JP2018083415A - Laminate film, and production method thereof - Google Patents
Laminate film, and production method thereof Download PDFInfo
- Publication number
- JP2018083415A JP2018083415A JP2017210051A JP2017210051A JP2018083415A JP 2018083415 A JP2018083415 A JP 2018083415A JP 2017210051 A JP2017210051 A JP 2017210051A JP 2017210051 A JP2017210051 A JP 2017210051A JP 2018083415 A JP2018083415 A JP 2018083415A
- Authority
- JP
- Japan
- Prior art keywords
- film
- layer
- laminated film
- less
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Insulating Bodies (AREA)
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、耐熱性・電気絶縁性に優れると共に、製膜安定性に優れ、低誘電率かつ薄膜化可能な積層フィルムに関する。 The present invention relates to a laminated film having excellent heat resistance and electrical insulation, excellent film forming stability, a low dielectric constant, and a thin film.
ポリアリーレンスルフィド、ポリエーテルイミド、ポリエチレンナフタレート、ポリアミド、ポリイミド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂などに代表される熱可塑性樹脂からなるフィルムは耐熱性・電気絶縁性に優れることから、電気・電子部品、電池用部材、機械部品および自動車部品の絶縁材や断熱材などに好適に使用されている。近年、スマートフォンやタブレット、ゲーム機器などの無線通信分野の発展に伴い、情報処理速度の向上のため、高周波回路基板用材料の低誘電率化や、機器の小型化に伴い基板材料のフィルム化 が検討されている。
基盤用のフィルムとして、ポリイミド、液晶ポリマー、ポリアリーレンスルフィド(以下PPSと略する)からなるフィルムが検討されているが、高周波特性が劣る点また高価であることが課題となっていた。また、フッ素フィルムも検討されているが、高周波特性は優れるが、線膨張係数が高く接着加工性が劣る点が課題となっていた。
そこで比較的安価なPPSフィルムの多孔化による高周波特性の改良を着想した。PPSフィルムの多孔化手法としては、フィルムの原料に溶媒に可溶な成分を混合しフィルム化した後溶媒で洗浄し孔を形成する方法が提案されているが(特許文献1)、溶媒に可溶な成分が小さな分散径を持って分散するため低誘電化の効果低いことが課題となっている。また、フィルム原料に発泡剤を混合し二酸化炭素を用いて空孔を形成する方法が提案されているが(特許文献2)、発泡倍率が高いためフィルムが圧膜化し、熱伝導率が低下するといった問題があった。
また、PPSフィルムの原料に微小な粒子を配合し、二軸延伸時に空孔を形成するといった手法が提案されているが(特許文献3)、使用粒子が小さく空孔が小さいため低誘電化の効果が低いことが課題となっている。
Films made of thermoplastic resins such as polyarylene sulfide, polyetherimide, polyethylene naphthalate, polyamide, polyimide, polyetheretherketone, liquid crystal polymer, and fluororesin are excellent in heat resistance and electrical insulation. -It is suitably used for insulating materials and heat insulating materials for electronic parts, battery members, machine parts and automobile parts. In recent years, with the development of the wireless communication field such as smartphones, tablets, and game devices, in order to improve the information processing speed, the dielectric constant of high-frequency circuit board materials has been reduced, and the substrate material has been made into a film with the miniaturization of equipment. It is being considered.
As a substrate film, a film made of polyimide, liquid crystal polymer, and polyarylene sulfide (hereinafter abbreviated as PPS) has been studied. However, the problem is that the high-frequency characteristics are inferior and the film is expensive. Further, although fluorine films have been studied, the high-frequency characteristics are excellent, but the problem is that the linear expansion coefficient is high and the adhesive processability is poor.
Therefore, the idea was to improve the high-frequency characteristics by making a relatively inexpensive PPS film porous. As a method for making a PPS film porous, a method has been proposed in which a component soluble in a solvent is mixed with the raw material of the film to form a film and then washed with a solvent to form pores (Patent Document 1). Since a soluble component is dispersed with a small dispersion diameter, it is a problem that the effect of reducing the dielectric is low. Moreover, although the method of mixing a foaming agent with a film raw material and forming a void | hole using a carbon dioxide is proposed (patent document 2), since a foaming ratio is high, a film turns into a film and heat conductivity falls. There was a problem.
In addition, a technique has been proposed in which fine particles are blended into the raw material of the PPS film to form vacancies during biaxial stretching (Patent Document 3). The problem is that the effect is low.
本発明の課題は、上記した問題を解決することにある。耐熱性、電気絶縁性に優れると共に、製膜安定性に優れ、低誘電率かつ薄膜化可能な積層フィルムを提供することである。 An object of the present invention is to solve the above-described problems. An object of the present invention is to provide a laminated film that is excellent in heat resistance and electrical insulation, has excellent film forming stability, has a low dielectric constant, and can be thinned.
本発明の積層フィルムは、上記課題を解決するために次の構成を有する。すなわち、分子の構成元素として、窒素原子、又は、硫黄原子の少なくとも一方を有する融点または軟化点が270℃以上の熱可塑性樹脂を主成分とする積層フィルムであって、フィルムを構成する層の少なくとも1層が無機粒子を含む層(I)であり、層(I)に含まれる無機粒子の粒度分布が0.15μm以上3μm未満と3μm以上20μm以下の各領域において1つ以上のピークを有することを特徴とし、23℃65%RHでの誘電率が2.5以下で、かつ厚みが15〜150μmの積層フィルムである。 The laminated film of the present invention has the following configuration in order to solve the above problems. That is, as a molecular constituent element, a laminated film mainly composed of a thermoplastic resin having a melting point or softening point of at least 270 ° C. having at least one of a nitrogen atom or a sulfur atom, and at least of the layers constituting the film One layer is a layer (I) containing inorganic particles, and the particle size distribution of the inorganic particles contained in the layer (I) has one or more peaks in each region of 0.15 μm to less than 3 μm and 3 μm to 20 μm. And having a dielectric constant of 2.5 or less at 23 ° C. and 65% RH, and a thickness of 15 to 150 μm.
本発明の積層フィルムは耐熱性・電気絶縁性に優れることから、電気・電子機器、電池用部材、機械部品および自動車部品として好適に用いることができる。 Since the laminated film of the present invention is excellent in heat resistance and electric insulation, it can be suitably used as an electric / electronic device, a battery member, a machine part and an automobile part.
本発明の積層フィルムは分子の構成元素として、窒素原子、又は、硫黄原子の少なくとも一方を有する融点または軟化点が270℃以上の熱可塑性樹脂を主成分とする。ここで融点とはその樹脂の固体・液体の転移温度を指し、軟化点とはその熱可塑性樹脂が加熱によって実質的に変形し始める温度のことをさす。また主成分とはフィルムを構成する樹脂組成のうち60%以上を占める成分をさす。上記の熱特性を有することで、優れた耐熱性を発現せしめることができる。融点または軟化点が270℃より低いと、180℃以上の高温環境下で使用した際にフィルムが劣化しやすくなり、機械特性・電気特性などが低下する場合がある。融点または軟化点は高ければ高いほど耐熱性が向上するが、生産性の観点から350℃以下であることが好ましい。融点は示差走査熱量計で、軟化点は熱機械分析装置を用いて後述の手法にて評価できる。上記の熱可塑性樹脂としては、例えばポリアミド樹脂、ポリエーテルイミド(PEI)、熱可塑性ポリアミドイミド樹脂、芳香族含有ビニル樹脂(ABS等)、ポリアリーレンスルフィド樹脂(ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイドなど)からなる群より選択された少なくとも1種であることが好ましい。中でもポリアリーレンスルフィド、ポリアミド、ポリエーテルイミドのいずれかより選択された少なくとも1種以上であることが耐熱性・絶縁性の観点から好ましく、ポリアリーレンスルフィド樹脂であることが加工性・生産性の観点から最も好ましい。
本発明の積層フィルムに用いるポリアリーレンスルフィド樹脂は、−(Ar−S)−の繰り返し単位を有するコポリマーを指す。Arとしては下記の式(A)〜式(K)などで表される単位があげられる。
The laminated film of the present invention contains, as a main component, a thermoplastic resin having a melting point or softening point of at least 270 ° C. having at least one of a nitrogen atom and a sulfur atom as a molecular constituent element. Here, the melting point refers to the transition temperature of the solid / liquid of the resin, and the softening point refers to the temperature at which the thermoplastic resin begins to be substantially deformed by heating. Moreover, a main component means the component which occupies 60% or more among the resin compositions which comprise a film. By having the above thermal characteristics, excellent heat resistance can be exhibited. When the melting point or softening point is lower than 270 ° C., the film tends to be deteriorated when used in a high temperature environment of 180 ° C. or higher, and mechanical characteristics and electrical characteristics may be lowered. The higher the melting point or softening point, the better the heat resistance, but it is preferably 350 ° C. or lower from the viewpoint of productivity. The melting point can be evaluated by a differential scanning calorimeter, and the softening point can be evaluated by a method described later using a thermomechanical analyzer. Examples of the thermoplastic resin include polyamide resin, polyetherimide (PEI), thermoplastic polyamideimide resin, aromatic-containing vinyl resin (ABS, etc.), polyarylene sulfide resin (polysulfone, polyethersulfone, polyphenylene sulfide, etc.). It is preferably at least one selected from the group consisting of Among these, at least one selected from polyarylene sulfide, polyamide, and polyetherimide is preferable from the viewpoint of heat resistance and insulation, and a polyarylene sulfide resin is preferable from the viewpoint of workability and productivity. To most preferred.
The polyarylene sulfide resin used for the laminated film of the present invention refers to a copolymer having a repeating unit of-(Ar-S)-. Examples of Ar include units represented by the following formulas (A) to (K).
(R1,R2は、水素、アルキル基、アルコキシ基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい)
繰り返し単位としては、上記の化1で表されるp−アリーレンスルフィド単位が好ましく、これらの代表的なものとして、ポリフェニレンスルフィド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンなどが挙げられ、特に好ましいp−アリーレンスルフィド単位としては、フィルム物性と経済性の観点から、p−フェニレンスルフィド単位が好ましく例示される。
(R1 and R2 are substituents selected from hydrogen, an alkyl group, an alkoxy group, and a halogen group, and R1 and R2 may be the same or different.)
As the repeating unit, a p-arylene sulfide unit represented by the above chemical formula 1 is preferable, and typical examples thereof include polyphenylene sulfide, polysulfone, polyether sulfone, polyphenylene sulfide sulfone, polyphenylene sulfide ketone and the like. Particularly preferred p-arylene sulfide units are preferably p-phenylene sulfide units from the viewpoint of film properties and economy.
本発明に用いるポリアリーレンスルフィド樹脂は、主要構成単位として下記構造式で示されるp−フェニレンスルフィド単位を全繰り返し単位の80モル%以上99.9モル%以下で構成されていることが好ましい。上記の組成とすることで、優れた耐熱性、耐薬品性を発現せしめることができる。 The polyarylene sulfide resin used in the present invention is preferably composed of 80 mol% or more and 99.9 mol% or less of p-phenylene sulfide units represented by the following structural formula as main structural units. By setting it as said composition, the outstanding heat resistance and chemical-resistance can be expressed.
また、繰り返し単位の0.01モル%以上20モル%以下の範囲で共重合単位と共重合することもできる。 Moreover, it can also copolymerize with a copolymerization unit in 0.01 mol% or more and 20 mol% or less of a repeating unit.
好ましい共重合単位は、 Preferred copolymer units are
(ここでXは、アルキレン、CO、SO2単位を示す。) (Here, X represents an alkylene, CO, or SO 2 unit.)
(ここでRはアルキル、ニトロ、フェニレン、アルコキシ基を示す。)が挙げられ、特に好ましい共重合単位は、m−フェニレンスルフィド単位である。 (Wherein R represents an alkyl, nitro, phenylene, or alkoxy group), and a particularly preferred copolymer unit is an m-phenylene sulfide unit.
共重合成分との共重合の態様は特に限定はないが、ランダムコポリマーであることが好ましい。 The mode of copolymerization with the copolymerization component is not particularly limited, but is preferably a random copolymer.
本発明の積層フィルムは、フィルムを構成する層の少なくとも1層に無機粒子を含む層(I)を有する。層(I)に含まれる無機粒子によって効率よくボイドを形成でき、積層フィルムを低誘電化することができる。
本発明の積層フィルムは、2層以上の積層構成を有すことが好ましい。2層以上の層構成を有することで、積層フィルム自体の延伸性が向上し、破れが抑制され生産性を向上することができる。積層構成としては、上記の層(I)、および層(I)とは異なる組成の層を(II)とした場合、(I)/(II)の2層、(I)/(II)/(I)、(II)/(I)/(II)、(II)/(I)/(II)/(I)、(II)/(I)/(II)/(I)/(II)などの多層構成が挙げられるが、これに限定されない。また、(I)〜(II)とは異なる組成からなる層をさらに追加した層構成にすることもできる。
本発明の積層フィルムを構成するその他の層(II)は無機粒子を含んでもよいし、含まなくてもよい。
本発明の積層フィルムの層(II)に粒子が含まれる場合、その粒子の濃度は0.01〜5質量%であることが好ましく、0.01〜1質量%がより好ましい。上記の濃度とすることで、フィルムを延伸する際に層(II)の支持体としての機能を発現するとともに、積層フィルムとしての絶縁性を高めることができる。層(II)に含まれる粒子の濃度が5質量%を上回ると、延伸時にフィルムにかかる応力に対してフィルムが耐えることができず破断しやすくなり、製膜安定性が損なわれる場合や、絶縁性が低下する場合がある。
本発明の積層フィルムを構成するその他の層(II)に無機粒子が含まれる場合、その体積平均粒径は0.15〜20μmであり、製膜安定性の観点から0.3〜15μmであることがより好ましく、0.5〜10μmであることがさらに好ましい。
本発明の積層フィルムの厚みは、生産性および実用上の観点から15〜150μmであり、25〜150μmがより好ましく、25〜125μmがさらに好ましい。
厚みが150μmを越えると、熱伝導性が低下するため伝送時に発生した熱が逃げにくく、熱によるフィルムの変形が発生しやすくなる場合がある。厚みが15μm以下であるとフィルムとしての強度が低くなり、製膜安定性が低下する場合がある。フィルム厚みおよび層厚みは未延伸シートを得る際に後述の粒子を用いた原料の供給量を調整することで制御できる。またフィルム厚みおよび層厚みは後述する手法にて評価できる。
本発明の積層フィルムに使用可能な無機粒子としては、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックスや窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、硫酸バリウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維等のなどの無機化合物があげられる。用いる粒子は1種でもよく、複数種を混合して用いてもかまわない。
本発明の積層フィルムに用いる無機粒子は、積層フィルムの物性を損なわない範囲で表面処理を施すことができる。
本発明の積層フィルムに使用可能な無機粒子の誘電率は温度20℃、65%RH下で周波数10GHzにおける誘電率が3.0以下であることが好ましく、2.0以下であることがより好ましい。フィルムに含まれる無機粒子が上記の誘電率を有することで、積層フィルムをより一層低誘電化することができる。誘電率が3.0以上であると、ボイド形成による低誘電効果が粒子の誘電率によって相殺され、フィルムとしての低誘電化効果が低くなる場合がある。誘電率が3.0以下の粒子としては酸化亜鉛、炭酸カルシウムなどが上げられる。無機粒子の誘電率は後述する手法にて評価することができる。
The laminated film of the present invention has a layer (I) containing inorganic particles in at least one layer constituting the film. Voids can be efficiently formed by the inorganic particles contained in the layer (I), and the laminated film can be made low dielectric.
The laminated film of the present invention preferably has a laminated structure of two or more layers. By having a layer structure of two or more layers, the stretchability of the laminated film itself is improved, the tearing is suppressed, and the productivity can be improved. As the laminated structure, when the layer (I) and the layer having a composition different from the layer (I) are (II), two layers (I) / (II), (I) / (II) / (I), (II) / (I) / (II), (II) / (I) / (II) / (I), (II) / (I) / (II) / (I) / (II ) And the like, but is not limited thereto. Moreover, it can also be set as the layer structure which added the layer which consists of a composition different from (I)-(II) further.
The other layer (II) constituting the laminated film of the present invention may or may not contain inorganic particles.
When the layer (II) of the laminated film of the present invention contains particles, the concentration of the particles is preferably 0.01 to 5% by mass, and more preferably 0.01 to 1% by mass. By setting it as said density | concentration, while extending | stretching a film, while exhibiting the function as a support body of layer (II), the insulation as a laminated | multilayer film can be improved. When the concentration of the particles contained in the layer (II) exceeds 5% by mass, the film cannot withstand the stress applied to the film at the time of stretching, and the film tends to break, so that the film-forming stability is impaired, or the insulation May decrease.
When inorganic particles are contained in the other layer (II) constituting the laminated film of the present invention, the volume average particle size is 0.15 to 20 μm, and 0.3 to 15 μm from the viewpoint of film formation stability. It is more preferable that the thickness is 0.5 to 10 μm.
The thickness of the laminated film of the present invention is 15 to 150 μm, more preferably 25 to 150 μm, and further preferably 25 to 125 μm from the viewpoint of productivity and practical use.
If the thickness exceeds 150 μm, the heat conductivity is lowered, so that heat generated during transmission is difficult to escape, and deformation of the film due to heat is likely to occur. When the thickness is 15 μm or less, the strength as a film is lowered, and film formation stability may be lowered. The film thickness and layer thickness can be controlled by adjusting the feed rate of raw materials using particles described later when obtaining an unstretched sheet. Moreover, film thickness and layer thickness can be evaluated by the method mentioned later.
Examples of inorganic particles that can be used in the laminated film of the present invention include alumina ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide, and silicon nitride, titanium nitride, and boron nitride. Nitride ceramics, silicon carbide, calcium carbonate, aluminum sulfate, barium sulfate, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite Inorganic compounds such as ceramics such as calcium silicate, magnesium silicate, diatomaceous earth, and silica sand, and glass fiber. One kind of particles may be used, or a plurality of kinds may be mixed and used.
The inorganic particles used in the laminated film of the present invention can be subjected to surface treatment within a range that does not impair the physical properties of the laminated film.
The dielectric constant of the inorganic particles that can be used in the laminated film of the present invention is preferably 3.0 or less, more preferably 2.0 or less at a frequency of 10 GHz under a temperature of 20 ° C. and 65% RH. . Since the inorganic particles contained in the film have the above dielectric constant, the laminated film can be further reduced in dielectric constant. When the dielectric constant is 3.0 or more, the low dielectric effect due to void formation is offset by the dielectric constant of the particles, and the low dielectric effect as a film may be reduced. Examples of the particles having a dielectric constant of 3.0 or less include zinc oxide and calcium carbonate. The dielectric constant of the inorganic particles can be evaluated by a method described later.
本発明の積層フィルムの層(I)に含まれる無機粒子は、平均粒径は0.15〜20μmにあるものから選択されることが好ましく、0.3〜15μmであることがより好ましく0.5〜10μmにあるものから選択されることがより好ましい。上記の平均粒径の粒子を用いることで、粒子凝集を抑制しかつ効率よくボイドを形成させることができる。平均粒径が0.15μmより小さいと、粒子同士の凝集による粗大物となりやすく、製膜時にフィルム破れの要因となる場合や、ボイドが小さくなるため低誘電化の効果が低くなる場合がある。また、20μmより大きいと、フィルムの厚みに対する粒子径の割合が大きくなるため、製膜安定性が損なわれる場合がある。
本発明の積層フィルムの層(I)に含まれる無機粒子の粒度分布は、0.15μm以上3μm未満と3μm以上20μm以下の各領域において1つ以上のピークを有することを特徴とする。ここで1つ以上のピークを有するとは粒度分布を体積頻度と粒子径でプロットした際に、明確な頂点が2つ以上、また頂点と頂点の間に1つ以上の谷が存在することをさす。上記の粒度分布を有することで、前述の厚みを達成した際にフィルムを効率的に低誘電化できるとともにフィルムの強度を維持することができる。粒度分布のピークが0.15μm以上3μm未満のみまたは3μm以上20μm以下のみなど、上記の範囲の一方のみに確認されるフィルムではボイドの形成が不十分でフィルムの低誘電効果が低い場合や、大きなボイドが形成されるためフィルムの強度が低下する場合があり、実用上好ましくない。粒度分布は0.3μm以上3μm未満と5μm以上15μm以下の各領域にいて1つ以上のピークを有することがより好ましく、0.5μm以上3μm未満と5μm以上10μm以下の各領域にいて1つ以上のピークを有することが特に好ましい。
本発明の積層フィルムの層(I)および層(II)に用いる粒子は、50μmより大きい粒径の粒子の含有率が3体積%以下であることが好ましく、1体積%以下であることがより好ましい。50μm以上の粒子を含むと、溶融押出時に昇圧要因になる場合や、延伸時にフィルム破断の原因となり生産性が低下する場合がある。
本発明の積層フィルムの層(I)に含まれる粒子の濃度は1〜50質量%であることが好ましく、5〜45質量%がより好ましく、10〜35質量%がさらに好ましい。粒子濃度を上記の範囲とすることで効率よくボイドを形成することができ、フィルムを低誘電化することができる。粒子濃度が1質量%未満であると、後述するフィルム製造時に粒子濃度が低いためボイドが形成されにくい場合がある。また粒子濃度が50質量%を上回ると樹脂量が減るためフィルム製造時に破れが発生しやすくなる。
層(I)および層(II)に含まれる粒子の平均粒径および粒度分布・濃度は、フィルムから目的の層をナイフやマイクロプレーンを用いて削りとり、500℃で灰化させて熱可塑性樹脂を除去した後に採取される炭の粒度分布が目的の層に含まれる無機粒子の粒度分布として分析することで確認できる。上記の粒度分布の粒子は合成または天然採掘した粒子を粉砕後に所望の分布になるまで篩を用いて分級することにとって得ることができる。
本発明の積層フィルムの絶縁破壊電圧は101〜250kv/mmであることが好ましく、120〜250kV/mmであることがより好ましい。なお、絶縁破壊電圧は高いほど好ましいが、実現可能な範囲を考慮するとその上限は、250kV/mmである。絶縁破壊電圧とは絶縁破壊が生じるまで印加電圧を上げた際の限界電圧値であり、JIS C2151(2006)に基づいて測定することができる。絶縁破壊電圧が101kV/mmより小さくなると積層フィルムを絶縁材として使用した際に十分な絶縁性を発現できず使用に耐えない場合がある。絶縁破壊電圧を上記の範囲とするには、前述する層構成および層構造を有することで達成することができる。絶縁破壊電圧は後述する手法にて評価できる。
本発明の積層フィルムは温度23℃、65%RH下で周波数10GHzにおける誘電率が2.5以下であり、2.3以下であることがより好ましい。上記の特性を有することで、高周波領域における回路基板材料として使用した際に、絶縁材の奇生容量を減らすことができるため伝送損失を効果的に抑制することができる。誘電率が2.5より大きいと、基板材料として用いた場合、伝送損失が大きくなる場合がある。誘電率は低いほど好ましいが、実現可能な範囲は1.5以上である。誘電率を上記の範囲とするには、積層フィルムの組成および特性を前述の構成とすることで達成できる。誘電率は後述する手法にて評価できる。
本発明の積層フィルムは、25℃におけるフィルムの長手方向および横手方向の破断強度の平均値が100N/10mm以上であることが好ましく、110N/10mm以上であることがより好ましく、120N/10mm以上であることがさらに好ましい。フィルムの破断強度を上記の範囲とすることで、フィルムを基材と使用した際の加工における搬送張力を保持でき、歩留まりを抑制することができる。破断強度が100N/10mm以下であると、フィルム搬送時のフィルムが破断しやすく、歩留まりが大きくなる場合がある。破断強度は高ければ高いほど好ましいが、実現可能な範囲としては1000N/10mm以下である。破断強度は後述の手法によって評価できる。フィルムの破断強度は、前述の粒子を用いることで達成できる。
本発明の積層フィルムの熱伝導率は0.1W/m・℃以上であることが好ましく、0.15W/m・℃以上であることがより好ましく、0.2W/m・℃以上であることが特に好ましい。上記の熱伝導率を有することで、基材として使用した際に通電によって発生した熱を効率よく拡散することができる。熱伝導率が0.1W/m・℃より小さいと、熱が基材およびそれに隣接する部材にこもり、変形や熱劣化を引き起こしやすく実用上好ましくない。熱伝導率は高いほど好ましいが、実現可能な範囲としては0.4W/m・℃以下である。熱伝導率は前述の粒子を用いて、前述のフィルム厚みとすることで達成できる。熱伝導率は後述の手法を用いて評価できる。
本発明の積層フィルムの23℃、65%RHでの10GHzにおける伝送損失は25%未満であることが好ましく、20%未満であることがより好ましい。伝送損失とは通信線路上を流れる信号の劣化度合いを表す。伝送損失が25%より大きいと、回路線上の入力信号の劣化が大きく、大容量通信時の機器の部材としての適用が困難となる。伝送損失の下限は低いほど好ましい。伝送損失を上記の範囲とするには積層フィルムを前述の誘電率とすることで達成できる。伝送損失は後述の手法にて評価できる。
本発明の積層フィルムは200℃/1000時間処理後のフィルム長手方向および幅方向の強度保持率の平均値が65〜100%であることが好ましく、75〜100%であることがより好ましい。強度保持率を上記の範囲とすることで、高温下で長時間使用した際の積層フィルムの機械特性、電気特性を維持することができる。強度保持率が60%未満であると長期耐熱性に劣り、高温化で長時間使用した際に劣化によりクラックが入ったり、電気特性が低下したりする場合がある。強度保持率を上記の範囲とするためには、前述の熱可塑性樹脂フィルムを用いることで達成できる。強度保持率は後述する手法にて評価することができる。
本発明の積層フィルムを構成する樹脂組成物には、本発明の効果を損なわない範囲でポリアリーレンスルフィド樹脂以外の樹脂を配合して使用することも可能である。かかる樹脂の具体例としては、ポリエチレンやポリプロピレンなどのポリオレフィン樹脂や、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリケトン、ポリエーテルケトン、ポリエーテルイミド、エポキシ樹脂などが挙げられるがこれに限定されない。
The inorganic particles contained in the layer (I) of the laminated film of the present invention are preferably selected from those having an average particle diameter of 0.15 to 20 μm, more preferably 0.3 to 15 μm. More preferably, it is selected from those having a thickness of 5 to 10 μm. By using particles having the above average particle diameter, it is possible to suppress particle aggregation and efficiently form voids. If the average particle size is smaller than 0.15 μm, it tends to be a coarse product due to aggregation of the particles, which may cause film breakage during film formation, or may reduce the effect of lowering the dielectric due to the small voids. Moreover, since the ratio of the particle diameter with respect to the thickness of a film will become large when larger than 20 micrometers, film forming stability may be impaired.
The particle size distribution of the inorganic particles contained in the layer (I) of the laminated film of the present invention is characterized by having one or more peaks in each region of 0.15 μm or more and less than 3 μm and 3 μm or more and 20 μm or less. Here, having one or more peaks means that there are two or more distinct vertices and one or more valleys between the vertices when the particle size distribution is plotted by volume frequency and particle diameter. Sure. By having the above particle size distribution, the film can be efficiently reduced in dielectric strength when the above-mentioned thickness is achieved, and the strength of the film can be maintained. In the case where the peak of the particle size distribution is only 0.15 μm or more and less than 3 μm or only 3 μm or more and 20 μm or less, and the film is confirmed only in one of the above ranges, void formation is insufficient and the low dielectric effect of the film is low or large Since voids are formed, the strength of the film may be lowered, which is not preferable in practice. The particle size distribution preferably has one or more peaks in each region of 0.3 μm or more and less than 3 μm and 5 μm or more and 15 μm or less, and one or more in each region of 0.5 μm or more and less than 3 μm and 5 μm or more and 10 μm or less. It is particularly preferred to have
The particles used in the layer (I) and the layer (II) of the laminated film of the present invention preferably have a content of particles having a particle diameter of more than 50 μm of 3% by volume or less, more preferably 1% by volume or less. preferable. When particles of 50 μm or more are included, it may be a pressurizing factor at the time of melt extrusion, or it may be a cause of film breakage at the time of stretching and productivity may be lowered.
It is preferable that the density | concentration of the particle | grains contained in layer (I) of the laminated | multilayer film of this invention is 1-50 mass%, 5-45 mass% is more preferable, 10-35 mass% is further more preferable. By setting the particle concentration within the above range, voids can be efficiently formed, and the film can be made low dielectric. When the particle concentration is less than 1% by mass, voids may be difficult to be formed because the particle concentration is low during film production to be described later. On the other hand, if the particle concentration exceeds 50% by mass, the amount of resin is reduced, so that tearing tends to occur during film production.
The average particle size and particle size distribution / concentration of the particles contained in layer (I) and layer (II) are determined by removing the desired layer from the film using a knife or microplane and ashing at 500 ° C. It can be confirmed by analyzing the particle size distribution of the charcoal collected after removing the ash as the particle size distribution of the inorganic particles contained in the target layer. Particles with the above particle size distribution can be obtained by classifying synthetic or natural mined particles using a sieve until the desired distribution is obtained after grinding.
The dielectric breakdown voltage of the laminated film of the present invention is preferably 101 to 250 kv / mm, and more preferably 120 to 250 kV / mm. The higher the breakdown voltage, the better. However, the upper limit is 250 kV / mm in consideration of the realizable range. The dielectric breakdown voltage is a limit voltage value when the applied voltage is increased until dielectric breakdown occurs, and can be measured based on JIS C2151 (2006). If the dielectric breakdown voltage is lower than 101 kV / mm, when the laminated film is used as an insulating material, sufficient insulation may not be exhibited, and it may not be used. In order to make the breakdown voltage within the above range, it can be achieved by having the layer configuration and the layer structure described above. The dielectric breakdown voltage can be evaluated by a method described later.
The laminated film of the present invention has a dielectric constant at a frequency of 10 GHz at a temperature of 23 ° C. and 65% RH of 2.5 or less, and more preferably 2.3 or less. By having the above characteristics, when used as a circuit board material in a high frequency region, it is possible to reduce the strange capacity of the insulating material, so that transmission loss can be effectively suppressed. If the dielectric constant is greater than 2.5, transmission loss may increase when used as a substrate material. The lower the dielectric constant, the better, but the realizable range is 1.5 or more. In order to make the dielectric constant within the above range, the composition and characteristics of the laminated film can be achieved by the above-described configuration. The dielectric constant can be evaluated by a method described later.
In the laminated film of the present invention, the average value of the breaking strength in the longitudinal direction and the transverse direction of the film at 25 ° C. is preferably 100 N / 10 mm or more, more preferably 110 N / 10 mm or more, and 120 N / 10 mm or more. More preferably it is. By setting the breaking strength of the film in the above range, it is possible to maintain the conveyance tension in the processing when the film is used with the base material, and to suppress the yield. When the breaking strength is 100 N / 10 mm or less, the film at the time of film conveyance is easily broken and the yield may be increased. The higher the breaking strength, the better. However, the realizable range is 1000 N / 10 mm or less. The breaking strength can be evaluated by a method described later. The breaking strength of the film can be achieved by using the aforementioned particles.
The thermal conductivity of the laminated film of the present invention is preferably 0.1 W / m · ° C. or more, more preferably 0.15 W / m · ° C. or more, and 0.2 W / m · ° C. or more. Is particularly preferred. By having said heat conductivity, the heat | fever generate | occur | produced by electricity supply when it uses as a base material can be spread | diffused efficiently. When the thermal conductivity is less than 0.1 W / m · ° C., heat is confined to the base material and the members adjacent thereto, which is likely to cause deformation and thermal deterioration, which is not preferable for practical use. The higher the thermal conductivity, the better, but the realizable range is 0.4 W / m · ° C. or less. Thermal conductivity can be achieved by using the above-mentioned particles and setting the film thickness as described above. The thermal conductivity can be evaluated using a method described later.
The transmission loss at 10 GHz at 23 ° C. and 65% RH of the laminated film of the present invention is preferably less than 25%, and more preferably less than 20%. Transmission loss represents the degree of deterioration of a signal flowing on a communication line. If the transmission loss is greater than 25%, the input signal on the circuit line is greatly deteriorated, and it becomes difficult to apply it as a member of a device during large-capacity communication. The lower the lower limit of transmission loss, the better. The transmission loss can be controlled within the above range by setting the laminated film to the above-described dielectric constant. The transmission loss can be evaluated by the method described later.
In the laminated film of the present invention, the average value of strength retention in the film longitudinal direction and width direction after treatment at 200 ° C./1000 hours is preferably 65 to 100%, more preferably 75 to 100%. By setting the strength retention within the above range, the mechanical properties and electrical properties of the laminated film when used for a long time at high temperature can be maintained. When the strength retention is less than 60%, the long-term heat resistance is inferior, and when used at a high temperature for a long time, cracks may occur due to deterioration or the electrical characteristics may deteriorate. In order to make a strength retention into said range, it can achieve by using the above-mentioned thermoplastic resin film. The strength retention can be evaluated by a method described later.
The resin composition constituting the laminated film of the present invention can be used by blending a resin other than the polyarylene sulfide resin within a range not impairing the effects of the present invention. Specific examples of such resins include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyamide resins, polyamideimide resins, polyketones, polyether ketones, polyether imides, and epoxy resins. However, it is not limited to this.
本発明の積層フィルムを構成する樹脂組成物には、本発明の効果を損なわない範囲で添加剤を配合して使用することも可能である。かかる添加剤の具体例としては有機化合物、熱分解防止剤、熱安定剤、光安定剤および酸化防止剤などが挙げられる。 The resin composition constituting the laminated film of the present invention can be used by blending an additive within a range not impairing the effects of the present invention. Specific examples of such additives include organic compounds, thermal decomposition inhibitors, thermal stabilizers, light stabilizers and antioxidants.
本発明の製造法を本発明の好ましい態様である熱可塑性樹脂にポリアリーレンスルフィド樹脂を用いた場合を例に説明する。 The production method of the present invention will be described with reference to an example in which a polyarylene sulfide resin is used as a thermoplastic resin which is a preferred embodiment of the present invention.
本発明の積層フィルムに好ましく用いるポリアリーレンスルフィド樹脂の製造方法を説明する。硫化ナトリウムとp−ジクロロベンゼンを配合し、N−メチル−2−ピロリドン(NMP)などのアミド系極性溶媒中で、高温高圧下で反応させる。必要に応じて、m−ジクロロベンゼンやトリハロベンゼンなどの共重合成分を含ませることも可能である。重合度調整剤として苛性カリやカルボン酸アルカリ金属塩などを添加し230〜290℃で重合反応させる。重合後にポリマーを冷却し、ポリマーを水スラリーとしてフィルターで濾過後、湿潤状態の粒状ポリマーを得る。この粒状ポリマーにアミド系極性溶媒を加えて30〜100℃の温度で攪拌処理して洗浄し、イオン交換水にて30〜80℃で数回洗浄し、酢酸カルシウムなどの金属塩水溶液で数回洗浄した後、乾燥してポリアリーレンスルフィド樹脂の粒状ポリマーを得る。この粒状ポリマーと無機粒子を任意の割合で混合し300〜350℃に設定したベント付き押出機に投入してストランド状に溶融押出し、温度25℃の水で冷却した後、カッティングしてチップを作製し、無機粒子を含む層(I)の原料とする。このとき無機粒子の添加濃度は粒状ポリマー100質量部に対して1〜100質量部が好ましく、5〜80質量部がより好ましい。
また、上記の粒状ポリマーのみ、または粒状ポリマーと無機粒子や添加剤などを任意の割合で混合し、300〜350℃に設定したベント付き押出機に投入してストランド状に溶融押出し、温度25℃の水で冷却した後、カッティングしてチップを作製して層(I)とは異なる組成からなるその他の層(II)の原料とする。この2種のチップを、180℃で3時間減圧乾燥した後、溶融部が300〜350℃に設定されたフルフライトの単軸押出機2台にそれぞれ供給し、フィルターに通過させた後、溶融状態で口金上部にある積層装置で2層(積層構成は、(I)/(II)、積層比は(I):(II)=9:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度20〜70℃の冷却ドラム上に静電荷を印加させながら密着させて急冷固化し、実質的に無配向状態の未延伸フィルムを得る。
A method for producing a polyarylene sulfide resin preferably used for the laminated film of the present invention will be described. Sodium sulfide and p-dichlorobenzene are blended and reacted in an amide polar solvent such as N-methyl-2-pyrrolidone (NMP) at high temperature and high pressure. If necessary, a copolymer component such as m-dichlorobenzene or trihalobenzene can also be included. Caustic potash or alkali metal carboxylate is added as a polymerization degree adjusting agent, and a polymerization reaction is performed at 230 to 290 ° C. After the polymerization, the polymer is cooled, and the polymer is filtered as a water slurry through a filter to obtain a wet granular polymer. An amide polar solvent is added to this granular polymer and washed by stirring at a temperature of 30 to 100 ° C., washed several times with ion exchange water at 30 to 80 ° C., and several times with an aqueous metal salt solution such as calcium acetate. After washing, drying is performed to obtain a granular polymer of polyarylene sulfide resin. This granular polymer and inorganic particles are mixed at an arbitrary ratio, put into an extruder with a vent set to 300 to 350 ° C, melt extruded into a strand, cooled with water at a temperature of 25 ° C, and then cut to produce a chip. And a raw material for the layer (I) containing inorganic particles. At this time, 1-100 mass parts is preferable with respect to 100 mass parts of granular polymers, and, as for the addition density | concentration of an inorganic particle, 5-80 mass parts is more preferable.
Moreover, only said granular polymer, or granular polymer, an inorganic particle, an additive, etc. are mixed in arbitrary ratios, it puts into the extruder with a vent set to 300-350 degreeC, melt-extrusion in the shape of a strand, temperature 25 degreeC After cooling with water, cutting is performed to produce a chip, which is used as a raw material for the other layer (II) having a composition different from that of the layer (I). These two types of chips were dried under reduced pressure at 180 ° C. for 3 hours, then supplied to two full-flight single-screw extruders each having a melting part set at 300 to 350 ° C., passed through a filter, and then melted. In the state, it is led by the laminating device at the upper part of the die so that it becomes 2 layers (lamination structure is (I) / (II), lamination ratio is (I) :( II) = 9: 1), then T-die type It is discharged from the die, and is brought into close contact while applying an electrostatic charge onto a cooling drum having a surface temperature of 20 to 70 ° C. to rapidly cool and solidify to obtain a substantially unoriented film.
次いで、二軸延伸する場合は、上記で得られた未延伸フィルムを、ポリアリーレンスルフィド樹脂のガラス転移点(Tg)以上冷結晶化温度(Tcc)以下の範囲で、逐次二軸延伸機または同時二軸延伸機により二軸延伸した後、150〜280℃の範囲の温度で1段もしくは多段熱処理を行い、二軸配向フィルムを得る。延伸方法としては、逐次二軸延伸法(長手方向に延伸した後に幅方向に延伸を行う方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法(長手方向と幅方向を同時に延伸する方法)、又はそれらを組み合わせた方法を用いることができる。ここでは、最初に長手方向、次に幅方向の延伸を行う逐次二軸延伸法を例示する。未延伸フィルムを加熱ロール群で加熱し、長手方向(MD方向)に2.8〜5.0倍、より好ましくは3.0〜4.2倍、1段もしくは2段以上の多段で延伸する(MD延伸)。延伸温度は、Tg〜Tcc、好ましくは(Tg+5)〜(Tcc−10)℃の範囲である。その後20〜50℃の冷却ロール群で冷却する。 Next, in the case of biaxial stretching, the unstretched film obtained above is sequentially biaxially stretched in the range from the glass transition point (Tg) to the cold crystallization temperature (Tcc) of the polyarylene sulfide resin. After biaxial stretching with a biaxial stretching machine, one-stage or multi-stage heat treatment is performed at a temperature in the range of 150 to 280 ° C. to obtain a biaxially oriented film. Stretching methods include sequential biaxial stretching methods (stretching methods that combine stretching in each direction, such as a method of stretching in the width direction after stretching in the longitudinal direction), and simultaneous biaxial stretching methods (in the longitudinal direction and the width direction). The method of extending | stretching simultaneously), or the method which combined them can be used. Here, a sequential biaxial stretching method in which stretching in the longitudinal direction first and then in the width direction is illustrated. The unstretched film is heated with a heated roll group, and stretched in the longitudinal direction (MD direction) by 2.8 to 5.0 times, more preferably 3.0 to 4.2 times, one stage or two or more stages. (MD stretching). The stretching temperature is in the range of Tg to Tcc, preferably (Tg + 5) to (Tcc-10) ° C. Thereafter, it is cooled by a cooling roll group of 20 to 50 ° C.
MD延伸に続く幅方向(TD方向)の延伸方法としては、例えば、テンターを用いる方法が一般的である。このフィルムの両端部をクリップで把持して、テンターに導き、幅方向の延伸を行う(TD延伸)。延伸温度はTg〜Tccが好ましく、より好ましくは(Tg+5)〜(Tcc−10)℃の範囲である。延伸倍率はフィルムの平面性の観点から2.8〜5.0倍、好ましくは3.0〜4.5倍が好ましい。 As a stretching method in the width direction (TD direction) following MD stretching, for example, a method using a tenter is common. The both ends of this film are gripped with clips, guided to a tenter, and stretched in the width direction (TD stretching). The stretching temperature is preferably Tg to Tcc, more preferably (Tg + 5) to (Tcc-10) ° C. The draw ratio is 2.8 to 5.0 times, preferably 3.0 to 4.5 times from the viewpoint of the flatness of the film.
次に、この延伸フィルムを緊張下で熱固定する操作(熱固定処理)を行う。熱固定処理の温度は熱処理ゾーンの始終で、同一温度で加熱処理を行うか、1段熱固定または熱処理ゾーンの前半と後半で異なる温度で加熱処理を行う多段熱固定の何れかで処理を行う。1段熱固定を行う場合、熱固定温度は160〜280℃が好ましい。また、多段熱固定で熱処理を行う場合、1段目(前半)の熱固定温度は150℃〜220℃が好ましく、より好ましくは150℃〜210℃である。1段目熱固定温度を前記範囲とすることで、フィルムの平面性を保持したまま、面積倍率を低下することが可能となる。2段目(後半)の熱固定温度は220〜280℃が好ましく、より好ましくは230〜275℃である。ここで、2段目熱固定温度が220℃未満の場合、フィルムの熱寸法安定性が悪化する場合があり、280℃を超えるとフィルムを構成するポリアリーレンスルフィド樹脂の融解温度に近づく、もしくは超えるため、製膜の際にフィルムの両端を固定するクリップに融着し、延伸装置からフィルムを採取することが困難となる場合がある。熱固定処理後は、フィルムを室温まで、必要ならば、長手および幅方向に弛緩処理を施しながら、フィルムを冷やして巻き取り、二軸延伸された積層フィルムを得る。
本発明の積層フィルムは耐熱性、電気絶縁性に優れることから、自動車用、電気・電子材料の各種部品、各種モーター用の絶縁紙として好適に用いることができる。また、低誘電性、薄膜化可能であることから、特に回路基板、フレキシブルフラットケーブル、各種レーダー、フィルムキャリア、高密度磁気テープ素材、電線被覆剤、フィルムコンデンサーなどに好適に用いることができる。
[特性の測定方法]
(1)積層フィルムおよび積層フィルムを構成する各層の層厚みと層構成
走査型電子顕微鏡の試料台に固定した積層フィルムを、スパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡を用いて倍率3,000倍にて観察した。
Next, an operation (heat setting treatment) of heat-setting the stretched film under tension is performed. The temperature of the heat setting treatment is the same at the beginning and end of the heat treatment zone, and the heat treatment is performed at the same temperature, or the heat treatment treatment is performed in either one-stage heat setting or multistage heat setting in which heat treatment is performed at different temperatures in the first half and the second half of the heat treatment zone. . In the case of performing one-stage heat setting, the heat setting temperature is preferably 160 to 280 ° C. Moreover, when performing heat processing by multistage heat fixation, 150 degreeC-220 degreeC is preferable, and, as for the heat fixation temperature of the 1st step | paragraph (first half), 150 degreeC-210 degreeC is more preferable. By setting the first stage heat fixing temperature within the above range, it is possible to reduce the area magnification while maintaining the flatness of the film. The second stage (second half) heat setting temperature is preferably 220 to 280 ° C, more preferably 230 to 275 ° C. Here, when the second stage heat fixing temperature is less than 220 ° C., the thermal dimensional stability of the film may deteriorate, and when it exceeds 280 ° C., it approaches or exceeds the melting temperature of the polyarylene sulfide resin constituting the film. Therefore, it may be difficult to extract the film from the stretching apparatus by fusing to a clip that fixes both ends of the film during film formation. After the heat setting treatment, the film is cooled and rolled up to room temperature, if necessary, in the longitudinal and width directions, if necessary, to obtain a biaxially stretched laminated film.
Since the laminated film of the present invention is excellent in heat resistance and electrical insulation, it can be suitably used as insulating paper for automobiles, various parts of electric / electronic materials, and various motors. Moreover, since it has low dielectric properties and can be made thin, it can be suitably used particularly for circuit boards, flexible flat cables, various radars, film carriers, high-density magnetic tape materials, wire coating agents, film capacitors, and the like.
[Measurement method of characteristics]
(1) Layer thickness and layer structure of each layer constituting the laminate film and the laminate film The laminate film fixed on the sample stage of the scanning electron microscope is 10 to 3 Torr, voltage 0.25 KV, current using a sputtering apparatus. After performing the ion etching treatment at 12.5 mA for 10 minutes to cut the cross section, the surface was subjected to gold sputtering with the same apparatus and observed at a magnification of 3,000 using a scanning electron microscope. .
観察により得られた画像より積層フィルムの厚みおよび積層フィルムを構成する層の厚みを計測した。上記の倍率で積層フィルムの厚み方向が全体を確認できない場合は厚み方向に数点の画像を撮影し、画像をつなぎ合わせることで全体像を確認する。
厚みの測定に用いるサンプルは任意の場所の合計10箇所を選定し、10サンプルの計測値の平均をそのサンプルのフィルム厚みおよびフィルムを構成する層の厚みとした。
(2)無機粒子の含有量(濃度)および平均粒径・粒度分布
a.含有量(濃度)
(1)の方法を用いて積層フィルムおよび各層の厚みを確認したのち、マイクロプレーンと電子マイクロメータ(アンリツ(株)製、K−312A型、針圧30g)を用いて23℃65%RHの雰囲気下で厚みを確認しながら積層フィルムから目的の層を削り取る。削り取ったサンプルを秤量したるつぼに入れた後再度秤量し、サンプルの加熱前の重量を秤量する。次にサンプルが入ったるつぼをマッフル炉(ヤマト科学社製)にて500℃/6hで加熱しサンプルを灰化さる。るつぼを冷却した後に秤量し、加熱後の重量をはかりとり、加熱前後の重量を下記式に挿入し、フィルムに含まれる無機粒子の含有量を算出した。測定はn=3で実施し、その平均値が0より大きい場合はその層は粒子を含むと判断し、その平均値をそのサンプルの粒子濃度とした。試料量は残存物の質量が100〜200mgの範囲となるように調整した。
無機粒子の含有量(質量%)=加熱後の重量(mg)/加熱前の重量(mg)×100
b.粒度分布およびピーク値
a.で得られた残存物を精製水と混合し、透過率が90%前後になるように調整した。この分散液をレーザー光回折散乱粒度分布測定装置(マイクロトラックMT3000、日機装製)をもちいて、レーザー光波長780nm、測定温度23℃の条件にて、測定前に超音波処理を4分間行なったのちJIS Z8825−1:2001に準じて測定し、サンプルの粒度分布よりピーク値を読み取った。
From the image obtained by observation, the thickness of the laminated film and the thickness of the layers constituting the laminated film were measured. When the whole thickness direction of the laminated film cannot be confirmed at the above magnification, several images are taken in the thickness direction, and the whole image is confirmed by joining the images.
The sample used for the measurement of thickness selected 10 places in total of arbitrary places, and made the average of the measured value of 10 samples the film thickness of the sample, and the thickness of the layer which comprises a film.
(2) Content (concentration) of inorganic particles and average particle size / particle size distribution a. Content (concentration)
After confirming the thickness of the laminated film and each layer using the method of (1), using a microplane and an electronic micrometer (manufactured by Anritsu Co., Ltd., K-312A type, needle pressure 30 g) at 23 ° C. and 65% RH The target layer is scraped off from the laminated film while checking the thickness in an atmosphere. The scraped sample is put in a weighing crucible and weighed again, and the weight of the sample before heating is weighed. Next, the crucible containing the sample is heated at 500 ° C./6 h in a muffle furnace (manufactured by Yamato Scientific Co., Ltd.) to incinerate the sample. The crucible was cooled and weighed, the weight after heating was measured, the weight before and after heating was inserted into the following formula, and the content of inorganic particles contained in the film was calculated. The measurement was performed at n = 3. When the average value was larger than 0, the layer was judged to contain particles, and the average value was used as the particle concentration of the sample. The sample amount was adjusted so that the mass of the residue was in the range of 100 to 200 mg.
Content of inorganic particles (% by mass) = weight after heating (mg) / weight before heating (mg) × 100
b. Particle size distribution and peak value a. The residue obtained in the above was mixed with purified water and adjusted so that the transmittance was about 90%. The dispersion was subjected to ultrasonic treatment for 4 minutes before measurement under the conditions of a laser beam wavelength of 780 nm and a measurement temperature of 23 ° C. using a laser beam diffraction / scattering particle size distribution measurement device (Microtrack MT3000, manufactured by Nikkiso). Measured according to JIS Z8825-1: 2001, and the peak value was read from the particle size distribution of the sample.
(3)誘電率
a.粒子の誘電率
粒子を1g秤量し、20kPaの荷重を1分間かけて、直径25mm、厚さ1.5±0.5mmの円盤状の測定試料に成型する。この測定試料を、直径25mmの誘電率測定治具(電極)を装着したARES(TA Instruments社製)に装着する。測定温度30℃にて250g/cm2の荷重をかけた状態で、4284AプレシジョンLCRメータ(ヒューレット・パッカード社製)を用いて、10GHz、温度23℃、湿度65%RH環境下にて測定を行った。
b.積層フィルムの誘電率
誘電体材料計測装置(関東電子応用開発(株)製)を用いて周波数10GHzで空洞共振器摂動法により誘電率を測定する。空洞共振器に微小な材料(幅:2.7mm×長さ:45mm)を挿入し、温度23℃、湿度65%RH環境下にて測定を行った。
(3) Dielectric constant a. 1 g of particles of dielectric constant particles are weighed, and a 20 kPa load is applied for 1 minute to form a disk-shaped measurement sample having a diameter of 25 mm and a thickness of 1.5 ± 0.5 mm. This measurement sample is attached to ARES (manufactured by TA Instruments) equipped with a dielectric constant measurement jig (electrode) having a diameter of 25 mm. Using a 4284A Precision LCR meter (manufactured by Hewlett Packard) with a load of 250 g / cm 2 at a measurement temperature of 30 ° C., measurement was performed in an environment of 10 GHz, a temperature of 23 ° C., and a humidity of 65% RH. .
b. Dielectric constant of laminated film The dielectric constant is measured by a cavity resonator perturbation method at a frequency of 10 GHz using a dielectric material measuring device (manufactured by Kanto Electronics Application Development Co., Ltd.). A minute material (width: 2.7 mm × length: 45 mm) was inserted into the cavity resonator, and measurement was performed in a temperature 23 ° C., humidity 65% RH environment.
(4)絶縁破壊電圧
JIS C2151に準じ、交流絶縁破壊試験器(春日電機株式会社製、AC30kV)を用いて測定した。試験片のサイズは25cm×25cmの正方形とし、23℃、65%RHの環境下で調湿したものを用い、周波数60Hz、昇圧速度1000V/secで測定した。用いた電極の形状は、台座となる下電極がφ75mm、高さ15mmの円柱形であり、上電極がφ25mm、高さ25mmの円柱形である。いずれの電極も、試験片を挟む側の面はR3mmで面取りされたものを用いた。測定は各サンプルにつき10回ずつ測定し、破壊の起こった電圧値の平均値とサンプルの厚みの平均値を下記式に挿入して絶縁破壊電圧(kV/mm)を算出した。
絶縁破壊電圧(kV/mm)=破壊の起こった電圧値の平均値(kV)/厚みの平均値(mm)
(5)破断強度
インストロンタイプの引張試験機(オリエンテック(株)製フィルム強伸度自動測定装置“テンシロンAMF/RTA−100”)を用いて、23℃、65%RHの環境下で、試料サイズは幅10mm×試長間100mm、 引張り速度は300mm/分にて評価を行った。測定はフィルムの長手方向および横手方向について、それぞれ10回ずつ実施し、得られた評価値を下記式に挿入し平均値を算出した。
破断強度(N/10mm)=((MD方向に10回測定した平均値:N/10mm)+(TD方向に10回測定した平均値:N/10mm))/2
(6)熱伝導率
a.比熱容量Cp
示差走査熱量計(DSC−7、Perkin Elmer社製)を用い、JISK7123−1987に準じて、標準物質にサファイアを使用し、25℃での比熱容量(J/(kg・K))を測定した。測定はn=5で行い、その平均値をそのサンプルの比熱容量Cp(J/(kg・K))とした。
b.熱拡散率α
ai−Phase Mobile 1u(株式会社アイフェイズ製熱伝導率測定システム)を用いて、熱拡散率(m2/S)測定した。測定はn=5で行い、その平均値をそのサンプルの熱拡散率α(m2/S)とした。
c.密度ρ
フィルムを50mm×40mmの大きさに切り、比重測定キット(AD−1653−BM、エーアンドディー(株)製)を用いて、室温23℃、相対湿度65%の雰囲気でアルキメデス法にて密度の測定を行った。測定はn=3で行い、その平均値をサンプルの密度ρ(kg/m3)とした。
d.熱伝導率λ
a〜cで求めた測定値を下記式に挿入し、熱伝導率λ(J/(s・m・k)を求めた。
熱伝導率λ(J/(s・m・k)=
比熱容量Cp(J/(kg・K))×熱拡散率α(m2/S)×密度ρ(kg/m3)
(7)伝送損失
積層フィルムの表面に、銅を約2μmの厚みで蒸着したものをサンプルとし、マイクロ波ネットワークアナライザー(Agilent Technology社製「8722ES」)を用い、カスケードマイクロテック製プローブ(ACP40−250)にて10GHzで伝送損失(%)を測定した。測定はサンプルを温度23℃、湿度65%RH環境下で24時間放置した直後に実施し、下記基準にて評価した。
A:20%未満
B:20%以上25%未満
C:25%以上
(8)製膜性
a.製膜安定性
実施例および比較例に記載の製膜を5時間連続して行い、フィルム破れ(縦延伸時の破断および横延伸、熱固定処理時のいずれも含む)の発生回数を以下の基準で判定をした。
A:破れなし
B:破れの発生頻度が1〜2回
C:破れの発生頻度が3回〜10回
D:破れの発生頻度が11回以上
b.押出安定性
溶融状態で目開き80μmのフィルターにて溶融ろ過した後、実施例および比較例に記載の製膜を5時間連続して行い、試験開始直後の樹脂圧と試験終了時の樹脂圧を下記式に当てはめ、樹脂圧変動量ΔPを求めてその値を生産安定性の目安とし下記基準で評価した。
(4) Dielectric breakdown voltage Measured according to JIS C2151, using an AC dielectric breakdown tester (manufactured by Kasuga Electric Co., Ltd., AC 30 kV). The size of the test piece was a square of 25 cm × 25 cm, and the sample was conditioned in an environment of 23 ° C. and 65% RH and measured at a frequency of 60 Hz and a boosting speed of 1000 V / sec. The shape of the electrode used is a cylindrical shape with a lower electrode serving as a pedestal of φ75 mm and a height of 15 mm, and an upper electrode having a cylindrical shape of φ25 mm and a height of 25 mm. As for any electrode, the surface on the side sandwiching the test piece was chamfered with R3 mm. The measurement was performed 10 times for each sample, and the dielectric breakdown voltage (kV / mm) was calculated by inserting the average value of the voltage value at which breakdown occurred and the average value of the thickness of the sample into the following equation.
Dielectric breakdown voltage (kV / mm) = average value of breakdown voltage value (kV) / average thickness value (mm)
(5) Breaking strength
Using an Instron type tensile testing machine (Orientec Co., Ltd. film tensile strength automatic measuring device “Tensilon AMF / RTA-100”), the sample size is 10 mm in a width of 23 ° C. and 65% RH. × Evaluation was performed at a test length of 100 mm and a pulling speed of 300 mm / min. The measurement was performed 10 times for each of the longitudinal direction and the transverse direction of the film, and the obtained evaluation values were inserted into the following formula to calculate the average value.
Breaking strength (N / 10 mm) = ((average value measured 10 times in the MD direction: N / 10 mm) + (average value measured 10 times in the TD direction: N / 10 mm)) / 2
(6) Thermal conductivity a. Specific heat capacity Cp
Using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer), sapphire was used as a standard material according to JISK7123-1987, and the specific heat capacity (J / (kg · K)) at 25 ° C. was measured. . The measurement was performed at n = 5, and the average value was defined as the specific heat capacity Cp (J / (kg · K)) of the sample.
b. Thermal diffusivity α
The thermal diffusivity (m 2 / S) was measured using ai-Phase Mobile 1u (a thermal conductivity measurement system manufactured by I-Phase Co., Ltd.). The measurement was performed at n = 5, and the average value was defined as the thermal diffusivity α (m 2 / S) of the sample.
c. Density ρ
The film is cut into a size of 50 mm × 40 mm, and density is measured by Archimedes method at room temperature of 23 ° C. and relative humidity of 65% using a specific gravity measurement kit (AD-1653-BM, manufactured by A & D Co., Ltd.). Measurements were made. The measurement was performed at n = 3, and the average value was taken as the sample density ρ (kg / m 3 ).
d. Thermal conductivity λ
The measured values obtained in ac were inserted into the following formula, and the thermal conductivity λ (J / (s · m · k) was obtained.
Thermal conductivity λ (J / (s · m · k) =
Specific heat capacity Cp (J / (kg · K)) x thermal diffusivity α (m 2 / S) x density ρ (kg / m 3 )
(7) Transmission loss
A sample obtained by depositing copper with a thickness of about 2 μm on the surface of the laminated film was used as a sample, and a microwave network analyzer (Agilent Technology “8722ES”) was used, and a cascade microtech probe (ACP 40-250) at 10 GHz. The transmission loss (%) was measured. The measurement was carried out immediately after the sample was allowed to stand for 24 hours in an environment of temperature 23 ° C. and humidity 65% RH, and evaluated according to the following criteria.
A: Less than 20% B: 20% or more and less than 25% C: 25% or more
(8) Film-forming property a. Film formation stability The film formation described in Examples and Comparative Examples was performed continuously for 5 hours, and the number of occurrences of film breakage (including breakage during longitudinal stretching, transverse stretching, and heat setting treatment) was as follows. Judged in.
A: No tear
B: Frequency of occurrence of tears 1 to 2 times C: Frequency of occurrence of tears 3 to 10 times
D: The occurrence frequency of breakage is 11 times or more. B. After melt filtration with a filter having an opening of 80 μm in an extrusion stable molten state, the film formation described in Examples and Comparative Examples is continuously performed for 5 hours, and the test is started. The resin pressure immediately after and the resin pressure at the end of the test were applied to the following equation, the resin pressure fluctuation amount ΔP was determined, and the value was evaluated as the standard of production stability and evaluated according to the following criteria.
樹脂圧変動量(ΔP)=試験終了時の樹脂圧[MPa]―試験開始直後の樹脂圧[MPa]
A:ΔPが1MPa以下
B:ΔPが1MPaよりも大きく2.0MPa以下
C:ΔPが2.0MPaよりも大きい
(9)積層フィルムの融点または軟化点
a.融点(℃)
JIS K7121−1987に準じ、示差走査熱量計としてセイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いて、秤量した3mgの試料をアルミニウム製受皿上で室温から340℃まで昇温速度20℃/分で昇温し、そのとき、観測される融解の吸熱ピークのピーク温度を測定する。測定は1サンプルにつき3回実施し、得られた値の平均値をそのサンプルの融点(℃)とした。なお、ピークが2つ以上確認される場合は、それぞれのピークについて平均値を算出する。
Resin pressure fluctuation amount (ΔP) = resin pressure at the end of the test [MPa] −resin pressure immediately after the start of the test [MPa]
A: ΔP is 1 MPa or less B: ΔP is greater than 1 MPa and 2.0 MPa or less C: ΔP is greater than 2.0 MPa (9) Melting point or softening point of laminated film a. Melting point (℃)
According to JIS K7121-1987, using a Seiko Instruments DSC (RDC220) as a differential scanning calorimeter and a disk station (SSC / 5200) as a data analyzer, weighed 3 mg of sample on an aluminum saucer at room temperature. To 340 ° C. at a temperature rising rate of 20 ° C./min, and the peak temperature of the endothermic peak of melting observed at that time is measured. The measurement was carried out three times per sample, and the average of the obtained values was taken as the melting point (° C.) of the sample. In addition, when two or more peaks are confirmed, an average value is calculated for each peak.
b.軟化点(℃)
積層フィルムの任意の箇所から、直径5mmの円形のサンプルを切り出して試料とする。この試料を、熱機械分析装置(日立ハイテクサイエンス社製、SS6100)に先端径0.5mmの円錐型の針入プローブを用いて、荷重49mNにて10℃/分の昇温条件で加熱し、プローブの針入量と加熱温度のプロットより軟化点を測定する。測定は1サンプルにつき3回実施し、得られた値の平均値をそのサンプルの軟化点(℃)とした。
b. Softening point (℃)
A circular sample having a diameter of 5 mm is cut out from an arbitrary portion of the laminated film to obtain a sample. This sample was heated on a thermomechanical analyzer (manufactured by Hitachi High-Tech Science Co., Ltd., SS6100) using a conical needle probe having a tip diameter of 0.5 mm at a load of 49 mN under a temperature rising condition of 10 ° C./min. The softening point is measured from a plot of probe penetration and heating temperature. The measurement was performed three times per sample, and the average value of the obtained values was defined as the softening point (° C.) of the sample.
(10)積層フィルムの耐熱性
積層フィルムをMD方向およびTD方向それぞれで幅10mm、長さ250mmに切削して試験片とし、200℃の温度に設定した熱風オーブン中で1000時間の加熱処理を行い、加熱処理前後での破断強度を測定し、下記の式から強度保持率を算出し、下記の判定基準にて評価した。破断強度は、JIS−C2151に規定された方法に従って、テンシロン引張試験機を用いて、幅10mmのサンプル片をチャック間長さ100mmとなるようセットし、引張速度300mm/minで引張試験を行う。この条件でMDおよびTD方向にそれぞれ10回測定し、その平均値を求め、下記の基準にて評価した。
(10) Heat-resistant laminated film The laminated film is cut to a width of 10 mm and a length of 250 mm in each of the MD direction and the TD direction to obtain a test piece, which is subjected to heat treatment for 1000 hours in a hot air oven set at a temperature of 200 ° C. The fracture strength before and after the heat treatment was measured, the strength retention was calculated from the following formula, and evaluated according to the following criteria. The breaking strength is set according to the method defined in JIS-C2151, using a Tensilon tensile tester, setting a 10 mm wide sample piece to a length between chucks of 100 mm, and conducting a tensile test at a tensile speed of 300 mm / min. Under these conditions, measurement was performed 10 times in the MD and TD directions, the average value was obtained, and evaluated according to the following criteria.
強度保持率(%)=Y/Y0×100
Y0:加熱処理前の破断強度(MPa)
Y:加熱処理後の破断強度(MPa)
A:強度保持率が75%以上
B:強度保持率が65%以上、75%未満
C:強度保持率が65%未満
Strength retention (%) = Y / Y0 × 100
Y0: Breaking strength before heat treatment (MPa)
Y: Breaking strength after heat treatment (MPa)
A: Strength retention is 75% or more B: Strength retention is 65% or more and less than 75% C: Strength retention is less than 65%
(参考例1)ポリフェニレンスルフィド樹脂(顆粒)の製造方法
オートクレ−ブ(最高使用圧力:14MPa)に100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN−メチル−2−ピロリドン(以下、NMPと略称する。)を仕込み、撹拌しながら徐々に220℃の温度まで昇温して、含有されている水分を蒸留により除去した。脱水の終了した系内に、主成分モノマとして100モルのp−ジクロロベンゼンを5リットルのNMPとともに添加し、170℃の温度で窒素を3kg/cm2で加圧封入後、昇温し、270℃の温度にて4時間重合した。重合終了後冷却し、蒸留水中にポリマーを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマーを採取した。このようにして得られた小塊状ポリマーを90℃の蒸留水により2回洗浄した後、酢酸ナトリウム水溶液で3回洗浄した後、蒸留水により1回洗浄し、減圧下120℃の温度にて乾燥して融点が280℃のポリフェニレンスルフィド(PPS)樹脂の顆粒を得た。
Reference Example 1 Production Method of Polyphenylene Sulfide Resin (Granule) Autoclave (maximum operating pressure: 14 MPa) with 100 moles of sodium sulfide nonahydrate, 45 moles of sodium acetate and 25 liters of N-methyl-2-pyrrolidone (Hereinafter abbreviated as NMP) was added, the temperature was gradually raised to a temperature of 220 ° C. with stirring, and the contained water was removed by distillation. In the system after the dehydration, 100 moles of p-dichlorobenzene as a main component monomer was added together with 5 liters of NMP, nitrogen was pressurized and sealed at 3 kg / cm 2 at a temperature of 170 ° C., and the temperature was raised. Polymerization was carried out at a temperature of 4 ° C. for 4 hours. After completion of the polymerization, the polymer was cooled, the polymer was precipitated in distilled water, and a small polymer was collected with a wire mesh having a 150 mesh opening. The small polymer obtained in this way was washed twice with distilled water at 90 ° C., then washed three times with an aqueous sodium acetate solution, then washed once with distilled water, and dried at a temperature of 120 ° C. under reduced pressure. As a result, granules of polyphenylene sulfide (PPS) resin having a melting point of 280 ° C. were obtained.
(参考例2)フィルム用原料(PPS0)の製造方法
参考例1で作製したPPS樹脂の顆粒を、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS0)とした。
(Reference Example 2) Production Method of Film Raw Material (PPS0) The PPS resin granules prepared in Reference Example 1 were bent at the same direction and rotated in the same direction with a biaxial kneading extruder (Nippon Steel Works, screw 30 mm in diameter, screw length / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 revolutions / minute, discharged into a strand, cooled with water at a temperature of 25 ° C., Immediately cutting was performed to produce a chip, which was used as a film raw material (PPS0).
(参考例3)フィルム用原料(PPS1)の製造方法
平均粒径の異なる酸化亜鉛2種(LPZINC11(平均粒径11μm)およびLPZINC2(平均粒径2μm)、堺化学(株)製、いずれも誘電率は1.7)をそれぞれ15質量%と、参考例1で作製したPPS樹脂の顆粒70質量%を、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS1)とした。
(Reference Example 3) Production Method of Film Raw Material (PPS1) Two types of zinc oxide (LPZINC11 (average particle size 11 μm) and LPZINC2 (average particle size 2 μm) with different average particle sizes, manufactured by Sakai Chemical Co., Ltd., both dielectrics The rate is 1.7) for each 15% and 70% by mass of the PPS resin granules prepared in Reference Example 1 with a vented co-rotating twin-screw kneading extruder (made by Nippon Steel Works) heated to 320 ° C. , Screw diameter 30 mm, screw length / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / min, discharged into a strand, and cooled with water at a temperature of 25 ° C. Thereafter, cutting was performed immediately to produce a chip, which was used as a film raw material (PPS1).
(参考例4)フィルム用原料(PPS2)の製造方法
使用する酸化亜鉛2種をLPZINC11(平均粒径11μm)および微細酸化亜鉛(平均粒径0.2μm、堺化学(株)製、誘電率1.7)とした以外は参考例3と同様にして、フィルム用原料(PPS2)を得た。
(Reference Example 4) Production Method of Film Raw Material (PPS2) Two types of zinc oxide used were LPZINC11 (average particle size 11 μm) and fine zinc oxide (average particle size 0.2 μm, manufactured by Sakai Chemical Co., Ltd., dielectric constant 1 .7) A film raw material (PPS2) was obtained in the same manner as in Reference Example 3 except that it was changed to .7).
(参考例5)フィルム用原料(PPS3)の製造方法
使用する粒子をシリカ2種(HF2001(平均粒径5μm、富士シリシア(株)製、誘電率3.8)およびOSCAL2725LW(平均粒径0.55μm、日産化学(株)製、誘電率3.8)とした以外は参考例3と同様にして、フィルム用原料(PPS3)を得た。
(Reference Example 5) Production Method of Film Raw Material (PPS3) The particles used were 2 types of silica (HF2001 (average particle size 5 μm, manufactured by Fuji Silysia Co., Ltd., dielectric constant 3.8) and OSCAL2725LW (average particle size 0. A raw material for film (PPS3) was obtained in the same manner as in Reference Example 3 except that 55 μm, Nissan Chemical Co., Ltd., dielectric constant 3.8) was used.
(参考例6)フィルム用原料(PPS4)の製造方法
使用する粒子を炭酸カルシウム2種(P40(平均粒径7μm、白石工業(株)製、誘電率1.5)およびCS−3NA(平均粒径1.5μm、宇部マテリアルズ(株)製、誘電率1.5)とした以外は参考例3と同様にして、フィルム用原料(PPS4)を得た。
(Reference Example 6) Production Method of Film Raw Material (PPS4) The particles used were two types of calcium carbonate (P40 (average particle size 7 μm, manufactured by Shiraishi Kogyo Co., Ltd., dielectric constant 1.5) and CS-3NA (average particle size). A raw material for a film (PPS4) was obtained in the same manner as in Reference Example 3 except that the diameter was 1.5 μm, Ube Materials Co., Ltd., dielectric constant 1.5).
(参考例7)フィルム用原料(PPS5)
使用する酸化亜鉛2種をLPZINC20(平均粒径20μm、堺化学(株)製、誘電率1.7)およびLPZINC2(平均粒径2μm)とした以外は参考例3と同様にして、フィルム用原料(PPS5)を得た。
(Reference Example 7) Film raw material (PPS5)
A raw material for a film was prepared in the same manner as in Reference Example 3, except that two types of zinc oxide used were LPZINC20 (average particle size 20 μm, manufactured by Sakai Chemical Co., Ltd., dielectric constant 1.7) and LPZINC2 (average particle size 2 μm). (PPS5) was obtained.
(参考例8)フィルム用原料(PPS6)
酸化亜鉛1種(LPZINC2)を1質量%と、参考例1で作製したPPS樹脂の顆粒99質量%を配合した以外は実施例3と同様にして、フィルム用原料(PPS6)を得た。
(Reference Example 8) Film raw material (PPS6)
A film raw material (PPS6) was obtained in the same manner as in Example 3 except that 1% by mass of zinc oxide 1 type (LPZINC2) and 99% by mass of the PPS resin granules prepared in Reference Example 1 were blended.
(参考例9)フィルム用原料(PPS7)
平均粒径の異なる酸化亜鉛2種(LPZINC11およびLPZINC2)をそれぞれ22.5質量%と、参考例1で作製したPPS樹脂の顆粒55質量%を配合した以外は参考例3と同様にして、フィルム用原料(PPS7)を得た。
(Reference Example 9) Film raw material (PPS7)
In the same manner as in Reference Example 3, except that 22.5% by mass of each of two types of zinc oxides (LPZINC11 and LPZINC2) having different average particle diameters and 55% by mass of the PPS resin granules prepared in Reference Example 1 were blended. A raw material (PPS7) was obtained.
(参考例10)フィルム用原料(PPS8)
使用する粒子を炭酸カルシウム2種(P40および白艶華(平均粒径0.1μm、白石工業(株)製、誘電率1.5)とした以外は参考例3と同様にして、フィルム用原料(PPS8)を得た。
(Reference Example 10) Film raw material (PPS8)
The raw material for film (PPS8) was used in the same manner as in Reference Example 3 except that the particles to be used were two kinds of calcium carbonate (P40 and white glaze (average particle size 0.1 μm, manufactured by Shiraishi Kogyo Co., Ltd., dielectric constant 1.5). )
(参考例11)フィルム用原料(PPS9)
使用する酸化亜鉛2種をLPZINC30(平均粒径30μm、堺化学(株)製、誘電率1.7)およびLPZINC2とした以外は参考例3と同様にして、フィルム用原料(PPS9)を得た。
(Reference Example 11) Film raw material (PPS9)
A raw material for film (PPS9) was obtained in the same manner as in Reference Example 3, except that two types of zinc oxide used were LPZINC30 (average particle size 30 μm, Sakai Chemical Co., Ltd., dielectric constant 1.7) and LPZINC2. .
(参考例12)フィルム用原料(PPS10)
酸化亜鉛1種(LPZINC11)を30質量%と、参考例1で作製したPPS樹脂の顆粒70質量%を、配合した以外は実施例3と同様にして、フィルム用原料(PPS10)を得た。
(Reference Example 12) Film raw material (PPS10)
A raw material for film (PPS10) was obtained in the same manner as in Example 3 except that 30% by mass of zinc oxide type 1 (LPZINC11) and 70% by mass of the PPS resin granules prepared in Reference Example 1 were blended.
(参考例13)フィルム用原料(PPS11)
酸化亜鉛1種(LPZINC2)を30質量%と、参考例1で作製したPPS樹脂の顆粒70質量%を、配合した以外は実施例3と同様にして、フィルム用原料(PPS11)を得た。
(参考例14)フィルム用原料(PEI1)
平均粒径の異なる酸化亜鉛2種(LPZINC11(平均粒径11μm)およびLPZINC2(平均粒径2μm)、堺化学(株)製、いずれも誘電率は1.7)をそれぞれ15質量%と、軟化点340℃のPEI樹脂(ULTEM1010、SAVICイノベーティブプラスチックス社製)のチップ70質量%を350℃に加熱された参考例3のベント付き同方向回転式二軸混練押出機に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PEI1)とした。
(参考例15)フィルム用原料(PEN0およびPEN1)
2,6−ナフタレンジカルボン酸ジメチル100重量部とエチレングリコール60重量部の混合物に、酢酸マンガン・4水和物塩0.03重量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024重量部を添加した。また、反応温度が220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042重量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、エステル交換反応終了後、リン酸トリメチル0.023重量部を添加した。次いで、反応生成物を重合反応器に移し、290℃の温度まで昇温し、0.2mmHg以下の高減圧下にて重縮合反応を行い、固有粘度0.65dl/g、融点265℃のポリエチレン−2,6−ナフタレート(PEN0)のチップを得た。このPENチップ70質量%と、平均粒径の異なる酸化亜鉛2種(LPZINC11(平均粒径11μm)およびLPZINC2(平均粒径2μm)、堺化学(株)製、いずれも誘電率は1.7)をそれぞれ15質量%を290℃に加熱された参考例3のベント付き同方向回転式二軸混練押出機に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PEN1)とした。
(Reference Example 13) Film raw material (PPS11)
A film raw material (PPS11) was obtained in the same manner as in Example 3 except that 30% by mass of zinc oxide 1 type (LPZINC2) and 70% by mass of the PPS resin granules prepared in Reference Example 1 were blended.
(Reference Example 14) Film raw material (PEI1)
2 types of zinc oxide with different average particle sizes (LPZINC11 (average particle size 11 μm) and LPZINC2 (average particle size 2 μm), manufactured by Sakai Chemical Co., Ltd., both having a dielectric constant of 1.7) are each 15% by mass, softened 70 mass% of PEI resin (ULTEM1010, manufactured by SAVIC Innovative Plastics Co., Ltd.) having a point of 340 ° C. was introduced into the vented co-rotating twin-screw kneading extruder of Reference Example 3 heated to 350 ° C., and the residence time was 90 The melt was extruded at a screw speed of 150 revolutions / minute, discharged in a strand form, cooled with water at a temperature of 25 ° C., and immediately cut to produce a chip, which was used as a film raw material (PEI1).
(Reference Example 15) Film raw materials (PEN0 and PEN1)
To a mixture of 100 parts by weight of dimethyl 2,6-naphthalenedicarboxylate and 60 parts by weight of ethylene glycol, 0.03 part by weight of manganese acetate tetrahydrate salt is added and gradually heated from 150 ° C. to 240 ° C. The transesterification was carried out while raising the temperature. In the middle, when the reaction temperature reached 170 ° C., 0.024 parts by weight of antimony trioxide was added. When the reaction temperature reached 220 ° C., 0.042 parts by weight (corresponding to 2 mmol%) of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt was added. Thereafter, a transesterification reaction was carried out. After the transesterification reaction, 0.023 parts by weight of trimethyl phosphate was added. Next, the reaction product is transferred to a polymerization reactor, heated to a temperature of 290 ° C., and subjected to a polycondensation reaction under a high reduced pressure of 0.2 mmHg or less. Polyethylene having an intrinsic viscosity of 0.65 dl / g and a melting point of 265 ° C. A chip of -2,6-naphthalate (PEN0) was obtained. 70 mass% of this PEN chip and two kinds of zinc oxides having different average particle diameters (LPZINC11 (average particle diameter 11 μm) and LPZINC2 (average particle diameter 2 μm), manufactured by Sakai Chemical Co., Ltd., both having a dielectric constant of 1.7) Were added to the vented same-direction rotating twin-screw kneading extruder of Reference Example 3 heated to 290 ° C., and melt-extruded at a residence time of 90 seconds and a screw speed of 150 revolutions / minute to form a strand. After discharging and cooling with water at a temperature of 25 ° C., cutting was performed immediately to produce a chip, which was used as a film raw material (PEN1).
(実施例1〜8、比較例3)
参考例2〜10で得られたチップをそれぞれ180℃で3時間、真空乾燥した後、表1に示す組み合わせで2台の1軸押出機に別々に供給し、320℃に加熱して溶融状態とし、目開き80μmのフィルターにて溶融ろ過した後、口金上部にある積層装置で2層(積層構成は、(I)/(II)、積層比は(I):(II)=9:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、450μmの未延伸の積層シートを得た。次いで、得られた未延伸の積層シートを、表面温度90℃に加熱された複数の加熱ロールで予熱した後、表面温度100℃に加熱された加熱ロールと、加熱ロールの次に設けられた周速の異なる30℃の冷却ロールとの間で長手方向(MD方向)に3.3倍延伸した。このようにして得られた1軸延伸シートを、テンターを用いて長手方向と垂直方向(TD方向)に95℃の温度で3.3倍に延伸し、続いて270℃で熱処理し引き続き270℃の弛緩処理ゾーンでTD方向に5%の弛緩処理を行った後室温まで冷却し、厚み100μmの積層フィルムを得た。
(Examples 1-8, Comparative Example 3)
The chips obtained in Reference Examples 2 to 10 were each vacuum-dried at 180 ° C. for 3 hours, then separately supplied to two single-screw extruders in the combinations shown in Table 1, heated to 320 ° C. and melted And then melt-filtered with a filter having an opening of 80 μm, and then two layers (layer configuration is (I) / (II), stacking ratio is (I) :( II) = 9: 1) Then, it was discharged from a T-die die, and was tightly cooled and solidified while applying an electrostatic charge to a cast drum having a surface temperature of 25 ° C. to obtain a 450 μm unstretched laminated sheet. Then, after preheating the obtained unstretched laminated sheet with a plurality of heating rolls heated to a surface temperature of 90 ° C., a heating roll heated to a surface temperature of 100 ° C. and a circumference provided next to the heating roll The film was stretched 3.3 times in the longitudinal direction (MD direction) between 30 ° C. cooling rolls with different speeds. The uniaxially stretched sheet thus obtained was stretched 3.3 times at a temperature of 95 ° C. in the longitudinal direction (TD direction) using a tenter, followed by heat treatment at 270 ° C., and subsequently at 270 ° C. In the relaxation treatment zone, 5% relaxation treatment was performed in the TD direction and then cooled to room temperature to obtain a laminated film having a thickness of 100 μm.
(実施例8)
軟化点340℃のPEI樹脂(ULTEM1010、SAVICイノベーティブプラスチックス社製)のチップ(PEI0)および参考例14で得られたPEI1のチップをそれぞれ180℃で3時間、真空乾燥した後、表1の組み合わせで350℃に加熱された2台の押出機に別々に供給し、溶融状態で口金上部にある積層装置で2層(積層構成は、(I)/(II)、積層比は(I):(II)=9:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、450μmの未延伸の積層シートを得た。
次いで、得られた未延伸シートを、100mm×100mmの大きさにカットして、フィルムストレッチャー(ブルックナー社製、KARO−IV)を用いて 予熱・延伸温度いずれも230℃で予熱時間1分、延伸速度5%/secにてシートの長手(MD)方向に延伸倍率3.3倍、次いでシートの横手(TD)方向に3.3倍の逐次延伸を行い、続いて270℃で熱処理し、引き続きTD方向に270℃で5%の弛緩処理を行った後に室温まで冷却し、厚み100μmのPEIフィルムを得た。
(Example 8)
A chip of PEI resin (ULTEM 1010, manufactured by SAVIC Innovative Plastics) having a softening point of 340 ° C. (PEI 0) and a chip of PEI 1 obtained in Reference Example 14 were each vacuum-dried at 180 ° C. for 3 hours, and then the combinations shown in Table 1 Are separately supplied to two extruders heated to 350 ° C., and in a molten state, two layers are formed by a laminating apparatus at the upper part of the die (the laminating configuration is (I) / (II), the laminating ratio is (I): (II) = 9: 1), followed by ejection from a T-die die, adhesion rapid cooling and solidification while applying an electrostatic charge to a cast drum having a surface temperature of 25 ° C., and an unstretched laminate of 450 μm A sheet was obtained.
Next, the obtained unstretched sheet was cut into a size of 100 mm × 100 mm, and using a film stretcher (Brookner, KARO-IV), the preheating and stretching temperature were both 230 ° C. and the preheating time was 1 minute, At a stretching rate of 5% / sec, a stretching ratio of 3.3 times in the longitudinal (MD) direction of the sheet and then 3.3 times in the transverse (TD) direction of the sheet, followed by heat treatment at 270 ° C., Subsequently, a relaxation treatment of 5% was performed at 270 ° C. in the TD direction and then cooled to room temperature to obtain a PEI film having a thickness of 100 μm.
(比較例1)
参考例2および3で得られたチップを180℃で3時間、真空乾燥した後、押出機に供給し、Tダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、750μmの未延伸のシートを得た。ついで実施例1と同様にして延伸・熱処理を行い、厚み170μmのフィルムを得た。
(Comparative Example 1)
The chips obtained in Reference Examples 2 and 3 were vacuum-dried at 180 ° C. for 3 hours, then supplied to an extruder, discharged from a T-die die, and an electrostatic charge was applied to a cast drum having a surface temperature of 25 ° C. Adhesion was rapidly cooled and solidified to obtain an unstretched sheet of 750 μm. Next, stretching and heat treatment were performed in the same manner as in Example 1 to obtain a film having a thickness of 170 μm.
(比較例2)
参考例2および3で得られたチップを180℃で3時間、真空乾燥した後、押出機に供給し、Tダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、150μmの未延伸のシートを得た。ついで実施例1と同様にして延伸を行って10μmのフィルムの採取をこころみたが、横延伸時にフィルムが破断し、二軸延伸フィルムは採取できなかった。
(Comparative Example 2)
The chips obtained in Reference Examples 2 and 3 were vacuum-dried at 180 ° C. for 3 hours, then supplied to an extruder, discharged from a T-die die, and an electrostatic charge was applied to a cast drum having a surface temperature of 25 ° C. Adhesion was rapidly cooled and solidified to obtain an unstretched sheet of 150 μm. Subsequently, the film was stretched in the same manner as in Example 1 to collect a 10 μm film. However, the film was broken at the time of transverse stretching, and a biaxially stretched film could not be collected.
(比較例4)参考例2および12で得られたチップを用いた以外は実施例1と同様にして100μmのフィルムの採取をこころみたが、横延伸時にフィルムが破断、し二軸延伸フィルムは採取できなかった。 (Comparative Example 4) Except for using the chips obtained in Reference Examples 2 and 12, a 100 μm film was collected in the same manner as in Example 1, but the film was broken during transverse stretching, and the biaxially stretched film was Could not be collected.
(比較例5)
参考例2および13で得られたチップを用いた以外は実施例1と同様にして100μmのフィルムを採取した。
(Comparative Example 5)
A 100 μm film was collected in the same manner as in Example 1 except that the chips obtained in Reference Examples 2 and 13 were used.
(比較例6)
参考例2および14で得られたチップを用いた以外は実施例1と同様にして100μmのフィルムを採取した。
(Comparative Example 6)
A 100 μm film was collected in the same manner as in Example 1 except that the chips obtained in Reference Examples 2 and 14 were used.
(比較例7)
参考例15で得た融点265℃のPENのチップ(PEN0)およびPEN1のチップをそれぞれ160℃で3時間、真空乾燥した後、表1の組み合わせで290℃に加熱された2台の押出機に別々に供給し、目開き80μmのフィルターにて溶融ろ過した後、口金上部にある積層装置で2層(積層構成は、(I)/(II)、積層比は(I):(II)=9:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、450μmの未延伸シートを得た。次いで、得られた未延伸の積層シートを、表面温度130℃に加熱された複数の加熱ロールで予熱した後、表面温度100℃に加熱された加熱ロールと、加熱ロールの次に設けられた周速の異なる30℃の冷却ロールとの間で長手方向(MD方向)に3.3倍延伸した。このようにして得られた1軸延伸シートを、テンターを用いて長手方向と垂直方向(TD方向)に130℃の温度で3.3倍に延伸し、続いて230℃で熱処理し引き続き230℃の弛緩処理ゾーンでTD方向に5%の弛緩処理を行った後室温まで冷却し、厚み100μmのPENフィルムを得た。
実施例1〜8、比較例1〜7で得た積層フィルムの特性評価結果を表1に示す。
(Comparative Example 7)
The PEN chips (PEN0) and PEN1 chips obtained in Reference Example 15 were vacuum-dried at 160 ° C. for 3 hours, respectively, and then placed in two extruders heated to 290 ° C. in the combinations shown in Table 1. Separately supplied, melt-filtered with a filter having an opening of 80 μm, and then laminated with a laminating apparatus at the upper part of the die (the laminating configuration is (I) / (II), the laminating ratio is (I) :( II) = 9: 1), and then discharged from a T-die die, and was rapidly cooled and solidified while applying an electrostatic charge to a cast drum having a surface temperature of 25 ° C. to obtain a 450 μm unstretched sheet. Next, after preheating the obtained unstretched laminated sheet with a plurality of heating rolls heated to a surface temperature of 130 ° C., a heating roll heated to a surface temperature of 100 ° C., and a circumference provided next to the heating roll The film was stretched 3.3 times in the longitudinal direction (MD direction) between 30 ° C. cooling rolls with different speeds. The uniaxially stretched sheet thus obtained was stretched 3.3 times at a temperature of 130 ° C. in a direction perpendicular to the longitudinal direction (TD direction) using a tenter, followed by heat treatment at 230 ° C. and subsequently 230 ° C. In the relaxation treatment zone, 5% relaxation treatment was performed in the TD direction and then cooled to room temperature to obtain a PEN film having a thickness of 100 μm.
Table 1 shows the property evaluation results of the laminated films obtained in Examples 1 to 8 and Comparative Examples 1 to 7.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016223880 | 2016-11-17 | ||
JP2016223880 | 2016-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018083415A true JP2018083415A (en) | 2018-05-31 |
Family
ID=62238073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017210051A Pending JP2018083415A (en) | 2016-11-17 | 2017-10-31 | Laminate film, and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018083415A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021109308A (en) * | 2020-01-06 | 2021-08-02 | 東レ株式会社 | Polyarylene sulfide film |
KR20230034045A (en) * | 2021-09-02 | 2023-03-09 | (주)동원인텍 | Low dielectric film and manufacturing method thereof |
KR20230095071A (en) | 2020-10-29 | 2023-06-28 | 디아이씨 가부시끼가이샤 | Polyarylene sulfide resin composition, and biaxially stretched film and laminate using the same |
KR20230129424A (en) | 2021-01-07 | 2023-09-08 | 디아이씨 가부시끼가이샤 | Polyarylene sulfide resin composition, and biaxially stretched film and laminate using the same |
KR20230140403A (en) | 2022-03-29 | 2023-10-06 | 디아이씨 가부시끼가이샤 | Flexible copper clad laminate and manufacturing method thereof |
-
2017
- 2017-10-31 JP JP2017210051A patent/JP2018083415A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021109308A (en) * | 2020-01-06 | 2021-08-02 | 東レ株式会社 | Polyarylene sulfide film |
JP7363485B2 (en) | 2020-01-06 | 2023-10-18 | 東レ株式会社 | polyarylene sulfide film |
KR20230095071A (en) | 2020-10-29 | 2023-06-28 | 디아이씨 가부시끼가이샤 | Polyarylene sulfide resin composition, and biaxially stretched film and laminate using the same |
KR20230129424A (en) | 2021-01-07 | 2023-09-08 | 디아이씨 가부시끼가이샤 | Polyarylene sulfide resin composition, and biaxially stretched film and laminate using the same |
KR20230034045A (en) * | 2021-09-02 | 2023-03-09 | (주)동원인텍 | Low dielectric film and manufacturing method thereof |
KR102680668B1 (en) * | 2021-09-02 | 2024-07-02 | (주)동원인텍 | Manufacturing method of low dielectric film |
KR20230140403A (en) | 2022-03-29 | 2023-10-06 | 디아이씨 가부시끼가이샤 | Flexible copper clad laminate and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018083415A (en) | Laminate film, and production method thereof | |
JP5088322B2 (en) | Biaxially oriented polyarylene sulfide film and method for producing the same | |
JP2020075481A (en) | Thermoplastic resin film and manufacturing method therefor | |
JP2020044839A (en) | Thermoplastic resin film and electric/electronic component including the same, and insulation material | |
JP6090314B2 (en) | Biaxially stretched polyarylene sulfide film for metal bonding | |
JP2020044840A (en) | Thermoplastic resin film and electric/electronic component including the same | |
JP7272263B2 (en) | polyarylene sulfide film | |
JP2010070630A (en) | Biaxially oriented polyarylene sulfide film and adhesive material using the same | |
JP7298218B2 (en) | LAMINATED BOARD AND CIRCUIT BOARD USING THE SAME | |
CN107614256B (en) | Laminated film and method for producing same | |
JP2001261959A (en) | Biaxially oriented film, metallized film and film capacitor | |
JP2022085734A (en) | Liquid crystal polymer film, and laminate | |
JP2009292902A (en) | Biaxially oriented polyarylene sulfide film and adhesive material using the same | |
KR20220101100A (en) | Biaxially stretched laminated film, laminate, and manufacturing method thereof | |
EP1582340A1 (en) | Laminated film and method for producing same | |
JP2014189718A (en) | Biaxially stretched polyarylene sulfide film | |
CN116829632A (en) | Polymer film and laminate | |
JP2019165004A (en) | Insulation tube | |
JP4802500B2 (en) | Polyarylene sulfide laminate sheet | |
JP2002047360A (en) | Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same | |
JP2020139151A (en) | Thermoplastic resin film and method for producing the same | |
JP2019127033A (en) | Laminate and production method | |
KR20220054745A (en) | Biaxially oriented polyarylene sulfide film | |
JP2015147413A (en) | Laminated polyarylene sulfide film | |
JP2022151663A (en) | Polyarylene sulfide film, and composite body and electric/electronic member using the same |