JP2009163917A - 面状照明装置 - Google Patents
面状照明装置 Download PDFInfo
- Publication number
- JP2009163917A JP2009163917A JP2007339785A JP2007339785A JP2009163917A JP 2009163917 A JP2009163917 A JP 2009163917A JP 2007339785 A JP2007339785 A JP 2007339785A JP 2007339785 A JP2007339785 A JP 2007339785A JP 2009163917 A JP2009163917 A JP 2009163917A
- Authority
- JP
- Japan
- Prior art keywords
- light
- guide plate
- light guide
- scattering particles
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
【課題】薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、中高なあるいは釣鐘状の明るさの分布を得ることができる面状照明装置を提供する。
【解決手段】矩形状の光射出面、光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、板状の支持体と、支持体の光入射面に対向する面に列状に配置されている複数の発光素子とで構成され、2つの光入射面に対向してそれぞれ配置された2つの光源と、2つの光源の支持体の光入射面に対応する面にそれぞれ固定され、発光素子よりも光入射面側に突出して光入射面と当接し、発光素子の発光面と光入射面との距離を一定とする、耐熱性が高く、衝撃吸収性材料で形成されている間隔維持部材とを有すること。
【選択図】図2
【解決手段】矩形状の光射出面、光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、板状の支持体と、支持体の光入射面に対向する面に列状に配置されている複数の発光素子とで構成され、2つの光入射面に対向してそれぞれ配置された2つの光源と、2つの光源の支持体の光入射面に対応する面にそれぞれ固定され、発光素子よりも光入射面側に突出して光入射面と当接し、発光素子の発光面と光入射面との距離を一定とする、耐熱性が高く、衝撃吸収性材料で形成されている間隔維持部材とを有すること。
【選択図】図2
Description
本発明は、液晶表示装置などに用いられる面状照明装置に関する。
液晶表示装置には、液晶表示パネルの裏面側から光を照射し、液晶表示パネルを照明するバックライトユニットが用いられている。バックライトユニットは、照明用の光源が発する光を拡散して液晶表示パネルを照射する導光板、導光板から出射される光を均一化するプリズムシートや拡散シートなどの部品を用いて構成される。
現在、大型の液晶テレビのバックライトユニットは、照明用の光源の直上に導光板を配置した、いわゆる直下型と呼ばれる方式が主流である。この方式では、光源である冷陰極管を液晶表示パネルの背面に複数本配置し、内部を白色の反射面として均一な光量分布と必要な輝度を確保している。
しかしながら、直下型のバックライトユニットでは、光量分布を均一にするために、液晶表示パネルに対して垂直方向の厚みが30mm程度必要であり、これ以上の薄型化が困難である。
しかしながら、直下型のバックライトユニットでは、光量分布を均一にするために、液晶表示パネルに対して垂直方向の厚みが30mm程度必要であり、これ以上の薄型化が困難である。
ここで、薄型化が可能なバックライトユニットとしては、照明用の光源から射出され、入射した光を、所定方向に導き、光が入射された面とは異なる面である光射出面から射出させる導光板を用いるバックライトユニットがある。
このような、導光板を用いたバックライトユニットとしては、透明樹脂に光を散乱させるための散乱粒子を混入させた導光板を用いる方式(例えば、特許文献1〜4参照)のバックライトユニットが提案されている。
このような、導光板を用いたバックライトユニットとしては、透明樹脂に光を散乱させるための散乱粒子を混入させた導光板を用いる方式(例えば、特許文献1〜4参照)のバックライトユニットが提案されている。
例えば、特許文献1には、少なくとも1つの光入射領域および少なくとも1つの光取出面領域を有する光散乱導光体と前記光入射面領域から光入射を行う為の光源手段とを備え、前記光散乱導光体は前記光入射面から遠ざかるにつれて厚みを減ずる傾向を持った領域を有していることを特徴とする光散乱導光光源装置が記載されている。
また、特許文献2には、光散乱導光体と、光散乱導光体の光取出面側に配置されたプリズムシートと、光散乱導光体の裏面側に配置された反射体とを備えた面光源装置が記載されている。また、特許文献3には、プリズム列状の繰り返し起伏を有する光入射面と、光拡散性を与えられた光射出面を備えた板状の光学材料からなる光出射方向修正素子を備えた液晶ディスプレイが記載され、特許文献4には、内部に散乱能を与えられた光散乱導光体と、前記光散乱導光体の端面部から光供給を行う光供給手段を備えた光源装置が記載されている。
また、特許文献2には、光散乱導光体と、光散乱導光体の光取出面側に配置されたプリズムシートと、光散乱導光体の裏面側に配置された反射体とを備えた面光源装置が記載されている。また、特許文献3には、プリズム列状の繰り返し起伏を有する光入射面と、光拡散性を与えられた光射出面を備えた板状の光学材料からなる光出射方向修正素子を備えた液晶ディスプレイが記載され、特許文献4には、内部に散乱能を与えられた光散乱導光体と、前記光散乱導光体の端面部から光供給を行う光供給手段を備えた光源装置が記載されている。
また、導光板としては、上記以外にも中間部の厚みが入射側の端部及び対向側の端部の厚みに比べ大きく形成されている導光板、入光部から離れるにしたがって厚みが厚くなる方向傾斜した反射面を有する導光板、表面部と裏面部との間の距離が入射部で最小になり、入射部から最大離距離において厚さが最大になるような形状を有する形状の導光板が提案されている(例えば、引用文献5から8参照)。
しかしながら、光源から遠ざかるにつれて厚みが薄くなる導光板を用いるタンデム方式などのバックライトユニットでは、薄型のものを実現することが可能であるが、冷陰極管とリフレクタの相対寸法の関係により光利用効率で直下型より劣っているという問題があった。また、導光板に形成された溝に冷陰極管を収容する形状の導光板を用いる場合、冷陰極管から遠ざかるにつれて厚みを薄くする形状とすることはできるが、導光板の厚みを薄くすると、溝に配置された冷陰極管の直上における輝度が強くなり、光射出面の輝度むらが顕著になるという問題があった。また、これらの方式の導光板は、いずれも、形状が複雑となるため、加工コストがアップし、大型、例えば、画面サイズが37インチ以上、特に、50インチ以上の液晶テレビのバックライト用の導光板とした時には、高コストとなってしまうという問題があった。
また、特許文献5から8には、製造安定化や、多重反射を利用した輝度(光量)むら抑制のために光入射面から離れるにしたがって厚みを厚くする導光板が提案されているが、これらの導光板は、透明体であり、光源から入射した光がそのまま反対方向の端部側に光が抜けてしまうため、下面にプリズムやドットパターンを付与する必要がある。
また、光入射面とは反対側の端部に反射部材を配置し、入射した光を多重反射させて光射出面から射出させる方法もあるが、大型化するためには導光板を厚くする必要があり、重くなり、コストも高くなる。また、光源の写りこみが生じ、輝度むらとなるという問題もある。
また、光入射面とは反対側の端部に反射部材を配置し、入射した光を多重反射させて光射出面から射出させる方法もあるが、大型化するためには導光板を厚くする必要があり、重くなり、コストも高くなる。また、光源の写りこみが生じ、輝度むらとなるという問題もある。
一方、平板型導光板を用いたサイドライト方式では、入射光を光射出面から効率よく射出させるために、内部に微小な散乱粒子を分散させている。このような平板形状の導光板では、散乱微粒子を均一に分散させても大画面化すると、散乱微粒子濃度が0.30wt%であれば、光利用効率83%を確保できるが、図18に実線で示す照度分布のように、中央部が暗くなり、明るさにむら、すなわち輝度むらが生じ、視認されてしまうという問題があった。
この輝度むらを平坦にするためには、散乱微粒子の濃度を下げて先端からの漏れ光を増やす必要があり、結果として利用効率の低下を生じ、また、輝度も低下するという問題があった。例えば、同一条件で、散乱微粒子濃度を0.10wt%とすれば、図18に点線で示すように、輝度むらを大幅に低減できるが、輝度が低下し、光利用効率も43%に低下するという問題があった。
さらに、大型の液晶テレビなどの大型ディスプレイに求められる光射出面上の明るさの分布は、画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な分布、例えば釣鐘状の分布である。しかしながら、散乱微粒子が分散した平板形状の導光板では、散乱微粒子の濃度を下げて平坦な明るさの分布を得ることはできるが、中高な明るさの分布を実現することはできないという問題があった。
この輝度むらを平坦にするためには、散乱微粒子の濃度を下げて先端からの漏れ光を増やす必要があり、結果として利用効率の低下を生じ、また、輝度も低下するという問題があった。例えば、同一条件で、散乱微粒子濃度を0.10wt%とすれば、図18に点線で示すように、輝度むらを大幅に低減できるが、輝度が低下し、光利用効率も43%に低下するという問題があった。
さらに、大型の液晶テレビなどの大型ディスプレイに求められる光射出面上の明るさの分布は、画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な分布、例えば釣鐘状の分布である。しかしながら、散乱微粒子が分散した平板形状の導光板では、散乱微粒子の濃度を下げて平坦な明るさの分布を得ることはできるが、中高な明るさの分布を実現することはできないという問題があった。
さらに、薄型バックライト用に、タンデム方式の導光板とは逆に、光源から遠ざかるにつれて厚みが厚くなる導光板を用いることも考えられているが、薄型化が可能で、画面全体に平坦な輝度が得られているものの、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な明るさの分布を得ることについては全く開示がなく、全く考慮だにされていないという問題があった。
また、大型の導光板は、周囲の温度・湿度による伸縮が大きく、50インチ程度のサイズで、5mm以上の伸縮を繰り返す。導光板が伸縮すると、導光板と光源(例えば、LEDチップ)とが接触し、光源が故障する、光源の位置ずれが生じる、または、導光板が傷つく可能性がある。このような、光源の故障や位置ずれ、導光板の傷は、輝度むらの原因となるため問題である。
本発明の目的は、上記従来技術の問題点を解消し、大型かつ薄型な形状であり、光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布を得ることができ、かつ、故障の少ないまたは故障しない面状照明装置を提供することにある。
上記課題を解決するために、本発明は、矩形状の光射出面、前記光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面、これらの2つの光入射面から前記光射出面の中央に向かうに従ってそれぞれ前記光射出面からの距離が遠くなる対称な2つの傾斜面、これらの2つの傾斜面を接合する湾曲部を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、それぞれ、前記光入射面の長手方向と略同一の長さの板状の支持体と、前記支持体の前記光入射面に対向する面に列状に配置されている複数の発光素子とで構成され、前記導光板の2つの前記光入射面に対向してそれぞれ配置された2つの光源と、2つの前記光源の前記支持体の前記光入射面に対応する面にそれぞれ固定され、前記発光素子よりも前記光入射面側に突出して前記光入射面と当接し、前記発光素子の発光面と前記光入射面との距離を一定とする2つの間隔維持部材とを有し、前記間隔維持部材は、耐熱性の高い、衝撃吸収性材料で形成されていることを特徴とする面状照明装置を提供するものである。
ここで、前記間隔維持部材は、前記発光素子の発光面と前記光入射面との距離を0.1mm以上0.5mm以下とすることが好ましい。
また、前記間隔維持部材は、前記支持体の前記発光素子の発光面以外の領域に固定されていることが好ましい。
また、前記間隔維持部材は、前記発光素子の前記発光面と前記光入射面との間に配置されたレンズ形状の透明部材であり、前記発光面から射出された光を集光して前記光入射面に入射することも好ましい。
また、前記間隔維持部材は、シリコンゴムで形成されていることが好ましい。
また、前記間隔維持部材は、前記支持体と化学的または機械的に結合されていることが好ましい。
また、前記発光素子は、発光ダイオードであることが好ましい。
また、前記間隔維持部材は、前記支持体の前記発光素子の発光面以外の領域に固定されていることが好ましい。
また、前記間隔維持部材は、前記発光素子の前記発光面と前記光入射面との間に配置されたレンズ形状の透明部材であり、前記発光面から射出された光を集光して前記光入射面に入射することも好ましい。
また、前記間隔維持部材は、シリコンゴムで形成されていることが好ましい。
また、前記間隔維持部材は、前記支持体と化学的または機械的に結合されていることが好ましい。
また、前記発光素子は、発光ダイオードであることが好ましい。
前記導光板は、前記2つの光入射面間の導光長が、480mm以上、500mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.02wt%以上、0.22wt%以下であり、かつ、前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にあり、前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下であることが好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、515mm以上620mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にあることも好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、515mm以上620mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にあることも好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、625mm以上770mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.01wt%以上、0.12wt%以下であり、かつ前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.01)、(4.0,0.05)、(7.0,0.01)、(7.0,0.06)、(12.0,0.02)および(12.0,0.12)で囲まれる領域内にあることも好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、785mm以上830mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にあることも好ましい。
また、前記導光板は、前記2つの光入射面間の導光長が、785mm以上830mm以下であり、前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にあることも好ましい。
また、前記導光板は、その厚みが最も薄い前記光入射面の厚みが、0.5mm以上3.0mm以下であり、前記厚みが最も厚い前記湾曲部の中央の厚みが、1.0mm以上6.0mm以下であり、前記湾曲部の曲率半径が、6,000mm以上45,000mm以下であり、前記光射出面に平行な線に対する前記傾斜面のテーパが、0.1°以上0.8°以下であることが好ましい。
また、前記導光板は、前記散乱粒子の散乱断面積をΦ、前記散乱粒子の密度をNp、補正係数をKC、光の入射方向における前記光入射面から前記端面までの長さをLとしたときに、不等式1.1≦Φ・Np・L・KC≦8.2かつ0.005≦KC≦0.1を満足することも好ましい。
本発明によれば、薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高あるいは釣鐘状の明るさの分布を得ることができる。さらに、光源および導光板が損傷すること及び位置関係がずれることを防止でき、故障しにくく、輝度むらの発生しにくい面状照明装置を得ることができる。
本発明に係る面状照明装置を添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
なお、以下の説明においては、導光板の2辺に光源からの光を入射させる2辺入射方式の面状照明装置を代表例とするが、本発明はこれに限定されないのはいうまでもないことである。
図1は、本発明に係る面状照明装置を備える液晶表示装置の概略を示す斜視図であり、図2は、図1に示した液晶表示装置のII−II線断面図である。図3は、図2に示す面状照明装置(以下「バックライトユニット」ともいう)の光源部近傍の拡大図である。図3(A)は、図2に示す面状照明装置の導光板およびその2辺に配置される光源を示す部分省略平面図であり、図3(B)は、(A)のB−B線断面図である。
なお、以下の説明においては、導光板の2辺に光源からの光を入射させる2辺入射方式の面状照明装置を代表例とするが、本発明はこれに限定されないのはいうまでもないことである。
図1は、本発明に係る面状照明装置を備える液晶表示装置の概略を示す斜視図であり、図2は、図1に示した液晶表示装置のII−II線断面図である。図3は、図2に示す面状照明装置(以下「バックライトユニット」ともいう)の光源部近傍の拡大図である。図3(A)は、図2に示す面状照明装置の導光板およびその2辺に配置される光源を示す部分省略平面図であり、図3(B)は、(A)のB−B線断面図である。
図1に示すように、液晶表示装置10は、バックライトユニット20と、そのバックライトユニット20の光射出面側に配置される液晶表示パネル12と、液晶表示パネル12を駆動する駆動ユニット14とを有する。なお、図1においては、面状照明装置の構成を示すため、液晶表示パネル12の一部の図示を省略している。
液晶表示パネル12は、予め特定の方向に配列してある液晶分子に、部分的に電界を印加してこの分子の配列を変え、液晶セル内に生じた屈折率の変化を利用して、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
駆動ユニット14は、液晶表示パネル12内の透明電極に電圧をかけ、液晶分子の向きを変えて液晶表示パネル12を透過する光の透過率を制御する。
駆動ユニット14は、液晶表示パネル12内の透明電極に電圧をかけ、液晶分子の向きを変えて液晶表示パネル12を透過する光の透過率を制御する。
バックライトユニット20は、液晶表示パネル12の背面から、液晶表示パネル12の全面に光を照射する照明装置であり、液晶表示パネル12の画像表示面と略同一形状の光射出面24aを有する。
本発明に係るバックライトユニット20は、図1、図2、図3(A)および図3(B)に示すように、2つの光源28、導光板30、間隔維持部材31、光学部材ユニット32及び反射板34を有する照明装置本体24と、下部筐体42、上部筐体44、補強部材46およびすべり機構48を有する筐体26とで構成されている。なお、図示例においては、さらに、反射板34と下部筐体42の間には、ヒートシンク64とヒートパイプ66が設けられている。
また、図1に示すように、筐体26の下部筐体42(図2参照)の裏側には、光源28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。
以下、バックライトユニット20を構成する各構成部品について説明する。
また、図1に示すように、筐体26の下部筐体42(図2参照)の裏側には、光源28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。
以下、バックライトユニット20を構成する各構成部品について説明する。
照明装置本体24は、光を射出する光源28と、光源28から射出された光を面状の光として射出する導光板30と、導光板30と光源28との光軸距離および光軸垂直距離を一定に保って間隔維持部材31と、導光板30から射出された光を、散乱や拡散させてよりむらのない光とする光学部材ユニット32と、導光板30から漏出した光を反射させて導光板に再度入射させる反射板34とを有する。
ここで、導光板30と光源28との光軸距離とは、図3(B)に示すように、光源28の発光面と導光板30の光入射面(30d、30e)との間の距離cをいう。また、導光板30と光源28との光軸垂直距離とは、導光板30と光源28の導光板の厚さ方向に対するそれぞれの光軸間の距離をいう。
ここで、導光板30と光源28との光軸距離とは、図3(B)に示すように、光源28の発光面と導光板30の光入射面(30d、30e)との間の距離cをいう。また、導光板30と光源28との光軸垂直距離とは、導光板30と光源28の導光板の厚さ方向に対するそれぞれの光軸間の距離をいう。
まず、光源28について説明する。
図4(A)は、図1および図2に示す面状照明装置20の光源28の概略構成を示す概略斜視図であり、図4(B)は、図4(A)に示す光源28の断面図であり、図4(C)は、図4(A)に示す光源28を構成する1つのLED(発光ダイオード)チップ50のみを拡大して示す概略斜視図である。
図4(A)に示すように、光源28は、複数のLEDチップ50と、光源支持部52とを有する。
図4(A)は、図1および図2に示す面状照明装置20の光源28の概略構成を示す概略斜視図であり、図4(B)は、図4(A)に示す光源28の断面図であり、図4(C)は、図4(A)に示す光源28を構成する1つのLED(発光ダイオード)チップ50のみを拡大して示す概略斜視図である。
図4(A)に示すように、光源28は、複数のLEDチップ50と、光源支持部52とを有する。
LEDチップ50は、青色光を射出する発光ダイオードの表面に蛍光物質が塗布されたチップであり、所定面積の発光部51を有し、この発光部51の発光面58から白色光を射出する。
具体的には、LEDチップ50は、発光ダイオードの表面に塗布された蛍光物質が発光ダイオードから射出された青色光が透過することにより蛍光する特性を有する。このため、LEDチップ50は、発光ダイオードから青色光を射出することで、青色光が透過された蛍光物質も発光し、この発光ダイオードから射出されそのまま蛍光物質を透過した青色光と、蛍光物質が蛍光されることで射出される光とで白色光を生成され、射出される。
ここで、LEDチップ50としては、GaN系発光ダイオード、InGaN系発光ダイオード等の表面にYAG(イットリウム・アルミニウム・ガーネット)系蛍光物質を塗布したチップが例示される。
具体的には、LEDチップ50は、発光ダイオードの表面に塗布された蛍光物質が発光ダイオードから射出された青色光が透過することにより蛍光する特性を有する。このため、LEDチップ50は、発光ダイオードから青色光を射出することで、青色光が透過された蛍光物質も発光し、この発光ダイオードから射出されそのまま蛍光物質を透過した青色光と、蛍光物質が蛍光されることで射出される光とで白色光を生成され、射出される。
ここで、LEDチップ50としては、GaN系発光ダイオード、InGaN系発光ダイオード等の表面にYAG(イットリウム・アルミニウム・ガーネット)系蛍光物質を塗布したチップが例示される。
光源支持部52は、図4(B)に示すように、アレイ基板54と複数のフィン56とを有する。上述した複数のLEDチップ50は、所定間隔離間して一列でアレイ基板54上に配置されている。具体的には、光源28を構成する複数のLEDチップ50は、後述する導光板30の第1光入射面30dまたは第2光入射面30eの長手方向に沿って、言い換えれば、光射出面30aと第1光入射面30dとが交わる線と平行に、または、光射出面30aと第2光入射面30eとが交わる線と平行に、アレイ状に配列されアレイ基板54上に固定されている。
アレイ基板54は、一面が導光板30の最薄側端面である光入射面(30d、30e)に対向して配置される板状の部材である。アレイ基板54の導光板30の光入射面(30d、30e)に対向する面となる側面には、LEDチップ50が支持されている。
ここで、本実施形態のアレイ基板54は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。
ここで、本実施形態のアレイ基板54は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。
複数のフィン56は、それぞれ銅やアルミニウム等の熱伝導性の良い金属で形成された板状部材であり、アレイ基板54のLEDチップ50が配置されている面とは反対側の面に、隣接するフィン56と所定間隔離間して連結されている。
光源支持部52に、複数のフィン56を設けることで表面積を広くすることができ、かつ、放熱効果を高くすることができる。これにより、LEDチップ50の冷却効率を高めることができる。
なお、本実施形態では、光源支持部52のアレイ基板54をヒートシンクとして用いたが、LEDチップの冷却が必要ない場合は、ヒートシンクに代えて放熱機能を備えない板状部材をアレイ基板として用いてもよい。
光源支持部52に、複数のフィン56を設けることで表面積を広くすることができ、かつ、放熱効果を高くすることができる。これにより、LEDチップ50の冷却効率を高めることができる。
なお、本実施形態では、光源支持部52のアレイ基板54をヒートシンクとして用いたが、LEDチップの冷却が必要ない場合は、ヒートシンクに代えて放熱機能を備えない板状部材をアレイ基板として用いてもよい。
ここで、図4(C)に示すように、本実施形態のLEDチップ50の発光部51の発光面58は、LEDチップ50の配列方向の長さよりも、配列方向に直交する方向の長さが短い長方形形状、つまり、後述する導光板30の厚み方向(光射出面30aに垂直な方向)が短辺となる長方形形状を有する。言い換えれば、発光面58は、導光板30の光射出面30aに垂直な方向の長さをa、配列方向の長さをbとしたときに、b>aとなる形状である。また、LEDチップ50の配置間隔をqとするとq>bである。このように、LEDチップ50の発光部51の発光面58の導光板30の光射出面30aに垂直な方向の長さa、配列方向の長さb、LEDチップ50の配置間隔qの関係が、q>b>aを満たすことが好ましい。
発光面58を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源とすることができる。光源を薄型化することにより、面状照明装置を薄型にすることができる。また、LEDチップの配置個数を少なくすることができる。
発光面58を長方形形状とすることにより、大光量の出力を維持しつつ、薄型な光源とすることができる。光源を薄型化することにより、面状照明装置を薄型にすることができる。また、LEDチップの配置個数を少なくすることができる。
なお、LEDチップ50は、光源をより薄型にできるため、導光板30の厚み方向を短辺とする長方形形状とすることが好ましいが、本発明はこれに限定されず、正方形形状、円形形状、多角形形状、楕円形形状等種々の形状のLEDチップを用いることができる。
また、本実施形態では、LEDチップ50を1列に並べ、単層構造としたが、本発明はこれに限定されず、アレイ支持体に複数のLEDチップ50を配置した構成のLEDアレイを複数個、積層させた構成の多層LEDアレイを光源として用いることもできる。このようにLEDアレイを積層させる場合でもLEDチップ50を長方形形状とし、LEDアレイを薄型にすることで、より多くのLEDアレイを積層させることができる。このように、多層のLEDアレイを積層させる、つまり、LEDアレイ(LEDチップ)の充填率を高くすることで、より大光量を出力することができる。また、LEDアレイのLEDチップと隣接する層のLEDアレイのLEDチップも上述と同様に配置間隔が上記式を満たすことが好ましい。つまり、LEDアレイは、LEDチップと隣接する層のLEDアレイのLEDチップとを所定距離離間させて積層させることが好ましい。
次に、導光板30について説明する。
図5は、導光板30の形状を示す概略斜視図である。図6(A)は、導光板30の形状を表す断面図であり、(B)は、(A)に示す導光板30の部分拡大断面図である。
導光板30は、図5および図6に示すように、略矩形形状の平坦な光射出面30aと、この光射出面30aの両端に、光射出面30aに対してほぼ垂直に形成された2つの光入射面(第1光入射面30dと第2光入射面30e)と、光射出面30aの反対側、つまり、導光板の背面側に位置し、第1光入射面30dおよび第2光入射面30eに平行で、光射出面30aを2等分する2等分線α(図1、図3参照)を中心軸として互いに対称で、光射出面30aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面30bと第2傾斜面30c)と、光射出面30aの光入射面が形成されていない側の両端(光射出面30aと光入射面との交線に直交する2つの辺)に、光射出面30aに対して略垂直に形成された2つの側面(第1側面30fと第2側面30g)とを有している。2つの傾斜面(第1傾斜面30b、第2傾斜面30c)との接合部分には、曲率半径Rの湾曲部30hが形成される。
図5は、導光板30の形状を示す概略斜視図である。図6(A)は、導光板30の形状を表す断面図であり、(B)は、(A)に示す導光板30の部分拡大断面図である。
導光板30は、図5および図6に示すように、略矩形形状の平坦な光射出面30aと、この光射出面30aの両端に、光射出面30aに対してほぼ垂直に形成された2つの光入射面(第1光入射面30dと第2光入射面30e)と、光射出面30aの反対側、つまり、導光板の背面側に位置し、第1光入射面30dおよび第2光入射面30eに平行で、光射出面30aを2等分する2等分線α(図1、図3参照)を中心軸として互いに対称で、光射出面30aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面30bと第2傾斜面30c)と、光射出面30aの光入射面が形成されていない側の両端(光射出面30aと光入射面との交線に直交する2つの辺)に、光射出面30aに対して略垂直に形成された2つの側面(第1側面30fと第2側面30g)とを有している。2つの傾斜面(第1傾斜面30b、第2傾斜面30c)との接合部分には、曲率半径Rの湾曲部30hが形成される。
なお、2つの光入射面30dおよび30eは、略矩形形状の光射出面30aの対向する長辺側に対向して位置しており、対向して配置された光源28から2つの光入射面30dおよび30eに入射した光は、略矩形形状の光射出面30aの対向する短辺に平行に導光板30内を伝播する。
第1傾斜面30bおよび第2傾斜面30cは、2等分線αに対して線対称であり、光射出面30aに対し対称に傾斜している。湾曲部30hも、2等分線αに対して線対称に湾曲している。導光板30は、第1光入射面30dおよび第2光入射面30eから中央に向かうに従って厚さが厚くなっており、中央部の2等分線αに対応する部分、すなわち湾曲部30hの中央部分で最も厚く(tmax)、両端部の2つの光入射面(第1光入射面30dと第2光入射面30e)で最も薄く(tmin)なっている。
すなわち、導光板30の断面形状は、2等分線αを通る中心軸に対して線対称である。
第1傾斜面30bおよび第2傾斜面30cは、2等分線αに対して線対称であり、光射出面30aに対し対称に傾斜している。湾曲部30hも、2等分線αに対して線対称に湾曲している。導光板30は、第1光入射面30dおよび第2光入射面30eから中央に向かうに従って厚さが厚くなっており、中央部の2等分線αに対応する部分、すなわち湾曲部30hの中央部分で最も厚く(tmax)、両端部の2つの光入射面(第1光入射面30dと第2光入射面30e)で最も薄く(tmin)なっている。
すなわち、導光板30の断面形状は、2等分線αを通る中心軸に対して線対称である。
ここで、本発明においては、第1光入射面30dと第2光入射面30eとの間の光が伝播する導光長Lは、37インチ(37”)の画面サイズ以上の液晶パネル4を対象としているので、480mm以上であり、最大65インチ(65”)の画面サイズ以上の液晶パネル4を対象とするので、830mm以下である必要がある。より詳細には、37インチ(37”)の画面サイズに対しては、導光長Lは、480mm以上、500mm以下であり、42インチ(42”)および46インチ(46”)の画面サイズに対しては、導光長Lは、515mm以上、620mm以下であり、52インチ(52”)および57インチ(57”)の画面サイズに対しては、導光長Lは、625mm以上、770mm以下であり、65インチ(65”)の画面サイズに対しては、導光長Lは、785mm以上、830mm以下であるのが良い。
また、導光板30の厚みが最も薄い光入射面30dおよび30eの最小厚さtminは、0.5mm以上、3.0mm以下であるのが好ましい。
その理由は、最小厚さが小さ過ぎると、光入射面30dおよび30eが小さくなり過ぎて、光源28からの光入射が少なくなり、光射出面30aから十分な輝度の光を射出することができないし、最小厚さが大き過ぎると、最大厚さが厚くなり過ぎ、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
また、導光板30の厚みが最も厚い湾曲部30hの中央の最大厚みtmaxは、1.0mm以上、6.0mm以下であるのが好ましい。
その理由は、最大厚さが厚くなり過ぎる場合、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからであり、最大厚さが薄くなり過ぎる場合、中央部の湾曲部30hの曲率半径Rが大きすぎて成形に適さないし、平板の場合と同様に、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさないし、逆に、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できないからである。
その理由は、最小厚さが小さ過ぎると、光入射面30dおよび30eが小さくなり過ぎて、光源28からの光入射が少なくなり、光射出面30aから十分な輝度の光を射出することができないし、最小厚さが大き過ぎると、最大厚さが厚くなり過ぎ、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
また、導光板30の厚みが最も厚い湾曲部30hの中央の最大厚みtmaxは、1.0mm以上、6.0mm以下であるのが好ましい。
その理由は、最大厚さが厚くなり過ぎる場合、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからであり、最大厚さが薄くなり過ぎる場合、中央部の湾曲部30hの曲率半径Rが大きすぎて成形に適さないし、平板の場合と同様に、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさないし、逆に、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できないからである。
したがって、傾斜背面30bおよび30cのテーパ、すなわちテーパ角(傾斜角)は、0.1°以上、0.8°以下であるのが好ましい。
その理由は、テーパが大き過ぎる場合、最大厚さが必要以上に大きくなりすぎてしまうし、必要以上に中高な分布になりすぎてしまうからであり、テーパが小さ過ぎる場合、最小厚さが小さすぎる場合と同様に、湾曲部30hの曲率半径R(以下「中央部半径R」ともいう。)が大きすぎて成形に適さないし、光利用効率が55%以上を達成する粒子濃度では中高分布を実現できないし、逆に、平板と同様に、中高な輝度分布を達成する粒子濃度では光利用効率が55%以上を満たさないからである。
その結果、湾曲部30hの曲率半径Rは、6,000mm以上、45,000mm以下であるのが好ましい。
なお、図6(A)および(B)に示すように、傾斜背面30bおよび30cのテーパ角をθとするとき、LR=2Rsinθで表され、最大厚みtmax=tmin−[(LR/2)tanθ+Rcosθ−R]で表され、テーパ角θ=tan−1[(tmax−tmin)/(L/2)]で表される。
その理由は、テーパが大き過ぎる場合、最大厚さが必要以上に大きくなりすぎてしまうし、必要以上に中高な分布になりすぎてしまうからであり、テーパが小さ過ぎる場合、最小厚さが小さすぎる場合と同様に、湾曲部30hの曲率半径R(以下「中央部半径R」ともいう。)が大きすぎて成形に適さないし、光利用効率が55%以上を達成する粒子濃度では中高分布を実現できないし、逆に、平板と同様に、中高な輝度分布を達成する粒子濃度では光利用効率が55%以上を満たさないからである。
その結果、湾曲部30hの曲率半径Rは、6,000mm以上、45,000mm以下であるのが好ましい。
なお、図6(A)および(B)に示すように、傾斜背面30bおよび30cのテーパ角をθとするとき、LR=2Rsinθで表され、最大厚みtmax=tmin−[(LR/2)tanθ+Rcosθ−R]で表され、テーパ角θ=tan−1[(tmax−tmin)/(L/2)]で表される。
本発明においては、導光板30の形状を、第1光入射面30dおよび第2光入射面30eから中央に向かうに従って厚さが厚くなるような形状(以下、逆楔形状という)にすることにより、入射した光をより奥に伝播しやすくして、光利用効率を維持しながら面内均一性を向上させ、さらに、中高な、いわゆる釣鐘状の輝度分布を得るものである。すなわち、このような形状とすることにより、上述した従来の平板形状の導光板では中央が暗くなる分布を、均一あるいは中高な、いわゆる釣鐘状の分布とすることができる。
また、傾斜背面30bおよび30cの中央の接合部分を湾曲部30hとして滑らかに接合することにより、中央の接合部分にできる帯むらを、均一あるいは中高な、いわゆる釣鐘状の分布とすることができる。
また、傾斜背面30bおよび30cの中央の接合部分を湾曲部30hとして滑らかに接合することにより、中央の接合部分にできる帯むらを、均一あるいは中高な、いわゆる釣鐘状の分布とすることができる。
図2(A)および(B)に示す導光板30では、第1光入射面30dおよび第2光入射面30eから入射した光は、導光板30の内部に含まれる散乱微粒子(詳細は後述する)によって散乱されつつ、導光板30内部を通過し、直接、もしくは、第1傾斜面30bおよび第2傾斜面30cで反射した後、光射出面30aから出射する。このとき、第1傾斜面30bおよび第2傾斜面30cから一部の光が漏出する場合もあるが、漏出した光は、導光板30の第1傾斜面30bおよび第2傾斜面30cを覆うようにして配置される反射シート(図示せず)によって反射され再び導光板30の内部に入射する。
導光板30は、透明樹脂に、光を散乱させるための微小な散乱粒子が混錬分散されて形成されている。導光板30に用いられる透明樹脂の材料としては、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂が挙げられる。導光板30に混錬分散させる散乱粒子としては、トスパール、シリコーン、シリカ、ジルコニア、誘電体ポリマ等を用いることができる。このような散乱粒子を導光板30の内部に含有させることによって、均一で輝度むらが少ない照明光を光射出面から出射することができる。
ここで、本発明の面状照明装置10に用いる導光板30に分散させる散乱微粒子の粒径が、4.0μm以上、かつ12.0μm以下である必要がある。その理由は、高い散乱効率を得ることができ、前方散乱性が大きくかつ波長依存性が少なく、色むらがないように選択できるからである。
なお、本発明の面状照明装置10に用いる導光板30に分散させる散乱微粒子の最適な粒径選択については、波長依存性の観点に加え、以下の点をも考慮するのが好ましい。
まず、単一の粒子による散乱光強度分布(角度分布)においては、前方0〜5°に散乱する光が90%以上となる条件を満たすようにする必要がある。なぜならば、逆楔形状の本発明の面状照明装置10に用いる導光板30は、導光板30の側面の第1光入射面30dおよび第2光入射面30eから最低でも240mm以上の距離、片面入射の場合は、光入射面から最低480mm以上の距離を導光する必要があるからであり、前方0〜5°に散乱する光が90%未満では、導光板30の奥まで光が導光できないからである。
なお、本発明の面状照明装置10に用いる導光板30に分散させる散乱微粒子の最適な粒径選択については、波長依存性の観点に加え、以下の点をも考慮するのが好ましい。
まず、単一の粒子による散乱光強度分布(角度分布)においては、前方0〜5°に散乱する光が90%以上となる条件を満たすようにする必要がある。なぜならば、逆楔形状の本発明の面状照明装置10に用いる導光板30は、導光板30の側面の第1光入射面30dおよび第2光入射面30eから最低でも240mm以上の距離、片面入射の場合は、光入射面から最低480mm以上の距離を導光する必要があるからであり、前方0〜5°に散乱する光が90%未満では、導光板30の奥まで光が導光できないからである。
このため、散乱微粒子の粒径が、4.0μmより小さいと、すなわち、4.0μm未満では、散乱が等方性となるため、上記条件を満たすことができない。なお、母材としてアクリル樹脂、粒子としてシリコーン樹脂を選択した場合は、シリコーン樹脂散乱微粒子の粒径は、4.5μm以上とするのがより好ましい。
一方、散乱微粒子の粒径が、12.0μmより大きいと、すなわち、12.0μm超では、粒子の前方散乱性が強くなりすぎるため、系内の平均自由行程が大きくなり、散乱回数が減少することから、入射端付近で光源(LED)間の輝度むら(ホタルムラ)が現れてしまうため、上限値は、12.0μmに制限される。
その理由は、粒子濃度が高すぎる場合、平板と同様の現象となるため、中高な輝度分布を実現できないからであり、粒子濃度が低すぎる場合、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
一方、散乱微粒子の粒径が、12.0μmより大きいと、すなわち、12.0μm超では、粒子の前方散乱性が強くなりすぎるため、系内の平均自由行程が大きくなり、散乱回数が減少することから、入射端付近で光源(LED)間の輝度むら(ホタルムラ)が現れてしまうため、上限値は、12.0μmに制限される。
その理由は、粒子濃度が高すぎる場合、平板と同様の現象となるため、中高な輝度分布を実現できないからであり、粒子濃度が低すぎる場合、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
このように、本発明の散乱微粒子の粒子径の限定範囲に含まれる最適な粒径(粒子屈折率と母材屈折率との組み合わせ)を選択することにより、波長むらのない出射光を得ることができる。
なお、上述した例では、単一粒径の散乱微粒子を用いているが、本発明はこれに限定されず、複数粒径の散乱微粒子を混合して用いても良い。
なお、上述した例では、単一粒径の散乱微粒子を用いているが、本発明はこれに限定されず、複数粒径の散乱微粒子を混合して用いても良い。
また、散乱粒子の濃度は、本発明の面状照明装置10に用いる導光板30の導光長が480mm〜830mmであるので、0.008wt%以上、0.22wt%以下である必要がある。
具体的には、導光長Lが480mm≦L≦500mmである場合には、散乱粒子の濃度を0.02wt%以上0.22wt%以下とする必要がある。
また、導光板の導光長を画面サイズ37インチ対応のL=480mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.085wt%以下とすることがより好ましく、0.047wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.03wt%以上、0.12wt%以下とすることがより好ましく、0.065wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.06wt%以上、0.22wt%以下とすることがより好ましく、0.122wt%とすることが最も好ましい。
具体的には、導光長Lが480mm≦L≦500mmである場合には、散乱粒子の濃度を0.02wt%以上0.22wt%以下とする必要がある。
また、導光板の導光長を画面サイズ37インチ対応のL=480mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.085wt%以下とすることがより好ましく、0.047wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.03wt%以上、0.12wt%以下とすることがより好ましく、0.065wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.06wt%以上、0.22wt%以下とすることがより好ましく、0.122wt%とすることが最も好ましい。
また、導光長Lが515mm≦L≦620mmである場合には、散乱粒子の濃度を0.015wt%以上、0.16wt%以下とするのが良い。
また、導光板の導光長を画面サイズ42インチ対応のL=560mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.015wt%以上、0.065wt%以下とすることがより好ましく、0.035wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.09wt%以下とすることがより好ましく、0.048wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.04wt%以上、0.16wt%以下とすることがより好ましく、0.09wt%とすることが最も好ましい。
また、導光板の導光長を画面サイズ42インチ対応のL=560mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.015wt%以上、0.065wt%以下とすることがより好ましく、0.035wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.09wt%以下とすることがより好ましく、0.048wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.04wt%以上、0.16wt%以下とすることがより好ましく、0.09wt%とすることが最も好ましい。
また、導光板の導光長を画面サイズ46インチ対応のL=590mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.015wt%以上、0.060wt%以下とすることがより好ましく、0.031wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.08wt%以下とすることがより好ましく、0.043wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.035wt%以上、0.15wt%以下とすることがより好ましく、0.081wt%とすることが最も好ましい。
また、導光長Lを625mm≦L≦770mmとする場合には、散乱粒子の濃度を0.01wt%以上、0.12wt%以下とするのが良い。
また、導光板の導光長を画面サイズ52インチ対応のL=660mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.010wt%以上0.050wt%以下とすることがより好ましく、0.025wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.015wt%以上0.060wt%以下とすることがより好ましく、0.034wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.030wt%以上0.120wt%以下とすることがより好ましく、0.064wt%とすることが最も好ましい。
また、導光板の導光長を画面サイズ52インチ対応のL=660mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.010wt%以上0.050wt%以下とすることがより好ましく、0.025wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.015wt%以上0.060wt%以下とすることがより好ましく、0.034wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.030wt%以上0.120wt%以下とすることがより好ましく、0.064wt%とすることが最も好ましい。
さらに、導光板の導光長を画面サイズ57インチ対応のL=730mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を0.010wt%以上、0.040wt%以下とすることがより好ましく、0.021wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.010wt%以上、0.050wt%以下とすることがより好ましく、0.028wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.020wt%以上0.100wt%以下とすることが好ましく、0.053wt%とすることが最も好ましい。
また、導光長Lを785mm≦L≦830mmとする場合には、散乱粒子の濃度を0.006wt%以上、0.08wt%以下とすること好ましい。
さらに、導光板の導光長を画面サイズ65インチ対応のL=830mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を0.008wt%以上、0.030wt%以下とすることがより好ましく、0.016wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.009wt%以上、0.040wt%以下とすることがより好ましく、0.022wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.020wt%以上、0.080wt%以下とすることがより好ましく、0.041wt%とすることが最も好ましい。
さらに、導光板の導光長を画面サイズ65インチ対応のL=830mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を0.008wt%以上、0.030wt%以下とすることがより好ましく、0.016wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.009wt%以上、0.040wt%以下とすることがより好ましく、0.022wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.020wt%以上、0.080wt%以下とすることがより好ましく、0.041wt%とすることが最も好ましい。
以上から、本発明においては、導光板30の2つの光入射面30d、30e間の導光長に応じて、導光板30に分散させる散乱粒子の粒径および濃度が、所定の関係を満たす必要があることが分かる。
そこで、本発明においては、導光板30の導光長が、480mm以上、500mm以下である時、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.02wt%以上、0.22wt%以下である必要があり、かつ、図7(A)に示すグラフのように、散乱粒子の粒径(μm)を横軸とし、散乱粒子の粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、515mm以上、620mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、図7(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にある必要がある。
そこで、本発明においては、導光板30の導光長が、480mm以上、500mm以下である時、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.02wt%以上、0.22wt%以下である必要があり、かつ、図7(A)に示すグラフのように、散乱粒子の粒径(μm)を横軸とし、散乱粒子の粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、515mm以上、620mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、図7(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、625mm以上、770mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.01wt%以上、0.12wt%以下であり、かつ図8(A)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.01)、(4.0,0.05)、(7.0,0.01)、(7.0,0.06)、(12.0,0.02)および(12.0,0.12)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、785mm以上、830mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ、図8(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、785mm以上、830mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ、図8(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にある必要がある。
散乱粒子の粒径および濃度が、図7(A)、(B)、図8(A)および(B)に示すグラフの6点で囲まれた領域内にある必要がある理由は、この領域を外れると、粒子濃度が高すぎる場合には、平板と同じとなり、中高な輝度分布を実現できないし、粒子濃度が低すぎる場合には、光が突き抜けて透過してしまうために光利用効率55%以上を満たさなくなるからであり、粒径が小さすぎる場合には、光利用効率はよくなるが、中高な輝度分布を実現できないし、粒径が大きすぎる場合には、中高な輝度分布を実現できるが、光利用効率が低いからである。
このように本発明の散乱微粒子の粒子濃度の限定範囲に含まれる最適な粒子濃度を選択することにより、平板形状の導光板に分散させた場合に比べて光利用効率を高めて出射させることができる。本発明においては、少なくとも55%以上、すなわち70%を超える光利用効率を達成することができる。
以上から、最適な粒子径および粒子濃度の組み合わせを選択できるので、これらの組み合わせを選択することで、10mm程度の混合長でLED光源からの射出光をむらなく出射させることができる。
以上から、最適な粒子径および粒子濃度の組み合わせを選択できるので、これらの組み合わせを選択することで、10mm程度の混合長でLED光源からの射出光をむらなく出射させることができる。
このような内部に散乱微粒子を分散させた本発明の面状照明装置10に用いる導光板30は、2つの光入射面から入射した光が光射出面から射出された割合を示す光の利用効率が55%以上である必要がある。この理由は、光の利用効率が55%未満では、必要な輝度を得るためには、より出力の大きな光源が必要となるが、より出力の大きな光源を用いると、光源が高温となり、消費電力が大きくなるばかりか、導光板30の反りや伸びが大きくなり、所要の明るさの分布、いわゆる中高なあるいは釣鐘状の明るさの分布が得られなくなるからである。
また、光射出面の光入射面近傍から射出する光の輝度に対する光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%より大きく25%以下であるである必要がある。その理由は、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布だからである。
このような導光板30は、押出成形法や射出成形法を用いて製造することができる。
また、光射出面の光入射面近傍から射出する光の輝度に対する光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%より大きく25%以下であるである必要がある。その理由は、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布だからである。
このような導光板30は、押出成形法や射出成形法を用いて製造することができる。
ここで、導光板30は、光入射面となる第1光入射面30d、第2光入射面30eと、光射出面30aと、光反射面となる第1傾斜面30b、第2傾斜面30cの少なくとも1面の表面粗さRaを380nmより小さくすること、つまりRa<380nmとすることが好ましい。
光入射面となる第1光入射面30d、第2光入射面30eの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射を無視することができ、つまり、導光板表面での拡散反射を防止することができ、入射効率を向上させることができる。
また、光射出面30aの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射透過を無視することができ、つまり導光板表面での拡散反射透過を防止することができ、全反射により奥まで光を伝えることができる。
さらに、光反射面となる第1傾斜面30b、第2傾斜面30cの表面粗さRaを380nmよりも小さくすることで、拡散反射を無視することができ、つまり光反射面での拡散反射を防止でき、全反射成分をより奥まで伝えることができる。
光入射面となる第1光入射面30d、第2光入射面30eの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射を無視することができ、つまり、導光板表面での拡散反射を防止することができ、入射効率を向上させることができる。
また、光射出面30aの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射透過を無視することができ、つまり導光板表面での拡散反射透過を防止することができ、全反射により奥まで光を伝えることができる。
さらに、光反射面となる第1傾斜面30b、第2傾斜面30cの表面粗さRaを380nmよりも小さくすることで、拡散反射を無視することができ、つまり光反射面での拡散反射を防止でき、全反射成分をより奥まで伝えることができる。
本発明の面状照明装置に用いる導光板は、基本的に以上のように構成されるが、以下のようにして設計することができる。なお、以下の設計方法では、筐体26の上部筐体42および下部筐体44に連結するための各種穴を形成していない導光板とした場合で説明するが、各種穴は導光板の一部のみに形成するものであるので、光射出面から射出される光は、基本的に同じになる。
図9は、本発明の面状照明装置に用いる導光板の設計方法の一例を示すフローチャートである。
まず、図9に示すように、ステップS10において、本発明の面状照明装置に用いる導光板を用いるバックライトユニットが適用される液晶表示装置の画面サイズから、画面サイズの短辺長さにミキシングゾーン長としての約10mmを加えて、導光長として決定する。
次に、ステップS12において、画面サイズから導光板の最大厚みtmaxを決定する。
また、ステップS14において、導光板に使用する母材樹脂および添加する散乱微粒子の粒子条件を決定する。
図9は、本発明の面状照明装置に用いる導光板の設計方法の一例を示すフローチャートである。
まず、図9に示すように、ステップS10において、本発明の面状照明装置に用いる導光板を用いるバックライトユニットが適用される液晶表示装置の画面サイズから、画面サイズの短辺長さにミキシングゾーン長としての約10mmを加えて、導光長として決定する。
次に、ステップS12において、画面サイズから導光板の最大厚みtmaxを決定する。
また、ステップS14において、導光板に使用する母材樹脂および添加する散乱微粒子の粒子条件を決定する。
続いて、ステップS16において、決定された導光長を持つ平板形状の散乱微粒子分散導光板(散乱導光板)において、光利用効率E[%]が、55%以上となる粒子濃度を決定する。ここで、E=Iout/Iin×100[%]で表され、IoutおよびIinは、それぞれ入射および出射光束[lm]を表している。なお、粒子濃度の決定は、シミュレーションにより行われるが、光利用効率Eの実測値とシミュレーション値との間に差がある場合には、その差を考慮して粒子濃度の設計値を決定する必要がある。この差がある場合には、予め、光利用効率Eの実測値とシミュレーション値との間の差を求めておくのが好ましい。
次に、ステップS18において、粒子濃度の設計値を固定し、本発明の面状照明装置に用いる導光板の傾斜背面形状(逆楔形状)のテーパ角θまたは最大厚みtmaxを変化させて、導光板の光射出面の輝度分布を求め、その中高度合が所定範囲内に入るか否かを把握して、テーパ角θを決定する。このとき、中央の湾曲部の曲率半径Rは、導光長に応じて決定し、テーパと組み合わせる。ここで、中高度合Dは、0<D≦25、D=[(Lcen−Ledg)/Lcen]×100[%]で表される。ここで、中高度合Dは、輝度分布の中高度合(中央部が高くなる度合い)意味し、LcenおよびLedgは、それぞれ中央部における輝度および画面端側(入射部付近)の輝度を表す。なお、テーパ角θの決定は、シミュレーションにより行われるが、粒子濃度の実測値とシミュレーション値との間に差がある場合には、その差を考慮して輝度分布を把握し、中高度合Dを決定し、テーパ角θを決定する必要がある。この差がある場合には、予め、粒子濃度の実測値とシミュレーション値との間の差を求めておくのが好ましい。
続いて、ステップS20において、導光板の最大厚みtmaxと、テーパ(テーパ角θ)および中央の湾曲部の曲率半径Rとの関係から、入射部厚み(最小厚み)tminを決定して、決定された入射部厚みtmin未満の発光部を持つLEDを選択する。
こうして、本発明の面状照明装置に用いる導光板を設計することができる。
なお、画面サイズが37インチ、最大厚み3.5mm、導光長480mmである導光板の場合の粒子濃度[wt%]と、光利用効率[%]および中高度合[%]との関係を図10に示す。
同図から明らかなように、粒子濃度が0.05wt%〜0.2wt%の範囲では、光利用効率は、70%を超えるが、粒子濃度が0.05wt%〜0.07wt%の範囲および0.19wt%〜0.2wt%の範囲では、中高度合はマイナス、すなわち、中央部が低い輝度分布となることがわかる。例えば、10%以上の中高度合が必要であれば、粒子濃度を0.08wt%〜0.16wt%の範囲に設計する必要があることがわかる。
こうして、本発明の面状照明装置に用いる導光板を設計することができる。
なお、画面サイズが37インチ、最大厚み3.5mm、導光長480mmである導光板の場合の粒子濃度[wt%]と、光利用効率[%]および中高度合[%]との関係を図10に示す。
同図から明らかなように、粒子濃度が0.05wt%〜0.2wt%の範囲では、光利用効率は、70%を超えるが、粒子濃度が0.05wt%〜0.07wt%の範囲および0.19wt%〜0.2wt%の範囲では、中高度合はマイナス、すなわち、中央部が低い輝度分布となることがわかる。例えば、10%以上の中高度合が必要であれば、粒子濃度を0.08wt%〜0.16wt%の範囲に設計する必要があることがわかる。
こうして設計された画面サイズが、37インチ、42インチ、46インチ、52インチ、57インチおよび65インチである場合の導光板の導光長[mm]、最大厚み[mm]、粒子濃度[wt%]、テーパ、中央の湾曲部の曲率半径R[mm]、光利用効率[%]および中高度合[%]を表1に示す。
いずれの導光板の場合も、本発明の好適な限定範囲を満たすものであるので、大画面であっても、薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布を得ることができる。
本発明の面状照明装置に用いる導光板は、基本的に以上のように構成される。
本発明の面状照明装置に用いる導光板は、基本的に以上のように構成される。
次に、間隔維持部材31について説明する。
ここで、図11(A)は、図2示す面状照明装置10の間隔維持部材31の周辺部の概略構成を示す正面図であり、図11(B)は、図11(A)のB−B線断面図である。
間隔維持部材31は、光源支持部52(より正確には光源支持部52のアレイ基板54)の導光板30の光入射面(つまり、第1光入射面30dまたは第2光入射面30e)側の面のLEDチップ50が配置されていない領域に固定された所定の厚みを有する部材であり、導光板30側の先端がLEDチップ50の発光部51の発光面58よりも導光板30の対向する光入射面(つまり、第1光入射面30dまたは第2光入射面30e)側に突出している。間隔維持部材31は、導光板30の対向する光入射面側に突出している部分の先端が、導光板30の対向する光入射面と当接している。
また、本実施形態の間隔維持部材30は、光源支持部52上の面において、LEDチップの外周の4辺のうち、導光板30の背面側となる面を除く3辺を覆うように配置されている。
ここで、図11(A)は、図2示す面状照明装置10の間隔維持部材31の周辺部の概略構成を示す正面図であり、図11(B)は、図11(A)のB−B線断面図である。
間隔維持部材31は、光源支持部52(より正確には光源支持部52のアレイ基板54)の導光板30の光入射面(つまり、第1光入射面30dまたは第2光入射面30e)側の面のLEDチップ50が配置されていない領域に固定された所定の厚みを有する部材であり、導光板30側の先端がLEDチップ50の発光部51の発光面58よりも導光板30の対向する光入射面(つまり、第1光入射面30dまたは第2光入射面30e)側に突出している。間隔維持部材31は、導光板30の対向する光入射面側に突出している部分の先端が、導光板30の対向する光入射面と当接している。
また、本実施形態の間隔維持部材30は、光源支持部52上の面において、LEDチップの外周の4辺のうち、導光板30の背面側となる面を除く3辺を覆うように配置されている。
間隔維持部材31は、耐熱性が高く、また、導光板と接触している部分が導光板を損傷させないような衝撃吸収性(つまりクッション性)を有する材料、例えば、シリコンゴム等で作製されている。また、間隔維持部材31の作製に用いる材料は、衝撃吸収性を有するが、外力が作用しても実質的な形状は変化しない程度の剛性を有する材料でもある。
上記材料で間隔維持部材31を作製することで、導光板30が伸縮し、導光板30と間隔維持部材31とが擦れたりした場合でも導光板30が損傷することを防止でき、さらに光源からの熱により加熱された場合でも変性、変形することを防止できる。
なお、間隔維持部材31の光源支持部52への固定方法は特に限定されず、種々の固定方法を用いることができるが、間隔維持部材31と光源支持部52とを化学的または機械的に結合させることで、間隔維持部材31を光源支持部52に固定することが好ましい。
ここで、化学的な結合方法としては、導光板と化学変化を起こさない接着剤である、導光板素材と同類の接着剤やシリコーン接着剤により両者を結合する方法が例示され、機械的な結合方法としては、ネジにより固定する方法が例示される。
上記材料で間隔維持部材31を作製することで、導光板30が伸縮し、導光板30と間隔維持部材31とが擦れたりした場合でも導光板30が損傷することを防止でき、さらに光源からの熱により加熱された場合でも変性、変形することを防止できる。
なお、間隔維持部材31の光源支持部52への固定方法は特に限定されず、種々の固定方法を用いることができるが、間隔維持部材31と光源支持部52とを化学的または機械的に結合させることで、間隔維持部材31を光源支持部52に固定することが好ましい。
ここで、化学的な結合方法としては、導光板と化学変化を起こさない接着剤である、導光板素材と同類の接着剤やシリコーン接着剤により両者を結合する方法が例示され、機械的な結合方法としては、ネジにより固定する方法が例示される。
間隔維持部材31を設けることで、導光板が伸縮した場合(特に導光板が膨張した場合)でも光源28の発光部51の発光面58と導光板30の対向する光入射面との距離を一定にすることができる。これにより、導光板30の対向する光入射面と光源28のLEDチップ50の発光部52の発光面58とが接触することで、LEDチップが故障したり、LEDチップの位置ずれが生じたり、導光板の光入射面が損傷することを防止することができる。
また、間隔維持部材31を光源支持部のLEDチップの外周、つまり、LEDチップが配置されていない領域に設けることで、LEDチップに外力が働くことをより確実に防止でき、LEDチップが損傷することをより確実に防止することができる。
また、発光面と光入射面との距離を一定にできることで、導光板の伸縮した場合や、装置に振動が生じた場合でも同じ位置関係で、発光面から発光された光を導光板に入射させることができる。これにより、導光板が伸縮しても、輝度むらのない光を光射出面から射出させることができる。
また、間隔維持部材31を光源支持部のLEDチップの外周、つまり、LEDチップが配置されていない領域に設けることで、LEDチップに外力が働くことをより確実に防止でき、LEDチップが損傷することをより確実に防止することができる。
また、発光面と光入射面との距離を一定にできることで、導光板の伸縮した場合や、装置に振動が生じた場合でも同じ位置関係で、発光面から発光された光を導光板に入射させることができる。これにより、導光板が伸縮しても、輝度むらのない光を光射出面から射出させることができる。
また、間隔維持部材31は、LEDチップ50の発光部51の発光面58と、導光板30の対向する光入射面(第1光入射面または第2光入射面)との距離cを0.1mm以上0.5mm以下とすることが好ましい。距離cを0.1mm以上0.5mm以下とすることで、LEDチップ50から射出された光の利用効率を高くすることができ、光を効率よく利用できかつ、光射出面からより輝度の高い光を射出させることができる。
次に、光学部材ユニット32について説明する。
光学部材ユニット32は、導光板30の光射出面30aから射出された照明光をより輝度むらのない光にして、照明装置本体24の光射出面24aからより輝度むらのない照明光を射出するためのもので、図2に示すように、導光板30の光射出面30aから射出する照明光を拡散して輝度むらを低減する拡散シート32aと、光入射面と光射出面との接線と平行なマイクロプリズム列が形成されたプリズムシート32bと、プリズムシート32bから射出する照明光を拡散して輝度むらを低減する拡散シート32cとを有する。
光学部材ユニット32は、導光板30の光射出面30aから射出された照明光をより輝度むらのない光にして、照明装置本体24の光射出面24aからより輝度むらのない照明光を射出するためのもので、図2に示すように、導光板30の光射出面30aから射出する照明光を拡散して輝度むらを低減する拡散シート32aと、光入射面と光射出面との接線と平行なマイクロプリズム列が形成されたプリズムシート32bと、プリズムシート32bから射出する照明光を拡散して輝度むらを低減する拡散シート32cとを有する。
拡散シート32aおよび32c、プリズムシート32bとしては、本出願人の出願に係る特開2005−234397号公報の[0028]〜[0033]に開示されているものを適用することができる。
なお、本実施形態では、光学部材ユニットを2枚の拡散シート32aおよび32cと、2枚の拡散シートの間に配置したプリズムシート32bとで構成したが、プリズムシートおよび拡散シートの配置順序や配置数は特に限定されず、また、プリズムシート、拡散シートとしても特に限定されず、導光板30の光射出面30aから射出された照明光の輝度むらをより低減することができるものであれば、種々の光学部材を用いることができる。
例えば、光学部材として、上述の拡散シートおよびプリズムシートに、加えてまたは代えて、拡散反射体からなる多数の透過率調整体を輝度むらに応じて配置した透過率調整部材も用いることもできる。
例えば、光学部材として、上述の拡散シートおよびプリズムシートに、加えてまたは代えて、拡散反射体からなる多数の透過率調整体を輝度むらに応じて配置した透過率調整部材も用いることもできる。
次に、照明装置本体の反射板34について説明する。
反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cから漏洩する光を反射して、再び導光板30に入射させるために設けられており、光の利用効率を向上させることができる。反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cに対応した形状で、第1傾斜面30bおよび第2傾斜面30cを覆うように形成される。本実施形態では、図2に示すように導光板30の第1傾斜面30bおよび第2傾斜面30cが断面三角形状に形成されているので、反射板34もこれに補形する形状に形成されている。
反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cから漏洩する光を反射して、再び導光板30に入射させるために設けられており、光の利用効率を向上させることができる。反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cに対応した形状で、第1傾斜面30bおよび第2傾斜面30cを覆うように形成される。本実施形態では、図2に示すように導光板30の第1傾斜面30bおよび第2傾斜面30cが断面三角形状に形成されているので、反射板34もこれに補形する形状に形成されている。
反射板34は、導光板30の傾斜面から漏洩する光を反射することができれば、どのような材料で形成されてもよく、例えば、PETやPP(ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率を高めた樹脂シート、透明もしくは白色の樹脂シート表面にアルミ蒸着などで鏡面を形成したシート、アルミ等の金属箔もしくは金属箔を担持した樹脂シート、あるいは表面に十分な反射性を有する金属薄板により形成することができる。
上部誘導反射板36は、導光板30と拡散シート32aとの間、つまり、導光板30の光射出面30a側に、光源28および導光板30の光射出面30aの端部(第1光入射面30d側の端部および第2光入射面30e側の端部)を覆うようにそれぞれ配置されている。言い換えれば、上部誘導反射板36は、光軸方向に平行な方向において、導光板30の光射出面30aの一部から光源28のアレイ基板54の一部までを覆うように配置されている。つまり、2つの上部誘導反射板36が、導光板30の両端部にそれぞれ配置されている。
このように、上部誘導反射板36を配置することで、光源28から射出された光が導光板30に入射することなく、光射出面30側に漏れ出すことを防止できる。
これにより、光源28のLEDチップ50から射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
このように、上部誘導反射板36を配置することで、光源28から射出された光が導光板30に入射することなく、光射出面30側に漏れ出すことを防止できる。
これにより、光源28のLEDチップ50から射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
下部誘導反射板38は、導光板30の光射出面30a側とは反対側、つまり、第1傾斜面30bおよび第2傾斜面30c側に、光源28の一部を覆うように配置されている。また、下部誘導反射板38の導光板中心側の端部は、反射板34と連結されている。
下部誘導反射板38を設けることで、光源28から射出された光が導光板30に入射することなく、導光板30の第1傾斜面30bおよび第2傾斜面30c側に漏れ出すことを防止できる。
これにより、光源28のLEDチップ50から射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
ここで、上部誘導反射板36および下部誘導反射板38としては、上述した反射板34に用いる各種材料を用いることができる。
なお、本実施形態では、反射板34と下部誘導反射板38と連結させたが、これに限定されず、それぞれを別々の部材としてもよい。
下部誘導反射板38を設けることで、光源28から射出された光が導光板30に入射することなく、導光板30の第1傾斜面30bおよび第2傾斜面30c側に漏れ出すことを防止できる。
これにより、光源28のLEDチップ50から射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
ここで、上部誘導反射板36および下部誘導反射板38としては、上述した反射板34に用いる各種材料を用いることができる。
なお、本実施形態では、反射板34と下部誘導反射板38と連結させたが、これに限定されず、それぞれを別々の部材としてもよい。
ここで、上部誘導反射板36および下部誘導反射板38は、光源28から射出された光を第1光入射面30dまたは第2光入射面30e側に反射させ、光源28から射出された光を第1光入射面30dまた第2光入射面30eに入射させることができ、導光板30に入射した光を導光板30中心側に導くことができれば、その形状および幅は特に限定されない。
また、本実施形態では、上部誘導反射板36を導光板30と拡散シート32aとの間に配置したが、上部誘導反射板36の配置位置はこれに限定されず、光学部材ユニット32を構成するシート状部材の間に配置してもよく、光学部材ユニット32と上部筐体44との間に配置してもよい。
また、本実施形態では、上部誘導反射板36を導光板30と拡散シート32aとの間に配置したが、上部誘導反射板36の配置位置はこれに限定されず、光学部材ユニット32を構成するシート状部材の間に配置してもよく、光学部材ユニット32と上部筐体44との間に配置してもよい。
次に、筐体26について説明する。
図2に示すように、筐体26は、照明装置本体24を収納して支持し、かつその光出射面24a側と導光板30の第1傾斜面30b及び第2傾斜面30c側とから挟み込み、固定するものであり、下部筐体42と上部筐体44と折返部材46と支持部材48とを有する。
図2に示すように、筐体26は、照明装置本体24を収納して支持し、かつその光出射面24a側と導光板30の第1傾斜面30b及び第2傾斜面30c側とから挟み込み、固定するものであり、下部筐体42と上部筐体44と折返部材46と支持部材48とを有する。
下部筐体42は、上面が開放され、底面部と、底面部の4辺に設けられ底面部に垂直な側面部とで構成された形状である。つまり、1面が開放された略直方体の箱型形状である。下部筐体42は、図2に示すように、上方から収納された照明装置本体24を底面部及び側面部で支持すると共に、照明装置本体24の光出面24a以外の面、つまり、照明装置本体24の光出面24aとは反対側の面(背面)及び側面を覆っている。
上部筐体44は、上面に開口部となる照明装置本体24の矩形状の光出射面24aより小さい矩形状の開口が形成され、かつ下面が開放された直方体の箱型形状である。
上部筐体44は、図2に示すように、面状照明装置本体24及び下部筐体42の上方(光射出面側)から、照明装置本体24およびこれが収納された下部筐体42をその4方の側面部22bも覆うように被せられて配置されている。
上部筐体44は、図2に示すように、面状照明装置本体24及び下部筐体42の上方(光射出面側)から、照明装置本体24およびこれが収納された下部筐体42をその4方の側面部22bも覆うように被せられて配置されている。
折返部材46は、断面の形状が常に同一の凹(U字)型となる形状である。つまり、延在方向に垂直な断面の形状がU字形状となる棒状部材である。
折返部材46は、図2に示すように、下部筐体42の側面と上部筐体44の側面との間に嵌挿され、U字形状の一方の平行部の外側面が下部筐体42の側面部22bと連結され、他方の平行部の外側面が上部筐体44の側面と連結されている。
ここで、下部筐体42と折返部材46との接合方法、折返部材46と上部筐体44との接合方法としては、ボルトおよびナット等を用いる方法、接着剤を用いる方法等種々の公知の方法を用いることができる。
折返部材46は、図2に示すように、下部筐体42の側面と上部筐体44の側面との間に嵌挿され、U字形状の一方の平行部の外側面が下部筐体42の側面部22bと連結され、他方の平行部の外側面が上部筐体44の側面と連結されている。
ここで、下部筐体42と折返部材46との接合方法、折返部材46と上部筐体44との接合方法としては、ボルトおよびナット等を用いる方法、接着剤を用いる方法等種々の公知の方法を用いることができる。
このように、下部筐体42と上部筐体44との間に折返部材46を配置することで、筐体26の剛性を高くすることができ、導光板が反ることを防止できる。これにより、例えば、輝度むらがないまたは少なく光を効率よく射出させることができる反面、反りが生じ易い導光板を用いる場合であっても、反りをより確実に矯正でき、または、導光板に反りが生じることをより確実に防止でき、輝度むら等のない、または低減された光を光射出面から射出させることができる。
なお、筐体の上部筐体、下部筐体及び折返部材には、金属、樹脂等の種々の材料を用いることができる。なお、材料としては、軽量で高強度の材料を用いることが好ましい。
また、本実施形態では、折返部材を別部材としたが、上部筐体または下部筐体と一体にして形成してもよい。また、折返部材を設けない構成としてもよい。
なお、筐体の上部筐体、下部筐体及び折返部材には、金属、樹脂等の種々の材料を用いることができる。なお、材料としては、軽量で高強度の材料を用いることが好ましい。
また、本実施形態では、折返部材を別部材としたが、上部筐体または下部筐体と一体にして形成してもよい。また、折返部材を設けない構成としてもよい。
支持部材48は、延在方向に垂直な断面の形状が同一となる形状である。つまり、延在方向に垂直な断面の形状が同一の棒状部材である。
支持部材48は、図2に示すように、反射板34と下部筐体42との間、より具体的には、導光板30の第1傾斜面30bの第1光入射面30d側の端部に対応する位置の反射板34と下部筐体42との間に配置され、導光板30及び反射板34を下部筐体42に固定し、支持する。
支持部材48により反射板34を支持することで、導光板30と反射板34とを密着させることができる。さらに、導光板30及び反射板34を、下部筐体42の所定位置に固定することができる。
支持部材48は、図2に示すように、反射板34と下部筐体42との間、より具体的には、導光板30の第1傾斜面30bの第1光入射面30d側の端部に対応する位置の反射板34と下部筐体42との間に配置され、導光板30及び反射板34を下部筐体42に固定し、支持する。
支持部材48により反射板34を支持することで、導光板30と反射板34とを密着させることができる。さらに、導光板30及び反射板34を、下部筐体42の所定位置に固定することができる。
また、本実施形態では、支持部材を独立した部材として設けたが、これに限定されず、下部筐体42、または反射板34と一体で形成してもよい。つまり、下部筐体42の一部に突起部を形成し、この突起部を支持部材として用いても、反射板の一部に突起部を形成し、この突起部を支持部材として用いてもよい。
また、配置位置も特に限定されず、反射板と下部筐体との間の任意の位置に配置することができるが、導光板を安定して保持するために、導光板の端部側、つまり、本実施形態では、第1光入射面30d近傍、第2光入射面30e近傍に配置することが好ましい。
また、配置位置も特に限定されず、反射板と下部筐体との間の任意の位置に配置することができるが、導光板を安定して保持するために、導光板の端部側、つまり、本実施形態では、第1光入射面30d近傍、第2光入射面30e近傍に配置することが好ましい。
また、支持部材48の形状は特に限定されず、種々の形状とすることができ、また、種々の材料で作成することもできる。例えば、支持部材を複数設け、所定間隔毎に配置してもよい。
また、支持部材を反射板と下部筐体とで形成される空間の全域を埋める形状とし、つまり、反射板側の面を反射板に沿った形状とし、下部筐体側の面を下部筐体に沿った形状としてもよい。このように、支持部材により反射板の全面を支持する場合は、導光板と反射板とが離れることを確実に防止することができ、反射板を反射した光により輝度むらが生じることを防止することができる。
また、支持部材を反射板と下部筐体とで形成される空間の全域を埋める形状とし、つまり、反射板側の面を反射板に沿った形状とし、下部筐体側の面を下部筐体に沿った形状としてもよい。このように、支持部材により反射板の全面を支持する場合は、導光板と反射板とが離れることを確実に防止することができ、反射板を反射した光により輝度むらが生じることを防止することができる。
面状照明装置20は、基本的に以上のような構成である。
面状照明装置20は、導光板30の両端にそれぞれ配置された光源28から射出された光が導光板30の光入射面(第1光入射面30dおよび第2光入射面30e)に入射する。それぞれの面から入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または第1傾斜面30bおよび第2傾斜面30cで反射した後、光射出面30aから射出する。このとき、第1傾斜面30bおよび第2傾斜面30cから漏出した一部の光は、反射板34によって反射され再び導光板30の内部に入射する。
このようにして、導光板30の光射出面30aから射出された光は、光学部材32を透過し、照明装置本体24の光出面24aから射出され、液晶表示パネル12を照明する。
液晶表示パネル12は、駆動ユニット14により、位置に応じて光の透過率を制御することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
面状照明装置20は、導光板30の両端にそれぞれ配置された光源28から射出された光が導光板30の光入射面(第1光入射面30dおよび第2光入射面30e)に入射する。それぞれの面から入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または第1傾斜面30bおよび第2傾斜面30cで反射した後、光射出面30aから射出する。このとき、第1傾斜面30bおよび第2傾斜面30cから漏出した一部の光は、反射板34によって反射され再び導光板30の内部に入射する。
このようにして、導光板30の光射出面30aから射出された光は、光学部材32を透過し、照明装置本体24の光出面24aから射出され、液晶表示パネル12を照明する。
液晶表示パネル12は、駆動ユニット14により、位置に応じて光の透過率を制御することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
また、光源30の光源支持部50の光入射面(第1光入射面30dまたは第2光入射面30e)側の面に間隔維持部材31を設けることで、上述したように、LEDチップ(の発光部の発光面)と導光板とが接触することを防止し、LEDチップと導光板が損傷すること等を防止でき、かつ、光入射面と発光面との距離を一定に維持することができる。LEDチップと導光板が損傷することで、輝度むらが生じたり、面状照明装置として故障したりすることを防止できる。また、光入射面と発光面との距離を一定に維持できることで、発光面から射出した光を一定条件で導光板に入射させることができ、距離が変化することでも輝度むらが発生することを防止できる。また、高い光利用効率を維持することができる。
また、間隔維持部材は、光を透過する透明な材料で作製することが好ましい。間隔維持部材を透明にすることで、光源から発光された光や、導光板から一端射出されまた導光板に再入射する光を間隔維持部材が吸収することを防止でき、光の利用効率を高くすることができる。
ここで、上記実施形態では、間隔維持部材をLEDチップ50の外周3辺を覆うように配置したが、本発明はこれに限定されず、光源支持部に固定され、LEDチップ50の発光部51の発光面58と導光板30の光入射面とが接触することを防止し、導光板30の光入射面を傷つけず、かつ、両者の距離を一定にする各種部材を用いることができる。
図12(A)は、本発明の面状照明装置に用いる他の一例の間隔維持部材62の周辺部の概略構成を示す正面図であり、図12(B)は、図12(A)のB−B線断面図である。
図13(A)は、本発明の面状照明装置に用いる他の一例の間隔維持部材64の周辺部の概略構成を示す正面図であり、図13(B)は、図13(A)の一部を拡大して示す拡大正面図ある。
図12(A)は、本発明の面状照明装置に用いる他の一例の間隔維持部材62の周辺部の概略構成を示す正面図であり、図12(B)は、図12(A)のB−B線断面図である。
図13(A)は、本発明の面状照明装置に用いる他の一例の間隔維持部材64の周辺部の概略構成を示す正面図であり、図13(B)は、図13(A)の一部を拡大して示す拡大正面図ある。
図12(A)及び(B)に示す間隔維持部材62は、光源支持部52上において、LEDチップ50の外周の全周、つまり、4辺を覆う領域に固定されている。なお、間隔維持部材62の光源支持部材52上における固定位置以外の構成、機能等は、間隔維持部材31と同様であるので、その詳細な説明は、省略する。
このように、間隔維持部材62を光源支持部52のLEDチップの外周の全面、言い換えれば、光源支持部52上のLEDチップ50が配置されている領域以外の領域の全面に設けてもよい。このように、間隔維持部材62をLEDチップ50の全周に配置することで、より確実に発光面と光射出面とが接触することを防止でき、より安定して発光面と光射出面との距離を一定に維持することができる。
発光面と光射出面との距離を一定に維持することができ、発光面と光射出面とが接触することを防止できるため、間隔維持部材は、LEDチップの外周の3辺(3方向)に設けることが好ましく、LEDチップの全周に設けることがより好ましいが、LEDチップの外周の2方向のみ(例えば、LEDチップの両短辺側若しくは両長辺側)に配置してもよい。
このように、間隔維持部材62を光源支持部52のLEDチップの外周の全面、言い換えれば、光源支持部52上のLEDチップ50が配置されている領域以外の領域の全面に設けてもよい。このように、間隔維持部材62をLEDチップ50の全周に配置することで、より確実に発光面と光射出面とが接触することを防止でき、より安定して発光面と光射出面との距離を一定に維持することができる。
発光面と光射出面との距離を一定に維持することができ、発光面と光射出面とが接触することを防止できるため、間隔維持部材は、LEDチップの外周の3辺(3方向)に設けることが好ましく、LEDチップの全周に設けることがより好ましいが、LEDチップの外周の2方向のみ(例えば、LEDチップの両短辺側若しくは両長辺側)に配置してもよい。
次に、図13(A)及び(B)に示す間隔維持部材64は、光を透過する透明な部材で作製され、光源支持部52の導光板30の対向する光入射面側の面のLEDチップ50の表面を含む領域に固定されている。この間隔維持部材64のLEDチップ50上に固定されている部分(以下「レンズ部」という。)66は、外周面の断面が曲線となる略円錐台形状(つまりレンズ形状)であり、レンズ部66の導光板30側の先端が光入射面と当接している。
また、間隔維持部材64は、透明であることに加え、間隔維持部材31と同様に、耐熱性が高く、また、導光板と接触している部分が導光板を損傷させないような衝撃吸収性(もしくはクッション性)を有する材料、例えば、シリコンゴム等で作製されている。また、間隔維持部材64の作製に用いる材料も、衝撃吸収性を有するが、外力が作用しても実質的な形状は変化しない程度の剛性を有する材料でもある。
また、間隔維持部材64は、透明であることに加え、間隔維持部材31と同様に、耐熱性が高く、また、導光板と接触している部分が導光板を損傷させないような衝撃吸収性(もしくはクッション性)を有する材料、例えば、シリコンゴム等で作製されている。また、間隔維持部材64の作製に用いる材料も、衝撃吸収性を有するが、外力が作用しても実質的な形状は変化しない程度の剛性を有する材料でもある。
間隔維持部材64は、LEDチップ50上に固定したレンズ部66を介して導光板30とLEDチップ50とを当接させているため、間隔維持部材31を用いる場合よりもLEDチップ50に負荷がかかるが、衝撃吸収性を有するため、LEDチップ50が破損することを防止できる。また、間隔維持部材31と同様に、LEDチップ50の位置ずれや、導光板の光入射面が損傷することを防止でき、発光面と光入射面との距離も一定にすることができるため、上述した間隔維持部材31を配置することにより得ることができる各種効果を得ることができる。
さらに、LEDチップ50の発光部51の発光面58上に配置したレンズ部66を導光板30の光入射面と密着させることで、発光面58と導光板の光入射面との間の空気界面をなくすことができ、発光面58から射出された光を、空気界面を通過させることなく、導光板に入射させることができる。これにより、発光面58から射出された光のフレネル損失を低減することができ、LEDチップの発光部の発光面から射出された光の導光板への入射効率を高くすることができ、光の利用効率を高くすることができる。
また、レンズ部66をレンズ形状とすることで、発光面から射出された光の光軸方向を調整することができ、さらに集光することができる。これにより、LEDチップの発光部の発光面から射出された光の導光板への入射効率をより高くすることができ、また、入射方向も調整することができる。したがって、光の利用効率を高くすることができ、さらに、輝度むらも発生しにくくすることができる。
ここで、光の利用効率をより高くすることができるため、間隔維持部材の導光板と発光面との間の部分をレンズ形状としたが、本発明はレンズに限定されず、間隔維持部材として、透明材料で形成され、LEDチップの発光部の発光面上に固定された各種形状の部材を用いることができる。LEDチップの発光部の発光面上に固定する部分を透明な部材とすることで、発光面から射出された光を実質的に低減させることなく導光板に入射させることができる。
また、レンズ部66をレンズ形状とすることで、発光面から射出された光の光軸方向を調整することができ、さらに集光することができる。これにより、LEDチップの発光部の発光面から射出された光の導光板への入射効率をより高くすることができ、また、入射方向も調整することができる。したがって、光の利用効率を高くすることができ、さらに、輝度むらも発生しにくくすることができる。
ここで、光の利用効率をより高くすることができるため、間隔維持部材の導光板と発光面との間の部分をレンズ形状としたが、本発明はレンズに限定されず、間隔維持部材として、透明材料で形成され、LEDチップの発光部の発光面上に固定された各種形状の部材を用いることができる。LEDチップの発光部の発光面上に固定する部分を透明な部材とすることで、発光面から射出された光を実質的に低減させることなく導光板に入射させることができる。
また、本実施形態は、光射出面からより輝度の高い光を効率よく射出することができるため、導光板30の光入射面30aを光入射面と交わる辺が長辺となり、側面と交わる辺が短辺となる形状としたが、本発明はこれに限定されず、光射出面を正方形形状としてもよく、光入射面側を短辺とし側面側を長辺としてもよい。
また、本実施形態では、光入射面30d、30eのみに光源28を配置したが、本発明はこれに限定されず、図14(A)及び(B)のように、光入射面30d、30eに対向して配置された光源28を主光源とし、第1側面30gおよび第2側面30fに対向して副光源29を設けて、第1側面30gおよび第2側面30fをそれぞれ第3光入射面および第4光入射面としもよい。このようにすることで、光射出面から射出される光の輝度をより高くすることができる。
副光源29は、導光板30に対する配置位置、およびLEDチップの配列密度を除いて基本的には、第1の実施例において上述した主光源28と同様の構成である。
2つの副光源29は、それぞれ導光板30の第1副入射面30h及び第2副入射面30iに対向して配置されている。具体的には、複数のLEDチップ50と光源支持部52で構成された副光源29が第1側面30hに対向して配置され、複数のLEDチップ50と光源支持部52で構成された副光源29が第2側面30iに対向して配置されている。
2つの副光源29は、それぞれ導光板30の第1副入射面30h及び第2副入射面30iに対向して配置されている。具体的には、複数のLEDチップ50と光源支持部52で構成された副光源29が第1側面30hに対向して配置され、複数のLEDチップ50と光源支持部52で構成された副光源29が第2側面30iに対向して配置されている。
ここで、2つの副光源29の光源支持部52上にも、それぞれ間隔維持部材31が配置されており、各間隔維持部材31は対向する側面と当接している。
副光源29の光源支持部52上にそれぞれ配置された間隔維持部材31も、主光源28の光源支持部52上に配置された間隔支持部材と同様に、副光源29のLEDチップ50と対向する導光板の側面とが接触し、LEDチップ及び導光板が損傷することを防止し、かつ、発光面と側面との距離を一定に保持している。
副光源29の光源支持部52上にそれぞれ配置された間隔維持部材31も、主光源28の光源支持部52上に配置された間隔支持部材と同様に、副光源29のLEDチップ50と対向する導光板の側面とが接触し、LEDチップ及び導光板が損傷することを防止し、かつ、発光面と側面との距離を一定に保持している。
上述のように、導光板30の第1副入射面30hおよび第2副入射面30iに対向する位置にそれぞれ副光源29を配置し、導光板30の側面側からも光を入射させることで、光射出面30aからより輝度の高い光を射出させることができ、光量をアップさせることができる。これにより、大光量の照明光を光射出面から射出することができ、光射出面を大型化することができ、液晶表示装置において大画面化を実現することができる。
また、副光源の光源支持部52上にも、それぞれ間隔維持部材31を配置することで、副光源の故障等に起因した故障の発生を防ぐことができる。
また、副光源の光源支持部52上にも、それぞれ間隔維持部材31を配置することで、副光源の故障等に起因した故障の発生を防ぐことができる。
また、上記の透明樹脂に可塑剤を混入して導光板を作製してもよい。
このように、透明材料と可塑剤とを混合した材料で導光板を作製することで、導光板をフレキシブルにすること、つまり、柔軟性のある導光板とすることができ、導光板を種々の形状に変形させることが可能となる。従って、導光板の表面を種々の曲面に形成することができる。
このように導光板をフレキシブルにすることにより、例えば、導光板、または、この導光板を用いた面状照明装置を電飾(イルミネーション)関係の表示板として用いる場合に、曲率を持つ壁にも装着することが可能となり、導光板をより多くの種類、より広い使用範囲の電飾やPOP(POP広告)等に利用することができる。
このように、透明材料と可塑剤とを混合した材料で導光板を作製することで、導光板をフレキシブルにすること、つまり、柔軟性のある導光板とすることができ、導光板を種々の形状に変形させることが可能となる。従って、導光板の表面を種々の曲面に形成することができる。
このように導光板をフレキシブルにすることにより、例えば、導光板、または、この導光板を用いた面状照明装置を電飾(イルミネーション)関係の表示板として用いる場合に、曲率を持つ壁にも装着することが可能となり、導光板をより多くの種類、より広い使用範囲の電飾やPOP(POP広告)等に利用することができる。
ここで、可塑剤としては、フタル酸エステル、具体的には、フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジブチル(DBP)、フタル酸ジ−2−エチルヘキシル(DOP(DEHP))、フタル酸ジノルマルオクチル(DnOP)、フタル酸ジイソノニル(DINP)、フタル酸ジノニル(DNP)、フタル酸ジイソデジル(DIDP)、フタル酸混基エステル(C6〜C11)(610P、711P等)、フタル酸ブチルベンジル(BBP)が例示される。また、フタル酸エステル以外にも、アジピン酸ジオクチル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジノルマルアルキル(C6、8、10)(610A)、アジピン酸ジアルキル(C7、9)(79A)、アゼライン酸ジオクチル(DOZ)、セバシン酸ジブチル(DBS)、セバシン酸ジオクチル(DOS)、リン酸トリクレシル(TCP)、アセチルクエン酸トリブチル(ATBC)、エポキシ化大豆油(ESBO)、トリメリット酸トリオクチル(TOTM)、ポリエステル系、塩素化パラフィン等が例示される。
以上、本発明に係る面状照明装置について詳細に説明したが、本発明は、以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよい。
また、例えば、光源のLEDチップとして、青色LEDの発光面にYAG蛍光物質を塗布した構成としたが、これに限定されず、赤色LEDや緑色LED等の他の単色LEDの発光面に蛍光物質を配置した構成のLEDチップを用いてもよい。
また、光源として、赤色LED、緑色LED、青色LEDの3種類のLEDを組み合わせた構成のLEDユニットを用いることもできる。この場合は、3種類のLEDから射出された光を混色することで白色光とすることができる。
さらにLEDの代わりに半導体レーザー(LD)を用いることもできる。
また、光源として、赤色LED、緑色LED、青色LEDの3種類のLEDを組み合わせた構成のLEDユニットを用いることもできる。この場合は、3種類のLEDから射出された光を混色することで白色光とすることができる。
さらにLEDの代わりに半導体レーザー(LD)を用いることもできる。
また、導光板30と光源(光源28および/または副光源29)との間に導光板30に近い屈折率の材料で形成された混同部を配置してもよい。また、導光板の光入射面および/または側面の一部を他の部分よりも屈折率の小さい材料で形成してもよい。
光源から射出された光が入射する部分を他の部分よりも屈折率を小さくすることで、光源から射出された光をより効率よく入射させることができ、光利用効率をより高くすることができる。
光源から射出された光が入射する部分を他の部分よりも屈折率を小さくすることで、光源から射出された光をより効率よく入射させることができ、光利用効率をより高くすることができる。
また、例えば、導光板の側面同士が向い合う位置で導光板を複数並列に配置し、複数の導光板により1つの光射出面を形成してもよい。この場合は、両端の導光板の他の導光板と隣接していない側の側面のみに副光源を配置する構成としてもよい。
また、光射出面から中高な輝度分布の光を射出することができるため、導光板は、上述した各種範囲を満たすことが好ましいが、以下のような範囲の導光板を用いることも好ましい。
導光板は、導光板30に含まれる散乱粒子の散乱断面積をΦ、光の入射する方向において導光板の光入射面から光射出面に直交する方向の厚みが最大となる位置までの長さ、本実施形態では、導光板の光の入射する方向(導光板30の第1光入射面30dに垂直な方向、以下「光軸方向」ともいう。)の半分の長さをLG、導光板30に含まれる散乱粒子の密度(単位体積あたりの粒子数)をNp、補正係数をKCとした場合に、Φ・Np・LG・KCの値が1.1以上であり、かつ8.2以下であり、さらに、補正係数KCの値が0.005以上0.1以下であるという関係を満たしている。導光板30は、このような関係を満たす散乱粒子を含んでいるので、均一で輝度むらが少ない照明光を光出射面から出射することができる。
一般的に、平行光束を等方媒質に入射させた場合の透過率Tは、Lambert−Beer則により下記式(1)で表される。
T=I/I0=exp(−ρ・x)・・・(1)
ここで、xは距離、I0は入射光強度、Iは出射光強度、ρは減衰定数である。
T=I/I0=exp(−ρ・x)・・・(1)
ここで、xは距離、I0は入射光強度、Iは出射光強度、ρは減衰定数である。
上記減衰定数ρは、粒子の散乱断面積Φと媒質に含まれる単位体積当たりの粒子数Npとを用いて下記式(2)で表される。
ρ=Φ・Np・・・(2)
したがって、導光板の光軸方向の半分の長さをLGとすると、光の取り出し効率Eoutは、下記式(3)で与えられる。ここで、導光板の光軸方向の半分の長さLGは、導光板30の光入射面に垂直な方向における導光板30の一方の光入射面から導光板30の中心までの長さとなる。
また、光の取り出し効率とは、入射光に対する、導光板の光入射面から光軸方向に長さLG離間した位置に到達する光の割合であり、例えば、図2に示す導光板30の場合は、端面に入射する光に対する導光板の中心(導光板の光軸方向の半分の長さとなる位置)に到達する光の割合である。
Eout∝exp(−Φ・Np・LG)・・・(3)
ρ=Φ・Np・・・(2)
したがって、導光板の光軸方向の半分の長さをLGとすると、光の取り出し効率Eoutは、下記式(3)で与えられる。ここで、導光板の光軸方向の半分の長さLGは、導光板30の光入射面に垂直な方向における導光板30の一方の光入射面から導光板30の中心までの長さとなる。
また、光の取り出し効率とは、入射光に対する、導光板の光入射面から光軸方向に長さLG離間した位置に到達する光の割合であり、例えば、図2に示す導光板30の場合は、端面に入射する光に対する導光板の中心(導光板の光軸方向の半分の長さとなる位置)に到達する光の割合である。
Eout∝exp(−Φ・Np・LG)・・・(3)
ここで式(3)は有限の大きさの空間におけるものであり、式(1)との関係を補正するための補正係数KCを導入する。補正係数KCは、有限の空間の光学媒質中で光が伝搬する場合に経験的に求められる無次元の補正係数である。そうすると、光の取り出し効率Eoutは、下記式(4)で表される。
Eout=exp(−Φ・Np・LG・KC)・・・(4)
Eout=exp(−Φ・Np・LG・KC)・・・(4)
式(4)に従えば、Φ・Np・LG・KCの値が3.5のときに、光の取り出し効率Eoutが3%であり、Φ・Np・LG・KCの値が4・7のときに、光の取り出し効率Eoutが1%である。
この結果より、Φ・Np・LG・KCの値が大きくなると、光の取り出し効率Eoutが低くなることが分かる。光は導光板の光軸方向へ進むにつれて散乱するため、光の取り出し効率Eoutが低くなると考えられる。
この結果より、Φ・Np・LG・KCの値が大きくなると、光の取り出し効率Eoutが低くなることが分かる。光は導光板の光軸方向へ進むにつれて散乱するため、光の取り出し効率Eoutが低くなると考えられる。
したがって、Φ・Np・LG・KCの値は大きいほど導光板として好ましい性質であることが分かる。つまり、Φ・Np・LG・KCの値を大きくすることで、光の入射面と対向する面から射出される光を少なくし、光射出面から射出される光を多くすることができる。すなわち、Φ・Np・LG・KCの値を大きくすることで、入射面に入射する光に対する光射出面から射出される光の割合(以下「光利用効率」ともいう。)を高くすることができる。具体的には、Φ・Np・LG・KCの値を1.1以上とすることで、光利用効率を50%以上にすることができる。
ここで、Φ・Np・LG・KCの値は大きくすると、導光板30の光射出面30aから出射する光の照度むらが顕著になるが、Φ・Np・LG・KCの値を8.2以下とすることで、照度むらを一定以下(許容範囲内)に抑えることができる。なお、照度と輝度は略同様に扱うことができる。従って、本発明においては、輝度と照度とは、同様の傾向があると推測される。
以上より、本発明の面状照明装置に用いる導光板のΦ・Np・LG・KCの値は、1.1以上かつ8.2以下であるという関係を満たすことが好ましく、2.0以上かつ7.0以下であることがより好ましい。また、Φ・Np・LG・KCの値は、3.0以上であればさらに好ましく、4.7以上であれば最も好ましい。
また、補正係数KCは、0.005以上0.1以下であることが好ましい。
ここで、Φ・Np・LG・KCの値は大きくすると、導光板30の光射出面30aから出射する光の照度むらが顕著になるが、Φ・Np・LG・KCの値を8.2以下とすることで、照度むらを一定以下(許容範囲内)に抑えることができる。なお、照度と輝度は略同様に扱うことができる。従って、本発明においては、輝度と照度とは、同様の傾向があると推測される。
以上より、本発明の面状照明装置に用いる導光板のΦ・Np・LG・KCの値は、1.1以上かつ8.2以下であるという関係を満たすことが好ましく、2.0以上かつ7.0以下であることがより好ましい。また、Φ・Np・LG・KCの値は、3.0以上であればさらに好ましく、4.7以上であれば最も好ましい。
また、補正係数KCは、0.005以上0.1以下であることが好ましい。
以下、具体例とともに、導光板についてより詳細に説明する。
まず、散乱断面積Φ、粒子密度Np、導光板の光軸方向の半分の長さLG、補正係数KCを種々の値とし、Φ・Np・LG・KCの値が異なる各導光板について、計算機シミュレーションにより光利用効率を求め、さらに照度むらの評価を行った。ここで、照度むら[%]は、導光板の光射出面から射出される光の最大照度をIMaxとし、最小照度をIMinとし、平均照度をIAveとしたときの[(IMax−IMin)/IAve]×100とした。
測定した結果を下記表2に示す。また、表2の判定は、光利用効率が50%以上かつ照度むらが150%以下の場合を○、光利用効率が50%より小さいまたは照度むらが150%より大きいの場合を×として示す。
また、図15に、Φ・Np・LG・KCの値と光利用効率(光入射面に入射する光に対して光射出面から射出される光の割合)との関係を測定した結果を示す。
まず、散乱断面積Φ、粒子密度Np、導光板の光軸方向の半分の長さLG、補正係数KCを種々の値とし、Φ・Np・LG・KCの値が異なる各導光板について、計算機シミュレーションにより光利用効率を求め、さらに照度むらの評価を行った。ここで、照度むら[%]は、導光板の光射出面から射出される光の最大照度をIMaxとし、最小照度をIMinとし、平均照度をIAveとしたときの[(IMax−IMin)/IAve]×100とした。
測定した結果を下記表2に示す。また、表2の判定は、光利用効率が50%以上かつ照度むらが150%以下の場合を○、光利用効率が50%より小さいまたは照度むらが150%より大きいの場合を×として示す。
また、図15に、Φ・Np・LG・KCの値と光利用効率(光入射面に入射する光に対して光射出面から射出される光の割合)との関係を測定した結果を示す。
表2及び図15に示すように、Φ・Np・LG・KCを1.1以上とすることで、光利用効率を大きくすること、具体的には光利用効率を50%以上とすることができ、8.2以下とすることで、照度ムラを150%以下にすることができることがわかる。
また、Kcを0.005以上とすることで、光利用効率を高くすることができ、0.1以下とすることで、導光板からの射出される光の照度むらを小さくすることができることがわかる。
また、Kcを0.005以上とすることで、光利用効率を高くすることができ、0.1以下とすることで、導光板からの射出される光の照度むらを小さくすることができることがわかる。
次に、導光板に混錬又は分散させる微粒子の粒子密度Npが種々の値の導光板を作成し、それぞれの導光板の光射出面の各位置から射出される光の照度分布を測定した。ここで本実施形態では、粒子密度Npを除いて他の条件、具体的には、散乱断面積Φ、導光板の光軸方向の半分の長さLG、補正係数KC、導光板の形状等は、同じ値とした。従って、本実施形態では、Φ・Np・LG・KCは、粒子密度Npに比例して変化する。
このようにして種々の粒子密度の導光板について、それぞれ光射出面から射出される光の照度分布を測定した結果を図16に示す。図16は、縦軸を照度[lx]とし、横軸を導光板の一方の光入射面からの距離(導光長)[mm]とした。
このようにして種々の粒子密度の導光板について、それぞれ光射出面から射出される光の照度分布を測定した結果を図16に示す。図16は、縦軸を照度[lx]とし、横軸を導光板の一方の光入射面からの距離(導光長)[mm]とした。
さらに、測定した照度分布の導光板の側壁から射出される光の最大照度をIMaxとし、最小照度をIMinとし、平均照度をIAveとしたときの照度むら[(IMax−IMin)/IAve]×100[%]を算出した。
図17に、算出した照度むらと粒子密度との関係を示す。図17では、縦軸を照度むら[%]とし、横軸を粒子密度[個/m3]とした。また、図17には、横軸を同様に粒子密度とし、縦軸を光利用効率[%]とした、光利用効率と粒子密度との関係も併せて示す。
図17に、算出した照度むらと粒子密度との関係を示す。図17では、縦軸を照度むら[%]とし、横軸を粒子密度[個/m3]とした。また、図17には、横軸を同様に粒子密度とし、縦軸を光利用効率[%]とした、光利用効率と粒子密度との関係も併せて示す。
図16、図17に示すように、粒子密度を高くする、つまりΦ・Np・LG・KCを大きくすると、光利用効率は高くなるが、照度むらも大きくなる。また、粒子密度を低くする、つまり、Φ・Np・LG・KCを小さくすると、光利用効率は低くなるが、照度むらを小さくなることがわかる。
ここで、Φ・Np・LG・KCを1.1以上8.2以下とすることで、光利用効率を50%以上とし、かつ、照度むらを150%以下とすることができる。照度むらを150%以下とすることで、照度むらを目立たなくすることができる。
つまり、Φ・Np・LG・KCを1.1以上8.2以下とすることで、光利用効率を一定以上とし、かつ照度むらも低減することができることがわかる。
ここで、Φ・Np・LG・KCを1.1以上8.2以下とすることで、光利用効率を50%以上とし、かつ、照度むらを150%以下とすることができる。照度むらを150%以下とすることで、照度むらを目立たなくすることができる。
つまり、Φ・Np・LG・KCを1.1以上8.2以下とすることで、光利用効率を一定以上とし、かつ照度むらも低減することができることがわかる。
以下、図2に示す面状照明装置の光射出面が平坦な導光板について、実施例に基づいて具体的に説明する。なお、以下の実施例では、筐体26の上部筐体42および下部筐体44に連結するための各種穴を形成していない導光板とした場合で説明するが、各種穴は導光板の一部のみに形成するものであるので、光射出面から射出される光は、基本的に同じになる。
図2(A)および(B)に示す構成の光源28および導光板30を用い、導光板30の導光長[mm]、その形状、すなわち最大厚さ[mm]、最小厚さ[mm]、テーパ、中央部半径R[mm]、導光板30に分散させる散乱微粒子の粒子径[μm]および粒子濃度[wt%]を変えて、導光板30の2つの光入射面30dおよび30eから入射される光に対する光射出面30aから射出される光の割合を示す光利用効率[%]、および光射出面30aから射出される光の輝度分布を求め、光射出面30aの周辺部、すなわち光入射面30dおよび30eの近傍から射出する光の輝度に対する光射出面30aの中央部から射出する光の輝度の割合を示す光射出面30aの輝度分布の中高度合[%]を求めた。
図2(A)および(B)に示す構成の光源28および導光板30を用い、導光板30の導光長[mm]、その形状、すなわち最大厚さ[mm]、最小厚さ[mm]、テーパ、中央部半径R[mm]、導光板30に分散させる散乱微粒子の粒子径[μm]および粒子濃度[wt%]を変えて、導光板30の2つの光入射面30dおよび30eから入射される光に対する光射出面30aから射出される光の割合を示す光利用効率[%]、および光射出面30aから射出される光の輝度分布を求め、光射出面30aの周辺部、すなわち光入射面30dおよび30eの近傍から射出する光の輝度に対する光射出面30aの中央部から射出する光の輝度の割合を示す光射出面30aの輝度分布の中高度合[%]を求めた。
(実施例1)
実施例1として、画面サイズが37インチに対応する導光板30の導光長L[mm]がL=480mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表1および表3に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表3および表4に示す。
ここで、表3は、実施例1についての本発明例11〜16を示し、表4は、実施例1についての測定例11〜15を示す。
実施例1として、画面サイズが37インチに対応する導光板30の導光長L[mm]がL=480mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表1および表3に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表3および表4に示す。
ここで、表3は、実施例1についての本発明例11〜16を示し、表4は、実施例1についての測定例11〜15を示す。
表3および表4から明らかなように、本発明例11〜16は、いずれも、粒子径[μm]および粒子濃度[wt%]が、本発明の好適な限定範囲を満足し、また、最大厚さ[mm]および最小厚さ[mm]も、本発明の好適な限定範囲を満足するので、光利用効率[%]が、いずれも61%以上と55%より高く、中高度合[%]も、19%〜23%であり、0%超、25%以下の本発明の要求する好適な限定範囲を満足する。
これに対し、測定例11は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
これに対し、測定例11は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
測定例12は、最大厚さ[mm]および最小厚さ[mm]のいずれも、本発明の好適な限定範囲の上限値の6.0mmおよび3.0mmより大きく、光が突き抜けて透過してしまうために、光利用効率が50%と限定範囲の55%以上を満たさないばかりか、重量が重くなりすぎて液晶TV用光学部材として適さない。
測定例13は、本発明の好適な限定範囲より、テーパ角が小さく0.1°未満であり、さらに、中央部半径Rが大きく、成形に適さないし、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できない。
測定例13は、本発明の好適な限定範囲より、テーパ角が小さく0.1°未満であり、さらに、中央部半径Rが大きく、成形に適さないし、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できない。
測定例14は、中央部半径Rが大きく、成形に適さないし、平板と同様であり、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を実現できない。
測定例15は、本発明の好適な限定範囲より粒子径が小さく、光利用効率は良いが、中高な輝度分布を実現できないし、測定例16は、本発明の好適な限定範囲より粒子径が大きく、中高な輝度分布を実現できるが、光利用効率が低い。
測定例15は、本発明の好適な限定範囲より粒子径が小さく、光利用効率は良いが、中高な輝度分布を実現できないし、測定例16は、本発明の好適な限定範囲より粒子径が大きく、中高な輝度分布を実現できるが、光利用効率が低い。
(実施例2)
実施例2として、画面サイズが42インチおよび46インチに対応する導光板30の導光長L[mm]がL=560mmおよび590mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表5および表6に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表5および表6に示す。
ここで、表5は、実施例2についての本発明例21〜24を示し、表6は、実施例2についての測定例21〜23を示す。
実施例2として、画面サイズが42インチおよび46インチに対応する導光板30の導光長L[mm]がL=560mmおよび590mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表5および表6に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表5および表6に示す。
ここで、表5は、実施例2についての本発明例21〜24を示し、表6は、実施例2についての測定例21〜23を示す。
表5および表6から明らかなように、実施例2の本発明例21〜24は、いずれも、粒子径[μm]および粒子濃度[wt%]が、本発明の好適な限定範囲を満足し、また、最大厚さ[mm]および最小厚さ[mm]も、本発明の好適な限定範囲を満足するので、光利用効率[%]が、いずれも59%〜61%と55%より高く、中高度合[%]も、14%〜15%であり、0%超、25%以下の本発明の要求する好適な限定範囲を満足する。
これに対し、測定例21および22は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
また、測定例23は、最大厚さ[mm]およびテーパ角のいずれも、本発明の好適な限定範囲の上限値の6.0mmおよび0.8°より大きく、テーパが大きすぎて、最大厚さが必要以上に大きくなり、必要以上に中高な分布になりすぎてしまうばかりか、重量が重くなりすぎて液晶TV用光学部材として適さない。
これに対し、測定例21および22は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
また、測定例23は、最大厚さ[mm]およびテーパ角のいずれも、本発明の好適な限定範囲の上限値の6.0mmおよび0.8°より大きく、テーパが大きすぎて、最大厚さが必要以上に大きくなり、必要以上に中高な分布になりすぎてしまうばかりか、重量が重くなりすぎて液晶TV用光学部材として適さない。
(実施例3)
実施例3として、画面サイズが52インチおよび57インチに対応する導光板30の導光長L[mm]がL=660mmおよび730mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表7および表8に示すように種々変えたときの、テーパ、中央部(湾曲部半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表7および表8に示す。
ここで、表7は、実施例3についての本発明例31〜32を示し、表8は、実施例3についての測定例31〜35を示す。
実施例3として、画面サイズが52インチおよび57インチに対応する導光板30の導光長L[mm]がL=660mmおよび730mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表7および表8に示すように種々変えたときの、テーパ、中央部(湾曲部半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表7および表8に示す。
ここで、表7は、実施例3についての本発明例31〜32を示し、表8は、実施例3についての測定例31〜35を示す。
表7および表8から明らかなように、実施例3の本発明例31〜32は、いずれも、粒子径[μm]および粒子濃度[wt%]が、本発明の好適な限定範囲を満足し、また、最大厚さ[mm]および最小厚さ[mm]も、本発明の好適な限定範囲を満足するので、光利用効率[%]が、いずれも60%〜61%と55%より高く、中高度合[%]も、14%〜14.2%であり、0%超、25%以下の本発明の要求する好適な限定範囲を満足する。
これに対し、測定例31は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
これに対し、測定例31は、本発明の好適な限定範囲より、粒子濃度が高いため、平板と同様の現象となるため、中高な輝度分布を実現できない。
また、測定例32は、本発明の好適な限定範囲より、粒子濃度が低いため、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさない。
また、測定例33は、テーパ角が本発明の好適な限定範囲の上限値の0.8°より大きく、テーパが大きすぎて、必要以上に中高な分布になりすぎてしまう。
また、測定例34および35は、テーパ角が本発明の好適な限定範囲の上限値の0.1°より小さく、テーパが小さすぎて、中央部半径Rが大きすぎて成形に適さない。測定例34は、光利用効率が55%以上を達成する粒子濃度では、中高分布を実現できない。また、測定例35は、平板と同じとなり、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさない。
また、測定例33は、テーパ角が本発明の好適な限定範囲の上限値の0.8°より大きく、テーパが大きすぎて、必要以上に中高な分布になりすぎてしまう。
また、測定例34および35は、テーパ角が本発明の好適な限定範囲の上限値の0.1°より小さく、テーパが小さすぎて、中央部半径Rが大きすぎて成形に適さない。測定例34は、光利用効率が55%以上を達成する粒子濃度では、中高分布を実現できない。また、測定例35は、平板と同じとなり、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさない。
(実施例4)
実施例4として、画面サイズが52インチおよび57インチに対応する導光板30の導光長L[mm]がL=660mmおよび730mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表9および表10に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表9および表10に示す。
ここで、表9は、実施例4についての本発明例41〜44を示し、表10は、実施例4についての測定例41〜45を示す。
実施例4として、画面サイズが52インチおよび57インチに対応する導光板30の導光長L[mm]がL=660mmおよび730mmの場合の最大厚さ[mm]、最小厚さ[mm]、粒子径[μm]および粒子濃度[wt%]を表9および表10に示すように種々変えたときの、テーパ、中央部半径(湾曲部の曲率半径)R[mm]、光利用効率[%]、中高度合[%]を求めた。その結果を表9および表10に示す。
ここで、表9は、実施例4についての本発明例41〜44を示し、表10は、実施例4についての測定例41〜45を示す。
表9および表10から明らかなように、実施例4の本発明例41〜44は、いずれも、粒子径[μm]および粒子濃度[wt%]が、本発明の好適な限定範囲を満足し、また、最大厚さ[mm]および最小厚さ[mm]も、本発明の好適な限定範囲を満足するので、光利用効率[%]が、いずれも57%〜68%と55%より高く、中高度合[%]も、11%〜24%であり、0%超、25%以下の本発明の要求する好適な限定範囲を満足する。
これに対し、測定例41は、本発明の好適な限定範囲より、粒子濃度が低いため、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさない。
これに対し、測定例41は、本発明の好適な限定範囲より、粒子濃度が低いため、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさない。
また、測定例42は、最大厚さ[mm]および最小厚さ[mm]のいずれも、本発明の好適な限定範囲の上限値の6.0mmおよび3.0mmより大きく、光が突き抜けて透過してしまうために、光利用効率が50%と限定範囲の55%以上を満たさないばかりか、重量が重くなりすぎて液晶TV用光学部材として適さない。
また、測定例43は、最大厚さ[mm]が、本発明の好適な限定範囲の下限値の1.0mmより小さく、中央部半径Rが大きすぎて、本発明の好適な限定範囲を超え、成形に適さないし、光利用効率が55%以上を達成する粒子濃度では、中高分布を実現できない。
測定例44は、本発明の好適な限定範囲より粒子径が小さく、光利用効率は良いが、中高な輝度分布を実現できないし、測定例45は、本発明の好適な限定範囲より粒子径が大きく、中高な輝度分布を実現できるが、光利用効率が低い。
また、測定例43は、最大厚さ[mm]が、本発明の好適な限定範囲の下限値の1.0mmより小さく、中央部半径Rが大きすぎて、本発明の好適な限定範囲を超え、成形に適さないし、光利用効率が55%以上を達成する粒子濃度では、中高分布を実現できない。
測定例44は、本発明の好適な限定範囲より粒子径が小さく、光利用効率は良いが、中高な輝度分布を実現できないし、測定例45は、本発明の好適な限定範囲より粒子径が大きく、中高な輝度分布を実現できるが、光利用効率が低い。
以上の結果から、本発明例は、いずれもの実施例においても、導光板のそれぞれの導光長の範囲に応じて、その形状が適切であり、その最大厚さ[mm]、最小厚さ[mm]、テーパ、中央部半径R[mm]および分散させる散乱粒子の粒子径[μm]および粒子濃度[wt%]が、本発明の好適な限定範囲を満たし、光利用効率[%]が55%以上、中高度合[%]が0%超、25%以下であり、優れた特性を持つことが分かる。
一方、測定例は、いずれもの実施例の導光長の範囲においても、上記要件のいずれかが本発明の好適な限定範囲を外れるため、光利用効率[%]が55%以上を満たさないか、中高度合[%]が0%超、25%以下を満たさず、優れた特性を発揮することができない。
以上から、本発明の効果は明らかである。
一方、測定例は、いずれもの実施例の導光長の範囲においても、上記要件のいずれかが本発明の好適な限定範囲を外れるため、光利用効率[%]が55%以上を満たさないか、中高度合[%]が0%超、25%以下を満たさず、優れた特性を発揮することができない。
以上から、本発明の効果は明らかである。
10 液晶表示装置
12 液晶表示パネル
14 駆動ユニット
20 バックライトユニット
24 照明装置本体
24a、30a 光射出面
26 筐体
28 光源
29 副光源
30 導光板
30b 第1傾斜面
30c 第2傾斜面
30d 第1光入射面
30e 第2光入射面
30f 第1側面(第3光入射面)
30g 第2側面(第4光入射面)
32 光学部材ユニット
32a 拡散シート
32b プリズムシート
32c 拡散シート
34 反射板
36 上部誘導反射板
38 下部誘導反射板
42 下部筐体
44 上部筐体
46 補強部材
49 電源収納部
50 LEDチップ
51 発光部
52 光源支持部
54 アレイ基板
56 フィン
58 発光面
60 間隔維持部材
α 2等分線
c 光源と導光板の光軸距離
12 液晶表示パネル
14 駆動ユニット
20 バックライトユニット
24 照明装置本体
24a、30a 光射出面
26 筐体
28 光源
29 副光源
30 導光板
30b 第1傾斜面
30c 第2傾斜面
30d 第1光入射面
30e 第2光入射面
30f 第1側面(第3光入射面)
30g 第2側面(第4光入射面)
32 光学部材ユニット
32a 拡散シート
32b プリズムシート
32c 拡散シート
34 反射板
36 上部誘導反射板
38 下部誘導反射板
42 下部筐体
44 上部筐体
46 補強部材
49 電源収納部
50 LEDチップ
51 発光部
52 光源支持部
54 アレイ基板
56 フィン
58 発光面
60 間隔維持部材
α 2等分線
c 光源と導光板の光軸距離
Claims (13)
- 矩形状の光射出面、前記光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面、これらの2つの光入射面から前記光射出面の中央に向かうに従ってそれぞれ前記光射出面からの距離が遠くなる対称な2つの傾斜面、これらの2つの傾斜面を接合する湾曲部を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、
それぞれ、前記光入射面の長手方向と略同一の長さの板状の支持体と、前記支持体の前記光入射面に対向する面に列状に配置されている複数の発光素子とで構成され、前記導光板の2つの前記光入射面に対向してそれぞれ配置された2つの光源と、
2つの前記光源の前記支持体の前記光入射面に対応する面にそれぞれ固定され、前記発光素子よりも前記光入射面側に突出して前記光入射面と当接し、前記発光素子の発光面と前記光入射面との距離を一定とする2つの間隔維持部材とを有し、
前記間隔維持部材は、耐熱性の高い、衝撃吸収性材料で形成されていることを特徴とする面状照明装置。 - 前記間隔維持部材は、前記発光素子の発光面と前記光入射面との距離を0.1mm以上0.5mm以下とする請求項1に記載の面状照明装置。
- 前記間隔維持部材は、前記支持体の前記発光素子の発光面以外の領域に固定されている請求項1または2に記載の面状照明装置。
- 前記間隔維持部材は、前記発光素子の前記発光面と前記光入射面との間に配置されたレンズ形状の透明部材であり、前記発光面から射出された光を集光して前記光入射面に入射する請求項1または2に記載の面状照明装置。
- 前記間隔維持部材は、シリコンゴムで形成されている請求項1〜4のいずれかに記載の面状照明装置。
- 前記間隔維持部材は、前記支持体と化学的または機械的に結合されている請求項1〜5のいずれかに記載の面状照明装置。
- 前記発光素子は、発光ダイオードである請求項1〜6のいずれかに記載の面状照明装置。
- 前記導光板は、
前記2つの光入射面間の導光長が、480mm以上、500mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.02wt%以上、0.22wt%以下であり、かつ、
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項1〜7のいずれかに記載の面状照明装置。 - 前記導光板は、
前記2つの光入射面間の導光長が、515mm以上、620mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項1〜7のいずれかに記載の面状照明装置。 - 前記導光板は、
前記2つの光入射面間の導光長が、625mm以上、770mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.01wt%以上、0.12wt%以下であり、かつ
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.01)、(4.0,0.05)、(7.0,0.01)、(7.0,0.06)、(12.0,0.02)および(12.0,0.12)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項1〜7のいずれかに記載の面状照明装置。 - 前記導光板は、
その内部に伝搬する光を散乱する散乱粒子を含む導光板であって、
前記2つの光入射面間の導光長が、785mm以上、830mm以下であり、
前記散乱粒子の粒径が、4.0μm以上、12.0μm以下、前記散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ
前記散乱粒子の粒径および濃度が、前記散乱粒子の粒径(μm)を横軸とし、前記散乱粒子の粒子濃度(wt%)を縦軸とするグラフにおいて、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にあり、
前記2つの光入射面から入射した光が前記光射出面から射出された割合を示す光の利用効率が55%以上であり、
前記光射出面の前記光入射面近傍から射出する光の輝度に対する前記光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%超、25%以下である請求項1〜7のいずれかに記載の面状照明装置。 - 前記導光板は、
その厚みが最も薄い前記光入射面の厚みが、0.5mm以上3.0mm以下であり、
前記厚みが最も厚い前記湾曲部の中央の厚みが、1.0mm以上6.0mm以下であり、
前記湾曲部の曲率半径が、6,000mm以上45,000mm以下であり、
前記光射出面に平行な線に対する前記傾斜面のテーパが、0.1°以上0.8°以下である請求項8〜11のいずれかに記載の面状照明装置。 - 前記導光板は、前記散乱粒子の散乱断面積をΦ、前記散乱粒子の密度をNp、補正係数をKC、光の入射方向における前記光入射面から前記端面までの長さをLとしたときに、不等式1.1≦Φ・Np・L・KC≦8.2かつ0.005≦KC≦0.1を満足する請求項1〜7のいずれかに記載の面状照明装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007339785A JP2009163917A (ja) | 2007-12-28 | 2007-12-28 | 面状照明装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007339785A JP2009163917A (ja) | 2007-12-28 | 2007-12-28 | 面状照明装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009163917A true JP2009163917A (ja) | 2009-07-23 |
Family
ID=40966338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007339785A Withdrawn JP2009163917A (ja) | 2007-12-28 | 2007-12-28 | 面状照明装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009163917A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110016633A (ko) * | 2009-08-12 | 2011-02-18 | 엘지전자 주식회사 | Led 백라이트 유닛 |
KR20130120252A (ko) * | 2012-04-25 | 2013-11-04 | 엘지디스플레이 주식회사 | 발광다이오드 및 이를 포함한 액정표시장치 |
US9194999B2 (en) | 2013-04-11 | 2015-11-24 | Funai Electric Co., Ltd. | Display apparatus and optical axis adjustment method thereof |
-
2007
- 2007-12-28 JP JP2007339785A patent/JP2009163917A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110016633A (ko) * | 2009-08-12 | 2011-02-18 | 엘지전자 주식회사 | Led 백라이트 유닛 |
KR101588735B1 (ko) * | 2009-08-12 | 2016-01-26 | 엘지전자 주식회사 | Led 백라이트 유닛 |
KR20130120252A (ko) * | 2012-04-25 | 2013-11-04 | 엘지디스플레이 주식회사 | 발광다이오드 및 이를 포함한 액정표시장치 |
KR101998123B1 (ko) * | 2012-04-25 | 2019-10-02 | 엘지디스플레이 주식회사 | 발광다이오드 및 이를 포함한 액정표시장치 |
US9194999B2 (en) | 2013-04-11 | 2015-11-24 | Funai Electric Co., Ltd. | Display apparatus and optical axis adjustment method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5414224B2 (ja) | 面状照明装置 | |
JP4856037B2 (ja) | 面状照明装置 | |
JP5225015B2 (ja) | 導光板 | |
JP4902431B2 (ja) | 面状照明装置 | |
US8267566B2 (en) | Planar lighting device | |
JP5153152B2 (ja) | 面状照明装置 | |
JP5403938B2 (ja) | 面状照明装置 | |
JP4874875B2 (ja) | 面状照明装置 | |
JP4909866B2 (ja) | 面状照明装置 | |
JP2010257938A (ja) | 導光板 | |
JP2009277641A (ja) | 面状照明装置 | |
JP2009265634A (ja) | 液晶表示装置 | |
US20110176327A1 (en) | Planar lighting device and a method of producing the same | |
JP2010097908A (ja) | バックライトユニットおよび液晶表示装置 | |
JP2012238414A (ja) | 面状照明装置 | |
JP4820741B2 (ja) | 面状照明装置 | |
JP4906771B2 (ja) | 面状照明装置及びそれを用いる液晶表示装置 | |
JP2008166160A (ja) | 面状照明装置 | |
JP2010092685A (ja) | 導光板およびこれを備えた面状照明装置 | |
JP2010092683A (ja) | 導光板およびこれを備えた面状照明装置 | |
JP2010218841A (ja) | 導光板およびこれを用いる面状照明装置 | |
JP2009163917A (ja) | 面状照明装置 | |
JP2009087714A (ja) | 面状照明装置 | |
JP2009245905A (ja) | 導光板及び面状照明装置 | |
JP2009245732A (ja) | 導光板及びそれを用いる面状照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110301 |