the surface thereof, and serves as an ion adsorption layer 8. Function. For residual impurity ions such as Na, K, and Cl, the diameter of the pores 9 (mesopores to micropores) of about 50 nm or less is effectively adsorbed, and for the uncured component of the sealing material 4 Since the diameter of the pores 9 of 20 nm to 200 nm (mesopores to macropores) is effectively adsorbed, the diameter of the pores 9 is preferably set within this range. The diameter of the pores 9 of the porous alignment film 7 according to the present invention is preferably about 50 nm or less, and those having a wide pore distribution from mesopores to micropores are particularly effective.
上記ポーラス配向膜7の形成方法として、例えば、配向膜塗布工程中の仮乾燥工程において、表示領域外側の配向膜塗布領域の乾燥温度を部分的に高温に上げる手法がある。これより、配向材中の溶剤を急速に飛ばすこと及びイミド化促進で膜が疎になり、ポーラスな膜を形成することが出来る。 As a method for forming the porous alignment film 7, for example, there is a method of partially raising the drying temperature of the alignment film application region outside the display region in a temporary drying step in the alignment film application step. As a result, the solvent in the alignment material is rapidly blown off and the imidization is promoted to make the film sparse, and a porous film can be formed.
また、別の形成方法として、プラズマ処理装置などのアッシング装置により表示領域外側の配向膜塗布領域の配向膜に対し、アッシング処理を行って微細な孔を開けることでポーラスな膜を形成することも可能である。 As another forming method, a porous film may be formed by ashing the alignment film in the alignment film application area outside the display area by an ashing apparatus such as a plasma processing apparatus to form fine holes. Is possible.
また、配向材の中に後に溶剤で抽出可能な物質を混合し、この配向膜を表示領域外側の配向膜塗布領域に形成した後、上記溶剤を用いて上記物質を抽出して微細な孔を形成する方法もある。この場合、抽出可能な物質は配向材成分が溶解しないものを使用する必要がある。 In addition, a substance that can be extracted later with a solvent is mixed in the alignment material, and after forming this alignment film on the alignment film application area outside the display area, the substance is extracted using the solvent to form fine pores. There is also a method of forming. In this case, it is necessary to use an extractable substance that does not dissolve the alignment material component.
また、更に配向材に微細なフィラーを混合して表示領域外側の配向膜塗布領域に製膜した後、フィラーを物理的に除去して微細な孔を形成させる方法もある。 Further, there is a method in which fine filler is further mixed with the alignment material to form an alignment film application region outside the display region, and then the filler is physically removed to form fine holes.
図4のフローを参照して説明すると、配向膜塗布工程中の仮乾燥工程でポーラス配向膜を形成させるレベリング工程を設ける製造方法や、配向膜焼成工程からラビング洗浄工程間にポーラス配向膜を形成させるアッシング工程、溶剤抽出工程及びフィラー除去工程を設けるなどの製造方法が提案できる。このとき、よりポーラスな膜を形成させる為にも、上記ポーラス配向膜形成工程を組み合わせて実施することが望ましい。 Referring to the flow of FIG. 4, a manufacturing method for providing a leveling process for forming a porous alignment film in the temporary drying process in the alignment film coating process, and a porous alignment film formed between the alignment film baking process and the rubbing cleaning process. A manufacturing method such as providing an ashing step, a solvent extraction step, and a filler removal step can be proposed. At this time, in order to form a more porous film, it is desirable to combine the porous alignment film forming steps.
また、不純物の吸着効率を向上させるために、図3(b)のように、表示領域外側のポーラスな配向膜を付与する領域の配向膜厚を厚くすることで、実効的な吸着表面積を増加させることもできる。本発明の表示領域の配向膜厚は、パネル品種毎に10nm〜200nm範囲から膜厚設定がされており、表示領域外側のポーラス配向膜厚を表示領域の前記配向膜厚よりも厚くすることが不純物の吸着をより効果的なものとする。 In order to improve the adsorption efficiency of impurities, as shown in FIG. 3B, the effective adsorption surface area is increased by increasing the alignment film thickness of the region to which a porous alignment film is provided outside the display region. It can also be made. The alignment film thickness of the display area of the present invention is set from the range of 10 nm to 200 nm for each panel type, and the porous alignment film thickness outside the display area can be made larger than the alignment film thickness of the display area. Improve the adsorption of impurities more effectively.
たとえば、配向膜印刷方式の場合は、表示領域内側の配向膜塗布領域に対向する配向版表面部のレリーフ数に対し、表示領域外側の配向膜塗布領域でのレリーフ数を減らすことで対応することが出来る。この場合、表示領域内側及び表示領域外側の配向膜塗布領域のレリーフ径(レリーフ凸部面積)は一定にする必要がある。同様に、レリーフ凸部面積を小さく或いはレリーフ高さを高くすることでも対応することが出来る。また、言うまでもないが、レリーフ数の減少、レリーフ凸部面積の縮小化及びレリーフ高さの増加を組み合わせることで、より効果を発揮させることができる。また、インクジェット方式の場合は、表示領域内側の配向膜塗布領域に対して、表示領域外側の配向膜塗布領域の方の配向材吐出量或いは吐出数を増加させることで対応することが出来る。 For example, in the case of the alignment film printing method, the number of reliefs in the alignment film application area outside the display area can be reduced with respect to the number of reliefs on the surface of the alignment plate facing the alignment film application area inside the display area. I can do it. In this case, it is necessary to make the relief diameter (relief convex area) of the alignment film application region inside and outside the display region constant. Similarly, it can be dealt with by reducing the relief convex area or increasing the relief height. Needless to say, more effective effects can be obtained by combining the reduction in the number of reliefs, the reduction in the relief convex area, and the increase in the relief height. Further, in the case of the ink jet system, it is possible to cope with the problem by increasing the alignment material discharge amount or the number of discharges in the alignment film application region outside the display region with respect to the alignment film application region inside the display region.
以下、本発明について実施例を参照して説明するが、本発明の要旨を変更しない限り、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated with reference to an Example, this invention is not limited to a following example, unless the summary of this invention is changed.
まず、本発明の第1の実施例に係る液晶表示装置及びその製造方法について、図6を参照して説明する。 First, a liquid crystal display device and a manufacturing method thereof according to a first embodiment of the present invention will be described with reference to FIG.
一般に液晶パネルは、TFT等のスイッチング素子がマトリクス状に形成されたTFT基板と、ブラックマトリクスやカラーフィルタ等が形成されたCF基板とを有し、これらの基板の対向面には配向処理が施された配向膜が形成されている。そして、両基板の間には所定の形状のポリマービーズ、シリカビーズ等の絶縁性のスペーサ或いはアクリル樹脂等の絶縁性の柱が配置されて所定のギャップが形成され、そのギャップに封止された液晶の配向方向を少なくとも一方の基板に形成した電極による電界で制御して画像を表示するものである。 In general, a liquid crystal panel has a TFT substrate on which switching elements such as TFTs are formed in a matrix, and a CF substrate on which a black matrix, a color filter, and the like are formed. The aligned alignment film is formed. And between the two substrates, a predetermined shape of polymer beads, insulating spacers such as silica beads or insulating pillars such as acrylic resin are arranged to form a predetermined gap, and the gap is sealed. An image is displayed by controlling the alignment direction of the liquid crystal with an electric field generated by an electrode formed on at least one substrate.
従って、信頼性が格段に向上した高品質の液晶表示装置を製造するためには、表示領域内に汚染物質が侵入し、配向膜表面部にこの汚染物質が定着しないようにする必要がある。そこで本実施例では、以下に示す方法で液晶パネルを製造している。 Therefore, in order to manufacture a high-quality liquid crystal display device with greatly improved reliability, it is necessary to prevent contaminants from entering the display area and prevent the contaminants from fixing on the alignment film surface. Therefore, in this embodiment, a liquid crystal panel is manufactured by the following method.
図6に、本発明の液晶パネルを製造する為の配向膜塗布〜配向膜焼成工程の概略図を示す。配向膜塗布工程において、TFT基板及びCF基板の表面に配向材を塗布する為に配向版を使用して印刷し、表示領域及び表示領域外側に配向膜を付与した(図6のA)。次の配向膜仮乾燥工程において、表示領域については略80〜90℃の温度、表示領域外側については前記温度よりも高い略120〜150℃の温度でレベリングが行えるように、表示領域外側に位置するホットプレート乾燥温度を局所的に上げて行った(図6のB)。これにより、仮乾燥工程のリードタイムの短縮化を図りながら、表示領域では印刷性が制御された配向膜を形成させ、表示領域外側ではポーラスな配向膜を形成させることが出来る。次の配向膜焼成工程において、表示領域及び表示領域外側の配向膜の本焼成を行うことにより熱イミド化し、必要とする配向膜を得た(図6のC)。その後、ラビング工程において、TFT基板及びCF基板の配向膜面に対し、レーヨンのラビングロールにてラビング処理を行った。続いてラビング洗浄・乾燥工程において、TFT基板及びCF基板の配向膜面、基板裏面に対し、薬液洗浄、純粋洗浄を実施した後、185℃の温度でIR乾燥を実施した。次にシール塗布工程において、シール材(TNモードの液晶表示パネルを作製する場合には、シール材の中に導通材としてAuボールを混合する)をTFT基板の所定の位置に外周(補助)シール及び本シールをそれぞれ閉曲線状に塗布した。続いて液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を本シール内側領域にマトリックス状(マトリックス状に多数打点)に滴下した。その後貼り合せ工程において、TFT基板とCF基板を接触・加圧することで、基板間の画素部及び周辺部に液晶材を均一に拡散させ、基板間のギャップを柱にて均一に形成させた。次に、UV硬化工程への搬送の際、貼り合せ基板の勘合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を実施した。それから次のUV硬化工程において、3000mJのUV照射によりシール材を硬化させた。更に熱硬化工程において、120℃の温度で加熱することによりシール材を完全硬化させた。この後、作製した液晶表示パネルは、ACF(Anisotropic Conductive Film)貼付/TCP(Tape Carrier Package)圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置として完成した。 In FIG. 6, the schematic of the alignment film application | coating-alignment film baking process for manufacturing the liquid crystal panel of this invention is shown. In the alignment film coating step, printing was performed using an alignment plate to apply an alignment material to the surfaces of the TFT substrate and the CF substrate, and an alignment film was applied to the display area and the display area outside (A in FIG. 6). In the next alignment film temporary drying step, the display region is positioned outside the display region so that leveling can be performed at a temperature of about 80 to 90 ° C. and the outside of the display region at a temperature of about 120 to 150 ° C. higher than the above temperature. The hot plate drying temperature was increased locally (B in FIG. 6). As a result, while shortening the lead time of the temporary drying step, an alignment film having a controlled printability can be formed in the display area, and a porous alignment film can be formed outside the display area. In the next alignment film baking step, the display area and the alignment film outside the display area were subjected to main baking to obtain a thermal imidization to obtain the necessary alignment film (C in FIG. 6). Thereafter, in the rubbing step, the alignment film surfaces of the TFT substrate and the CF substrate were rubbed with a rayon rubbing roll. Subsequently, in the rubbing cleaning / drying process, the alignment film surface of the TFT substrate and the CF substrate and the back surface of the substrate were subjected to chemical cleaning and pure cleaning, followed by IR drying at a temperature of 185 ° C. Next, in the seal coating process, a sealing material (in the case of producing a TN mode liquid crystal display panel, Au balls are mixed as a conductive material in the sealing material) is placed on the outer periphery (auxiliary) seal at a predetermined position on the TFT substrate. And this seal | sticker was each apply | coated to the shape of a closed curve. Subsequently, in the liquid crystal dropping step, a liquid crystal material was dropped inside the main seal, and a predetermined dropping amount was dropped into a matrix inside (a large number of dots in the matrix) inside the main seal. Thereafter, in the bonding step, the TFT substrate and the CF substrate were contacted and pressed to uniformly diffuse the liquid crystal material in the pixel portion and the peripheral portion between the substrates, and the gaps between the substrates were formed uniformly with columns. Next, in order to prevent misalignment of the bonded substrate during conveyance to the UV curing step, UV temporary curing was performed at several locations on the outer periphery seal as a temporary fixing of the sealing material. Then, in the next UV curing step, the sealing material was cured by 3000 mJ UV irradiation. Furthermore, in the thermosetting process, the sealing material was completely cured by heating at a temperature of 120 ° C. Thereafter, the manufactured liquid crystal display panel was subjected to an ACF (Anisotropic Conductive Film) pasting / TCP (Tape Carrier Package) pressure welding process and a substrate pressure welding process, and a backlight light source was attached in the assembly process, thereby completing a liquid crystal display device.
ここで、本実施例の液晶表示装置の信頼性試験を実施した。温度60℃、湿度60%環境下での駆動試験において、従来の液晶表示装置を比較として各5台ずつ実施した。その結果、試験開始500h後で従来の液晶表示装置ではパネル周辺部にムラ及び点状シミなどが発生していたが、本実施例の液晶表示装置ではシミ、ムラの発生はなかった。更に、試験開始1000h後においても本実施例の液晶表示装置ではシミ、ムラの発生は認められなかった。 Here, a reliability test of the liquid crystal display device of this example was performed. In a driving test under a temperature of 60 ° C. and a humidity of 60%, five conventional liquid crystal display devices were compared for comparison. As a result, after 500 hours from the start of the test, the conventional liquid crystal display device had unevenness and spot-like spots on the periphery of the panel, but the liquid crystal display device of this example did not have any stains or unevenness. Further, no stains and unevenness were observed in the liquid crystal display device of this example even after the test was started 1000 hours.
次に、本発明の第2の実施例に係る液晶表示装置及びその製造方法について、図7を参照して説明する。 Next, a liquid crystal display device and a method for manufacturing the same according to a second embodiment of the present invention will be described with reference to FIG.
図7に、本実施例の液晶パネルを製造する為の配向膜塗布〜プラズマアッシング工程の概略図を示す。前記した第1の実施例と同様に、配向膜塗布工程において、TFT基板及びCF基板の表面に配向材を塗布する為に配向版を使用して印刷し、表示領域及び表示領域外側に配向膜を付与した(図7のA)。次の配向膜仮乾燥工程においては、表示領域、表示領域外側共に80℃の温度でレベリングを行い(図7のB)、続く配向膜焼成工程において230℃の温度で本焼成を行い必要とする配向膜を得た(図7のC)。次に、ポーラスな配向膜を形成させる為のプラズマアッシング工程を通した(図7のD)。ここでは、表示領域外側の配向膜に対し、局所的なアッシング処理を行った。処理ガスとして酸素或いは窒素と酸素の混合ガスを使用し、リモート式のプラズマヘッドを駆動させてアッシング処理したい表示領域外側に局所的にプラズマを照射し、微細な孔を開けることでポーラスな配向膜を形成した。その後、ラビング工程において、TFT基板及びCF基板の配向膜面に対し、レーヨンのラビングロールにてラビング処理を行った。続いてラビング洗浄・乾燥工程において、TFT基板及びCF基板の配向膜面、基板裏面に対し、薬液洗浄、純粋洗浄を実施した後、185℃の温度でIR乾燥を実施した。次にシール塗布工程において、シール材(TNモードの液晶表示パネルを作製する場合には、シール材の中に導通材としてAuボールを混合する)をTFT基板の所定の位置に外周(補助)シール及び本シールをそれぞれ閉曲線状に塗布した。続いて液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を本シール内側領域にマトリックス状(マトリックス状に多数打点)に滴下した。その後貼り合せ工程において、TFT基板とCF基板を接触・加圧することで、基板間の画素部及び周辺部に液晶材を均一に拡散させ、基板間のギャップを柱にて均一に形成させた。次に、UV硬化工程への搬送の際、貼り合せ基板の勘合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を実施した。それから次のUV硬化工程において、3000mJのUV照射によりシール材を硬化させた。更に熱硬化工程において、120℃の温度で加熱することによりシール材を完全硬化させた。この後、作製した液晶表示パネルは、ACF貼付/TCP圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置として完成した。尚、ラビング工程をプラズマアッシング工程前に実施してもポーラス配向膜7の形成状態は同様に良好であった。 In FIG. 7, the schematic of the alignment film application | coating-plasma ashing process for manufacturing the liquid crystal panel of a present Example is shown. As in the first embodiment, in the alignment film coating process, printing is performed using an alignment plate to apply an alignment material to the surfaces of the TFT substrate and the CF substrate, and the alignment film is formed outside the display area and the display area. (A in FIG. 7). In the next alignment film temporary drying step, leveling is performed at a temperature of 80 ° C. on both the display region and the outside of the display region (FIG. 7B), and in the subsequent alignment film baking step, main baking is performed at a temperature of 230 ° C. An alignment film was obtained (C in FIG. 7). Next, a plasma ashing process for forming a porous alignment film was performed (D in FIG. 7). Here, local ashing was performed on the alignment film outside the display region. Porous alignment film by using oxygen or a mixed gas of nitrogen and oxygen as the processing gas, irradiating the plasma locally outside the display area to be ashed by driving a remote plasma head and opening fine holes Formed. Thereafter, in the rubbing step, the alignment film surfaces of the TFT substrate and the CF substrate were rubbed with a rayon rubbing roll. Subsequently, in the rubbing cleaning / drying process, the alignment film surface of the TFT substrate and the CF substrate and the back surface of the substrate were subjected to chemical cleaning and pure cleaning, followed by IR drying at a temperature of 185 ° C. Next, in the seal coating process, a sealing material (in the case of producing a TN mode liquid crystal display panel, Au balls are mixed as a conductive material in the sealing material) is placed on the outer periphery (auxiliary) seal at a predetermined position on the TFT substrate. And this seal | sticker was each apply | coated to the shape of a closed curve. Subsequently, in the liquid crystal dropping step, a liquid crystal material was dropped inside the main seal, and a predetermined dropping amount was dropped into a matrix inside (a large number of dots in the matrix) inside the main seal. Thereafter, in the bonding step, the TFT substrate and the CF substrate were contacted and pressed to uniformly diffuse the liquid crystal material in the pixel portion and the peripheral portion between the substrates, and the gaps between the substrates were formed uniformly with columns. Next, in order to prevent misalignment of the bonded substrate during conveyance to the UV curing step, UV temporary curing was performed at several locations on the outer periphery seal as a temporary fixing of the sealing material. Then, in the next UV curing step, the sealing material was cured by 3000 mJ UV irradiation. Furthermore, in the thermosetting process, the sealing material was completely cured by heating at a temperature of 120 ° C. Thereafter, the manufactured liquid crystal display panel was subjected to an ACF sticking / TCP pressure welding process and a substrate pressure welding process, and a backlight light source was attached in the assembly process, thereby completing a liquid crystal display device. Even when the rubbing process was performed before the plasma ashing process, the formation state of the porous alignment film 7 was similarly good.
ここで、本実施例の液晶表示装置の信頼性試験を実施した。温度60℃、湿度60%環境下での駆動試験において、従来の液晶表示装置を比較として各5台ずつ実施した。その結果、試験開始500h後で従来の液晶表示装置ではパネル周辺部にムラ及び点状シミなどが発生していたが、本実施例の液晶表示装置ではシミ、ムラの発生はなかった。更に、試験開始1000h後においても本実施例の液晶表示装置ではシミ、ムラの発生は認められなかった。 Here, a reliability test of the liquid crystal display device of this example was performed. In a driving test under a temperature of 60 ° C. and a humidity of 60%, five conventional liquid crystal display devices were compared for comparison. As a result, after 500 hours from the start of the test, the conventional liquid crystal display device had unevenness and spot-like spots on the periphery of the panel, but the liquid crystal display device of this example did not have any stains or unevenness. Further, no stains and unevenness were observed in the liquid crystal display device of this example even after the test was started 1000 hours.
次に、本発明の第3の実施例に係る液晶表示装置及びその製造方法について説明する。 Next, a liquid crystal display device and a method for manufacturing the same according to a third embodiment of the present invention will be described.
前記した第2の実施例と同様に、配向膜塗布〜配向膜焼成までを行い、表示領域及び表示領域外側に必要とする配向膜を得た。次のプラズマアッシング工程において、表示領域外側の配向膜に対して局所的なアッシング処理を行う為、表示領域外側以外の基板表面上をマスクで覆った。そして固定式プラズマヘッドにてダイレクトに基板全面にプラズマを照射し、表示領域外側のみに微細な孔を開けることでポーラスな配向膜を形成した。その後、ラビング工程において、TFT基板及びCF基板の配向膜面に対し、レーヨンのラビングロールにてラビング処理を行った。続いてラビング洗浄・乾燥工程において、TFT基板及びCF基板の配向膜面、基板裏面に対し、薬液洗浄、純粋洗浄を実施した後、185℃の温度でIR乾燥を実施した。次にシール塗布工程において、シール材(TNモードの液晶表示パネルを作製する場合には、シール材の中に導通材としてAuボールを混合する)をTFT基板の所定の位置に外周(補助)シール及び本シールをそれぞれ閉曲線状に塗布した。続いて液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を本シール内側領域にマトリックス状(マトリックス状に多数打点)に滴下した。その後貼り合せ工程において、TFT基板とCF基板を接触・加圧することで、基板間の画素部及び周辺部に液晶材を均一に拡散させ、基板間のギャップを柱にて均一に形成させた。次に、UV硬化工程への搬送の際、貼り合せ基板の勘合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を実施した。それから次のUV硬化工程において、3000mJのUV照射によりシール材を硬化させた。更に熱硬化工程において、120℃の温度で加熱することによりシール材を完全硬化させた。この後、作製した液晶表示パネルは、ACF貼付/TCP圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置として完成した。 In the same manner as in the second embodiment described above, the alignment film coating to the alignment film baking were performed to obtain the alignment film necessary for the display area and the outside of the display area. In the next plasma ashing step, the surface of the substrate other than the outside of the display area was covered with a mask in order to perform a local ashing process on the alignment film outside the display area. A porous alignment film was formed by directly irradiating the entire surface of the substrate with plasma using a fixed plasma head and forming fine holes only outside the display area. Thereafter, in the rubbing step, the alignment film surfaces of the TFT substrate and the CF substrate were rubbed with a rayon rubbing roll. Subsequently, in the rubbing cleaning / drying process, the alignment film surface of the TFT substrate and the CF substrate and the back surface of the substrate were subjected to chemical cleaning and pure cleaning, followed by IR drying at a temperature of 185 ° C. Next, in the seal coating process, a sealing material (in the case of producing a TN mode liquid crystal display panel, Au balls are mixed as a conductive material in the sealing material) is placed on the outer periphery (auxiliary) seal at a predetermined position on the TFT substrate. And this seal | sticker was each apply | coated to the shape of a closed curve. Subsequently, in the liquid crystal dropping step, a liquid crystal material was dropped inside the main seal, and a predetermined dropping amount was dropped into a matrix inside (a large number of dots in the matrix) inside the main seal. Thereafter, in the bonding step, the TFT substrate and the CF substrate were contacted and pressed to uniformly diffuse the liquid crystal material in the pixel portion and the peripheral portion between the substrates, and the gaps between the substrates were formed uniformly with columns. Next, in order to prevent misalignment of the bonded substrate during conveyance to the UV curing step, UV temporary curing was performed at several locations on the outer periphery seal as a temporary fixing of the sealing material. Then, in the next UV curing step, the sealing material was cured by 3000 mJ UV irradiation. Furthermore, in the thermosetting process, the sealing material was completely cured by heating at a temperature of 120 ° C. Thereafter, the manufactured liquid crystal display panel was subjected to an ACF sticking / TCP pressure welding process and a substrate pressure welding process, and a backlight light source was attached in the assembly process, thereby completing a liquid crystal display device.
ここで、本実施例の液晶表示装置の信頼性試験を実施した。温度60℃、湿度60%環境下での駆動試験において、従来の液晶表示装置を比較として各3台ずつ実施した。その結果、試験開始500h後で従来の液晶表示装置ではパネル周辺部にムラ及び点状シミなどが発生していたが、本実施例の液晶表示装置では第2の実施例と同様にシミ、ムラの発生はなかった。更に、試験開始1000h後においても本実施例の液晶表示装置ではシミ、ムラの発生は認められなかった。 Here, a reliability test of the liquid crystal display device of this example was performed. In a driving test under a temperature of 60 ° C. and a humidity of 60%, three conventional liquid crystal display devices were compared for comparison. As a result, after 500 hours from the start of the test, in the conventional liquid crystal display device, unevenness and spot-like spots occurred in the peripheral portion of the panel. However, in the liquid crystal display device of this example, the stain and unevenness were the same as in the second example. There was no outbreak. Further, no stains and unevenness were observed in the liquid crystal display device of this example even after the test was started 1000 hours.
次に、本発明の第4の実施例に係る液晶表示装置及びその製造方法について説明する。 Next, a liquid crystal display device and a method for manufacturing the same according to a fourth embodiment of the present invention will be described.
前記した第1の実施例と同様に、配向膜塗布工程において、TFT基板及びCF基板の表面に配向材を塗布する為に配向版を使用して印刷し、表示領域及び表示領域外側に配向膜を付与した(図6のA)。このときの印刷版は表示領域内の配向膜塗布領域に対向する配向版表面部のレリーフ数に対し、表示領域外の配向膜塗布領域でのレリーフ数を減らしたものを使用しており、表示領域外側の配向膜厚が表示領域の膜厚よりも厚く形成されるようにしている。次の配向膜仮乾燥工程において、第1の実施例と同様に、表示領域については80℃の温度でレベリングを、表示領域外側については前記80℃の温度より高い120℃でレベリングが行えるように表示領域外側に位置するホットプレート乾燥温度を局所的に上げて、表示領域外側のみにポーラスな配向膜を形成させた(図6のB)。次の配向膜焼成工程において、表示領域及び表示領域外側の配向膜の本焼成を230℃の温度で行うことにより熱イミド化し、必要とする配向膜を得た(図6のC)。これにより、第1の実施例よりも表示領域外側のポーラスな配向膜面積が増加し、実効的な吸着表面積を増加させることが出来た。その後、ラビング工程において、TFT基板及びCF基板の配向膜面に対し、レーヨンのラビングロールにてラビング処理を行った。続いてラビング洗浄・乾燥工程において、TFT基板及びCF基板の配向膜面、基板裏面に対し、薬液洗浄、純粋洗浄を実施した後、185℃の温度でIR乾燥を実施した。次にシール塗布工程において、シール材(TNモードの液晶表示パネルを作製する場合には、シール材の中に導通材としてAuボールを混合する)をTFT基板の所定の位置に外周(補助)シール及び本シールをそれぞれ閉曲線状に塗布した。続いて液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を本シール内側領域にマトリックス状(マトリックス状に多数打点)に滴下した。その後貼り合せ工程において、TFT基板とCF基板を接触・加圧することで、基板間の画素部及び周辺部に液晶材を均一に拡散させ、基板間のギャップを柱にて均一に形成させた。次に、UV硬化工程への搬送の際、貼り合せ基板の勘合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を実施した。それから次のUV硬化工程において、3000mJのUV照射によりシール材を硬化させた。更に熱硬化工程において、120℃の温度で加熱することによりシール材を完全硬化させた。この後、作製した液晶表示パネルは、ACF貼付/TCP圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置として完成した。 As in the first embodiment, in the alignment film coating process, printing is performed using an alignment plate to apply an alignment material to the surfaces of the TFT substrate and the CF substrate, and the alignment film is formed outside the display area and the display area. (A in FIG. 6). At this time, the printing plate is used in which the number of reliefs in the alignment film coating area outside the display area is reduced with respect to the number of reliefs on the surface of the alignment plate facing the alignment film coating area in the display area. The alignment film thickness outside the region is formed to be thicker than the film thickness of the display region. In the next alignment film temporary drying step, as in the first embodiment, the display area can be leveled at a temperature of 80 ° C., and the outside of the display area can be leveled at 120 ° C., which is higher than the 80 ° C. temperature. The hot plate drying temperature located outside the display area was locally increased to form a porous alignment film only outside the display area (B in FIG. 6). In the next alignment film baking step, the display area and the alignment film outside the display area were subjected to main baking at a temperature of 230 ° C. to obtain a required alignment film (C in FIG. 6). As a result, the area of the porous alignment film outside the display region increased from that of the first embodiment, and the effective adsorption surface area could be increased. Thereafter, in the rubbing step, the alignment film surfaces of the TFT substrate and the CF substrate were rubbed with a rayon rubbing roll. Subsequently, in the rubbing cleaning / drying process, the alignment film surface of the TFT substrate and the CF substrate and the back surface of the substrate were subjected to chemical cleaning and pure cleaning, followed by IR drying at a temperature of 185 ° C. Next, in the seal coating process, a sealing material (in the case of producing a TN mode liquid crystal display panel, Au balls are mixed as a conductive material in the sealing material) is placed on the outer periphery (auxiliary) seal at a predetermined position on the TFT substrate. And this seal | sticker was each apply | coated to the shape of a closed curve. Subsequently, in the liquid crystal dropping step, a liquid crystal material was dropped inside the main seal, and a predetermined dropping amount was dropped into a matrix inside (a large number of dots in the matrix) inside the main seal. Thereafter, in the bonding step, the TFT substrate and the CF substrate were contacted and pressed to uniformly diffuse the liquid crystal material in the pixel portion and the peripheral portion between the substrates, and the gaps between the substrates were formed uniformly with columns. Next, in order to prevent misalignment of the bonded substrate during conveyance to the UV curing step, UV temporary curing was performed at several locations on the outer periphery seal as a temporary fixing of the sealing material. Then, in the next UV curing step, the sealing material was cured by 3000 mJ UV irradiation. Furthermore, in the thermosetting process, the sealing material was completely cured by heating at a temperature of 120 ° C. Thereafter, the manufactured liquid crystal display panel was subjected to an ACF sticking / TCP pressure welding process and a substrate pressure welding process, and a backlight light source was attached in the assembly process, thereby completing a liquid crystal display device.
ここで、本実施例の液晶表示装置の信頼性試験を実施した。温度60℃、湿度60%環境下での駆動試験において、従来の液晶表示装置を比較として各5台ずつ実施した。その結果、試験開始500h後で従来の液晶表示装置ではパネル周辺部にムラ及び点状シミなどが発生していたが、本実施例の液晶表示装置では第1の実施例と同様にシミ、ムラの発生はなかった。更に、試験開始1500h後においても本実施例の液晶表示装置ではシミ、ムラの発生は認められず良好な表示状態であった。 Here, a reliability test of the liquid crystal display device of this example was performed. In a driving test under a temperature of 60 ° C. and a humidity of 60%, five conventional liquid crystal display devices were compared for comparison. As a result, after 500 hours from the start of the test, the conventional liquid crystal display device had unevenness and spot-like spots on the periphery of the panel. However, the liquid crystal display device of this example had spots and unevenness similar to the first example. There was no outbreak. Further, even after 1500 h after the start of the test, the liquid crystal display device of this example was in a good display state with no occurrence of spots or unevenness.
次に、本発明の第5の実施例に係る液晶表示装置及びその製造方法について、図8を参照して説明する。 Next, a liquid crystal display device and a method for manufacturing the same according to a fifth embodiment of the present invention will be described with reference to FIG.
図8に、本実施例の液晶パネルを製造する為の配向膜塗布〜プラズマアッシング工程の概略図を示す。配向膜塗布工程において、TFT基板及びCF基板の表面に配向材を塗布する為にインクジェット塗布装置により、表示領域及び表示領域外側に配向膜を付与した(図8のA)。このとき配向材の吐出条件であるが、表示領域内側の配向膜塗布領域に対して、表示領域外側の配向膜塗布領域の方の吐出量及び吐出数を増加させており、表示領域外側の配向膜厚が表示領域の膜厚よりも厚くなるように形成した。次の配向膜仮乾燥工程においては、表示領域、表示領域外側共に80℃の温度でレベリングを行い(図8のB)、続く配向膜焼成工程において230℃の温度で本焼成を行い必要とする配向膜を得た(図8のC)。次に、ポーラスな配向膜を形成させる為のプラズマアッシング工程を通した(図8のD)。ここで、第2の実施例と同様に表示領域外側の配向膜に対し、局所的なアッシング処理を行った。処理ガスとして酸素或いは窒素と酸素の混合ガスを使用し、リモート式のプラズマヘッドで局所的にプラズマを照射し、微細な孔を開けることでポーラスな配向膜を形成させた。この結果、第2の実施例よりも表示領域外側のポーラスな配向膜面積が増加し、実効的な吸着表面積を増加させることが出来た。その後、ラビング工程において、TFT基板及びCF基板の配向膜面に対し、レーヨンのラビングロールにてラビング処理を行った。続いてラビング洗浄・乾燥工程において、TFT基板及びCF基板の配向膜面、基板裏面に対し、薬液洗浄、純粋洗浄を実施した後、185℃の温度でIR乾燥を実施した。次にシール塗布工程において、シール材(TNモードの液晶表示パネルを作製する場合には、シール材の中に導通材としてAuボールを混合する)をTFT基板の所定の位置に外周(補助)シール及び本シールをそれぞれ閉曲線状に塗布した。続いて液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を本シール内側領域にマトリックス状(マトリックス状に多数打点)に滴下した。その後貼り合せ工程において、TFT基板とCF基板を接触・加圧することで、基板間の画素部及び周辺部に液晶材を均一に拡散させ、基板間のギャップを柱にて均一に形成させた。次に、UV硬化工程への搬送の際、貼り合せ基板の勘合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を実施した。それから次のUV硬化工程において、3000mJのUV照射によりシール材を硬化させた。更に熱硬化工程において、120℃の温度で加熱することによりシール材を完全硬化させた。この後、作製した液晶表示パネルは、ACF貼付/TCP圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置として完成した。 FIG. 8 is a schematic view of the alignment film coating to plasma ashing process for manufacturing the liquid crystal panel of this example. In the alignment film coating step, an alignment film was applied to the display area and the outside of the display area by an inkjet coating apparatus in order to apply an alignment material to the surfaces of the TFT substrate and the CF substrate (A in FIG. 8). At this time, the discharge condition of the alignment material is such that the amount of discharge and the number of discharges in the alignment film coating region outside the display region are increased with respect to the alignment film coating region inside the display region. The film thickness was formed so as to be larger than the film thickness of the display region. In the next alignment film temporary drying step, leveling is performed at a temperature of 80 ° C. on both the display area and the outside of the display area (B in FIG. 8), and in the subsequent alignment film baking step, main baking is performed at a temperature of 230 ° C. An alignment film was obtained (C in FIG. 8). Next, a plasma ashing process for forming a porous alignment film was performed (D in FIG. 8). Here, as in the second embodiment, a local ashing process was performed on the alignment film outside the display region. A porous alignment film was formed by using oxygen or a mixed gas of nitrogen and oxygen as a processing gas, locally irradiating plasma with a remote plasma head, and opening fine holes. As a result, the area of the porous alignment film on the outer side of the display area as compared with the second example was increased, and the effective adsorption surface area could be increased. Thereafter, in the rubbing step, the alignment film surfaces of the TFT substrate and the CF substrate were rubbed with a rayon rubbing roll. Subsequently, in the rubbing cleaning / drying process, the alignment film surface of the TFT substrate and the CF substrate and the back surface of the substrate were subjected to chemical cleaning and pure cleaning, followed by IR drying at a temperature of 185 ° C. Next, in the seal coating process, a sealing material (in the case of producing a TN mode liquid crystal display panel, Au balls are mixed as a conductive material in the sealing material) is placed on the outer periphery (auxiliary) seal at a predetermined position on the TFT substrate. And this seal | sticker was each apply | coated to the shape of a closed curve. Subsequently, in the liquid crystal dropping step, a liquid crystal material was dropped inside the main seal, and a predetermined dropping amount was dropped into a matrix inside (a large number of dots in the matrix) inside the main seal. Thereafter, in the bonding step, the TFT substrate and the CF substrate were contacted and pressed to uniformly diffuse the liquid crystal material in the pixel portion and the peripheral portion between the substrates, and the gaps between the substrates were formed uniformly with columns. Next, in order to prevent misalignment of the bonded substrate during conveyance to the UV curing step, UV temporary curing was performed at several locations on the outer periphery seal as a temporary fixing of the sealing material. Then, in the next UV curing step, the sealing material was cured by 3000 mJ UV irradiation. Furthermore, in the thermosetting process, the sealing material was completely cured by heating at a temperature of 120 ° C. Thereafter, the manufactured liquid crystal display panel was subjected to an ACF sticking / TCP pressure welding process and a substrate pressure welding process, and a backlight light source was attached in the assembly process, thereby completing a liquid crystal display device.
ここで、本実施例の液晶表示装置の信頼性試験を実施した。温度60℃、湿度60%環境下での駆動試験において、従来の液晶表示装置を比較として各5台ずつ実施した。その結果、試験開始500h後で従来の液晶表示装置ではパネル周辺部にムラ及び点状シミなどが発生していたが、本実施例の液晶表示装置では第2の実施例と同様にシミ、ムラの発生はなかった。更に、試験開始1500h後においても本実施例の液晶表示装置ではシミ、ムラの発生は認められず良好な表示状態であった。 Here, a reliability test of the liquid crystal display device of this example was performed. In a driving test under a temperature of 60 ° C. and a humidity of 60%, five conventional liquid crystal display devices were compared for comparison. As a result, after 500 hours from the start of the test, in the conventional liquid crystal display device, unevenness and spot-like spots occurred in the peripheral portion of the panel. However, in the liquid crystal display device of this example, the stain and unevenness were the same as in the second example. There was no outbreak. Further, even after 1500 h after the start of the test, the liquid crystal display device of this example was in a good display state with no occurrence of spots or unevenness.
次に、本発明の第6の実施例に係る液晶表示装置及びその製造方法について、図5及び図9を参照して説明する。 Next, a liquid crystal display device and a method for manufacturing the same according to a sixth embodiment of the present invention will be described with reference to FIGS.
前記した第1乃至第5の実施例において、表示領域外側に付与する配向膜として、ポリアミック酸の主鎖となるジアミン鎖の長いポリアミック酸分子で調合された配向材を使用して同様に液晶パネルを作製しても良い。 In the first to fifth embodiments described above, a liquid crystal panel is similarly formed using an alignment material prepared by polyamic acid molecules having a long diamine chain serving as the main chain of the polyamic acid as the alignment film applied to the outside of the display region. May be produced.
例えば、表示領域の配向膜には、図5(a)に示すようなポリアミック酸分子で調合された配向材を使用し、表示領域外側の配向膜には、図5(b)に示すようなポリアミック酸の主鎖となるジアミン鎖の長いポリアミック酸分子で調合された配向材を使用する。図5(a)に対し、図5(b)のようにポリアミック酸の主鎖となるジアミン鎖がm=3以上と長いほどポリイミド分子として疎になる傾向にあるので、膜内部までNa、Kは勿論のこと、ある程度分子量のあるシール材未硬化成分においても浸透し易くなり、吸着量は大きくなる。更にはポリアミック酸のジアミン鎖中のベンゼン環の数を増やすことにより、ジアミン鎖を長くすることが出来る。表示領域外側の配向膜として、本発明のポリアミック酸の主鎖となるジアミン鎖は、m=3以上が好ましく、特に下地と前記配向膜との膜密着性を考慮するとm=3〜9がより好ましい。また、表示領域外側に形成された配向膜のイミド化率を低くすることによりポリアミック酸含有量を増加させ、更にイオン吸着量を増加させることも可能である。本発明の表示領域の配向膜のイミド化率は70〜95%と配向材の種類で異なり、表示領域外側の配向膜のイミド化率としては、表示領域の配向膜の前記イミド化率よりも低くし、特に70%以下とすることがより好ましい。実施例の1つとして上記構成の液晶パネルを作製し、信頼性試験を実施したので説明する。 For example, an alignment material prepared with polyamic acid molecules as shown in FIG. 5A is used for the alignment film in the display region, and as shown in FIG. 5B for the alignment film outside the display region. An alignment material prepared with polyamic acid molecules having a long diamine chain, which is the main chain of the polyamic acid, is used. In contrast to FIG. 5A, since the diamine chain that is the main chain of the polyamic acid has a tendency to become sparse as a polyimide molecule as m = 3 or longer as shown in FIG. Of course, even an uncured component of the sealing material having a certain molecular weight easily penetrates and the amount of adsorption increases. Furthermore, the diamine chain can be lengthened by increasing the number of benzene rings in the diamine chain of the polyamic acid. As the alignment film outside the display region, m = 3 or more is preferable for the diamine chain serving as the main chain of the polyamic acid of the present invention, and m = 3 to 9 is more particularly considering the film adhesion between the base and the alignment film. preferable. It is also possible to increase the polyamic acid content and further increase the ion adsorption amount by lowering the imidization rate of the alignment film formed outside the display region. The imidation rate of the alignment film in the display region of the present invention is 70 to 95%, which differs depending on the type of the alignment material. The imidation rate of the alignment film outside the display region is higher than the imidation rate of the alignment film in the display region. It is more preferable to make it low, especially 70% or less. As one example, a liquid crystal panel having the above-described configuration was manufactured and a reliability test was performed, which will be described.
図9に本発明の液晶パネルを製造する為の配向膜塗布及び配向膜焼成工程の概略図を示す。前記した第5の実施例と同様に、配向膜塗布工程において、TFT基板及びCF基板の表面に配向材を塗布する為にインクジェット塗布装置により、表示領域及び表示領域外側に配向膜を付与した(図9のA)。このとき、表示領域内側の配向膜塗布領域に吐出するヘッド内シリンジには図5(a)の配向材を、表示領域外側の配向膜塗布領域に吐出するヘッド内シリンジには図5(b)の配向材(ジアミン鎖 m=3)をそれぞれセットしており、表示領域外側の配向膜が表示領域の配向膜よりも疎な膜質のものが付与される構成にした。尚、表示領域外側の配向膜の膜厚を表示領域の膜厚よりも厚く形成することにより不純物の吸着効率を更に向上させられることは言うまでもない。次の配向膜仮乾燥工程においては、表示領域、表示領域外側共に80℃の温度でレベリングを行い(図9のB)、続く配向膜焼成工程において230℃の温度で本焼成を行い必要とする配向膜を得た(図9のC)。その後、ラビング工程において、TFT基板及びCF基板の配向膜面に対し、レーヨンのラビングロールにてラビング処理を行った。続いてラビング洗浄・乾燥工程において、TFT基板及びCF基板の配向膜面、基板裏面に対し、薬液洗浄、純粋洗浄を実施した後、185℃の温度でIR乾燥を実施した。次にシール塗布工程において、シール材(TNモードの液晶表示パネルを作製する場合には、シール材の中に導通材としてAuボールを混合する)をTFT基板の所定の位置に外周(補助)シール及び本シールをそれぞれ閉曲線状に塗布した。続いて液晶滴下工程において、液晶材を前記本シール内側に、所定の滴下量を本シール内側領域にマトリックス状(マトリックス状に多数打点)に滴下した。その後貼り合せ工程において、TFT基板とCF基板を接触・加圧することで、基板間の画素部及び周辺部に液晶材を均一に拡散させ、基板間のギャップを柱にて均一に形成させた。次に、UV硬化工程への搬送の際、貼り合せ基板の勘合ずれを防止する為に、シール材の仮止めとして、外周シールに対して部分的に数箇所のUV仮硬化を実施した。それから次のUV硬化工程において、3000mJのUV照射によりシール材を硬化させた。更に熱硬化工程において、120℃の温度で加熱することによりシール材を完全硬化させた。この後、作製した液晶表示パネルは、ACF貼付/TCP圧接工程、基板圧接工程を経て、組立工程でバックライト光源を取り付けられ、液晶表示装置として完成した。 FIG. 9 shows a schematic diagram of alignment film coating and alignment film baking steps for manufacturing the liquid crystal panel of the present invention. As in the fifth embodiment, in the alignment film application step, an alignment film was applied to the display area and the display area outside by an inkjet coating apparatus in order to apply an alignment material to the surfaces of the TFT substrate and the CF substrate ( FIG. 9A). At this time, the alignment material shown in FIG. 5A is applied to the in-head syringe that is discharged to the alignment film application region inside the display region, and the in-head syringe that is discharged to the alignment film application region outside the display region is shown in FIG. Each of the alignment materials (diamine chain m = 3) was set, and the alignment film on the outer side of the display region was provided with a material with a sparser quality than the alignment film in the display region. Needless to say, the impurity adsorption efficiency can be further improved by forming the alignment film outside the display region to be thicker than the display region. In the next alignment film temporary drying step, leveling is performed at a temperature of 80 ° C. on both the display region and the outside of the display region (FIG. 9B), and in the subsequent alignment film baking step, main baking is performed at a temperature of 230 ° C. An alignment film was obtained (C in FIG. 9). Thereafter, in the rubbing step, the alignment film surfaces of the TFT substrate and the CF substrate were rubbed with a rayon rubbing roll. Subsequently, in the rubbing cleaning / drying process, the alignment film surface of the TFT substrate and the CF substrate and the back surface of the substrate were subjected to chemical cleaning and pure cleaning, followed by IR drying at a temperature of 185 ° C. Next, in the seal coating process, a sealing material (in the case of producing a TN mode liquid crystal display panel, Au balls are mixed as a conductive material in the sealing material) is placed on the outer periphery (auxiliary) seal at a predetermined position on the TFT substrate. And this seal | sticker was each apply | coated to the shape of a closed curve. Subsequently, in the liquid crystal dropping step, a liquid crystal material was dropped inside the main seal, and a predetermined dropping amount was dropped into a matrix inside (a large number of dots in the matrix) inside the main seal. Thereafter, in the bonding step, the TFT substrate and the CF substrate were contacted and pressed to uniformly diffuse the liquid crystal material in the pixel portion and the peripheral portion between the substrates, and the gaps between the substrates were formed uniformly with columns. Next, in order to prevent misalignment of the bonded substrate during conveyance to the UV curing step, UV temporary curing was performed at several locations on the outer periphery seal as a temporary fixing of the sealing material. Then, in the next UV curing step, the sealing material was cured by 3000 mJ UV irradiation. Furthermore, in the thermosetting process, the sealing material was completely cured by heating at a temperature of 120 ° C. Thereafter, the manufactured liquid crystal display panel was subjected to an ACF sticking / TCP pressure welding process and a substrate pressure welding process, and a backlight light source was attached in the assembly process, thereby completing a liquid crystal display device.
ここで、本実施例の液晶表示装置の信頼性試験を実施した。温度60℃、湿度60%環境下での駆動試験において、従来の液晶表示装置を比較として各3台ずつ実施した。その結果、試験開始500h後で従来の液晶表示装置ではパネル周辺部にムラ及び点状シミなどが発生していたが、本実施例の液晶表示装置ではシミ、ムラの発生はなかった。更に、試験開始1000h後においても本実施例の液晶表示装置ではシミ、ムラの発生は認められなかった。 Here, a reliability test of the liquid crystal display device of this example was performed. In a driving test under a temperature of 60 ° C. and a humidity of 60%, three conventional liquid crystal display devices were compared for comparison. As a result, after 500 hours from the start of the test, the conventional liquid crystal display device had unevenness and spot-like spots on the periphery of the panel, but the liquid crystal display device of this example did not have any stains or unevenness. Further, no stains and unevenness were observed in the liquid crystal display device of this example even after the test was started 1000 hours.
なお、上記説明では、TFT基板2及びCF基板3の双方にポーラス配向膜7を形成する場合について記載したが、TFT基板2又はCF基板3の一方のみにポーラス配向膜7を形成しても、シール材4の残存不純物イオンや未硬化成分に起因する表示不良を抑制することはできる。 In the above description, the case where the porous alignment film 7 is formed on both the TFT substrate 2 and the CF substrate 3 is described. However, even if the porous alignment film 7 is formed only on one of the TFT substrate 2 or the CF substrate 3, Display defects due to residual impurity ions and uncured components of the sealing material 4 can be suppressed.
本発明は、液晶表示装置及びその製造方法に利用可能である。 The present invention is applicable to a liquid crystal display device and a manufacturing method thereof.
1 液晶パネル
2 TFT基板
3 CF基板
4 シール材
5 液晶材
6、6a、6b 配向膜
7 ポーラス配向膜
8 イオン吸着層
9 細孔
10 凹凸部
DESCRIPTION OF SYMBOLS 1 Liquid crystal panel 2 TFT substrate 3 CF substrate 4 Sealing material 5 Liquid crystal material 6, 6a, 6b Alignment film 7 Porous alignment film 8 Ion adsorption layer 9 Pore 10 Uneven part
Claims (7)
前記配向膜は、少なくとも前記表示領域を覆うように形成される第1の配向膜と、前記第1の配向膜の外側かつ前記シール材の内側の領域に形成される第2配向膜とで構成され、
前記第2の配向膜は、ポーラスな膜構造を有し、前記第1の配向膜よりもイオン性不純物の吸着性が高いことを特徴とする液晶表示装置。 In a liquid crystal display device in which an alignment film is formed on opposing surfaces of a pair of substrates, a sealing material is formed outside a display area of at least one substrate, and a liquid crystal material is sealed between the pair of substrates.
The alignment film includes a first alignment film formed so as to cover at least the display region, and a second alignment film formed in a region outside the first alignment film and inside the sealing material. And
The liquid crystal display device, wherein the second alignment film has a porous film structure and has higher ionic impurity adsorption than the first alignment film.
前記塗布工程では、少なくとも表示領域を覆うように前記配向膜を形成し、
前記仮乾燥工程において、前記表示領域外側の乾燥温度を局所的に上げ、前記表示領域外側にポーラスな配向膜を形成し、
前記仮乾燥工程から前記ラビング洗浄工程までの間に、前記表示領域外側の前記配向膜を改質し、吸着性を付与することを特徴とする液晶表示装置の製造方法。 A liquid crystal having at least a coating process for applying an alignment film on the substrate surface, a temporary drying process for temporarily drying the alignment film, a baking process for baking the alignment film, a rubbing process, and a rubbing cleaning process in this order. In the manufacturing method of the display device,
In the coating step, the alignment film is formed so as to cover at least the display region,
In the temporary drying step, locally raising the drying temperature outside the display area, forming a porous alignment film outside the display area,
A method for manufacturing a liquid crystal display device , wherein the alignment film outside the display region is modified to provide adsorptivity between the temporary drying step and the rubbing cleaning step .
前記塗布工程では、表示領域内側に対向する部分よりも前記表示領域外側に対向する部分の方が、表面のレリーフ数又はレリーフ凸部面積が小さい配向版、又は、レリーフ高さが大きい配向版を使用して、前記表示領域外側の前記配向膜を厚く印刷し、前記表示領域外側の前記配向膜の吸着性を高めることを特徴とする液晶表示装置の製造方法。 Manufacture of a liquid crystal display device having at least a step of applying an alignment film on the substrate surface, a step of temporarily drying the alignment film, a step of baking the alignment film, a rubbing step, and a rubbing cleaning step In the method
In the coating step, an orientation plate having a smaller number of reliefs on the surface or a relief convex area, or an orientation plate having a larger relief height than the portion facing the inside of the display region. A method of manufacturing a liquid crystal display device, wherein the alignment film outside the display region is printed thick to increase the adsorptivity of the alignment film outside the display region .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008049315A JP5151554B2 (en) | 2007-04-13 | 2008-02-29 | Liquid crystal display device and manufacturing method thereof |
US12/081,103 US7880846B2 (en) | 2007-04-13 | 2008-04-10 | Liquid crystal display device and method of fabricating the same |
CN2008100917922A CN101285968B (en) | 2007-04-13 | 2008-04-14 | Liquid crystal display device and method of fabricating the same |
US12/926,593 US8054432B2 (en) | 2007-04-13 | 2010-11-29 | Liquid crystal display device and method of fabricating the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007105717 | 2007-04-13 | ||
JP2007105717 | 2007-04-13 | ||
JP2008049315A JP5151554B2 (en) | 2007-04-13 | 2008-02-29 | Liquid crystal display device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008281991A JP2008281991A (en) | 2008-11-20 |
JP5151554B2 true JP5151554B2 (en) | 2013-02-27 |
Family
ID=40058241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008049315A Active JP5151554B2 (en) | 2007-04-13 | 2008-02-29 | Liquid crystal display device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5151554B2 (en) |
CN (1) | CN101285968B (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023880A1 (en) * | 2008-08-27 | 2010-03-04 | シャープ株式会社 | Liquid crystal display device |
CN102246088A (en) * | 2008-12-17 | 2011-11-16 | 夏普株式会社 | Liquid crystal panel and liquid crystal display device |
JP5520614B2 (en) * | 2010-01-15 | 2014-06-11 | 株式会社ジャパンディスプレイ | Liquid crystal display device and manufacturing method thereof |
CN102323695B (en) * | 2011-09-21 | 2013-07-03 | 深圳市华星光电技术有限公司 | Method for coating liquid crystal alignment film for TFT-LCD (Thin Film Transistor Liquid Crystal Display) |
US9223176B2 (en) | 2011-09-21 | 2015-12-29 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Coating method for liquid crystal alignment film of TFT-LCD |
US8704983B2 (en) | 2011-12-05 | 2014-04-22 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | LCD panel, LCD device, and manufacturing method thereof |
CN102402073A (en) * | 2011-12-05 | 2012-04-04 | 深圳市华星光电技术有限公司 | Liquid crystal panel, liquid crystal display device and manufacturing method for liquid crystal display device |
JP2014026141A (en) * | 2012-07-27 | 2014-02-06 | Seiko Epson Corp | Liquid crystal device, manufacturing method for the same, and electronic apparatus |
CN102854663B (en) * | 2012-09-28 | 2015-03-11 | 合肥京东方光电科技有限公司 | Alignment film, colored film substrate, array substrate, liquid crystal display device and manufacturing method |
KR102124924B1 (en) * | 2013-12-10 | 2020-06-22 | 삼성디스플레이 주식회사 | Liquid crystal display and method of manufacturing the same |
CN105137660A (en) * | 2015-09-25 | 2015-12-09 | 京东方科技集团股份有限公司 | Device and method for removing impurities in optical alignment film |
JP6037070B1 (en) * | 2016-02-22 | 2016-11-30 | 大日本印刷株式会社 | Dimming cell |
JP6120196B1 (en) * | 2016-10-27 | 2017-04-26 | 大日本印刷株式会社 | Dimming cell |
CN107991815B (en) * | 2018-01-29 | 2020-09-04 | 深圳市华星光电技术有限公司 | Manufacturing method of alignment film, liquid crystal display panel and liquid crystal display |
CN109976017B (en) * | 2019-04-10 | 2021-09-24 | 深圳市华星光电半导体显示技术有限公司 | Display panel and manufacturing method thereof |
JP7247797B2 (en) | 2019-07-12 | 2023-03-29 | セイコーエプソン株式会社 | projection display |
CN113009723B (en) * | 2019-12-20 | 2023-12-15 | 松下电器(美国)知识产权公司 | Viewing angle control device, manufacturing method thereof and display panel |
CN111061092B (en) | 2020-01-20 | 2021-02-23 | Tcl华星光电技术有限公司 | Liquid crystal display panel |
CN112198693B (en) * | 2020-10-23 | 2021-07-23 | Tcl华星光电技术有限公司 | Display panel and mother board |
CN114545688B (en) * | 2022-04-28 | 2022-08-09 | 惠科股份有限公司 | Display panel and alignment film preparation method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2722576B2 (en) * | 1988-12-12 | 1998-03-04 | セイコーエプソン株式会社 | Liquid crystal device and method of manufacturing the same |
JPH05333338A (en) * | 1992-05-29 | 1993-12-17 | Casio Comput Co Ltd | Liquid crystal display element |
JPH068934U (en) * | 1992-05-29 | 1994-02-04 | カシオ計算機株式会社 | Liquid crystal display element |
JPH0736045A (en) * | 1993-07-15 | 1995-02-07 | Canon Inc | Liquid crystal display device |
JPH10153781A (en) * | 1996-11-25 | 1998-06-09 | Fujitsu Ltd | Liquid crystal display device |
JP3886592B2 (en) * | 1997-03-18 | 2007-02-28 | シャープ株式会社 | LCD panel |
JP3198504B2 (en) * | 1999-01-25 | 2001-08-13 | 日本電気株式会社 | Manufacturing method of liquid crystal display device |
JP3887990B2 (en) * | 1999-03-31 | 2007-02-28 | カシオ計算機株式会社 | Liquid crystal cell |
JP2002258287A (en) * | 2001-03-06 | 2002-09-11 | Hitachi Ltd | Liquid crystal display device |
JP2003020356A (en) * | 2001-07-10 | 2003-01-24 | Foundation For Advancement Of Science & Technology | Method for manufacturing porous film |
JP2003233075A (en) * | 2002-02-08 | 2003-08-22 | Sharp Corp | Liquid crystal display device |
JP2007249105A (en) * | 2006-03-20 | 2007-09-27 | Sharp Corp | Liquid crystal display device |
-
2008
- 2008-02-29 JP JP2008049315A patent/JP5151554B2/en active Active
- 2008-04-14 CN CN2008100917922A patent/CN101285968B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008281991A (en) | 2008-11-20 |
CN101285968A (en) | 2008-10-15 |
CN101285968B (en) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151554B2 (en) | Liquid crystal display device and manufacturing method thereof | |
US7880846B2 (en) | Liquid crystal display device and method of fabricating the same | |
KR100798232B1 (en) | Color filter substrate and liquid crystal display panel equipped with same | |
JP4741870B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JP2004093760A (en) | Method of manufacturing liquid crystal display | |
JP2007328027A (en) | Liquid crystal display device and method for manufacturing the same | |
JP4354948B2 (en) | Method for forming alignment film of liquid crystal display device | |
JP2008268471A (en) | Liquid crystal display device and manufacturing method thereof | |
JP2006337820A (en) | Liquid crystal display device and its manufacturing method | |
JP2007148449A (en) | Liquid crystal display device | |
JP5059111B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JP2021026233A (en) | Liquid crystal panel manufacturing method and liquid crystal panel manufacturing apparatus | |
JPH10260406A (en) | Liquid crystal display panel | |
JP2010145756A (en) | Liquid crystal display element and manufacturing method thereof | |
JP2010224094A (en) | Method of manufacturing electrooptical device | |
JP2008145755A (en) | Method of manufacturing liquid crystal display device | |
US20210341806A1 (en) | Liquid crystal panel and manufacturing method thereof | |
JP2021012363A (en) | Manufacturing method for liquid crystal panel and manufacturing apparatus for liquid crystal panel | |
JP2009237032A (en) | Liquid crystal display panel and method for manufacturing the same | |
WO2017017820A1 (en) | Method for manufacturing liquid crystal display device | |
JP2008203712A (en) | Manufacturing method of liquid crystal device and manufacturing equipment of liquid crystal device | |
JP2000206544A (en) | Liquid crystal display device | |
JP2007264102A (en) | Liquid crystal display panel and method of manufacturing same | |
CN114545688B (en) | Display panel and alignment film preparation method | |
JP2009265399A (en) | Liquid crystal panel, display device, television set, and method of manufacturing liquid crystal panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5151554 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |