JP4906771B2 - 面状照明装置及びそれを用いる液晶表示装置 - Google Patents
面状照明装置及びそれを用いる液晶表示装置 Download PDFInfo
- Publication number
- JP4906771B2 JP4906771B2 JP2008094338A JP2008094338A JP4906771B2 JP 4906771 B2 JP4906771 B2 JP 4906771B2 JP 2008094338 A JP2008094338 A JP 2008094338A JP 2008094338 A JP2008094338 A JP 2008094338A JP 4906771 B2 JP4906771 B2 JP 4906771B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- guide plate
- light guide
- scattering particles
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
- Led Device Packages (AREA)
- Planar Illumination Modules (AREA)
Description
特許文献1には、少なくとも1つの光入射領域及び少なくとも1つの光取出面領域を有する光散乱導光体と前記光入射面領域から光入射を行う為の光源手段とを備え、前記光散乱導光体は前記光入射面から遠ざかるにつれて厚みを減ずる傾向を持った領域を有していることを特徴とする光散乱導光光源装置が記載されている。
このような複合的な過程を通して、光源の方向からみて前方斜め方向に向かう指向性をもって光取出面から高効率で出射される光束が生成される。つまり、光源から放射された光を光散乱導光体の光取出面から出射される。
このように、散乱粒子が混入された導光板を用いることで、高い出射効率で、均一な光を射出することができると記載されている。
LEDは、指向性を高い光を射出することができるため、光源にLEDを用いることで、導光板に入射した光を導光板のより奥まで届けることができ、面状照明装置を大型化することができる。さらに、電源の構成を簡単にすることもできる。
例えば、特許文献2には、青色の単色光を発光する第一光源及び赤色の単色光を発光する第ニ光源で構成され、第一光源の青色光、青色の単色光から波長変換によって生成された緑色光と、第二光源の赤色光とを調合し加法混色により生成した白色光を射出する白色光源と、液晶表示素子の表示面との間に配置され、白色光源から射出された光を減法混色による色補正手段を具備する構造の液晶表示装置が記載されている。
例えば、特許文献3には、可視光域380から780nmまでの間の5nmごとの波長をλnnmとし、カラーフィルターの赤色画素の波長λnnmにおける分光透過率(%)をそれぞれTR(λn)、波長λnnmにおけるバックライトの発光強度を全発光強度で規格化した相対発光強度をI(λn)としたとき、これらがI(620−680)×TR(620−680)≧1.1を満たすことを特徴とするカラー画像表示装置が記載されている。
しかしながら、このような青色LEDと蛍光体とを組み合わせることで射出される光は色温度が低く、また、光利用効率を下げることなく、色温度を調整することが困難であるという問題がある。そのため、面状照明装置の光射出面から射出される光の色温度が低くなり、また、調整も困難であるという問題がある。
このように赤色LEDを配置することで、赤色の演色性を向上させることはできるが、照明装置全体としての色再現性を高めることができない場合がある。また、光源から射出される光の色温度を向上させることはできない。
このようにカラーフィルタを配置し、カラーフィルタを透過させることでも、液晶表示装置から射出される光の演色性を向上させることはできるが、照明装置全体としての色再現性を高めることができない場合がある。また、光源から射出される光の色温度を向上させることはできない。
また、光入射面とは反対側の端部に反射部材を配置し、入射した光を多重反射させて光射出面から射出させる方法もあるが、大型化するためには導光板を厚くする必要があり、重くなり、コストも高くなる。また、光源の写りこみが生じ、輝度むらとなるという問題もある。
この輝度むらを平坦にするためには、散乱微粒子の濃度を下げて先端からの漏れ光を増やす必要があり、結果として利用効率の低下を生じ、また、輝度も低下するという問題があった。例えば、同一条件で、散乱微粒子濃度を0.10wt%とすれば、図21に点線で示すように、輝度むらを大幅に低減できるが、輝度が低下し、光利用効率も43%に低下するという問題があった。
さらに、大型の液晶テレビなどの大型ディスプレイに求められる光射出面上の明るさの分布は、画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な分布、例えば釣鐘状の分布である。しかしながら、散乱微粒子が分散した平板形状の導光板では、散乱微粒子の濃度を下げて平坦な明るさの分布を得ることはできるが、中高な明るさの分布を実現することはできないという問題があった。
本発明の他の目的は、上記目的に加え、さらに、大型かつ薄型な形状であり、光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布を得ることができ、かつ、故障の少ないまたは故障しない面状照明装置及び液晶表示装置を提供することにある。
また、前記LEDユニットは、発光波長の異なる2種類の擬似白色LEDチップを有することが好ましい。
また、前記光源は、複数の前記LEDユニットと、複数の前記LEDユニットを支持する支持体とで構成され、複数の前記LEDユニットは、前記支持体の1つの面に列状に配置されていることが好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、515mm以上620mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にあることも好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、785mm以上830mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にあることも好ましい。
前記面状照明装置の光が射出される面上に配置され、少なくとも赤色の色要素を備える赤色フィルタ、緑色の色要素を備える緑色フィルタ及び青色の色要素を備える青色フィルタで構成されるカラーフィルタを備える液晶パネルとを有することを特徴とする液晶表示装置を提供するものである。
また、本発明によれば、薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高あるいは釣鐘状の明るさの分布を得ることができる。さらに、光源および導光板が損傷すること及び位置関係がずれることを防止でき、故障しにくく、輝度むらの発生しにくい面状照明装置およびそれを用いる液晶表示装置を得ることができる。
なお、以下の説明においては、導光板の2辺に光源からの光を入射させる2辺入射方式の面状照明装置を代表例とするが、本発明はこれに限定されないのはいうまでもないことである。
図1は、本発明に係る面状照明装置を備える液晶表示装置の概略を示す斜視図であり、図2は、図1に示した液晶表示装置のII−II線断面図である。図4は、図2に示す面状照明装置(以下「バックライトユニット」ともいう)の光源部近傍の拡大図である。図4(A)は、図2に示す面状照明装置の導光板およびその2辺に配置される光源を示す部分省略平面図であり、図4(B)は、(A)のB−B線断面図である。
液晶表示パネル12は、液晶セル層の各液晶セルに選択的に電界を印加して分子の配列を変え、液晶セル内に生じた屈折率の変化させて、光の透過/非透過を切り替え、カラーフィルタ80を透過する光を選択することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
図3は、カラーフィルタの一部を拡大して示す拡大正面図である。
カラーフィルタ80は、赤色光成分の光を透過する赤色フィルタ82Rと、緑色光成分の光を透過する緑色フィルタ82Gと、青色光成分の光を透過する青色フィルタ82Bとで構成され、液晶表示パネル12の内部に配置されている。
本実施例では、カラーフィルタ80は、桝目状に分割され、分割された1つの桝目領域に対して1つの赤色フィルタ82R、1つの緑色フィルタ82G、1つの青色フィルタ82Bがこの順で配置されている、つまり、本実施例では、各色が配置された3つの桝目で液晶表示パネルの1つの画素が構成される。
具体的には、赤色フィルタ82Rは、赤色光成分である、600nm以上の波長の光の分光透過率が高く、その他の波長域の光の分光透過率は低い透過率特性を備えるフィルムである。
また、緑色フィルタ82Gは、緑色光成分である、500nm以上570nm以下の波長の光の分光透過率が高く、その他の波長域の光の分光透過率は低い透過率特性を備えるフィルムであり、青色フィルタ82Bは、青色光成分である、420nm以上500nm以下の波長の光の分光透過率が高く、その他の波長域の光の分光透過率は低い透過率特性を備えるフィルムである。
つまり、赤色フィルタ82Rは、分光透過率が最大となる波長が、600nm以上であり、緑色フィルタ82Gは、分光透過率が最大となる波長が、500nm以上570nm以下であり、青色フィルタ82Bは、分光透過率が最大となる波長が、420nm以上500nm以下である。
また、図1に示すように、筐体26の下部筐体42(図2参照)の裏側には、光源28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。
以下、バックライトユニット20を構成する各構成部品について説明する。
ここで、導光板30と光源28との光軸距離とは、図4(B)に示すように、光源28の発光面と導光板30の光入射面(30d、30e)との間の距離cをいう。また、導光板30と光源28との光軸垂直距離とは、導光板30と光源28の導光板の厚さ方向に対するそれぞれの光軸間の距離をいう。
図5(A)は、図1および図2に示す面状照明装置20の光源28の概略構成を示す概略斜視図であり、図5(B)は、図5(A)に示す光源28の正面図であり、図5(C)は、図5(A)に示す光源28を構成する1つの擬似白色LED(発光ダイオード)チップ54のみを拡大して示す概略斜視図である。
図5(A)及び図5(B)に示すように、光源28は、複数のLEDユニット50と、光源支持部52とを有する。
擬似白色LEDチップ54は、青色光を射出する発光ダイオードの表面に蛍光物質が塗布されたチップであり、発光面58から白色光を射出する。
具体的には、擬似白色LEDチップ54は、発光ダイオードの表面に塗布された蛍光物質が発光ダイオードから射出された青色光が透過することにより蛍光する特性を有する。このため、擬似白色LEDチップ54は、発光ダイオードから青色光を射出させることで、青色光が透過された蛍光物質も発光させ、この発光ダイオードから射出されそのまま蛍光物質を透過した青色光と、蛍光物質が蛍光されることで射出される光とで白色光を生成し、射出する。
ここで、擬似白色LEDチップ54としては、GaN系発光ダイオード、InGaN系発光ダイオード等の表面にYAG(イットリウム・アルミニウム・ガーネット)系蛍光物質を塗布したチップが例示される。
青色LEDとしては、GaN系発光ダイオード、InGaN系発光ダイオード、AlGaN系発光ダイオード等を用いることができる。
LEDユニット50は、擬似白色LEDチップから射出された光と青色LEDチップから射出された光とを後述する導光板で混色させることで、混色された白色光を射出する。
ここで、LEDユニット50は、擬似白色LEDチップから射出された光と青色LEDチップから射出された光とを混色させた光の青色波長領域におけるピークの強度をI0とし、波長580nmにおける強度をI580としたとき、I580/I0>0.6を満たす光を射出する。
ここで、青色波長領域とは、430nm以上480nm以下の波長領域である。ピークの強度とは、上記領域内で最も高い強度である。
光源支持部52は、導光板30の光入射面(30d、30e)に対向する面となる側面に、複数のLEDユニット50を、互いに所定間隔離間した状態で支持している。具体的には、光源28を構成する複数のLEDユニット50は、後述する導光板30の第1光入射面30dまたは第2光入射面30eの長手方向に沿って、言い換えれば、光射出面30aと第1光入射面30dとが交わる線と平行に、または、光射出面30aと第2光入射面30eとが交わる線と平行に、アレイ状に配列され、光源支持部52上に固定されている。
また、各LEDユニット50を構成する擬似白色LEDチップ54と、青色LEDチップ56も、後述する導光板30の第1光入射面30dまたは第2光入射面30eの長手方向に沿って、光源支持部52上に固定されている。
光源支持部52は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDユニット50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。なお、光源支持部には、表面積を広くし、かつ、放熱効果を高くすることができるフィンを設けても、熱を放熱部材に伝熱するヒートパイプを設けてもよい。
発光面58を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源とすることができる。光源を薄型化することにより、面状照明装置を薄型にすることができる。また、LEDチップの配置個数を少なくすることができる。
なお、説明は省略するが、青色LEDチップ56も擬似白色LEDチップ54と同様に、上記関係を満たす形状、配置間隔とすることが好ましい。
また、本実施形態では、LEDユニット50を1列に並べ、単層構造としたが、本発明はこれに限定されず、アレイ支持体に複数のLEDユニット50を配置した構成のLEDアレイを複数個、積層させた構成の多層LEDアレイを光源として用いることもできる。このようにLEDアレイを積層させる場合でもLEDユニット50の擬似白色LEDチップ54及び青色LEDチップ56を長方形形状とし、LEDアレイを薄型にすることで、より多くのLEDアレイを積層させることができる。このように、多層のLEDアレイを積層させる、つまり、LEDアレイ(LEDユニットの各LEDチップ)の充填率を高くすることで、より大光量を出力することができる。また、LEDアレイの各LEDチップと隣接する層のLEDアレイの各LEDチップも上述と同様に配置間隔が上記式を満たすことが好ましい。つまり、LEDアレイは、LEDユニットの各LEDチップと隣接する層のLEDアレイのLEDユニットの各LEDチップとを所定距離離間させて積層させることが好ましい。
図6は、導光板30の形状を示す概略斜視図である。図7(A)は、導光板30の形状を表す断面図であり、(B)は、(A)に示す導光板30の部分拡大断面図である。
導光板30は、図6および図7に示すように、略矩形形状の平坦な光射出面30aと、この光射出面30aの両端に、光射出面30aに対してほぼ垂直に形成された2つの光入射面(第1光入射面30dと第2光入射面30e)と、光射出面30aの反対側、つまり、導光板の背面側に位置し、第1光入射面30dおよび第2光入射面30eに平行で、光射出面30aを2等分する2等分線α(図1、図4参照)を中心軸として互いに対称で、光射出面30aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面30bと第2傾斜面30c)と、光射出面30aの光入射面が形成されていない側の両端(光射出面30aと光入射面との交線に直交する2つの辺)に、光射出面30aに対して略垂直に形成された2つの側面(第1側面30fと第2側面30g)とを有している。2つの傾斜面(第1傾斜面30b、第2傾斜面30c)との接合部分には、曲率半径Rの湾曲部30hが形成される。
第1傾斜面30bおよび第2傾斜面30cは、2等分線αに対して線対称であり、光射出面30aに対し対称に傾斜している。湾曲部30hも、2等分線αに対して線対称に湾曲している。導光板30は、第1光入射面30dおよび第2光入射面30eから中央に向かうに従って厚さが厚くなっており、中央部の2等分線αに対応する部分、すなわち湾曲部30hの中央部分で最も厚く(tmax)、両端部の2つの光入射面(第1光入射面30dと第2光入射面30e)で最も薄く(tmin)なっている。
すなわち、導光板30の断面形状は、2等分線αを通る中心軸に対して線対称である。
その理由は、最小厚さが小さ過ぎると、光入射面30dおよび30eが小さくなり過ぎて、光源28からの光入射が少なくなり、光射出面30aから十分な輝度の光を射出することができないし、最小厚さが大き過ぎると、最大厚さが厚くなり過ぎ、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
また、導光板30の厚みが最も厚い湾曲部30hの中央の最大厚みtmaxは、1.0mm以上、6.0mm以下であるのが好ましい。
その理由は、最大厚さが厚くなり過ぎる場合、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからであり、最大厚さが薄くなり過ぎる場合、中央部の湾曲部30hの曲率半径Rが大きすぎて成形に適さないし、平板の場合と同様に、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさないし、逆に、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できないからである。
その理由は、テーパが大き過ぎる場合、最大厚さが必要以上に大きくなりすぎてしまうし、必要以上に中高な分布になりすぎてしまうからであり、テーパが小さ過ぎる場合、最小厚さが小さすぎる場合と同様に、湾曲部30hの曲率半径R(以下「中央部半径R」ともいう。)が大きすぎて成形に適さないし、光利用効率が55%以上を達成する粒子濃度では中高分布を実現できないし、逆に、平板と同様に、中高な輝度分布を達成する粒子濃度では光利用効率が55%以上を満たさないからである。
その結果、湾曲部30hの曲率半径Rは、6,000mm以上、45,000mm以下であるのが好ましい。
なお、図7(A)および(B)に示すように、傾斜背面30bおよび30cのテーパ角をθとするとき、LR=2Rsinθで表され、最大厚みtmax=tmin−[(LR/2)tanθ+Rcosθ−R]で表され、テーパ角θ=tan−1[(tmax−tmin)/(L/2)]で表される。
また、傾斜背面30bおよび30cの中央の接合部分を湾曲部30hとして滑らかに接合することにより、中央の接合部分にできる帯むらを、均一あるいは中高な、いわゆる釣鐘状の分布とすることができる。
なお、本発明の面状照明装置10に用いる導光板30に分散させる散乱微粒子の最適な粒径選択については、波長依存性の観点に加え、以下の点をも考慮するのが好ましい。
まず、単一の粒子による散乱光強度分布(角度分布)においては、前方0〜5°に散乱する光が90%以上となる条件を満たすようにする必要がある。なぜならば、逆楔形状の本発明の面状照明装置10に用いる導光板30は、導光板30の側面の第1光入射面30dおよび第2光入射面30eから最低でも240mm以上の距離、片面入射の場合は、光入射面から最低480mm以上の距離を導光する必要があるからであり、前方0〜5°に散乱する光が90%未満では、導光板30の奥まで光が導光できないからである。
一方、散乱微粒子の粒径が、12.0μmより大きいと、すなわち、12.0μm超では、粒子の前方散乱性が強くなりすぎるため、系内の平均自由行程が大きくなり、散乱回数が減少することから、入射端付近で光源(LED)間の輝度むら(ホタルムラ)が現れてしまうため、上限値は、12.0μmに制限される。
その理由は、粒子濃度が高すぎる場合、平板と同様の現象となるため、中高な輝度分布を実現できないからであり、粒子濃度が低すぎる場合、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
なお、上述した例では、単一粒径の散乱微粒子を用いているが、本発明はこれに限定されず、複数粒径の散乱微粒子を混合して用いても良い。
具体的には、導光長Lが480mm≦L≦500mmである場合には、散乱粒子の濃度を0.02wt%以上0.22wt%以下とする必要がある。
また、導光板の導光長を画面サイズ37インチ対応のL=480mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.085wt%以下とすることがより好ましく、0.047wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.03wt%以上、0.12wt%以下とすることがより好ましく、0.065wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.06wt%以上、0.22wt%以下とすることがより好ましく、0.122wt%とすることが最も好ましい。
また、導光板の導光長を画面サイズ42インチ対応のL=560mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.015wt%以上、0.065wt%以下とすることがより好ましく、0.035wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.09wt%以下とすることがより好ましく、0.048wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.04wt%以上、0.16wt%以下とすることがより好ましく、0.09wt%とすることが最も好ましい。
また、導光板の導光長を画面サイズ52インチ対応のL=660mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.010wt%以上0.050wt%以下とすることがより好ましく、0.025wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.015wt%以上0.060wt%以下とすることがより好ましく、0.034wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.030wt%以上0.120wt%以下とすることがより好ましく、0.064wt%とすることが最も好ましい。
さらに、導光板の導光長を画面サイズ65インチ対応のL=830mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を0.008wt%以上、0.030wt%以下とすることがより好ましく、0.016wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.009wt%以上、0.040wt%以下とすることがより好ましく、0.022wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.020wt%以上、0.080wt%以下とすることがより好ましく、0.041wt%とすることが最も好ましい。
そこで、本発明においては、導光板30の導光長が、480mm以上、500mm以下である時、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.02wt%以上、0.22wt%以下である必要があり、かつ、図8(A)に示すグラフのように、散乱粒子の粒径(μm)を横軸とし、散乱粒子の粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、515mm以上、620mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、図8(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、785mm以上、830mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ、図9(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にある必要がある。
以上から、最適な粒子径および粒子濃度の組み合わせを選択できるので、これらの組み合わせを選択することで、10mm程度の混合長でLED光源からの射出光をむらなく出射させることができる。
また、光射出面の光入射面近傍から射出する光の輝度に対する光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%より大きく25%以下であるである必要がある。その理由は、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布だからである。
このような導光板30は、押出成形法や射出成形法を用いて製造することができる。
光入射面となる第1光入射面30d、第2光入射面30eの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射を無視することができ、つまり、導光板表面での拡散反射を防止することができ、入射効率を向上させることができる。
また、光射出面30aの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射透過を無視することができ、つまり導光板表面での拡散反射透過を防止することができ、全反射により奥まで光を伝えることができる。
さらに、光反射面となる第1傾斜面30b、第2傾斜面30cの表面粗さRaを380nmよりも小さくすることで、拡散反射を無視することができ、つまり光反射面での拡散反射を防止でき、全反射成分をより奥まで伝えることができる。
図10は、本発明の面状照明装置に用いる導光板の設計方法の一例を示すフローチャートである。
まず、図10に示すように、ステップS10において、本発明の面状照明装置に用いる導光板を用いるバックライトユニットが適用される液晶表示装置の画面サイズから、画面サイズの短辺長さにミキシングゾーン長としての約10mmを加えて、導光長として決定する。
次に、ステップS12において、画面サイズから導光板の最大厚みtmaxを決定する。
また、ステップS14において、導光板に使用する母材樹脂および添加する散乱微粒子の粒子条件を決定する。
こうして、本発明の面状照明装置に用いる導光板を設計することができる。
なお、画面サイズが37インチ、最大厚み3.5mm、導光長480mmである導光板の場合の粒子濃度[wt%]と、光利用効率[%]および中高度合[%]との関係を図11に示す。
同図から明らかなように、粒子濃度が0.05wt%〜0.2wt%の範囲では、光利用効率は、70%を超えるが、粒子濃度が0.05wt%〜0.07wt%の範囲および0.19wt%〜0.2wt%の範囲では、中高度合はマイナス、すなわち、中央部が低い輝度分布となることがわかる。例えば、10%以上の中高度合が必要であれば、粒子濃度を0.08wt%〜0.16wt%の範囲に設計する必要があることがわかる。
本発明の面状照明装置に用いる導光板は、基本的に以上のように構成される。
光学部材ユニット32は、導光板30の光射出面30aから射出された照明光をより輝度むらのない光にして、照明装置本体24の光射出面24aからより輝度むらのない照明光を射出するためのもので、図2に示すように、導光板30の光射出面30aから射出する照明光を拡散して輝度むらを低減する拡散シート32aと、光入射面と光射出面との接線と平行なマイクロプリズム列が形成されたプリズムシート32bと、プリズムシート32bから射出する照明光を拡散して輝度むらを低減する拡散シート32cとを有する。
例えば、光学部材として、上述の拡散シートおよびプリズムシートに、加えてまたは代えて、拡散反射体からなる多数の透過率調整体を輝度むらに応じて配置した透過率調整部材も用いることもできる。
反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cから漏洩する光を反射して、再び導光板30に入射させるために設けられており、光の利用効率を向上させることができる。反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cに対応した形状で、第1傾斜面30bおよび第2傾斜面30cを覆うように形成される。本実施形態では、図2に示すように導光板30の第1傾斜面30bおよび第2傾斜面30cが断面三角形状に形成されているので、反射板34もこれに補形する形状に形成されている。
このように、上部誘導反射板36を配置することで、光源28から射出された光が導光板30に入射することなく、光射出面30側に漏れ出すことを防止できる。
これにより、光源28のLEDユニット50の各LEDチップから射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
下部誘導反射板38を設けることで、光源28から射出された光が導光板30に入射することなく、導光板30の第1傾斜面30bおよび第2傾斜面30c側に漏れ出すことを防止できる。
これにより、光源28のLEDユニット50の各LEDチップから射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
ここで、上部誘導反射板36および下部誘導反射板38としては、上述した反射板34に用いる各種材料を用いることができる。
なお、本実施形態では、反射板34と下部誘導反射板38と連結させたが、これに限定されず、それぞれを別々の部材としてもよい。
また、本実施形態では、上部誘導反射板36を導光板30と拡散シート32aとの間に配置したが、上部誘導反射板36の配置位置はこれに限定されず、光学部材ユニット32を構成するシート状部材の間に配置してもよく、光学部材ユニット32と上部筐体44との間に配置してもよい。
図2に示すように、筐体26は、照明装置本体24を収納して支持し、かつその光出射面24a側と導光板30の第1傾斜面30b及び第2傾斜面30c側とから挟み込み、固定するものであり、下部筐体42と上部筐体44と折返部材46と支持部材48とを有する。
上部筐体44は、図2に示すように、面状照明装置本体24及び下部筐体42の上方(光射出面側)から、照明装置本体24およびこれが収納された下部筐体42をその4方の側面部22bも覆うように被せられて配置されている。
折返部材46は、図2に示すように、下部筐体42の側面と上部筐体44の側面との間に嵌挿され、U字形状の一方の平行部の外側面が下部筐体42の側面部22bと連結され、他方の平行部の外側面が上部筐体44の側面と連結されている。
ここで、下部筐体42と折返部材46との接合方法、折返部材46と上部筐体44との接合方法としては、ボルトおよびナット等を用いる方法、接着剤を用いる方法等種々の公知の方法を用いることができる。
なお、筐体の上部筐体、下部筐体及び折返部材には、金属、樹脂等の種々の材料を用いることができる。なお、材料としては、軽量で高強度の材料を用いることが好ましい。
また、本実施形態では、折返部材を別部材としたが、上部筐体または下部筐体と一体にして形成してもよい。また、折返部材を設けない構成としてもよい。
支持部材48は、図2に示すように、反射板34と下部筐体42との間、より具体的には、導光板30の第1傾斜面30bの第1光入射面30d側の端部に対応する位置の反射板34と下部筐体42との間に配置され、導光板30及び反射板34を下部筐体42に固定し、支持する。
支持部材48により反射板34を支持することで、導光板30と反射板34とを密着させることができる。さらに、導光板30及び反射板34を、下部筐体42の所定位置に固定することができる。
また、配置位置も特に限定されず、反射板と下部筐体との間の任意の位置に配置することができるが、導光板を安定して保持するために、導光板の端部側、つまり、本実施形態では、第1光入射面30d近傍、第2光入射面30e近傍に配置することが好ましい。
また、支持部材を反射板と下部筐体とで形成される空間の全域を埋める形状とし、つまり、反射板側の面を反射板に沿った形状とし、下部筐体側の面を下部筐体に沿った形状としてもよい。このように、支持部材により反射板の全面を支持する場合は、導光板と反射板とが離れることを確実に防止することができ、反射板を反射した光により輝度むらが生じることを防止することができる。
面状照明装置20は、導光板30の両端にそれぞれ配置された光源28のLEDユニット50の擬似白色LEDチップ54と青色LEDチップ56からそれぞれ光を射出させる。
擬似白色LEDチップ54及び青色LEDチップ56から射出された光は、導光板30の光入射面(第1光入射面30dおよび第2光入射面30e)に入射する。それぞれの面から入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または第1傾斜面30bおよび第2傾斜面30cで反射した後、光射出面30aから射出する。このとき、第1傾斜面30bおよび第2傾斜面30cから漏出した一部の光は、反射板34によって反射され再び導光板30の内部に入射する。
このようにして、導光板30の光射出面30aから射出された光は、光学部材32を透過し、照明装置本体24の光出面24aから射出され、液晶表示パネル12を照明する。
なお、擬似白色LEDチップ54から射出された白色光と青色LEDチップ56から射出された青色光は、導光板30内で混色され、照明装置本体24の光出面24aからは、白色光と青色光が混色された白色光が射出される。
液晶表示パネル12は、駆動ユニット14により、位置に応じて光の透過率を制御することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
また、擬似白色LEDチップと青色LEDチップを用いることで、光源から射出される光の色温度を高くすることができる。
また、光源として擬似白色LEDチップを用いることで装置を安価にすることができる。
図12(A)及び図12(B)は、それぞれ本発明の面状照明装置に用いる光源の他の一例を示す正面図である。
例えば、図12(A)に示すように、LEDユニット28aを2つの擬似白色LEDチップ54と1つの青色LEDチップ56とで構成してもよく、図12(B)に示すように、LEDユニット28bを1つの擬似白色LEDチップ54a、種類の異なる1つの擬似白色LEDチップ54bと1つの青色LEDチップ56とで構成してもよい。
まず、本具体例の実施例01では、LEDユニット50として1つの擬似白色LEDチップ54と1つの青色LEDチップ56とを組み合わせを用いた。また、実施例02では、LEDユニット50aとして2つの擬似白色LEDチップ54と1つの青色LEDチップ56とを組み合わせを用いた。また、実施例03では、LEDユニット50bとして、1つの擬似白色LEDチップ54aと1つの擬似白色LEDチップ54bと1つの青色LEDチップ56とを組み合わせを用いた。
さらに、その後、一般的に用いられるRGBのカラーフィルタを用い、光源から射出された光の色度(u’,v’座標)とNTSC比を測定した。
ここで、カラーフィルタとしては、市販の液晶TV用パネルに使用されるカラーフィルタ(シャープ製 46RX1Wに使用されているカラーフィルタ)を用いた。なお、このカラーフィルタは、図14に示す透過率分布を有するフィルタである。
さらに、比較例03として、光源ユニットに青色LEDチップを用いず、他の擬似白色LEDチップのみを用いた場合についても光の色度(u’,v’座標)とNTSC比を測定した。また、比較例04として、I580/I0>0.6を満たしていない擬似白色LEDチップと青色LEDチップの組み合わせの光源ユニットを用いた場合の光の色度(u’,v’座標)とNTSC比も測定した。
ここで、比較例03は、一般的に使用される擬似白色LED(日亜化学製NFSW036)をLEDユニットとして用いた。また、比較例04は、一般的に使用される擬似白色LED(フィリップス・ルミレッズ・ライティング製 LXCL−PWF)と青色LED(フィリップス・ルミレッズ・ライティング製LXML−PR01)を組み合わせてLEDユニットとして用いた。
また、図15に、実施例01、実施例02、実施例03、比較例03、比較例04のそれぞれからの射出(発光)される光のスペクトル分布(波長依存性)を示す。ここで、図15でも、横軸を波長[nm]とし、縦軸を相対強度とした。図15に示すように、比較例03、比較例04は、I580/I0>0.6を満たしていないことがわかる。
さらに、図16に、実施例01、実施例02、実施例03、比較例01の場合に射出された光の三原色点を、CIEu’v’表色系での色度図に示す。
以上より、本発明の効果は明らかである。
2つの副光源29は、それぞれ導光板30の第1副入射面30h及び第2副入射面30iに対向して配置されている。具体的には、複数のLEDユニット50と光源支持部52で構成された副光源29が第1側面30hに対向して配置され、複数のLEDユニットプ50と光源支持部52で構成された副光源29が第2側面30iに対向して配置されている。
また、副光源の光源支持部52上にも、それぞれ間隔維持部材31を配置することで、副光源の故障等に起因した故障の発生を防ぐことができる。
このように、透明材料と可塑剤とを混合した材料で導光板を作製することで、導光板をフレキシブルにすること、つまり、柔軟性のある導光板とすることができ、導光板を種々の形状に変形させることが可能となる。従って、導光板の表面を種々の曲面に形成することができる。
このように導光板をフレキシブルにすることにより、例えば、導光板、または、この導光板を用いた面状照明装置を電飾(イルミネーション)関係の表示板として用いる場合に、曲率を持つ壁にも装着することが可能となり、導光板をより多くの種類、より広い使用範囲の電飾やPOP(POP広告)等に利用することができる。
光源から射出された光が入射する部分を他の部分よりも屈折率を小さくすることで、光源から射出された光をより効率よく入射させることができ、光利用効率をより高くすることができる。
T=I/I0=exp(−ρ・x)・・・(1)
ここで、xは距離、I0は入射光強度、Iは出射光強度、ρは減衰定数である。
ρ=Φ・Np・・・(2)
したがって、導光板の光軸方向の半分の長さをLGとすると、光の取り出し効率Eoutは、下記式(3)で与えられる。ここで、導光板の光軸方向の半分の長さLGは、導光板30の光入射面に垂直な方向における導光板30の一方の光入射面から導光板30の中心までの長さとなる。
また、光の取り出し効率とは、入射光に対する、導光板の光入射面から光軸方向に長さLG離間した位置に到達する光の割合であり、例えば、図2に示す導光板30の場合は、端面に入射する光に対する導光板の中心(導光板の光軸方向の半分の長さとなる位置)に到達する光の割合である。
Eout∝exp(−Φ・Np・LG)・・・(3)
Eout=exp(−Φ・Np・LG・KC)・・・(4)
この結果より、Φ・Np・LG・KCの値が大きくなると、光の取り出し効率Eoutが低くなることが分かる。光は導光板の光軸方向へ進むにつれて散乱するため、光の取り出し効率Eoutが低くなると考えられる。
ここで、Φ・Np・LG・KCの値は大きくすると、導光板30の光射出面30aから出射する光の照度むらが顕著になるが、Φ・Np・LG・KCの値を8.2以下とすることで、照度むらを一定以下(許容範囲内)に抑えることができる。なお、照度と輝度は略同様に扱うことができる。従って、本発明においては、輝度と照度とは、同様の傾向があると推測される。
以上より、本発明の面状照明装置に用いる導光板のΦ・Np・LG・KCの値は、1.1以上かつ8.2以下であるという関係を満たすことが好ましく、2.0以上かつ7.0以下であることがより好ましい。また、Φ・Np・LG・KCの値は、3.0以上であればさらに好ましく、4.7以上であれば最も好ましい。
また、補正係数KCは、0.005以上0.1以下であることが好ましい。
まず、散乱断面積Φ、粒子密度Np、導光板の光軸方向の半分の長さLG、補正係数KCを種々の値とし、Φ・Np・LG・KCの値が異なる各導光板について、計算機シミュレーションにより光利用効率を求め、さらに照度むらの評価を行った。ここで、照度むら[%]は、導光板の光射出面から射出される光の最大照度をIMaxとし、最小照度をIMinとし、平均照度をIAveとしたときの[(IMax−IMin)/IAve]×100とした。
測定した結果を下記表4に示す。また、表4の判定は、光利用効率が50%以上かつ照度むらが150%以下の場合を○、光利用効率が50%より小さいまたは照度むらが150%より大きいの場合を×として示す。
また、図18に、Φ・Np・LG・KCの値と光利用効率(光入射面に入射する光に対して光射出面から射出される光の割合)との関係を測定した結果を示す。
また、Kcを0.005以上とすることで、光利用効率を高くすることができ、0.1以下とすることで、導光板からの射出される光の照度むらを小さくすることができることがわかる。
このようにして種々の粒子密度の導光板について、それぞれ光射出面から射出される光の照度分布を測定した結果を図19に示す。図19は、縦軸を照度[lx]とし、横軸を導光板の一方の光入射面からの距離(導光長)[mm]とした。
図20に、算出した照度むらと粒子密度との関係を示す。図20では、縦軸を照度むら[%]とし、横軸を粒子密度[個/m3]とした。また、図20には、横軸を同様に粒子密度とし、縦軸を光利用効率[%]とした、光利用効率と粒子密度との関係も併せて示す。
ここで、Φ・Np・LG・KCを1.1以上8.2以下とすることで、光利用効率を50%以上とし、かつ、照度むらを150%以下とすることができる。照度むらを150%以下とすることで、照度むらを目立たなくすることができる。
つまり、Φ・Np・LG・KCを1.1以上8.2以下とすることで、光利用効率を一定以上とし、かつ照度むらも低減することができることがわかる。
図2(A)および(B)に示す構成の光源28および導光板30を用い、導光板30の導光長[mm]、その形状、すなわち最大厚さ[mm]、最小厚さ[mm]、テーパ、中央部半径R[mm]、導光板30に分散させる散乱微粒子の粒子径[μm]および粒子濃度[wt%]を変えて、導光板30の2つの光入射面30dおよび30eから入射される光に対する光射出面30aから射出される光の割合を示す光利用効率[%]、および光射出面30aから射出される光の輝度分布を求め、光射出面30aの周辺部、すなわち光入射面30dおよび30eの近傍から射出する光の輝度に対する光射出面30aの中央部から射出する光の輝度の割合を示す光射出面30aの輝度分布の中高度合[%]を求めた。
実施例1として、画面サイズが37インチに対応する導光板30の導光長L[mm]がL=480mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表1および表5に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表5および表6に示す。
ここで、表5は、実施例1についての本発明例11〜16を示し、表6は、実施例1についての測定例11〜15を示す。
これに対し、測定例11は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
測定例13は、本発明の好適な限定範囲より、テーパ角が小さく0.1°未満であり、さらに、中央部半径Rが大きく、成形に適さないし、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できない。
測定例15は、本発明の好適な限定範囲より粒子径が小さく、光利用効率は良いが、中高な輝度分布を実現できないし、測定例16は、本発明の好適な限定範囲より粒子径が大きく、中高な輝度分布を実現できるが、光利用効率が低い。
実施例2として、画面サイズが42インチおよび46インチに対応する導光板30の導光長L[mm]がL=560mmおよび590mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表7および表8に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表7および表8に示す。
ここで、表7は、実施例2についての本発明例21〜24を示し、表8は、実施例2についての測定例21〜23を示す。
これに対し、測定例21および22は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
また、測定例23は、最大厚さ[mm]およびテーパ角のいずれも、本発明の好適な限定範囲の上限値の6.0mmおよび0.8°より大きく、テーパが大きすぎて、最大厚さが必要以上に大きくなり、必要以上に中高な分布になりすぎてしまうばかりか、重量が重くなりすぎて液晶TV用光学部材として適さない。
実施例3として、画面サイズが52インチおよび57インチに対応する導光板30の導光長L[mm]がL=660mmおよび730mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表9および表10に示すように種々変えたときの、テーパ、中央部(湾曲部半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表9および表10に示す。
ここで、表9は、実施例3についての本発明例31〜32を示し、表10は、実施例3についての測定例31〜35を示す。
これに対し、測定例31は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
また、測定例33は、テーパ角が本発明の好適な限定範囲の上限値の0.8°より大きく、テーパが大きすぎて、必要以上に中高な分布になりすぎてしまう。
また、測定例34および35は、テーパ角が本発明の好適な限定範囲の上限値の0.1°より小さく、テーパが小さすぎて、中央部半径Rが大きすぎて成形に適さない。測定例34は、光利用効率が55%以上を達成する粒子濃度では、中高分布を実現できない。また、測定例35は、平板と同じとなり、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさない。
実施例4として、画面サイズが52インチおよび57インチに対応する導光板30の導光長L[mm]がL=660mmおよび730mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表11および表12に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表11および表12に示す。
ここで、表11は、実施例4についての本発明例41〜44を示し、表12は、実施例4についての測定例41〜45を示す。
これに対し、測定例41は、本発明の好適な限定範囲より、粒子濃度が低いため、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさない。
また、測定例43は、最大厚さ[mm]が、本発明の好適な限定範囲の下限値の1.0mmより小さく、中央部半径Rが大きすぎて、本発明の好適な限定範囲を超え、成形に適さないし、光利用効率が55%以上を達成する粒子濃度では、中高分布を実現できない。
測定例44は、本発明の好適な限定範囲より粒子径が小さく、光利用効率は良いが、中高な輝度分布を実現できないし、測定例45は、本発明の好適な限定範囲より粒子径が大きく、中高な輝度分布を実現できるが、光利用効率が低い。
一方、測定例は、いずれもの実施例の導光長の範囲においても、上記要件のいずれかが本発明の好適な限定範囲を外れるため、光利用効率[%]が55%以上を満たさないか、中高度合[%]が0%超、25%以下を満たさず、優れた特性を発揮することができない。
以上から、本発明の効果は明らかである。
12 液晶表示パネル
14 駆動ユニット
20 バックライトユニット
24 照明装置本体
24a、30a 光射出面
26 筐体
28、28a、28b 光源
29 副光源
30 導光板
30b 第1傾斜面
30c 第2傾斜面
30d 第1光入射面
30e 第2光入射面
30f 第1側面(第3光入射面)
30g 第2側面(第4光入射面)
32 光学部材ユニット
32a 拡散シート
32b プリズムシート
32c 拡散シート
34 反射板
36 上部誘導反射板
38 下部誘導反射板
42 下部筐体
44 上部筐体
46 補強部材
49 電源収納部
50 LEDユニット
52 光源支持部
54、54a、54b 擬似白色LEDチップ
56 青色LEDチップ
58 発光面
α 2等分線
Claims (12)
- 少なくとも1つのLEDユニットで構成された光源と、前記光源から射出された光が入射する光入射面及び前記光入射面から入射した光を射出する光射出面を備える導光板とを有し、
前記LEDユニットは、青色光を発光する青色LED及び前記青色LEDの表面に配置された黄色の蛍光体層で構成され、前記青色LEDから射出された光が前記蛍光体層を透過することで白色光を射出させる少なくとも1つの擬似白色LEDチップと、前記擬似白色LEDチップの近傍に配置され、青色光を発光する少なくとも1つの青色LEDチップとを有し、前記擬似白色LEDチップから射出された光と青色LEDチップから射出された光とを混色させた光の青色波長領域におけるピークの強度をI0とし、波長580nmにおける強度をI580としたとき、I580/I0>0.6を満たすことを特徴とする面状照明装置。 - 前記青色LEDチップは、前記擬似白色LEDチップを構成する前記青色LEDとは異なる波長依存性の青色光を射出する請求項1に記載の面状照明装置。
- 前記LEDユニットは、発光波長の異なる2種類の擬似白色LEDチップを有する請求項1または2に記載の面状照明装置。
- 前記光源は、複数の前記LEDユニットと、複数の前記LEDユニットを支持する支持体とで構成され、
複数の前記LEDユニットは、前記支持体の1つの面に列状に配置されている請求項1〜3のいずれかに記載の面状照明装置。 - 前記導光板は、矩形状の光射出面、前記光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面、これらの2つの光入射面から前記光射出面の中央に向かうに従ってそれぞれ前記光射出面からの距離が遠くなる対称な2つの傾斜面、これらの2つの傾斜面を接合する湾曲部を備え、その内部に伝搬する光を散乱する散乱粒子を含む請求項1〜4のいずれかに記載の面状照明装置。
- 前記導光板は、
前記2つの光入射面間の導光長が、480mm以上、500mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.02wt%以上、0.22wt%以下であり、かつ、
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項5に記載の面状照明装置。 - 前記導光板は、
前記2つの光入射面間の導光長が、515mm以上、620mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項5に記載の面状照明装置。 - 前記導光板は、
前記2つの光入射面間の導光長が、625mm以上、770mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.01wt%以上、0.12wt%以下であり、かつ
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.01)、(4.0,0.05)、(7.0,0.01)、(7.0,0.06)、(12.0,0.02)および(12.0,0.12)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項5に記載の面状照明装置。 - 前記導光板は、
その内部に伝搬する光を散乱する散乱粒子を含む導光板であって、
前記2つの光入射面間の導光長が、785mm以上、830mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項5に記載の面状照明装置。 - 前記導光板は、
その厚みが最も薄い前記光入射面の厚みが、0.5mm以上3.0mm以下であり、
前記厚みが最も厚い前記湾曲部の中央の厚みが、1.0mm以上6.0mm以下であり、
前記湾曲部の曲率半径が、6,000mm以上45,000mm以下であり、
前記光射出面に平行な線に対する前記傾斜面のテーパが、0.1°以上0.8°以下である請求項6〜9のいずれかに記載の面状照明装置。 - 前記導光板は、前記散乱粒子の散乱断面積をΦ、前記散乱粒子の密度をNp、補正係数をKC、光の入射方向における前記光入射面から前記端面までの長さをLとしたときに、不等式1.1≦Φ・Np・L・KC≦8.2かつ0.005≦KC≦0.1を満足する請求項5に記載の面状照明装置。
- 請求項1〜11のいずれかに記載の面状照明装置と、
前記面状照明装置の光が射出される面上に配置され、少なくとも赤色の色要素を備える赤色フィルタ、緑色の色要素を備える緑色フィルタ及び青色の色要素を備える青色フィルタで構成されるカラーフィルタを備える液晶パネルとを有することを特徴とする液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008094338A JP4906771B2 (ja) | 2008-03-31 | 2008-03-31 | 面状照明装置及びそれを用いる液晶表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008094338A JP4906771B2 (ja) | 2008-03-31 | 2008-03-31 | 面状照明装置及びそれを用いる液晶表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009245902A JP2009245902A (ja) | 2009-10-22 |
JP4906771B2 true JP4906771B2 (ja) | 2012-03-28 |
Family
ID=41307541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008094338A Expired - Fee Related JP4906771B2 (ja) | 2008-03-31 | 2008-03-31 | 面状照明装置及びそれを用いる液晶表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4906771B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130162934A1 (en) * | 2010-09-03 | 2013-06-27 | Sharp Kabushiki Kaisha | Liquid crystal display device, and color reproduction method thereof |
JP5032677B2 (ja) | 2011-02-04 | 2012-09-26 | 株式会社東芝 | 液晶モジュール及び液晶表示装置 |
JP6135211B2 (ja) * | 2012-08-08 | 2017-05-31 | 株式会社リコー | スキャナ装置 |
US10018776B2 (en) | 2013-04-15 | 2018-07-10 | Sharp Kabushiki Kaisha | Illumination device, illumination equipment, and display device |
WO2015093399A1 (ja) * | 2013-12-19 | 2015-06-25 | シャープ株式会社 | 照明装置、表示装置、及びテレビ受信装置 |
CN104501012A (zh) * | 2014-12-18 | 2015-04-08 | 中山市星思朗光普电器科技有限公司 | 一种烤烟育苗led光源及其使用方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270020A (ja) * | 2001-03-08 | 2002-09-20 | Casio Comput Co Ltd | 光源装置 |
EP1939522A4 (en) * | 2005-08-17 | 2013-04-03 | Fujifilm Corp | PLANAR LIGHTING DEVICE |
JP4424297B2 (ja) * | 2005-09-16 | 2010-03-03 | エプソンイメージングデバイス株式会社 | 発光装置、照明装置、電気光学装置及び電子機器 |
JP2007109617A (ja) * | 2005-09-16 | 2007-04-26 | Epson Imaging Devices Corp | 発光装置、照明装置、電気光学装置及び電子機器 |
JP4963592B2 (ja) * | 2006-07-28 | 2012-06-27 | 富士フイルム株式会社 | 面状照明装置 |
-
2008
- 2008-03-31 JP JP2008094338A patent/JP4906771B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009245902A (ja) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4856037B2 (ja) | 面状照明装置 | |
JP5225015B2 (ja) | 導光板 | |
JP4902431B2 (ja) | 面状照明装置 | |
JP5414224B2 (ja) | 面状照明装置 | |
JP4874875B2 (ja) | 面状照明装置 | |
US8267566B2 (en) | Planar lighting device | |
JP2009265634A (ja) | 液晶表示装置 | |
JP5153152B2 (ja) | 面状照明装置 | |
JP2010257938A (ja) | 導光板 | |
JP2011238432A (ja) | 面状照明装置 | |
JP4906771B2 (ja) | 面状照明装置及びそれを用いる液晶表示装置 | |
JP2010097908A (ja) | バックライトユニットおよび液晶表示装置 | |
JP4820741B2 (ja) | 面状照明装置 | |
JP2008166160A (ja) | 面状照明装置 | |
JP2010092685A (ja) | 導光板およびこれを備えた面状照明装置 | |
JP4824600B2 (ja) | 面状照明装置、面状照明装置の評価方法及びこれを用いる製造方法 | |
JP2010092683A (ja) | 導光板およびこれを備えた面状照明装置 | |
JP2010218841A (ja) | 導光板およびこれを用いる面状照明装置 | |
JP2009087714A (ja) | 面状照明装置 | |
JP2009163917A (ja) | 面状照明装置 | |
JP2009245905A (ja) | 導光板及び面状照明装置 | |
JP2009245732A (ja) | 導光板及びそれを用いる面状照明装置 | |
WO2013008600A1 (ja) | 導光板及び面状照明装置 | |
JP2009081096A (ja) | 面状照明装置 | |
JP5184296B2 (ja) | 導光板ユニットおよび液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4906771 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |