Nothing Special   »   [go: up one dir, main page]

JP4985057B2 - 車両用空調装置およびその制御方法 - Google Patents

車両用空調装置およびその制御方法 Download PDF

Info

Publication number
JP4985057B2
JP4985057B2 JP2007098522A JP2007098522A JP4985057B2 JP 4985057 B2 JP4985057 B2 JP 4985057B2 JP 2007098522 A JP2007098522 A JP 2007098522A JP 2007098522 A JP2007098522 A JP 2007098522A JP 4985057 B2 JP4985057 B2 JP 4985057B2
Authority
JP
Japan
Prior art keywords
unit
predetermined
setting operation
probability
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007098522A
Other languages
English (en)
Other versions
JP2008100665A (ja
Inventor
康史 小島
弘 竹田
浩幸 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007098522A priority Critical patent/JP4985057B2/ja
Priority to US11/901,946 priority patent/US7962441B2/en
Priority to DE102007045231A priority patent/DE102007045231A1/de
Priority to CN2007101618552A priority patent/CN101158496B/zh
Publication of JP2008100665A publication Critical patent/JP2008100665A/ja
Application granted granted Critical
Publication of JP4985057B2 publication Critical patent/JP4985057B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • B60H2001/00733Computational models modifying user-set values

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両用空調装置およびその制御方法に関し、特に、搭乗者の温感又は状況に応じて自動的に空調状態を最適化する車両用空調装置およびその制御方法に関する。
一般に、車両用空調装置では、設定温度、外気温、内気温、日射量などの各種パラメータに応じて、各吹き出し口から送出される空調空気の温度、風量などを自動的に決定する。しかし、搭乗者の温感(暑がり、寒がりなど)には個人差が存在する。そのため、自動的に決定された空調空気の温度、風量などが、最適な値とならないことがある。そのような場合、搭乗者は、必要に応じて操作パネルを操作して、設定温度を高くしたり、あるいは低くしたり、あるいは、風量を増加又は減少させるように空調装置を調節する。そこで、搭乗者が操作パネルを操作して、設定温度、風量などを変更した場合、そのときの各種パラメータを用いて、空調空気の温度や風量を決定する関係式を修正する学習制御を組み込んだ空調制御装置が開発されている(特許文献1参照)。
ところで、搭乗者が空調装置の設定を変更するのは、必ずしも温感などの違いによるものではなく、特定状況下における外部環境的な要因による場合もある。例えば、搭乗者が運転を行う直前に運動を行っていた場合には、通常よりも設定温度を低くすることもある。また、いつも渋滞する地点に差し掛かった場合に、車の排ガスが車内に充満するのを防ぐために、内気循環モードに設定することもある。しかし、特許文献1に記載された空調制御装置では、特定状況下における外部環境的要因のせいで空調装置の設定を変更したのか、温感などの違いによって変更したのかを区別することができない。そのため、上記のような特定状況に合わせて空調温度などを自動的に最適化することは困難であった。
一方、走行中の自車両の位置を示すデータを学習データに加えて、温調学習とそれ以外の学習とを識別可能とした自動車用空気調和装置が開発されている(特許文献2参照)。しかし、特許文献2に記載された自動車用空気調和装置は、自車両の位置及び日時を参照して、温調学習を行うか否かを決定するのみであり、具体的な決定方法の記載はなく、上記のような特定の状況に合わせて空調温度などの最適化を行うことまでは考慮されていなかった。
特開2000−293204号公報 特開2000−62431号公報
本発明の目的は、上述した従来技術による問題点を解消することを可能とする車両用空調装置およびその制御方法を提供することにある。
本発明の他の目的は、搭乗者の温感に合わせた最適化だけでなく、特定状況下でも自動的に最適な空調設定を行うことが可能な車両用空調装置およびその制御方法を提供することにある。
本発明のさらに他の目的は、搭乗者の温感又は特定状況下に対する最適な空調設定を自動的に学習することが可能な車両用空調装置およびその制御方法を提供することにある。
本発明のさらに他の目的は、搭乗者の温感又は特定状況下に対する最適な空調設定の学習を少ないリソースを用いて行うことが可能な車両用空調装置およびその制御方法を提供することにある。
発明に係る車両用空調装置は、情報取得部(51、52、53、55、56、57、58)により取得された状態情報を、乗員が所定の設定操作を行う推薦確率を算出するための少なくとも一つの確率モデルに入力して所定の設定操作を行う推薦確率を算出し、その推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、その所定の設定操作となるように修正する制御情報修正部(64)と、修正された設定情報又は制御情報にしたがって、空調部(10)の空調制御を行う空調制御部(65)とを有することにより、搭乗者の温感に合わせた最適化だけでなく、特定状況下でも自動的に最適な空調設定を行うことができる。なお、状態情報は、車両に関する状態を表すものであり、車両内外の空調情報(具体的には、外気温、内気温及び日射量)、車両の位置情報、車両の挙動情報、時間情報又は車両の搭乗者の生体情報の少なくとも一つを含む。また、所定の設定操作とは、設定温度の変更、風量の変更、内気循環モードに設定する、デフロスタを作動あるいは停止させるといった、車両用空調装置の動作状態を変更させる操作をいう。また、設定情報とは、設定温度、風量、内外気の吸気比、各吹出口から送出される空調空気の風量比など、車両用空調装置の動作を規定する情報をいう。さらに、制御情報とは、空調空気の温度、ブロアファンの回転数、エアミックスドアの開度など、設定情報に基づいて求められ、空調部の各部の動作を制御する情報をいう。
た、制御情報修正部(64)は、推薦確率が第1の閾値以上の場合、設定情報又は制御情報を修正することが好ましい。
さらに、推薦確率が、第1の閾値未満であり、且つ第1の閾値よりも低い第2の閾値以上の場合、所定の設定操作の内容を搭乗者に報知し、且つ所定の設定操作を行うか否かを搭乗者に確認する確認操作部(59)を有し、確認操作部(59)を通じて所定の設定操作を行うことが確認された場合、制御情報修正部(64)は、設定情報又は制御情報を修正することが好ましい。
係る構成により、搭乗者が所定の設定操作を行うことがほぼ確実と考えられる場合は、自動的にその設定操作が行われる。また、その設定操作を行うことがほぼ確実とは言えないまでも、その可能性が高い場合には、搭乗者がその設定操作を行う旨を確認する操作を行うだけで、その設定操作が行われるので、簡単な操作で最適な空調設定にすることができる。
さらに、制御情報修正部(64)は、前記所定の制御情報に関連する前記確率モデルを複数有し、前記複数の確率モデルのそれぞれに基づいて算出された確率のうち、最も高い確率を前記推薦確率とすることが好ましい。
係る構成により、様々な状況に対して、それぞれ別個に確率モデルを準備できるので、それらの状況に応じて最適な空調設定を自動的に行うことができる。また、複数の確率モデルのそれぞれについて求めた確率のうち、最も高いものを使用することで、矛盾した設定操作を行うことを防止することができる。
た、本発明に係る車両用空調装置は、搭乗者の情報を取得する搭乗者情報取得部(54)と、搭乗者情報を用いて、搭乗者と予め記憶された少なくとも一人の登録済利用者とを照合する照合部(63)を有し、制御値修正部(64)は、照合部(63)が搭乗者と判定した登録済利用者と関連付けられた確率モデルに基づいて推薦確率を算出することが好ましい。
係る構成により、搭乗者毎に異なる確率モデルを使用できるので、搭乗者ごとに最適な空調設定を行うことができる。
た、本発明に係る車両用空調装置は、空調装置の空調設定を行う操作部(59)と、操作部(59)を通じて所定の設定操作が行われる度に、所定の設定操作時における状態情報を所定の設定操作に関連付けて記憶する記憶部(61)と、所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、所定の設定操作に関連付けて記憶部(61)に記憶された状態情報を用いて構築する学習部(66)とを有することが好ましい。
係る構成により、搭乗者が車両用空調装置の設定操作を行うにつれて確率モデルが新たに構築されるので、使用を続けるにつれて、より様々な状況に対応して自動的に設定操作を行うことができる。
そして請求項1に記載のように、学習部(66)は、記憶部(61)に所定の操作に関連付けて記憶された状態情報を用いてグラフ構造及びそのグラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して第1の確率モデルとすることが好ましい。
また、請求項に記載のように、学習部(66)は、所定のグラフ構造を有する標準モデルを複数有し、複数の標準モデルの各々について、上記の状態情報を用いて所定のグラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して第1の確率モデルとすることが好ましい。
さらに、請求項に記載のように、所定の判定基準は情報量基準であり、学習部(66)は、仮の確率モデルの各々について算出された情報量基準の値が最小あるいは最大となる仮の確率モデルを第1の確率モデルとすることが好ましい。
係る構成により、確率モデルの構築を行う際に、確率モデルのグラフ構造を探索する範囲を限定できるので、少ない計算リソース及び計算時間で確率モデルを構築することができる。また、情報量基準を用いて確率モデルを評価するので、過学習に陥っておらず、真に推薦確率の計算に寄与のある情報のみを入力とした確率モデルを選択することができる。
さらに、請求項に記載のように、学習部(66)は、所定の設定操作を行った操作回数が第1の所定回数以上となった場合、第1の確率モデルを構築することが好ましい。
この場合において、請求項に記載のように、学習部(66)は、所定の設定操作を行った操作回数が第2の所定回数となったとき、所定の操作に関連付けて記憶された状態情報を記憶部(61)から消去し、操作回数を初期化し、且つ、その後に所定の設定操作が第1の所定回数行われた場合、所定の設定操作を行う推薦確率を算出するための第2の確率モデルを、操作回数が第2の所定回数となった後において所定の設定操作が行われる度に所定の設定操作と関連付けて記憶部(61)に記憶された状態情報を用いて構築することが好ましい。
係る構成のように、確率モデルの構築に用いた情報を破棄してリフレッシュを行い、その後に蓄積された情報のみを用いて別の確率モデルを構築することにより、同じ設定操作に対して複数の癖を有する搭乗者にも対応でき、且つ状況毎に対応した確率モデルを構築することができる。
また、請求項10に記載のように、本発明に係る車両用空調装置は、搭乗者の情報を取得する搭乗者情報取得部(54)と、搭乗者情報を用いて、搭乗者と予め記憶された少なくとも一人の登録済利用者とを照合する照合部(63)を有し、記憶部(61)は、状態情報を照合部(63)が搭乗者と判定した登録済利用者と関連付けて記憶し、学習部(66)は、操作回数を登録済利用者ごとに計数し、且つ登録済利用者の何れかについて計数された操作回数が第1の所定回数以上となったとき、登録済利用者に関連付けられた状態情報を用いて第1の確率モデルを構築することが好ましい。
係る構成により、搭乗者毎に異なる確率モデルを構築できるので、各搭乗者の温感又は各搭乗者に固有の特定状況に対応した空調設定を行う確率モデルを構築できる。
また、請求項11の記載によれば、空調空気を車両内に供給する空調部(10)と、空調設定を行う操作部(59)と、記憶部(61)とを有する車両用空調装置の制御方法が提供される。係る制御方法は、車両に関する状態を表す状態情報を取得するステップと、乗員が所定の設定操作を行う推薦確率を算出するための少なくとも一つの確率モデルに状態情報を入力して所定の設定操作を行う推薦確率を算出するステップと、推薦確率が所定の条件を満たす場合、推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、その所定の設定操作となるように修正するステップと、修正された設定情報又は制御情報にしたがって、空調部(10)の空調制御を行うステップと、を有することを特徴とする。
さらに、この制御方法は、操作部(59)を通じて所定の設定操作が行われる度に、所定の設定操作時における状態情報を、所定の設定操作に関連付けて記憶部(61)に記憶する記憶ステップと、所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、所定の操作に関連付けて記憶部(61)に記憶された状態情報を用いて構築する第1の構築ステップと、を有することが好ましい。
さらに、この制御方法は、所定の設定操作を行った操作回数を第1の所定回数と比較する第1の比較ステップを有し、第1の構築ステップは、操作回数が第1の所定回数以上となった場合、第1の確率モデルを構築することが好ましい。
この場合において、この制御方法は、操作回数を第2の所定回数と比較する第2の比較ステップと、操作回数が第2の所定回数となったとき、所定の操作に関連付けて記憶された状態情報を前記記憶部(61)から消去し、且つ操作回数を初期化する初期化ステップと、初期化ステップ後に操作部(59)を通じて所定の設定操作が行われた場合、記憶ステップ及び第1の比較ステップを繰り返し、操作回数が第1の所定回数以上と判定された場合、所定の設定操作を行う推薦確率を算出するための第2の確率モデルを、所定の操作に関連付けて記憶部(61)に記憶された状態情報を用いて構築する第2の構築ステップと、を有することが好ましい。
さらに、他の実施形態によれば、車両用空調装置は、車両外に設置されたサーバ(7)と、空調装置の空調設定を行う操作部(59)と、車両に搭載され、サーバと無線通信を行うための第1の通信部であって、所定期間が経過する度に、又は操作部(59)を通じて所定の設定操作が行われる度に若しくはその所定の設定操作が所定回数行われる度に、その所定の設定操作時における状態情報を所定の設定操作を表す設定操作情報とともにサーバ(7)へ送信する第1の通信部(67)とを有することが好ましい。そしてサーバ(7)は、受信した設定操作情報に基づいて、所定の設定操作時における状態情報を所定の設定操作に関連付けて記憶する記憶部(72)と、所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、所定の設定操作に関連付けて記憶部(72)に記憶された状態情報を用いて構築する学習部(73)と、車両と無線通信を行うための第2の通信部であって、制御情報修正部(64)が第1の確率モデルを使用できるように、構築された第1の確率モデルを車両に送信する第2の通信部(71)とを有する。
係る構成を有することにより、本発明による車両用空調装置は、演算量の多い、確率モデル構築のための学習処理を車両外に設置したサーバで実行できるので、車載のプロセッサに大きな演算負荷を掛けることなく、確率モデルを構築することができる。
そして請求項12に記載されたように、学習部(73)は、所定の操作に関連付けて記憶部(72)に記憶された状態情報を用いてグラフ構造及びそのグラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して第1の確率モデルとすることが好ましい。
あるいは、請求項13に記載のように、学習部(73)は、所定のグラフ構造を有する標準モデルを複数有し、複数の標準モデルの各々について、所定の操作に関連付けて記憶部(72)に記憶された状態情報を用いて所定のグラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して第1の確率モデルとすることが好ましい。
この場合において、請求項14に記載のように、所定の判定基準は情報量基準であり、学習部(73)は、仮の確率モデルの各々について算出された情報量基準の値が最小あるいは最大となる仮の確率モデルを第1の確率モデルとすることが好ましい。
さらに、請求項15に記載のように、学習部(73)は、所定の設定操作を行った操作回数が第1の所定回数以上となった場合、第1の確率モデルを構築することが好ましい。
この場合において、請求項16に記載のように、学習部(73)は、所定の設定操作を行った操作回数が第2の所定回数となったとき、所定の操作に関連付けて記憶された状態情報を記憶部(72)から消去し、操作回数を初期化し、且つ、その後に所定の設定操作が第1の所定回数行われた場合、所定の設定操作を行う推薦確率を算出するための第2の確率モデルを、操作回数が第2の所定回数となった後において所定の設定操作が行われる度にその所定の設定操作と関連付けて記憶部(72)に記憶された状態情報を用いて構築することが好ましい。
さらに、請求項17に記載のように、車両用空調装置は、搭乗者の情報を取得する搭乗者情報取得部(54)と、搭乗者情報を用いて、搭乗者と予め記憶された少なくとも一人の登録済利用者とを照合する照合部(63)を有することが好ましい。この場合において、第1の通信部(67)は、照合部(63)により搭乗者と判定された登録済み利用者の識別情報を、状態情報及び設定操作情報とともにサーバ(7)へ送信し、記憶部(72)は、識別情報に基づいて、状態情報を搭乗者と判定された登録済利用者と関連付けて記憶し、学習部(73)は、操作回数を登録済利用者ごとに計数し、且つ登録済利用者の何れかについて計数された操作回数が第1の所定回数以上となったとき、登録済利用者に関連付けられた状態情報を用いて第1の確率モデルを構築する。
なお、上記各手段に付した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
以下、本発明の第1の実施形態に係る車両用空調装置について説明する。
本発明の第1の実施形態に係る車両用空調装置は、搭乗者の温感又は特定状況に合わせて学習された少なくとも一つの確率モデルに基づいて、搭乗者の空調設定操作を推定し、自動的に空調設定を行うものである。特に、学習が進むにつれて、以前に作成した確率モデルとは別個の確率モデルを追加生成することにより、各種の状況に対応した確率モデルが生成されるので、搭乗者の温感に合わせるだけでなく、特定の状況に合わせて自動的に最適な空調設定を行うことができる。
図1は、本発明の第1の実施形態に係る車両用空調装置1の全体構成を示す構成図である。図1に示すように、車両用空調装置1は、主に機械的構成からなる空調部10と、この空調部10を制御する制御部60とを有する。
まず、空調部10の冷凍サイクルRの構成を説明する。車両用空調装置1の冷凍サイクルRは閉回路で構成され、その閉回路はコンプレッサ11より時計回りにコンデンサ15、レシーバ16、膨張弁17、およびエバポレータ18を含む。そして、コンプレッサ11は、冷媒を圧縮して高圧ガスにする。また、コンプレッサ11は、ベルト12を介して車載エンジン13より伝わる動力断続用の電磁クラッチ14を備える。コンデンサ15は、コンプレッサ11より送られてきた高温、高圧の冷媒ガスを冷却し、液化させる。レシーバ16は、液化された冷媒ガスを貯蔵する。また、冷却性能の低下を防ぐため、液化された冷媒に含まれるガス状の気泡を取り除き、完全に液化された冷媒のみを膨張弁17へ送る。膨張弁17は、液化された冷媒を断熱膨張させて低温、低圧化し、エバポレータ18へ送る。エバポレータ18は、低温、低圧化された冷媒と、エバポレータ18に送り込まれた空気との間で熱交換を行ってその空気を冷却する。
次に、空調部10の空調ケース20内の構成について説明する。エバポレータ18の上流側には、ブロワファン21が配置されている。ブロワファン21は遠心式送風ファンで構成され、駆動用モータ22により回転駆動される。ブロワファン21の吸入側には、内外気切替箱23が配置される。内外気切替箱23内には、内外気サーボモータ24で駆動される内外気切替ドア25が配置される。そして内外気切替ドア25は、内気吸込口26と外気吸込口27とを切り替えて開閉する。そして、内気吸込口26又は外気吸込口27から取り込まれた空気は、内外気切替箱23を経由して、ブロアファン21によってエバポレータ18へ送られる。なお、ブロアファン21の回転速度を調整することにより、車両用空調装置1から送出される風量を調節することができる。
エバポレータ18の下流側には、エバポレータ18側から順に、エアミックスドア28、およびヒータコア29が配置される。ヒータコア29には、ヒータコア29を通る空気を暖めるために、車載エンジン13の冷却に使用された冷却水が循環供給される。また、空調ケース20には、ヒータコア29をバイパスするバイパス通路30が形成されている。エアミックスドア28は、温調サーボモータ31により回動され、各吹き出し口から送出される空気を所定の温度にするために、ヒータコア29を通過する通路32からの温風とバイパス通路30を通過する冷風との風量割合を調整する。
さらに、バイパス通路30を経由した冷風と、ヒータコア29を通過する通路32からの温風とが混合される空気混合部33の下流側には、空調空気を車室内に送出するフット吹き出し口34、フェイス吹き出し口35、デフロスタ吹き出し口36が設けられている。そして、各吹き出し口には、各吹き出し口を開閉するためのフットドア37、フェイスドア38及びデフロスタドア39がそれぞれ設けられている。なお、フット吹き出し口34は、運転席または助手席の足元へ空調空気を送出し、フェイス吹き出し口35は、フロントパネルから運転席または助手席に向けて空調空気を送出する。また、デフロスタ吹き出し口36は、フロントガラスへ向けて空調空気を送出する。各ドア37、38及び39は、モードサーボモータ40により駆動される。
次に、車両用空調装置1が有する情報取得部として機能する各種センサについて説明する。内気温センサ51は、車室内の温度Trを測定するために、ハンドル近傍のインストルメントパネルなどにアスピレータとともに設置される。また、外気温センサ52は、車室外の温度Tamを測定するために、コンデンサ15の外側前面の車両前方ラジエターグリルに設置される。さらに、車室内に照りつける日射光の強さ(日射量)Sを測定するために、日射センサ53が車室内のフロントガラス近傍に取り付けられる。なお、日射センサ53はフォトダイオードなどで構成される。
さらに、エバポレータ18から吹き出される空気の温度(エバポレータ出口温度)を測定するためのエバポレータ出口温度センサ、ヒータコア29へのエンジン冷却水の冷却水の水温を測定するためのヒータ入口水温センサ、及び冷凍サイクルR内を循環する冷媒の圧力を測定するための圧力センサなどが設けられる。その他、車室内には、搭乗者情報取得部としても機能する、運転席及びその他の席に搭乗している乗員の顔を撮影するための1台以上の車内カメラ54が設置される。また、車外の様子を撮影する車外カメラ55も設置される。
車両用空調装置1は、上記の各センサからのセンシング情報の他、ナビゲーションシステム56から、車両の現在位置、進行方向、周辺地域情報、Gbook情報などの位置情報を取得する。また、車両操作機器57から、アクセル開度、ハンドル、ブレーキ、パワーウインドウ開度、ワイパー、ターンレバー若しくはカーオーディオのON/OFFなどの各種操作情報及び車速、車両挙動情報などを取得する。さらに、車載時計58より、曜日、現在時刻などの時間情報を取得する。また、車両用空調装置1は、運転席などに心電検出センサ、心拍・呼吸センサ、体温センサ若しくは皮膚温センサなどを設置して、搭乗者の生体情報を取得するようにしてもよい。
このように、ナビゲーションシステム56、車両操作機器57及び車載時計58もまた、情報取得部として機能する。
図2は、車両用空調装置1の制御部60の機能ブロック図である。
制御部60は、図示していないCPU,ROM,RAM等からなる1個もしくは複数個の図示してないマイクロコンピュータ、その周辺回路、電気的に書き換え可能な不揮発性メモリ等からなる記憶部61、及び各種センサ、ナビゲーションシステム56又は車両操作機器57などとコントロールエリアネットワーク(CAN)のような車載通信規格に従って通信を行う通信部62から構成される。
さらに、制御部60は、このマイクロコンピュータ及びマイクロコンピュータ上で実行されるコンピュータプログラムによって実現される機能モジュールとして、照合部63、制御情報修正部64、空調制御部65及び学習部66を有する。
制御部60は、上記のセンシング情報、位置情報、車両挙動情報などの状態情報を、各種のセンサ、ナビゲータシステム、車両操作機器などから取得すると、それらをRAMに一時的に記憶する。同様に、操作部であるA/C操作パネル59から取得された操作信号もRAMに一時的に記憶する。そして制御部60は、それら状態情報及び操作信号に基づいて空調部10を制御する。例えば、制御部60は、電磁クラッチ14を制御してコンプレッサ11のON/OFF切り換えを行ったり、ブロアファン21の回転数調整のために駆動用モータ22を制御する。また制御部60は、内外気サーボモータ24、温調サーボモータ31及びモードサーボモータ40を制御して各ドアの開度を調節する。これらの制御を行うことによって、車室内の温度を、搭乗者の設定した温度に近づけるように、各吹き出し口から送出される空調空気の風量比、全体の風量及び温度を調節する。ここで制御部60は、空調空気の温度や風量などを決定するために、利用可能な確率モデルに、所定の状態情報を入力し、搭乗者が所定の操作(例えば、設定温度を下げる、風量を最大にする、内気循環モードに設定する等)を行う確率を推定する。その確率が所定閾値以上の場合には、自動的にその所定の操作を行う。
さらに制御部60は、搭乗者が車両用空調装置1を操作した場合には、その操作内容及びその操作時の各種情報を蓄積する。そして、そのような情報が所定数蓄積されると、統計的学習処理を行って確率モデルを生成する。以下、これらの動作を行う各機能モジュールについて説明する。
照合部63は、エンジンスイッチをONすると、車内カメラ54で撮影された画像と、車両用空調装置1に予め登録された登録済利用者に関する照合情報に基づいて、搭乗者の照合及び認証を行い、搭乗者が何れの登録済利用者か判定する。そして、搭乗者と判定された登録済利用者の識別情報(ID)及び登録済利用者に関連する個人情報を記憶部61から読み出す。
ここで、照合部63は、例えば以下の方法によって搭乗者の照合及び認証を行う。照合部63は、車内カメラ54で撮影された画像を2値化したり、エッジ検出を行って搭乗者の顔に相当する領域を識別する。そして、識別された顔領域から、目、鼻、唇など特徴的な部分をエッジ検出等の手段によって検出し、その特徴的な部分の大きさ、相対的な位置関係などを特徴量の組として抽出する。次に、照合部63は、抽出された特徴量の組を、予め記憶部61に記憶されている、各登録済利用者に関して求められた特徴量の組と比較し、相関演算などを用いて一致度を算出する。そして、最も高い一致度が、所定の閾値以上となる場合、照合部63は、搭乗者を、その最も高い一致度となった登録済利用者として認証する。なお、上記の照合方法は、一例に過ぎず、照合部63は、他の周知の照合方法を使用して、搭乗者の照合及び認証を行うことができる。例えば、照合部63は、特開2005−202786号公報に記載された車両用顔認証システムを用いることができる。また、画像認証以外の方法を用いることも可能であり、例えば、スマートキーシステムを用いて搭乗者の照合及び認証を行うようにしてもよい。さらに、特開2005−67353号公報に記載された車両用盗難防止装置のように、スマートキーシステムと画像認証を組み合わせて照合及び認証を行うようにしてもよい。
制御情報修正部64は、確率モデルに基づいて、設定温度Tset、風量Wなど、搭乗者が設定可能な設定情報である、空調装置1の制御パラメータを自動調整するか否かを決定する。すなわち、制御情報修正部(64)は、所定の設定操作と関連した少なくとも一つの確率モデルを有し、状態情報を確率モデルに入力して所定の設定操作を行う推薦確率を算出し、推薦確率と、確率モデルに関連付けられた修正情報に基づいて所定の設定操作に関連する設定情報又は制御情報を修正する。なお、確率モデルに関連付けられた修正情報とは、その確率モデルによって規定される修正において、設定情報または制御情報の修正後の値、あるいは、設定情報または制御情報を所望の修正値に変更するために設定情報または制御情報に加えられ、若しくは乗じられる修正量をいう。
本実施形態では、確率モデルとして、ベイジアンネットワークを用いた。ベイジアンネットワークは、複数の事象の確率的な因果関係をモデル化するものであり、各ノード間の伝播を条件付き確率で求める、非循環有向グラフで表されるネットワークである。なお、ベイジアンネットワークの詳細については、本村陽一、岩崎弘利著、「ベイジアンネットワーク技術」、初版、電機大出版局、2006年7月、繁桝算男他著、「ベイジアンネットワーク概説」、初版、培風館、2006年7月、又は尾上守夫監修、「パターン識別」、初版、新技術コミュニケーションズ、2001年7月などに開示されている。
本実施形態では、確率モデルは、車両用空調装置1に登録された利用者毎に生成される。また、確率モデルは、設定操作ごと(例えば、設定温度Tsetを下げる若しくは上げる、風量Wを調節する、内気循環モードにする等)に生成される。そして、記憶部61には、確率モデルの構造情報が、各利用者情報及び設定操作と関連付けて記憶される。具体的には、確率モデルを構成する各ノード間の接続関係を表すグラフ構造、入力ノードに与えられる入力情報のタイプ、各ノードの条件付き確率表(以下、CPTという)とともに、利用者の識別番号(ID)、設定操作の内容と一意に対応する設定操作番号k、その設定操作で修正される制御パラメータ及びその修正値(例えば、設定温度Tsetが3℃下げられる場合には、(Tset,-3)、風量Wを最大値Wmaxにする場合には、(W,Wmax)など)が各確率モデルごとに規定され、記憶部61に記憶される。
制御情報修正部64は、照合部63によって搭乗者として特定された登録済み利用者に関連付けられた確率モデルを記憶部61から読み出す。制御情報修正部64は、読み出された1以上の確率モデルのそれぞれに、所定の状態情報を入力して、搭乗者が各確率モデルに関連付けられた設定操作を行う確率(すなわち、推薦確率あるいは出現確率)を求める。すなわち、各確率モデルについて一意に規定され、各確率モデルとともに記憶部61に記憶された設定操作番号kで表される設定操作を行う確率を求める。その確率は、例えば確率伝播法(belief propagation)を用いて計算することができる。そして、制御情報修正部64は、求めた確率が、搭乗者がその設定操作を行うことがほぼ確実であると考えられる第1の閾値Th1(例えば、Th1=0.9)以上の場合、その設定操作を自動的に実行する。具体的には、その設定操作に関連する制御パラメータの値を、確率モデルに関連付けられた、すなわち、その確率モデルに対して一意に規定され、各確率モデルとともに記憶部61に記憶された制御パラメータの修正値を用いて修正する。
また、求めた確率が第1の閾値Th1未満であるものの、搭乗者がその設定操作を行う可能性が高いと考えられる第2の閾値Th2(例えば、Th2=0.6)以上である場合には、制御情報修正部64は、A/C操作パネル59あるいはナビゲーションシステム56などの表示部を通じてその設定操作内容を表示して搭乗者に知らせる。そして、搭乗者にその設定操作を行うか否かを確認する。そして、搭乗者がその設定操作を行うことを承認する操作(例えば、所定の操作ボタンを押す)をA/C操作パネル59などを通じて行った場合、制御情報修正部64は、その設定操作を行う。なお、A/C操作パネル59あるいはナビゲーションシステム56を通じて設定操作内容を音声で搭乗者に知らせてもよい。また、車両用空調装置1にマイクロフォンを接続し、制御部60に音声認識プログラムを搭載することにより、搭乗者の音声に反応して設定操作を行うか否かを確認してもよい。
以下、設定温度Tsetを3℃下げることを例として説明する。ここで、上記の第1の閾値Th1は0.9とし、第2の閾値Th2は0.6とする。
図3に、このような特定状況の一例を示す。ここで示される状況は、搭乗者(Aさん)が、土曜日の午後はいつも運動公園でテニスを行い、その後、4時ごろ自家用車に乗ると、車両用空調装置の設定温度を普段よりも下げることを好むといったものである。一方、それ以外の場合、例えば、職場からの帰宅時などでは、そのような設定操作を行わないような場合を考える。
図4に、車両用空調装置1の制御パラメータを自動調節するために使用される確率モデルの一例のグラフ構造を示す。図4に示す確率モデル101では、3個の入力ノード102、103、104がそれぞれ出力ノード105に接続されている。また、各入力ノード102、103、104には、それぞれ入力される状態情報として曜日(x1)、時間帯(x2)、現在位置(x3)が与えられる。そして、出力ノード105は、設定温度Tsetを3℃下げる確率を出力とする。
図5(a)〜(d)に、図4に示した確率モデル101の各ノードについてのCPT106〜109を示す。CPT106〜108は、それぞれ入力ノード102〜104に対応し、入力される状態情報に対する事前確率を規定する。また、CPT109は、出力ノード105に対応し、各入力ノードの情報の値ごとに割り当てられた条件付き確率分布を規定する。
ここで、曜日が土曜日(x1=1)、時間帯が昼(x2=1)、現在位置が公園(x3=1)と各入力ノードに与えられる情報が全て既知の場合、設定温度Tsetを3℃下げる確率P(x4=1|x1=1,x2=1,x3=1)は、図5(d)より、0.95となる。したがって、得られた確率は、第1の閾値Th1以上であるため、制御情報修正部64は、設定温度Tsetを3℃下げるよう制御パラメータを修正する。
また、曜日が土曜日(x1=1)、時間帯が昼(x2=1)であるものの、例えば、ナビゲーションシステム56の電源が入っておらず、現在位置を知ることができない場合、図5(c)に示した現在位置が公園である場合の事前確率P(x3)を用いて、P(x4=1|x1=1,x2=1,x3)が計算される。この場合、
P(x4=1|x1=1,x2=1,x3)
= P(x4=1|x1=1,x2=1,x3=1)・P(x3=1)
+ P(x4=1|x1=1,x2=1,x3=0)・P(x3=0)
= 0.95・0.15 + 0.55・0.85 = 0.61
となる。したがって、得られた確率は、第1の閾値Th1よりも小さいが、第2の閾値Th2以上であるため、制御情報修正部64は、設定温度Tsetを3℃下げるか否か、A/C操作パネル59などを通じて搭乗者に確認する。
さらに、曜日が月曜日(x1=0)、時間帯が夜(x2=0)、現在位置が職場(x3=0)の場合、設定温度を3℃下げる確率P(x4=1|x1=0,x2=0,x3=0)は、図5(d)より、0.1となる。したがって、得られた確率は、第1の閾値Th1及び第2の閾値Th2よりも小さいため、制御情報修正部64は、設定温度Tsetを変更せず、設定温度Tsetを変更することについて、搭乗者に確認することもしない。
なお、上記の例では、簡単化のために、2層のネットワーク構成としたが、中間層を含む、3層以上のネットワーク構成としてもよい。また、入力情報としての曜日を、土曜日とそれ以外に区分したが、他の区分、例えば、各曜日ごとに区分するものであってもよい。同様に、現在位置についても、公園とその他に区分するのではなく、搭乗者が訪問する頻度が高い場所ごとに区分するものであってもよい。さらに、時間帯についても、さらに細分化したり、午前、午後などに区分してもよい。
また、同一の操作グループ(設定温度の修正、風量の変更、内外気の切り替え若しくは風量比の設定など)に関連する確率モデルが複数存在する場合、すなわち、特定の制御パラメータの修正を行う確率を出力とする確率モデルが複数存在する場合、制御情報修正部64は、それら複数の確率モデルそれぞれについてその確率を計算する。なお、特定の制御パラメータとは、風量、内外気の切り替え、風量比なども含む。そして、得られた確率のうち、最大となるものを選択して上記の処理を行う。例えば、風量設定に関する確率モデルM1(風量Wを最大にする)とM2(風量Wを中程度にする)が存在する場合を考える。この場合、制御情報修正部64は、確率モデルM1に基づいて風量Wを最大にする確率PM1を求め、同様に、確率モデルM2に基づいて風量Wを中程度にする確率PM2を算出する。そして、制御情報修正部64は、PM1>PM2であれば、PM1を上記の閾値Th1、Th2と比較して、風量Wを最大にするか否かを決定する。逆に、PM2>PM1であれば、PM2を上記の閾値Th1、Th2と比較して、風量Wを中程度にするか否かを決定する。
なお、上記では、理解を容易にするために、確率モデルM1とM2が、異なる設定操作に関連付けられるように規定した。しかし、確率モデルM1とM2は、同じ設定操作(例えば、ともに風量Wを最大にする)に関連付けられてもよい。このことは、例えば、搭乗者が異なる2以上の状況(一方は、日中で晴天の場合、他方は、スポーツジムの帰り道の場合等)で、同一の操作を行う場合があることに対応する。それぞれの状況に対応する確率モデルが生成されていれば、それらの確率モデルは、同一の操作グループに属する設定操作が関連付けられることになる。
制御情報修正部64は、上記の処理によって、設定温度Tset、風量Wなどの各制御パラメータを必要に応じて修正すると、それらの制御パラメータを制御部60の各部で利用可能なように、制御部60のRAMに一時記憶する。
空調制御部65は、各制御パラメータの値及び各センサから取得したセンシング情報をRAMから読み出し、それらの値に基づいて、空調部10の制御を行う。そのために、空調制御部65は、温度調節部651、コンプレッサ制御部652、吹出口制御部653、吸込口制御部654及び送風量設定部655を有する。また、空調制御部65は、制御情報修正部64において修正された制御パラメータがRAMに記憶されている場合には、その修正されたパラメータを読み出して使用する。
温度調節部651は、設定温度Tset及び各温度センサ及び日射センサ53の測定信号に基づいて、各吹き出し口から送出される空調空気の必要吹出口温度(空調温度Tao)を決定する。そして、その空調空気の温度が空調温度Taoとなるように、エアミックスドア28の開度を決定し、温調サーボモータ31へ、エアミックスドア28の開度が設定された位置になるように制御信号を送信する。例えば、エアミックスドア28の開度は、内気温Trと設定温度Tsetの差を、外気温Tam、日射量Sなどで補正した値を入力とし、エアミックスドア28の開度を出力とする関係式に基づいて決定される。ここで、エアミックスドア28の開度を、一定の時間間隔(例えば、5秒間隔)毎に判定する。そのような制御を行うための各測定値とエアミックスドア28の開度の関係式を以下に示す。
Figure 0004985057
上式において、Doは、エアミックスドア28の開度を表す。また、係数kset、kr、kam、ks、C、a、bは定数であり、Tset、Tr、Tam、Sは、それぞれ、設定温度、内気温、外気温及び日射量を表す。ここで、制御情報修正部64が設定温度Tsetを修正している場合、その修正された設定温度Tsetを使用する。また、エアミックスドア28の開度Doは、ヒータコア29を経由する通路32を閉じた状態(すなわち、冷房のみが動作する状態)を0%、バイパス通路30を閉じた状態(すなわち、暖房のみが動作する状態)を100%として設定される。温調制御式の各係数kset、kr、kam、ks、C及びエアミックスドアの開度を求める関係式の係数a、bは温調制御パラメータとして、登録済利用者ごとに設定され、登録済利用者の個人設定情報に含まれる。
なお、温度調節部651は、空調温度Tao及びエアミックスドア28の開度を、ニューラルネットワークを用いた制御やファジイ制御など、他の周知の制御方法を用いて決定してもよい。算出された空調温度Taoは、制御部60の他の部で参照できるように、記憶部61に記憶される。
コンプレッサ制御部652は、温度調節部651で求められた空調温度(必要吹出口温度)Tao、設定温度Tset及びエバポレータ出口温度などに基づいて、コンプレッサ11のON/OFFを制御する。コンプレッサ制御部652は、車室内を冷房する場合、デフロスタを作動させる場合などには、原則としてコンプレッサ11を作動させ、冷凍サイクルRを作動させる。ただし、エバポレータ18がフロストすることを避けるために、エバポレータ出口温度が、エバポレータ18がフロストする温度近くまで低下すると、コンプレッサ11を停止する。そして、エバポレータ出口温度がある程度上昇すると、再度コンプレッサ11を作動させる。なお、コンプレッサ11の制御は、可変容量制御など周知の方法を用いて行えるため、ここでは詳細な説明を省略する。
吹出口制御部653は、A/C操作パネル59を通じて搭乗者が設定した風量比の設定値、温度調節部651で求められた空調温度Tao、設定温度Tsetなどに基づいて、各吹き出し口から送出される空調空気の風量比を求め、その風量比に対応するように、フットドア37、フェイスドア38及びデフロスタドア39の開度を決定する。吹出口制御部653は、風量比の設定値、空調温度Tao、設定温度Tsetなどと各ドア37〜39の開度との関係を表す関係式にしたがって各ドア37〜39の開度を決定する。このような関係式は予め規定され、制御部60において実行されるコンピュータプログラムに組み込まれている。なお、吹出口制御部653は、他の周知の方法を用いて、各ドア37〜39の開度を決定することもできる。そして、各ドア37〜39が決定された開度となるように、モードサーボモータ40を制御する。
また、吹出口制御部653は、制御情報修正部64が風量比の設定値又は設定温度Tsetを修正している場合には、その修正された設定値又は設定温度Tsetを使用して各ドア37〜39の開度を決定する。
吸込口制御部654は、A/C操作パネル59から取得した吸込口設定、設定温度Tset、空調温度Tao、内気温Trなどに基づいて、車両用空調装置1が内気吸気口26から吸気する空気と外気吸気口27から吸気する空気の比率を設定する。吸込口制御部654は、外気温Tam、内気温Trと設定温度Tsetとの差などと吸気比との関係を表す関係式にしたがって内外気切替ドア25の開度を決定する。このような関係式は予め設定され、制御部60において実行されるコンピュータプログラムに組み込まれている。なお、吸込口制御部654は、他の周知の方法を用いて、内外気切替ドア25の開度を決定することもできる。吸込口制御部654は、内外気サーボモータ24を制御し、内外気切替ドア25を求めた吸気比となるように回動させる。また、吸込口制御部654は、制御情報修正部64が吸気設定値又は設定温度Tsetを修正している場合には、その修正された吸気設定値又は設定温度Tsetを使用して内外気切替ドア25の開度を決定する。
送風量設定部655は、A/C操作パネル59から取得した風量W、設定温度Tset、空調温度Tao、内気温Tr、外気温Tam及び日射量Sなどに基づいて、ブロアファン21の回転速度を決定する。そして、駆動用モータ22へ、ブロアファン21の回転速度が設定値になるように制御信号送信する。例えば、風量設定が手動設定になっている場合には、送風量設定部655は、A/C操作パネル59から取得した風量Wとなるようにブロアファン21の回転速度を決定する。また、風量設定が自動設定になっている場合には、送風量設定部655は、内気温Tr、空調温度Taoなどと風量Wとの関係を表す風量制御式にしたがってブロアファン21の回転速度を決定する。あるいは、風量制御式を、設定温度Tset及び空調情報(内気温Tr、外気温Tam及び日射量S)と、風量Wの関係を直接的に表すものとしてもよい。このような風量制御式として、周知の様々なものを用いることができる。なお、このような風量制御式は予め設定され、制御部60において実行されるコンピュータプログラムに組み込まれている。あるいは、送風量設定部655は、空調情報と風量Wの関係を定めたマップを予め準備しておき、そのマップを参照して測定された空調情報に対応する風量Wを決定するマップ制御など、他の周知の方法を用いて、ブロアファン21の回転速度を決定することもできる。また、送風量設定部655は、制御情報修正部64が風量W又は設定温度Tsetを修正している場合には、その修正された風量W又は設定温度Tsetを使用してブロアファン21の回転速度を決定する。
学習部66は、搭乗者が車両用空調装置1の操作を行った場合に、新しい確率モデルの生成を行うか否か、又は既存の確率モデルの更新を行うか否かを判定し、必要な場合、確率モデルの生成又は更新を行う。
一般的に、搭乗者は、車室内が搭乗者にとって適切な空調状態となっていない場合、車両用空調装置1の設定操作を行う。そのため、搭乗者が車両用装置1の設定操作を頻繁に行う場合、搭乗者の設定操作を推定する確率モデルの構築が必要と考えられる。しかし、適切な確率モデルを構築するためには、統計的に正しい推定を行えるだけのデータが必要となる。そこで、学習部66は、車両用空調装置1の設定操作が行われる度に、その操作時に取得した各状態情報(外気温Tamなどの空調情報、車両の現在位置などの位置情報、車速などの車両挙動情報、心拍数などの生体情報)を学習情報として、上述した設定操作番号k及び搭乗者のIDに関連付けて、記憶部61に記憶する。また、搭乗者Aが、設定操作番号kに対応する設定操作α(例えば、設定温度を3℃下げる、風量Wを最大にするなど)を行った操作回数iAkも記憶部61に記憶する。なお、上記の学習情報DAkは、例えば次式のように表される。
Figure 0004985057
ここで、dijkは、各状態情報の値である。iは、上記の操作回数iAkを示す。また、jは、状態情報の各値に対して便宜的に指定される状態項目番号であり、本実施形態では、j=1に対して、内気温Tr、j=2に対して外気温Tam、j=3に対して日射量Sが割り当てられる。そして、j=4以降に、位置情報、車両挙動情報、生体情報などが割り当てられる。また、kは設定操作番号である。
これら学習情報DAk及び操作回数iAkは、登録済み利用者及び設定操作ごとに別個に記憶される。
学習部66は、操作回数iAkが、所定回数n1(例えば、10回)に等しくなると、記憶部61に記憶されている学習情報DAkを用いて、その設定操作に関する確率モデルMAqkを構築する。なお、q(=1,2,..)は、搭乗者Aの設定操作番号kの設定操作について構築された確率モデルの数を表す。その後、搭乗者Aが、さらに設定操作αを繰り返す場合、学習部66は、前回の確率モデルMAqk構築後のその操作回数iAkがn1回に到達する度に(すなわち、操作回数iAk=n1・j(ただし、j=1,2,..)となる場合)、記憶部61に記憶された学習情報DAkを用いて、確率モデルMAqkを更新する。
そして、その操作回数iAkが、所定回数n2(例えば、30回)に等しくなると、学習部66は、その時点で記憶部61に記憶されている確率モデルMAqkを確立されたものとし、以後その確率モデルMAqkの更新は行わない。学習部66は、確立された確率モデルMAqkに対して、更新されないことを示すフラグ情報を付す。例えば、更新フラグfを確率モデルに関連付けて記憶部61に記憶し、その更新フラグfが'1'の場合は、更新(すなわち、書き換え)禁止、更新フラグfが'0'の場合は更新可能として、更新可否を判別可能とすることができる。そして、学習部66は、記憶部61に記憶されている学習情報DAkを消去し、操作回数iAkを初期化して、値を0にリセットする。なお、所定回数n2は、n1よりも大きな数で、統計的に十分正確な確率モデルを構築可能と考えられるデータ数に対応する。所定回数n1及びn2は、経験的、実験的に最適化することができる。
確率モデルMAqkが確立された後、さらに搭乗者Aが同じ設定操作αを繰り返す場合には、上記と同様の手順に従って、新たな確率モデルMAq+1kを構築する。このように、必要に応じて複数の確率モデルを構築することにより、同一種類の設定操作が行われる特定状況が複数存在する場合(例えば、内気循環モードに設定する操作が行われる状況として、トンネル内に入ったという状況と、大型トラックの後ろになったという状況がある場合)に対応することができる。また、発生頻度の高い特定状況については、その状況に対応する情報が学習情報中に多数含まれるので、早期に対応する確率モデルが構築される。そして、対応する確率モデルが構築された特定状況に対しては、制御情報修正部64は、その確率モデルに基づく確率推論によって自動的に設定操作を行うようになるので、搭乗者は車両用空調装置1の設定操作を行わなくなる。そのため、学習部66は、学習が進むにつれて、発生頻度の低い特定状況が生じたときのみ、搭乗者は設定操作を行うようになるので、発生頻度の低い特定状況に対応する確率モデルを構築することもできる。
次に、確率モデルの構築手順について説明する。
様々な状況に対応可能な、汎用的な確率モデルを構築するためには、多数のノードを含む、非常に大きな確率モデルを構築する必要がある。しかし、そのような確率モデルの学習には、非常に長い計算時間を要し、また、学習に必要なハードウェアリソースも膨大なものとなる。そこで、本実施形態では、状態情報のうち、設定操作と特に関連が深そうなものを幾つか入力パラメータとして選択し、それら入力パラメータの組み合わせに対する条件付き確率によって設定操作を行う確率を求める2層構成のグラフ構造を標準モデルとして15種類準備した。しかし、標準モデルの数は、15種類に限られない。標準モデルの数は、得られる状態情報の数や、学習対象とする設定操作の種類に応じて、適宜最適化できる。また、標準モデルは、入力パラメータを1個だけとするものや、取得可能な全ての状態情報を入力パラメータとするものであってもよい。さらに、標準モデルは、2層構成のグラフ構造に限られず、制御部60を構成するCPUの能力に応じて、3層以上のグラフ構造のものを標準モデルとして使用してもよい。
それらの標準モデルは、記憶部61に記憶される。そして、学習時には、各標準モデルについて、その標準モデルに含まれる各ノード間の条件付き確率を決定して仮の確率モデルを構築する。その後、情報量基準を用いて、最も適切なグラフ構造を有する仮の確率モデルを選択する。その選択されたモデルが、構築された確率モデルとなる。
以下、図を用いて詳細に説明する。
図6(a)〜(d)に、15個の標準モデルのうちの4個を例として示す。図6(a)〜(d)に示す標準モデル501〜504は、何れも入力ノードと出力ノードからなる2層構成のベイジアンネットワークである。各標準モデル501〜504は、入力ノードに与えられるパラメータが異なる。
また、各標準モデル501〜504の入力ノードに対しては、その入力ノードに割り当てられた入力パラメータに対する事前確率を規定するCPTが設定される。なお、入力情報の区分は、クラスタリングなどの手法を用いて行う。例えば、図6(b)に示す標準モデル502において、現在位置を入力パラメータ(パラメータy11)とする入力ノードについて、学習情報に基づいて、k−平均法などの手法を用いてクラスタリングを行い、パラメータ値の区分を行う。あるいは、自宅のときy11=0、職場のときy11=1、近所の公園のときy11=2のように区分を予め決めておくようにしてもよい。同様に、出力ノードに対しては、入力ノードに与えられた情報に基づく条件付き確率の分布を示すCPTが設定される。なお、初期状態では、CPTは、全ての状態に対して等しい値となるように設定される。
図7に示したフローチャートは、確率モデルを構築する手順である。
学習が開始されると、学習部66は、まず、各標準モデルに対して、学習情報DAkから対象となる入力パラメータを抽出して各ノードの条件付き確率を求め、CPTを作成して確率モデルを構築する(ステップS201)。
そこで、学習部66は、記憶部61から読み出した、学習情報DAkから、各ノードについて、各パラメータの状態ごとに該当する数nを数える。そして、その数nを全事象数Nで除した値を、事前確率及び条件付き確率の値とする。例えば、図6(b)の標準モデル502を例として説明する。ここで、30個のデータの組を含む学習情報DAkがあり、このうち、入力ノードの一つに割り当てられている現在位置について調べると、自宅である回数(y11=0)が15回、職場である回数(y11=1)が12回、近所の公園である回数(y11=2)が3回とすると、現在位置に対する事前確率P(y11)は、それぞれ、P(y11=0)=0.5、P(y11=1)=0.4、P(y11=2)=0.1となる。同様に、出力ノードについては、親ノードである各入力ノードに与えられる入力情報の現在位置(y11)、曜日(y12)、時間帯(y13)の取り得る値の組み合わせのそれぞれについて、学習情報DAk中に出現する数を計算し、それを全データ数である30で割ることによって、条件付き確率を求められる。このように、事前確率及び条件付き確率を求めることにより、各ノードに対応するCPTを決定する。
なお、学習部66は、学習に用いるデータ数が十分でないと考えられる場合には、ベータ分布を用いて確率分布を推定するようにしてもよい。また、学習情報DAkの中に、一部の入力情報の値の組み合わせが存在しない、すなわち、未観測データがある場合、未観測データに対する確率分布を推定し、その分布に基づいて期待値を計算することで、対応する条件付き確率を計算する。このような条件付き確率の学習については、例えば、繁桝算男他著、「ベイジアンネットワーク概説」、初版、培風館、2006年7月、p.35-38、p.85-87に記載された方法を用いることができる。
各標準モデルに対するCPTが求められると、学習部66は、構築された確率モデルを評価するために、各確率モデルについて情報量基準を算出する(ステップS202)。
本実施形態では、情報量基準として、AIC(赤池情報量基準)を用いた。AICは、確率モデルの最大対数尤度と、パラメータ数に基づいて、以下の式に基づいて求めることができる。
Figure 0004985057
ここで、AICmは、確率モデルMに対するAICを表す。また、θmは、確率モデルMのパラメータ集合を、lmm|X)は、データXを所与としたときの確率モデルMにおけるそのデータの最大対数尤度の値を、kmは確率モデルMのパラメータ数をそれぞれ表す。ここでlmm|X)は、以下の手順で計算できる。まず、各ノードにおいて、親ノードの変数の各組み合わせについて、学習情報DAkから出現頻度を求める。その出現頻度に条件付き確率の対数値を乗じた値を求める。最後にそれらの値を足し合わせることでlmm|X)が算出される。また、kmは、各ノードにおける、親ノード変数の組み合わせの数を足し合わせることで求められる。
学習部66は、全ての確率モデルについてAICを求めると、AICの値が最も小さいモデルを、使用する確率モデルとして選択し、記憶部61に保存する(ステップS203)。そして、他の確率モデルを消去する(ステップS204)。
なお、情報量基準を用いた確率モデルの選択(言い換えれば、グラフ構造の学習)については、ベイズ情報量基準(BIC)、竹内情報量基準(TIC)、最小記述長(MDL)基準など他の情報量基準を用いてもよい。さらに、これらの情報量基準の算出式の正負を反転させたものを、情報量基準として用いてもよい。この場合には、情報量基準の値が最大となる確率モデルを、使用する確率モデルとして選択する。
学習部66は、構築された確率モデルを記憶部61に記憶する。また、学習情報DAkに関連付けられた搭乗者のID、設定操作番号kを取得し、構築された確率モデルに関連付けて記憶部61に記憶する。さらに、その確率モデルに基づいて修正される制御パラメータ及び修正値を、設定操作番号kに基づいて特定し、その確率モデルに関連付けて記憶部61に記憶する。なお、設定操作番号kと、修正される制御パラメータ及び修正値の関係は、例えばルックアップテーブルとして予め規定され、記憶部61に保持される。
以下、図8及び図9に示したフローチャートを参照しつつ、本発明の第1の実施形態に係る車両用空調装置1の空調制御動作について説明する。なお、空調制御動作は、制御部60により、制御部60に組み込まれたコンピュータプログラムにしたがって行われる。
図8に示すように、まず、エンジンスイッチがONとなると、制御部60は、車両用空調装置1を稼動させる。そして、通信部62を通じて、各センサ、ナビゲーションシステム56、車両操作機器57などから各状態情報を取得する(ステップS101)。同様に、記憶部61から各設定情報を取得する。次に、制御部60の照合部63は、搭乗者の照合・認証を行う(ステップS102)。そして、搭乗者と判定された登録済利用者の個人設定情報を記憶部61から読み出す(ステップS103)。
次に、制御部60は、搭乗者が車両用空調装置1の設定操作を行ったか否かを判定する(ステップS104)。A/C操作パネル59から操作信号を受信すると、設定操作が行われたと判断する。搭乗者が設定操作を行っていない場合、制御部60の制御情報修正部64は、その搭乗者に関連付けられている確率モデルMAqkのうち、何れかの操作グループに関連する制御パラメータ(例えば、設定温度Tset)の修正に関連する確率モデルに、観測された状態情報を入力する。そして、その確率モデルに関連付けられている設定操作を行う確率を算出する(ステップS105)。そして、その制御パラメータに関連する同一操作グループ内の設定操作について算出された確率のうち、最も高い確率を推薦確率(あるいは出現確率)Pとして求める。
次に、推薦確率Pを、第1の所定値Th1と比較する(ステップS106)。推薦確率Pが第1の所定値Th1(例えば、0.9)以上の場合、制御情報修正部64は、推薦確率Pを出力した確率モデル(以下、選択確率モデルという)に関連付けられた修正情報に基づいて、対応する車両用空調装置1の制御パラメータを修正する(ステップS107)。一方、推薦確率Pが、第1の所定値Th1未満の場合、制御情報修正部64は、推薦確率Pを、第2の所定値Th2(例えば、0.6)と比較する(ステップS108)。そして、推薦確率Pが第2の所定値Th2以上であれば、制御情報修正部64は、A/C操作パネル59の表示部などを通じて、選択確率モデルに関連付けられた設定操作番号kに対応する設定操作を行うか否かを表示し、確認する(ステップS109)。そして、搭乗者がその設定操作を行うことを承認した場合、選択確率モデルに関連付けられた修正情報に基づいて制御パラメータを修正する(ステップS107)。一方、搭乗者が承認しなかった場合には、その制御パラメータを修正しない。すなわち、選択確率モデルに関連付けられた制御パラメータに関連する設定操作は行わない。また、ステップS108において、推薦確率Pが第2の所定値Th2未満の場合も、その制御パラメータを修正しない。
その後、制御情報修正部64は、全ての確率モデルに関して確率を算出したか否かを確認することにより、全ての制御パラメータの調節が終わったか否かを判定する(ステップS110)。まだ確率を算出していない確率モデルがある場合、すなわち、設定情報の修正の有無を調べていない操作グループがある場合には、制御をステップS105の前に戻す。一方、全ての確率モデルについて、確率算出を終了している場合には、空調制御部65は、必要に応じて修正された制御パラメータに基づいて、所望の空調温度、風量などが得られるように、エアミックスドア、ブロアファンの回転数、各吹き出し口のドアの開度を調節する(ステップS111)。
図9に示すように、ステップS104において、搭乗者が車両用空調装置1の設定操作を行った場合、設定信号を参照してどの設定操作が行われたかを特定する(ステップS112)。そして、搭乗者のIDと、行われた設定操作に対応する設定操作番号kと、その設定操作が行われた操作回数iAkと関連付けて、取得された各状態情報を学習情報DAkの要素として記憶部61に記憶する(ステップS113)。
その後、制御部60の学習部66は、操作回数iAkが所定回数n1*j(j=1,2,3)と等しいか否か判定する(ステップS114)。なお、所定回数n1は、例えば10回である。そして、学習部66は、iAk=n1*jと判定した場合、その搭乗者及び設定操作番号kに関連付けられて記憶部61に記憶されている学習情報DAkを用いて、確率モデルMAqkを構築する(ステップS115)。なお、確率モデルMAqkは、図7のフローチャートに示した手順に従って構築される。そして、その確率モデルMAqkを搭乗者のIDなどと関連付けて記憶部61に記憶する。一方、ステップS114において、iAkがn1*jと等しくない場合、制御をステップS116の前に移行する。
次に、学習部66は、操作回数iAkが所定回数n2(例えば、n2=30)と等しいか否か判定する(ステップS116)。iAkがn2と等しくなければ、iAkを1だけインクリメントし(ステップS117)、制御をステップS111の前へ移行する。一方、ステップS116において、iAk=n2であれば、学習部66は、その搭乗者及び設定操作番号kに関連付けられて記憶部61に記憶されている学習情報DAkを消去する(ステップS118)。また、iAkを初期化し、iAk=0とする。その後、制御をステップS111の前に移行する。
また、上記のフローチャートのステップS114において、学習部66は、確率モデルの構築を行うか否かを判定するために、操作回数iAkと所定回数n1*j(j=1,2,3)を比較する代わりに、同一の設定操作に関連する確率モデルを前回構築したときからの経過時間が第1の所定時間(例えば、1週間、1ヶ月)経過したか否かを判定するようにしてもよい。この場合、学習部66は、その経過時間が第1の所定時間以上となったとき、確率モデルの構築を行う。すなわち、学習部66は、上記のステップS115〜S118の処理を実行する。このように、経過時間に基づいて確率モデルの構築を行うか否かを判定するために、制御部60は、確率モデルが構築された時の作成日時をその確率モデルに関連付けて記憶部61に記憶しておく。そして、学習部66は、経過時間を算出する際に、設定操作αに関連する確率モデルのうち、最新の確率モデルに関連付けられた作成日時を記憶部61から取得し、現在の時間との差を求めることによって経過時間を算出する。
さらに、学習部66が経過時間に基づいて確率モデルの構築を行うか否かを判定する場合、上記のステップS116では、学習部66は、経過時間を第1の所定時間よりも長い第2の所定時間(例えば、4週間、6ヶ月)と比較するようにしてもよい。そして、経過時間が第2の所定時間よりも長い場合、学習部66は、学習情報DAkの消去、更新フラグfの書き換えを行う。
以後、車両用空調装置1は、稼動停止となるまで上記のステップS101〜S118の制御を繰り返す。
以上説明してきたように、本発明の第1の実施形態に係る車両用空調装置は、搭乗者の温感又は特定状況に合わせて学習された少なくとも一つの確率モデルに基づいて、搭乗者の空調設定操作を推定するので、搭乗者の温感又は状況に応じて自動的に最適な空調設定を行うことができる。特に、使用を続けるほど、各状況に対応した確率モデルが別個に生成されるので、様々な状況に応じて最適な空調設定を行うことができる。
次に、本発明の第2の実施形態に係る車両用空調装置について説明する。本発明の第2の実施形態に係る車両用空調装置は、上記の学習部及び記憶部を、車両とは別個に設置されたサーバに設け、確率モデルの学習を、そのサーバで行うようにしたものである。
図10に、本発明の第2の実施形態に係る車両用空調装置2の概略システム構成を示す。本発明に係る車両用空調装置2では、車両4に搭載された空調装置本体3と、サービスセンタなどに設置されたサーバ7とを有する。そして、空調装置本体3とサーバ7とは、例えば携帯電話網のような無線通信網8を通じて、互いにデータの送受信を行う。
図11に、空調装置本体3の制御部60’の機能ブロック図を示す。制御部60’は、第1の実施形態に係る車両用空調装置1の制御部60と比較して、学習部66が省略され、代わりに無線通信部67を有する点で異なる。なお、制御情報修正部64、空調制御部65など制御部60’の他の部分、及び、空調部、A/C操作パネルなど、空調装置本体3の他の構成要素は、第1の実施形態に係る車両用空調装置1と同様の構成を有するので、ここでは説明を省略する。
無線通信部67は、所定の通信プロトコルに従って、無線通信網8を通じてデータの送受信を行うための無線通信インターフェース、その制御回路及び制御プログラムで構成される。そして無線通信部67は、上記の学習情報DAk及び設定操作番号kを、搭乗者のID及び空調装置本体3が搭載された車両を一意に識別するための車両IDとともに、サーバ7へ送信する。なお、搭乗者ID及び車両IDは、予め所定の規則に則って定められ、例えば、それぞれ搭乗者及び車両ごとに一意に定まる10桁の数値で表される。また、無線通信部67は、サーバ7から、新規に構築された確率モデルあるいは更新された確率モデルを受信する。そして、受信された確率モデルは、制御情報修正部64で使用可能なように、上述した確率モデルの関連情報(確率モデルの構造情報、搭乗者の識別番号(ID)、設定操作番号k、その設定操作で修正される制御パラメータ及びその修正値など)とともに、記憶部61に記憶される。
図12に、サーバ7の機能ブロック図を示す。サーバ7は、いわゆるデータストレージサーバ又はPCなどで構成される。そしてサーバ7は、所定の通信プロトコルに従って、無線通信網8を通じてデータの送受信を行うための無線通信を行う通信インターフェース、その制御回路及び制御プログラムで構成される無線通信部71と、RAMなどの半導体メモリ、磁気ディスク又は光ディスク及びそれらの読取装置などからなる記憶部72と、CPUなどのプロセッサ上で動作するプログラムモジュールとして実装される学習部73及び制御部74とを有する。そして、サーバ7の各部は、制御部74によって制御される。
無線通信部71は、空調装置本体3と無線通信網8を介してデータの送受信を行う。具体的には、無線通信部71は、学習情報DAk、設定操作番号k、搭乗者ID及び車両IDを空調装置本体3から受信する。また、無線通信部71は、学習部73で構築あるいは更新された確率モデルを空調装置本体3へ送信する。その際、送信先は、車両用IDを参照することにより特定される。
記憶部72は、空調装置本体3から受信した学習情報DAkを、設定操作番号k、搭乗者ID及び車両IDと関連付けて記憶する。また記憶部72は、空調装置本体3で利用可能な全ての確率モデルを記憶する。
学習部73は、記憶部72に記憶された学習情報DAkに基づいて、確率モデルの構築及び更新を行う。なお、学習部73の動作は、上述した第1の実施形態における学習部66と同様であり、図7に示したフローチャートに従って処理を行うため、ここでは詳細な説明を省略する。なお、学習部73が、新たな確率モデルを構築する度に、サーバ7は、無線通信部71を通じて空調装置本体3に送信するとともに、その確率モデルをバックアップとして記憶部72に保存する。
次に、本発明の第2の実施形態に係る車両用空調装置2の動作を説明する。車両用空調装置2の動作は、上述した第1の実施形態に係る車両用空調装置1の動作と比較して、図9に示した学習処理に関する部分でのみ相違する。そこで、以下では、この相違点についてのみ説明する。
図13は、車両用空調装置2の学習処理の動作フローチャートを示す。
図13に示すように、図8に示したステップS104において、搭乗者が車両用空調装置1の設定操作を行った場合、設定信号を参照してどの設定操作が行われたかを特定する(ステップS121)。そして、搭乗者のIDと、行われた設定操作に対応する設定操作番号kと、その設定操作が行われた操作回数iAkと関連付けて、取得された各状態情報を学習情報DAkの要素として、空調装置本体3の記憶部61に一時的に記憶する(ステップS122)。
その後、空調装置本体3の制御部60’は、操作回数iAkが所定回数n1*j(j=1,2,3)と等しいか否か判定する(ステップS123)。なお、所定回数n1は、例えば10回である。そして、制御部60’は、iAk=n1*jと判定した場合、その搭乗者及び設定操作番号kに関連付けられて記憶部61に記憶されている学習情報DAkを、搭乗者ID及び車両IDとともに、サーバ7へ送信する(ステップS124)。そしてサーバ7は、学習情報DAkなどのデータを受信すると、記憶部72へそれらのデータを記憶するとともに、確率モデルMAqkを構築する(ステップS125)。なお、確率モデルMAqkは、図7のフローチャートに示した手順に従って構築される。そして、その確率モデルMAqkを搭乗者のIDなどと関連付けて記憶部72に記憶する。その後、サーバ7は、構築された確率モデルMAqkを、車両IDを参照して、学習情報DAkの送信元の空調装置本体3へ送り返す(ステップS126)。一方、ステップS123において、iAkがn1*jと等しくない場合、制御部60’は、制御をステップS127の前に移行する。
次に、制御部60’は、操作回数iAkが所定回数n2(例えば、n2=30)と等しいか否か判定する(ステップS127)。iAkがn2と等しくなければ、iAkを1だけインクリメントし(ステップS128)、制御を図8のステップS111の前へ移行する。一方、ステップS127において、iAk=n2であれば、制御部60’は、サーバ7へ、学習情報DAkを消去する命令を、搭乗者ID、車両ID及び設定操作番号kとともに送信する。そしてサーバ7は、その命令を受信すると、搭乗者ID、車両ID及び設定操作番号kに関連付けられて記憶部72に記憶されている学習情報DAkを消去する(ステップS129)。また制御部60’は、iAkを初期化し、iAk=0とする。その後、制御を図8のステップS111の前に移行する。そして、学習処理を終了する。なお、上記のステップS123及びS127において、第1の実施形態と同様に、操作回数を所定回数と比較して学習などを行うか否か判定する代わりに、所定の経過時間が経ったか否かで判定を行うようにしてもよい。
上記の実施形態では、ステップS124において、複数回の設定操作分の学習情報を一度にサーバ7へ送信するようにした。しかし、本発明は、この実施形態に限定されるものではない。例えば、制御部60’は、搭乗者がA/C操作パネル59を通じて設定操作を行う度に、サーバ7へ学習情報を送信するようにしてもよい。あるいは、制御部60’は、上記の所定回数n1よりも少ない一定の回数(例えば、3回、5回など)の設定操作が行われる度に、サーバ7へ学習情報を送信するようにしてもよい。この場合、一度に送信するデータ量を少なくすることができる。さらに、制御部60’は、一定期間(例えば、1週間、1ヶ月間)が経過する度に、その一定期間中に蓄積された学習情報を、サーバ7へ送信するようにしてもよい。
また、上記の実施形態では、操作回数iAkを、空調装置本体3の制御部60’で管理していたが、この操作回数iAkも、サーバ7の制御部74で管理して、制御部74が上記のステップS123及びS127〜S129の処理を実効するようにしてもよい。この場合、サーバ7の制御部74が、操作回数iAkを正確に計数できるようにするために、制御部60’は、A/C操作パネル59を通じて設定操作が行われる度に、設定操作番号k、搭乗者ID及び車両IDをサーバ7へ送信する。さらに、本実施形態では、記憶部72を車載する必要がなく、記憶部72として大容量の磁気ディスクなどを用いることができる。そこで、サーバ7は、ステップS129において学習情報を消去する代わりに、その学習情報に、確率モデルの構築には使用しないことを表すフラグを設定してもよい。このように学習情報を保存しておくことにより、例えば、その学習情報を、確率モデルを修正する場合の参照情報として利用することができる。
以上説明してきたように、本発明の第2の実施形態に係る車両用空調装置は、比較的演算量の多い学習処理を、車両とは別個に設置されたサーバで行うので、車両に搭載された空調装置本体における演算負荷を軽減できる。また、学習情報及び確率モデルがサーバ上に保管されるので、例えば利用者が車両を買い換えた場合でも、学習情報及び確率モデルを新しい車両IDの対応付けることにより、その新しい車両に搭載された空調装置本体でも、それまでに構築した確率モデルなどを利用することができる。したがって、利用者は、改めて学習をし直す手間を掛けることなく、本発明による車両用空調装置により、特定状況に応じた最適な空調設定の推薦を受けることができる。
なお、本発明は、上記の実施形態に限定されるものではない。例えば、搭乗者は運転者に限られない。車両用空調装置の設定操作を誰が行ったかを判別することにより、運転者以外の同乗者が操作する場合にも好適に用いることができる。例えば、車両用空調装置のA/C操作パネル59が、運転席用と助手席用の二つ準備されている場合、制御部60は、どちらのA/C操作パネル59が操作されたかによって、運転者が操作したのか、同乗者が操作したのかを判定してもよい。また、制御部60は、特開2002−29239号公報に記載されているように、A/C操作パネル59上に赤外線温度センサなどで構成される操作乗員検出センサを設けて、運転者か同乗者のどちらが操作を行ったかを判定するようにしてもよい。
そして、同乗者が操作を行った場合には、運転者の照合及び認証と同様に、車内カメラ54で撮影した画像データに基づいて、同乗者の照合及び認証も行い、その操作時の各センサ値などの状態情報を、運転者ではなく、その同乗者に関連付けて記憶する。
また、搭乗者が特定人に限定されるような場合、あるいは、誰が運転する場合でも行うような設定操作について確率モデルを構築する場合には、照合部63を省略してもよい。この場合、確率モデル及び確率モデルの学習に用いる学習情報は、搭乗者が誰であっても共通して使用される。
また、確率モデルの構築及び確率モデルを用いた設定操作に用いる状態情報として、状態情報取得時の車両用空調装置の設定情報(設定温度、風量など)を含んでもよい。
さらに、上記の実施形態では、制御情報修正部64において修正される制御パラメータは、設定温度や風量など、A/C操作パネル59を通じて搭乗者が直接設定できるパラメータとした。しかし、制御情報修正部64は、確率モデルに基づいて修正する制御パラメータを、温調制御式を用いて算出される空調温度Tao若しくは風量制御式を用いて算出されるブロアファン21の回転数、エアミックスドア28の開度など、空調部10の各部の動作を制御する制御情報としてもよい。
また、本発明は、空調と直接関係のない状態情報に基づいて、空調装置を自動的に制御するような場合に広く適用できる。例えば、制御部60がワイパーを動作させる信号を受け取ったときにデフロスタを稼動させたり、シガーライターが使用された場合には、外気モードにしたり、カーオーディオのスイッチがONとなった場合には、風量を下げるといった制御を自動的に行うことができる。さらに、自動的に修正する対象する制御パラメータは、車両用空調装置の制御に直接的には関係しないものであってもよい。例えば、風量が0に設定されたときにはパワーウインドウを自動的に開放するようにしてもよい。このような場合には、制御部60から車両の操作装置へ制御信号を送信することになる。
また、確率モデルの構築において、上記の実施形態では、予めグラフ構造を規定した標準モデルを準備したが、そのような標準モデルを準備する代わりにK2アルゴリズムや遺伝的アルゴリズムを用いてグラフ構造の探索を行うようにしてもよい。例えば遺伝的アルゴリズムを用いる場合には、各ノード間の接続の有無を各要素とする遺伝子を複数準備する。そして、上記の情報量基準を用いて各遺伝子の適応度を計算する。適応度が所定以上の遺伝子を選択し、交叉、突然変異などの操作を行って次の世代の遺伝子を作成する。このような操作を複数回繰り返して、最も適合度の高い遺伝子を選択する。選択された遺伝子で記述されるグラフ構造を確率モデルの構築に使用する。さらに、これらのアルゴリズムと、標準モデルからの確率モデルの構築とを組み合わせて用いてもよい。
さらに、上記の実施形態では、確率モデルとしてベイジアンネットワークを用いたが、例えば、隠れマルコフモデルのような、他の確率モデルを用いてもよい。
また、上記の実施形態では、搭乗者が車両用空調装置1を操作した場合に各種情報を蓄積するものとしたが、搭乗者が操作した時だけでなく、その前後の履歴情報や、定期的(例えば、10分間隔)に取得した情報を蓄積して学習に使用してもよい。
なお、本発明を適用する空調装置は、フロントシングル、左右独立、リア独立、4席独立、上下独立の何れのタイプのものであってもよい。何れかの独立タイプの空調装置に本発明を適用する場合には、内気温センサ、日射センサなどが複数搭載されてもよい。
上記のように、本発明の範囲内で様々な修正を行うことが可能である。
本発明の第1の実施形態に係る車両用空調装置の全体構成を示す構成図である。 車両用空調装置の制御部の機能ブロック図である。 特定状況の一例を示す図である。 車両用空調装置の設定値の自動調節に用いられる確率モデルの一例のグラフ構造を示す図である。 (a)〜(d)は、それぞれ図4に示した確率モデルの各ノードについての条件付き確率表を示す図である。 (a)〜(d)は、それぞれ確率モデルの基礎となるグラフ構造を有する標準モデルを示す図である。 本発明の第1の実施形態に係る車両用空調装置の確率モデル構築動作を示すフローチャートである。 本発明の第1の実施形態に係る車両用空調装置の制御動作を示すフローチャートである。 本発明の第1の実施形態に係る車両用空調装置の制御動作を示すフローチャートである。 本発明の第2の実施形態に係る車両用空調装置の全体構成を示す構成図である。 本発明の第2の実施形態に係る車両用空調装置の制御部の機能ブロック図である。 本発明の第2の実施形態に係る車両用空調装置のサーバの機能ブロック図である。 本発明の第2の実施形態に係る車両用空調装置の動作を示すフローチャートである。
符号の説明
1、2 車両用空調装置
3 空調装置本体
4 車両
10 空調部
11 コンプレッサ
21 ブロアファン
22 駆動用モータ
24 内外気サーボモータ
25 内外気切替ドア
28 エアミックスドア
31 温調サーボモータ
37 フットドア
38 フェイスドア
39 デフロスタドア
40 モードサーボモータ
51 内気温センサ
52 外気温センサ
53 日射センサ
54 車内カメラ
55 車外カメラ
56 ナビゲーションシステム
57 車両操作機器
58 車載時計
59 A/C操作パネル
60、60’ 制御部
61 記憶部
62 通信部
63 照合部
64 制御情報修正部
65 空調制御部
651 温度調節部
652 コンプレッサ制御部
653 吹出口制御部
654 吸込口制御部
655 送風量設定部
66 学習部
67 無線通信部
7 サーバ
71 無線通信部
72 記憶部
73 学習部
74 制御部
8 無線通信網
101 確率モデル
102〜105 ノード
106〜109 条件付き確率表(CPT)
501〜504 標準モデル

Claims (17)

  1. 空調空気を車両内に供給する空調部(10)と、
    前記車両に関する状態を表す状態情報を取得する情報取得部(51、52、53、55、56、57、58)と、
    乗員が所定の設定操作を行う推薦確率を算出するための確率モデルを少なくとも一つ有し、前記状態情報を該少なくとも一つの確率モデルに入力して該所定の設定操作を行う推薦確率を算出し、該推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、前記所定の設定操作となるように修正する制御情報修正部(64)と、
    前記修正された設定情報又は制御情報にしたがって、前記空調部(10)の空調制御を行う空調制御部(65)と、
    前記空調装置の空調設定を行う操作部(59)と、
    前記操作部(59)を通じて前記所定の設定操作が行われる度に、前記所定の設定操作時における前記状態情報を前記所定の設定操作に関連付けて記憶する記憶部(61)と、
    前記所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、前記所定の設定操作に関連付けて前記記憶部(61)に記憶された前記状態情報を用いて構築する学習部(66)と、
    を有し、
    前記学習部(66)は、前記記憶部(61)に前記所定の操作に関連付けて記憶された前記状態情報を用いてグラフ構造及び該グラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、前記仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して前記第1の確率モデルとする
    ことを特徴とする車両用空調装置。
  2. 空調空気を車両内に供給する空調部(10)と、
    前記車両に関する状態を表す状態情報を取得する情報取得部(51、52、53、55、56、57、58)と、
    乗員が所定の設定操作を行う推薦確率を算出するための確率モデルを少なくとも一つ有し、前記状態情報を該少なくとも一つの確率モデルに入力して該所定の設定操作を行う推薦確率を算出し、該推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、前記所定の設定操作となるように修正する制御情報修正部(64)と、
    前記修正された設定情報又は制御情報にしたがって、前記空調部(10)の空調制御を行う空調制御部(65)と、
    前記空調装置の空調設定を行う操作部(59)と、
    前記操作部(59)を通じて前記所定の設定操作が行われる度に、前記所定の設定操作時における前記状態情報を前記所定の設定操作に関連付けて記憶する記憶部(61)と、
    前記所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、前記所定の設定操作に関連付けて前記記憶部(61)に記憶された前記状態情報を用いて構築する学習部(66)と、
    を有し、
    前記学習部(66)は、所定のグラフ構造を有する標準モデルを複数有し、前記複数の標準モデルの各々について、前記記憶部(61)に前記所定の操作に関連付けて記憶された前記状態情報を用いて前記所定のグラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、前記仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して前記第1の確率モデルとする
    ことを特徴とする車両用空調装置。
  3. 前記制御情報修正部(64)は、前記推薦確率が第1の閾値以上の場合、前記設定情報又は制御情報を修正する、請求項1または2に記載の車両用空調装置。
  4. 前記推薦確率が、前記第1の閾値未満であり、且つ前記第1の閾値よりも低い第2の閾値以上の場合、前記所定の設定操作の内容を搭乗者に報知し、且つ前記所定の設定操作を行うか否かを搭乗者に確認する確認操作部(59)を有し、
    前記確認操作部(59)を通じて前記所定の設定操作を行うことが確認された場合、前記制御情報修正部(64)は、前記設定情報又は制御情報を修正する、請求項に記載の車両用空調装置。
  5. 前記制御情報修正部(64)は、所定の制御情報に関連する前記確率モデルを複数有し、前記複数の確率モデルのそれぞれに基づいて算出された確率のうち、最も高い確率を前記推薦確率とする、請求項1〜の何れか一項に記載の車両用空調装置。
  6. 搭乗者の情報を取得する搭乗者情報取得部(54)と、
    前記搭乗者情報を用いて、搭乗者と予め記憶された少なくとも一人の登録済利用者とを照合する照合部(63)を有し、
    前記制御値修正部(64)は、前記照合部(63)が搭乗者と判定した登録済利用者と関連付けられた確率モデルに基づいて前記推薦確率を算出する、請求項1〜の何れか一項に記載の車両用空調装置。
  7. 前記所定の判定基準は情報量基準であり、前記学習部(66)は、前記仮の確率モデルの各々について算出された該情報量基準の値が最小あるいは最大となる仮の確率モデルを前記第1の確率モデルとする、請求項1〜6の何れか一項に記載の車両用空調装置。
  8. 前記学習部(66)は、前記所定の設定操作を行った操作回数が第1の所定回数以上となった場合、前記第1の確率モデルを構築する、請求項1〜7の何れか一項に記載の車両用空調装置。
  9. 前記学習部(66)は、前記所定の設定操作を行った操作回数が第2の所定回数となったとき、前記所定の操作に関連付けて記憶された前記状態情報を前記記憶部(61)から消去し、前記操作回数を初期化し、且つ、その後に前記所定の設定操作が前記第1の所定回数行われた場合、前記所定の設定操作を行う推薦確率を算出するための第2の確率モデルを、前記操作回数が前記第2の所定回数となった後において前記所定の設定操作が行われる度に前記所定の設定操作と関連付けて前記記憶部(61)に記憶された前記状態情報を用いて構築する、請求項に記載の車両用空調装置。
  10. 搭乗者の情報を取得する搭乗者情報取得部(54)と、
    前記搭乗者情報を用いて、搭乗者と予め記憶された少なくとも一人の登録済利用者とを照合する照合部(63)を有し、
    前記記憶部(61)は、前記状態情報を前記照合部(63)が搭乗者と判定した登録済利用者と関連付けて記憶し、前記学習部(66)は、前記操作回数を登録済利用者ごとに計数し、且つ登録済利用者の何れかについて計数された前記操作回数が前記第1の所定回数以上となったとき、前記登録済利用者に関連付けられた前記状態情報を用いて前記第1の確率モデルを構築する、請求項8又は9に記載の車両用空調装置。
  11. 空調空気を車両内に供給する空調部(10)と、空調設定を行う操作部(59)と、記憶部(61)とを有する車両用空調装置の制御方法であって、
    前記車両に関する状態を表す状態情報を取得するステップと、
    乗員が所定の設定操作を行う推薦確率を算出するための少なくとも一つの確率モデルに前記状態情報を入力して前記所定の設定操作を行う推薦確率を算出するステップと、
    前記推薦確率が所定の条件を満たす場合、前記推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、前記所定の設定操作となるように修正するステップと、
    前記修正された設定情報又は制御情報にしたがって、前記空調部(10)の空調制御を行うステップと、
    前記操作部(59)を通じて前記所定の設定操作が行われる度に、前記所定の設定操作時における前記状態情報を、前記所定の設定操作に関連付けて前記記憶部(61)に記憶する記憶ステップと、
    前記所定の設定操作を行った操作回数を第1の所定回数と比較する第1の比較ステップと、
    前記操作回数が前記第1の所定回数以上となった場合、前記所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、前記所定の操作に関連付けて前記記憶部(61)に記憶された前記状態情報を用いて構築する第1の構築ステップと、
    前記操作回数を第2の所定回数と比較する第2の比較ステップと、
    前記操作回数が第2の所定回数となったとき、前記所定の操作に関連付けて記憶された前記状態情報を前記記憶部(61)から消去し、且つ前記操作回数を初期化する初期化ステップと、
    前記初期化ステップ後に前記操作部(59)を通じて前記所定の設定操作が行われた場合、前記記憶ステップ及び前記第1の比較ステップを繰り返し、前記操作回数が前記第1の所定回数以上と判定された場合、前記所定の設定操作を行う推薦確率を算出するための第2の確率モデルを、前記所定の操作に関連付けて前記記憶部(61)に記憶された前記状態情報を用いて構築する第2の構築ステップと、
    を有することを特徴とする制御方法。
  12. 空調空気を車両内に供給する空調部(10)と、
    前記車両に関する状態を表す状態情報を取得する情報取得部(51、52、53、55、56、57、58)と、
    乗員が所定の設定操作を行う推薦確率を算出するための確率モデルを少なくとも一つ有し、前記状態情報を該少なくとも一つの確率モデルに入力して該所定の設定操作を行う推薦確率を算出し、該推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、前記所定の設定操作となるように修正する制御情報修正部(64)と、
    前記修正された設定情報又は制御情報にしたがって、前記空調部(10)の空調制御を行う空調制御部(65)と、
    前記車両外に設置されたサーバ(7)と、
    前記空調装置の空調設定を行う操作部(59)と、
    前記車両に搭載され、前記サーバと無線通信を行うための第1の通信部であって、所定期間が経過する度に、又は前記操作部(59)を通じて前記所定の設定操作が行われる度に若しくは前記所定の設定操作が所定回数行われる度に、前記所定の設定操作時における前記状態情報を前記所定の設定操作を表す設定操作情報とともに前記サーバ(7)へ送信する第1の通信部(67)とを有し、
    前記サーバ(7)は、
    前記設定操作情報に基づいて、前記所定の設定操作時における前記状態情報を前記所定の設定操作に関連付けて記憶する記憶部(72)と、
    前記所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、前記所定の設定操作に関連付けて前記記憶部(72)に記憶された前記状態情報を用いて構築する学習部(73)と、
    前記車両と無線通信を行うための第2の通信部であって、前記制御情報修正部(64)が前記第1の確率モデルを使用できるように、前記構築された第1の確率モデルを前記車両に送信する第2の通信部(71)とを有し、
    前記学習部(73)は、前記所定の操作に関連付けて前記記憶部(72)に記憶された前記状態情報を用いてグラフ構造及び該グラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、前記仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して前記第1の確率モデルとする
    ことを特徴とする車両用空調装置。
  13. 空調空気を車両内に供給する空調部(10)と、
    前記車両に関する状態を表す状態情報を取得する情報取得部(51、52、53、55、56、57、58)と、
    乗員が所定の設定操作を行う推薦確率を算出するための確率モデルを少なくとも一つ有し、前記状態情報を該少なくとも一つの確率モデルに入力して該所定の設定操作を行う推薦確率を算出し、該推薦確率に応じて、乗員の設定操作に関連する設定情報又は制御情報を、前記所定の設定操作となるように修正する制御情報修正部(64)と、
    前記修正された設定情報又は制御情報にしたがって、前記空調部(10)の空調制御を行う空調制御部(65)と、
    前記車両外に設置されたサーバ(7)と、
    前記空調装置の空調設定を行う操作部(59)と、
    前記車両に搭載され、前記サーバと無線通信を行うための第1の通信部であって、所定期間が経過する度に、又は前記操作部(59)を通じて前記所定の設定操作が行われる度に若しくは前記所定の設定操作が所定回数行われる度に、前記所定の設定操作時における前記状態情報を前記所定の設定操作を表す設定操作情報とともに前記サーバ(7)へ送信する第1の通信部(67)とを有し、
    前記サーバ(7)は、
    前記設定操作情報に基づいて、前記所定の設定操作時における前記状態情報を前記所定の設定操作に関連付けて記憶する記憶部(72)と、
    前記所定の設定操作を行う推薦確率を算出するための第1の確率モデルを、前記所定の設定操作に関連付けて前記記憶部(72)に記憶された前記状態情報を用いて構築する学習部(73)と、
    前記車両と無線通信を行うための第2の通信部であって、前記制御情報修正部(64)が前記第1の確率モデルを使用できるように、前記構築された第1の確率モデルを前記車両に送信する第2の通信部(71)とを有し、
    前記学習部(73)は、所定のグラフ構造を有する標準モデルを複数有し、前記複数の標準モデルの各々について、前記所定の操作に関連付けて前記記憶部(72)に記憶された前記状態情報を用いて前記所定のグラフ構造に含まれるノードの条件付き確率を決定して仮の確率モデルを構築し、前記仮の確率モデルのうち、所定の判定基準にしたがって最も適した仮の確率モデルを選択して前記第1の確率モデルとする、
    ことを特徴とする車両用空調装置。
  14. 前記所定の判定基準は情報量基準であり、前記学習部(73)は、前記仮の確率モデルの各々について算出された該情報量基準の値が最小あるいは最大となる仮の確率モデルを前記第1の確率モデルとする、請求項12又は13に記載の車両用空調装置。
  15. 前記学習部(73)は、前記所定の設定操作を行った操作回数が第1の所定回数以上となった場合、前記第1の確率モデルを構築する、請求項12〜14の何れか一項に記載の車両用空調装置。
  16. 前記学習部(73)は、前記所定の設定操作を行った操作回数が第2の所定回数となったとき、前記所定の操作に関連付けて記憶された前記状態情報を前記記憶部(72)から消去し、前記操作回数を初期化し、且つ、その後に前記所定の設定操作が前記第1の所定回数行われた場合、前記所定の設定操作を行う推薦確率を算出するための第2の確率モデルを、前記操作回数が前記第2の所定回数となった後において前記所定の設定操作が行われる度に前記所定の設定操作と関連付けて前記記憶部(72)に記憶された前記状態情報を用いて構築する、請求項15に記載の車両用空調装置。
  17. 搭乗者の情報を取得する搭乗者情報取得部(54)と、
    前記搭乗者情報を用いて、搭乗者と予め記憶された少なくとも一人の登録済利用者とを照合する照合部(63)を有し、
    前記第1の通信部(67)は、前記照合部(63)により搭乗者と判定された登録済み利用者の識別情報を、前記状態情報及び前記設定操作情報とともに前記サーバ(7)へ送信し、
    前記記憶部(72)は、前記識別情報に基づいて、前記状態情報を前記搭乗者と判定された登録済利用者と関連付けて記憶し、前記学習部(73)は、前記操作回数を登録済利用者ごとに計数し、且つ登録済利用者の何れかについて計数された前記操作回数が前記第1の所定回数以上となったとき、前記登録済利用者に関連付けられた前記状態情報を用いて前記第1の確率モデルを構築する、請求項15又は16に記載の車両用空調装置。
JP2007098522A 2006-09-22 2007-04-04 車両用空調装置およびその制御方法 Expired - Fee Related JP4985057B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007098522A JP4985057B2 (ja) 2006-09-22 2007-04-04 車両用空調装置およびその制御方法
US11/901,946 US7962441B2 (en) 2006-09-22 2007-09-19 Air conditioner for vehicle and controlling method thereof
DE102007045231A DE102007045231A1 (de) 2006-09-22 2007-09-21 Klimaanlage für Fahrzeug und Steuerverfahren dafür
CN2007101618552A CN101158496B (zh) 2006-09-22 2007-09-24 车辆用空调装置以及其控制方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006257448 2006-09-22
JP2006257448 2006-09-22
JP2007098522A JP4985057B2 (ja) 2006-09-22 2007-04-04 車両用空調装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2008100665A JP2008100665A (ja) 2008-05-01
JP4985057B2 true JP4985057B2 (ja) 2012-07-25

Family

ID=39435319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098522A Expired - Fee Related JP4985057B2 (ja) 2006-09-22 2007-04-04 車両用空調装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP4985057B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290637B2 (en) 2008-06-16 2012-10-16 GM Global Technology Operations LLC Vehicle control using stochastic information
JP5224280B2 (ja) * 2008-08-27 2013-07-03 株式会社デンソーアイティーラボラトリ 学習データ管理装置、学習データ管理方法及び車両用空調装置ならびに機器の制御装置
JP2014162276A (ja) * 2013-02-22 2014-09-08 Denso Corp 制御システム
JP6044556B2 (ja) * 2014-01-16 2016-12-14 株式会社デンソー 学習システム、車載装置、及び、サーバ
KR101628568B1 (ko) 2014-12-10 2016-06-09 현대자동차주식회사 차량용 공조 장치 제어 방법
KR101646124B1 (ko) * 2014-12-11 2016-08-05 현대자동차 주식회사 차량의 공조 제어 방법 및 그 장치
CN113085478B (zh) * 2021-03-30 2022-08-09 东风柳州汽车有限公司 车载空调控制方法、装置、设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176010A (ja) * 1992-12-08 1994-06-24 Toshiba Corp 確率モデル選択方法およびその装置
JP2003025825A (ja) * 2000-08-03 2003-01-29 Denso Corp 車両用空気調和装置
JP4164669B2 (ja) * 2003-09-29 2008-10-15 独立行政法人産業技術総合研究所 モデル作成装置、情報分析装置、モデル作成方法、情報分析方法、およびプログラム
JP4478769B2 (ja) * 2004-02-23 2010-06-09 独立行政法人産業技術総合研究所 情報処理装置、情報処理方法
JP4639296B2 (ja) * 2004-03-18 2011-02-23 株式会社デンソーアイティーラボラトリ 車両用情報処理システム、車両用情報処理方法およびプログラム
JP4531556B2 (ja) * 2004-12-27 2010-08-25 株式会社デンソーアイティーラボラトリ ユーザ支援装置及びユーザ支援方法
JP4237737B2 (ja) * 2005-08-04 2009-03-11 株式会社日本自動車部品総合研究所 車両搭載機器の自動制御装置、およびその装置を搭載した車両

Also Published As

Publication number Publication date
JP2008100665A (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4360409B2 (ja) 車両用空調装置、車両用空調装置の制御方法および制御装置
JP4990115B2 (ja) 位置範囲設定装置、移動物体搭載装置の制御方法および制御装置、ならびに車両用空調装置の制御方法および制御装置
US7962441B2 (en) Air conditioner for vehicle and controlling method thereof
JP4682992B2 (ja) 車両用空調装置、車両用空調装置の制御方法および制御装置
JP2009046115A (ja) 車両用空調装置及び車両用空調装置の制御方法
JP5224280B2 (ja) 学習データ管理装置、学習データ管理方法及び車両用空調装置ならびに機器の制御装置
JP4985057B2 (ja) 車両用空調装置およびその制御方法
US20090031741A1 (en) Automotive air conditioner and method for controlling automotive air conditioner
JP5078937B2 (ja) 車両用空調装置及び車両用空調装置の制御方法
JP4821536B2 (ja) 車両用空調装置及び車両用空調装置の制御方法
CN105774465B (zh) 使用众包数据的机动车暖通空调系统的自适应控制
JP4780035B2 (ja) 車両用空調装置
EP3582030A1 (en) Method and system for smart interior of a vehicle
JP4941342B2 (ja) 空調制御システム、車両用空調制御装置、車両用空調装置、空調制御方法
JP2016137818A (ja) 車室内空気向上システム
JP2008056078A (ja) 車両用空調装置
JP2007182139A (ja) 車載機器自動調整システム
JP4967810B2 (ja) 車両用空調装置およびその制御方法
JP4879065B2 (ja) 車両用空調装置、車両用空調装置の制御方法、車載機器制御装置および車載機器の制御方法
JP2019196035A (ja) 車両用空調システム
JP4789842B2 (ja) 車両用空調装置、車両用空調装置の制御方法、車載機器制御装置及び車載機器制御方法
JP5177667B2 (ja) 車両用空調装置及びその制御方法
JPH08188030A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4985057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees