Nothing Special   »   [go: up one dir, main page]

JP4412918B2 - 窒化物半導体発光素子及びその製造方法 - Google Patents

窒化物半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP4412918B2
JP4412918B2 JP2003150315A JP2003150315A JP4412918B2 JP 4412918 B2 JP4412918 B2 JP 4412918B2 JP 2003150315 A JP2003150315 A JP 2003150315A JP 2003150315 A JP2003150315 A JP 2003150315A JP 4412918 B2 JP4412918 B2 JP 4412918B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
light emitting
well
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003150315A
Other languages
English (en)
Other versions
JP2004356256A (ja
Inventor
吉裕 上田
有三 津田
貴之 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003150315A priority Critical patent/JP4412918B2/ja
Publication of JP2004356256A publication Critical patent/JP2004356256A/ja
Application granted granted Critical
Publication of JP4412918B2 publication Critical patent/JP4412918B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体レーザ素子、発光ダイオード、スーパールミネッセントダイオード等の発光素子及びその製造方法と、該発光素子を備えた光学装置に関するものである。
【0002】
【従来の技術】
従来、窒化物半導体素子の構造として、Si等のn型不純物を含まないIn0.15Ga0.85Nからなる4nmの井戸層とn型不純物としてSiを含むIn0.02Ga0.98Nからなる10nmの障壁層とが積層された多重量子井戸構造の発光層を有する素子が、非特許文献1で開示されている。
【0003】
図5は、従来の多重量子井戸構造である発光層のバンドダイヤグラムを示す図である。図5に示された発光層は、不純物がドーピングされていないInGaN層からなる井戸層と、n型の不純物としてSiが添加され、井戸層よりIn組成の低いInGaN層からなる障壁層とで構成される。
【0004】
【非特許文献1】
JPN.J.APPl.Phys.Vol.39(2000)PP.L647−L650
【0005】
【発明が解決しようとする課題】
しかしながら、非特許文献1に開示されている窒化物半導体レーザ素子には、発光効率(本明細書においては発光強度で比較している)が低く、また発振閾値電流密度も高いという課題がある。
【0006】
本発明は、上記の問題点に鑑み、発光効率の向上と発振閾値電流密度が十分に低い窒化物半導体発光素子を提供することを目的とする。また、その窒化物半導体発光素子の製造方法を提供することも目的とする。更に、その窒化物半導体発光素子を備えた光学装置を提供することも目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明は、n型窒化物半導体からなる第1層とp型窒化物半導体からなる第2層との間に、窒化物半導体からなる障壁層と不純物を含まないInGaNからなる井戸層とを有する量子井戸構造の発光層を形成した窒化物半導体発光素子において、前記障壁層と井戸層の間にInGaNからなる中間層を設け、前記障壁層、井戸層、及び中間層のIn組成比がそれぞれ異なることにより、発光効率の向上と低閾値電流密度化が可能となる。
【0008】
なお、前記中間層の一主面は、前記第1層側の障壁層の一主面と接することが望ましい。また、前記障壁層は、不純物を含まないInGaN、又はn型の不純物を含むGaNを用いることができる。
【0009】
また上記の窒化物半導体発光素子において、前記中間層のIn組成比は、前記障壁層と井戸層のIn組成比の間の値であることが望ましい。そして、前記中間層の層厚は、前記井戸層の層厚以下であることが望ましい。
【0010】
また、前記障壁層の層厚は4nm以上12nm以下で、前記井戸層の層厚は、2nm以上7nm以下であることが望ましい。
【0011】
また、前記中間層はInxGa1-xN(0<x≦0.1)であり、且つ前記井戸層はInyGa1-yN(x<y≦0.18)とすることができる。
【0012】
また、前記第1層、第2層、又は発光層に、As又はPの何れかを含むことができる。
【0013】
また、上記の窒化物半導体発光素子はそれを備えた光学装置に好適に用いることができる。
【0014】
そして、上記の窒化物半導体発光素子の障壁層を積層する工程の成長温度は、前記中間層を積層する工程の成長温度以上、且つ該成長温度より高温側に150℃以内の温度とすることが望ましい。
【0015】
【発明の実施の形態】
本明細書で述べる発光層は、特に説明がない限り複数の井戸層と複数の障壁層から構成された多重量子井戸構造を有する。その多重量子井戸は、井戸層/障壁層/井戸層/障壁層・・・/井戸層のように井戸層で始まって井戸層で終了する構造であっても良いし、障壁層/井戸層/障壁層/井戸層・・・/障壁層のように障壁層で始まって障壁層で終了する構造であっても構わない。
【0016】
〈実施形態1〉
本実施形態は、n型窒化物半導体からなる第1層とp型窒化物半導体からなる第2層との間に、窒化物半導体からなる障壁層と実質的に不純物を含まないInGaNからなる井戸層とが積層された多重量子井戸構造の発光層を有する窒化物半導体レーザ素子において、井戸層と障壁層の間に、井戸層と障壁層との間のIn組成比をもつInGaN中間層を含み、中間層の一主面が、第1層側の障壁層の一主面と接することによって、発光効率の向上と発振閾値電流密度の低減を図るものである。
【0017】
図1は、実施形態1の発光層のバンドダイヤグラムの一例を示す図である。この窒化物半導体レーザ素子は、アンドープのInGaN層からなる井戸層と、井戸層の第2層側の一主面と接したn型GaNからなる障壁層と、井戸層の第1層側の一主面と接した中間層とで構成される。この中間層は、井戸層および障壁層のいずれのIn組成比とも異なるアンドープのInGaN層よりなる。
【0018】
また、図2は実施形態1の発光層のバンドダイヤグラムの他の例を示す図である。この窒化物半導体レーザ素子は、アンドープのInGaN層からなる井戸層と、井戸層の第1層側及び第2層側のいずれの主面とも直接接しないn型GaNからなる障壁層と、井戸層の第1層側及び第2層側双方の主面と接する中間層とで構成される。この中間層は、井戸層および障壁層のいずれのIn組成比とも異なるアンドープのInGaN層よりなる。
【0019】
従来例である図5の窒化物半導体レーザ素子と本発明の図1及び図2の窒化物半導体レーザ素子を個別に作製した。本発明の窒化物半導体レーザ素子の製造方法は以下の実施形態2で詳細に述べる。
【0020】
従来及び本発明の窒化物半導体レーザ素子の、LEDモードにおけるEL発光強度を注入電流密度が0.67kA/cm2の条件で測定したところ、本発明の窒化物半導体レーザ素子のEL発光強度は、従来のそれと比較して強いことがわかった。任意単位の強度で比較すると、従来例の素子で13.6の発光強度であったのに対して、本発明の素子は図1又は図2のいずれの構造であっても22.3の発光強度を示した。従来の素子に対して、本発明の素子は発光強度が1.6倍に向上していることがわかる。この測定結果は、同じ注入電流密度であるため、それぞれの活性層(発光層)の発光効率を直接反映していると考えられ、本発明の素子は従来の素子に比べて発光効率が向上しているといえる。
【0021】
また、本発明者らによる他の実験結果によると、図5で示された従来の素子の障壁層をn型InGaN層からn型GaN層に変更しても、そのEL発光強度は殆ど同じであった。これらの実験結果から、窒化物半導体レーザ素子の発光効率を向上させるための一つの重要な手段として、発光層に用いられる障壁層が少なくともInGaN層(但し、井戸層のIn組成比と異なる)か、あるいは、GaN層であって、さらに、障壁層と井戸層の間に中間層が必要であることがわかる。
【0022】
本発明の発光層の構造を用いることによって、窒化物半導体レーザ素子の発光強度(発光効率)が向上する理由は、今だ明確になっていないが、本発明者らは、障壁層の形成後に連続して井戸層を形成する場合、それぞれの層の結晶組成が大きく異なっているため、障壁層の上に積層された井戸層の結晶性が劣化するのではないかと推測している。
【0023】
一般に、InGaNは、その組成として含まれるInが凝集して層内で組成不均一を起こし易い。この組成不均一は、下層から伝搬した欠陥上で特に生じやすい傾向にある。そのため、従来例のように、組成差の大きい障壁層と井戸層を連続的に接して積層した場合、In組成の高い井戸層中に組成不均一が生じ、発光効率を低下させると考えられる。
【0024】
しかし、図1に示すように、障壁層と井戸層の間に、それぞれの間のIn組成比を有する中間層を挿入することで、下層から伝搬する欠陥が中間層で遮断され、井戸層まで伝わる欠陥が減少してIn組成比の高い井戸層中でInの凝集による組成不均一が低減され、発光効率が向上すると考えられる。さらに、図2に示すように、井戸層から見て第1層側及び第2層側双方の障壁層との間にそれぞれの間のIn組成比を有する中間層を挿入することにより、中間層による欠陥の遮断がより一層促進され、井戸層に伝わる欠陥がさらに減少することが期待される。
【0025】
また、実施形態2において詳細に述べるように、窒化物半導体レーザ素子においては、発光層の上に近接して比較的Al組成比の高い(15%以上40%未満)p型AlGaN蒸発防止層が積層されている。本発明の障壁層の構造を有することによって、この蒸発防止層からの歪が適度に緩和されるのではないかと思われる。
【0026】
〈障壁層および中間層への不純物のドーピング〉
障壁層および中間層には、不純物がドーピングされてもされなくても構わないが、本発明者らの実験結果によれば、障壁層および中間層に全く不純物がドーピングされなかった場合、窒化物半導体レーザ素子のEL発光強度は非常に弱かった。これは、井戸層に注入されるキャリアの密度が不十分なためではないかと考えている。従って、少なくとも障壁層および中間層として用いるInGaNあるいはGaNには不純物をドーピングすることが好ましい。
【0027】
さらに好ましくは、障壁層と中間層の構成が、n型の不純物であるSiがドーピングされたGaN層と実質的に不純物を含まないInGaN層の組み合わせであった。これは、障壁層に不純物が存在しないことによって、障壁層内での自由キャリアによる散乱を低減し内部損失が増大するのを防いで閾値電流密度を低くすることができるからである。また、GaN障壁層は、InGaNからなる井戸層や中間層より高い成長温度帯域(井戸層の成長温度に対して+150℃以内)で成長することによって、結晶性を改善することが可能となる。n型不純物としてドーピングされるSiの濃度は、1×1017〜5×1018cm-3が好ましい。
【0028】
窒化物半導体レーザ素子の低閾値電流密度化において、井戸層は実質的に不純物を含まないInGaNから構成されることが好ましい。これは、井戸層内での自由キャリアによる散乱を低減し内部損失が増大するのを防いで閾値電流密度を低くするためである。
【0029】
〈障壁層に係わる製造方法について〉
発光層の製造方法において、障壁層であるGaN層は、同じ中間層であるInGaNと同じ成長温度(700℃〜830℃)か、それよりも150℃以内の高い温度で成長させることが好ましい。InGaN層の成長温度よりも150℃を超えた高い成長温度でGaN層を成長させると、GaN層の結晶性はより向上するものの、繰り返し積層された障壁層より下方の井戸層および中間層が熱によるダメージを受けて結晶性が悪化するためである。逆に、InGaN層の成長温度よりも低い成長温度でGaN層を成長させると、井戸層あるいは中間層であるInGaNの熱ダメージは減少するが、障壁層であるGaNの結晶性悪化が顕著となり、着目している障壁層より上方に繰り返し積層する中間層あるいは井戸層の結晶性を悪化させ、In組成比の不均一を招くため好ましくない。
【0030】
〈発光層の層厚について〉
上述のように、窒化物半導体レーザ素子における発光効率向上と閾値電流密度低減のため、障壁層は、中間層および井戸層の結晶性を悪化させずに且つGaN層の結晶性も損なわない範囲の温度で成長させる必要がある。障壁層のみを考慮すると、その層厚は、InGaN中間層の全層厚と等しいかそれよりも薄いことが好ましい。すなわち、成長する温度をできるだけ高くして結晶性を確保しつつ、井戸層および中間層の熱ダメージを押さえるため、高温に保たれる障壁層成長時間を短くして障壁層を薄くする。これにより、発光層全体の結晶性を上げることができる。
【0031】
具体的には、障壁層は5nm以上12nm以下の厚さであることが好ましい。障壁層が5nmよりも薄くなると、それより下方に成長済みの井戸層への熱的ダメージは軽減されるものの、バンド構造の傾きが弱くなるために、却って発光効率を低下させることになる。逆に、障壁層の厚みが12nmよりも厚くなると、それより下方に成長済みの井戸層への熱的ダメージが顕著になり、欠陥の減少効果よりも熱的なダメージの影響を受けて、発光効率の低下と閾値電流密度の増大を招く。
【0032】
また、実質的に不純物がドーピングされていないInGaN層からなる井戸層の厚みは、2nm以上7nm以下が好ましい。井戸層の厚みが2nmよりも薄くなると、井戸層内部に形成される量子準位が高くなり、キャリアが井戸層の外へ染み出して発光効率が低下する。逆に、井戸層の厚みが7nmよりも厚くなると、中間層により、伝搬を阻止された下方からの欠陥に加えて、本質的に凝集し易い性質を持つInにより、井戸層自体から新たな欠陥が生じ、発光効率の低下を招く。
【0033】
〈発光層のIn組成比〉
中間層を含む複数層または単層の井戸層と障壁層からなる多重量子井戸あるいは単一量子井戸構造の発光層は、次に述べるInGaN層を用いることができる。
【0034】
中間層のIn組成比は、InxGa1-xN(0<x≦0.1)とすることができる。特に好ましいIn組成比は、0<x≦0.05である。この範囲のIn組成比とすることで、中間層を用い、且つ前述した障壁層厚さの範囲内において、井戸層の結晶性を向上させることが可能となる。
【0035】
また、井戸層の組成比は目的とする素子の発振波長に合せてInyGa1-yN(x<y≦0.18)の範囲とすることができる。さらに、x<y≦0.1となるIn組成比が好ましい。本発明の発光層は従来例と比較して、障壁層と井戸層の間に中間層を有し、発光層全体の平均In組成比が高くなる傾向にあり、従来例に沿った設計では長波長化するため、井戸層のIn組成比を低くする必要がある。従来例では高いIn組成比が必要であった井戸層のInを減らすことができる本発明の活性層は、本質的に、Inが凝集し難い特徴を有している。このことと中間層の効果により、さらにIn凝集を押さえて発光効率の低下を防止し、閾値電流密度を低くすることができる。また、In組成が低いことで、井戸層の結晶成長温度を従来に比べて高く設定することができ発光層全体の結晶性が向上する。
【0036】
〈窒化物半導体レーザ素子構造へのAsまたはPの添加〉
窒化物半導体レーザ素子構造に結晶組成としてAsを添加する場合は、AsH3(アルシン)又はTBAs(ターシャリブチルアルシン)を、同様にPを添加する場合は、PH3(ホスフィン)またはTBP(ターシャリブチルホスフィン)を、それぞれ用いることができる。また、窒化物半導体のN原料として、NH3以外にジメチルヒドラジンを用いることもできる。
【0037】
窒化物半導体レーザ素子構造中に添加されるAsまたはPの組成比は、対象の窒化物半導体層を構成する元素群の総和をXとし、同じく或る窒化物半導体層に含有されたN元素の組成比をYとするとき、XはYよりも小さく、X/(X+Y)は0.3(30%)以下であり、特に0.15(15%)以下であることが好ましい。また、元素群の総和の下限値は、1×1018/cm3以上である。
【0038】
元素群の総和の組成比Xが15%よりも高くなると、窒化物半導体層内の特定の領域ごとに元素の組成比の異なる相分離が生じる可能性が高くなり好ましくない。さらに元素群の総和の組成比Xが30%よりも高くなると、前記の相分離から六方晶系と立方晶系が混在する結晶系分離に移行し易くなり、結晶性の低下を招く。一方、元素群の総和の添加量が1×1018/cm3よりも小さくなると、例えば下記で述べる発光層に上記の元素群が含有されたことによる効果が得られにくくなる。
【0039】
AsおよびPの元素群のうち少なくとも何れかの元素が、本発明の窒化物半導体レーザ素子の発光層に添加されると、発光層の電子と正孔の有効質量を小さく、また電子と正孔の移動度を大きくすることができる。前者は少ない電流注入量でレーザ発振のためのキャリア反転分布が得られることを意味し、後者は発光層で電子とホールが発光再結合によって消滅しても新たに電子・ホールが拡散により高速に注入されることを意味する。即ち、発光層にAsおよびPの元素群のうち何れも含有しないInGaN系窒化物半導体レーザ素子と比べて、さらに閾値電流密度が低く、自励発振特性の優れた(雑音特性に優れた)半導体レーザ素子を作製することができる。
【0040】
また、AsおよびPの元素群のうち少なくとも何れかの元素は、上記の発光層以外の層、例えば、光ガイド層、クラッド層、コンタクト層およびクラック防止層にも用いることができる。
【0041】
〈実施形態2〉
実施形態2は、図1で説明した多重量子井戸構造の発光層を含む窒化物半導体レーザ素子である。実施形態2で用いられる各種の構成やそのパラメータ等は適宜実施形態1と同様に変更することができる。
【0042】
図3は実施形態2の窒化物半導体レーザ素子の断面図である。窒化物半導体レーザ素子は、(0001)面n型GaN基板100、n型GaN層101、n型AlGaNクラッド層102、n型GaN光ガイド層103、発光層104、p型AlGaNキャリアブロック層105、p型GaN光ガイド層106、p型AlGaNクラッド層107、p型GaNコンタクト層108、n電極109、p電極110およびSiO2誘電体膜111から構成されている。
【0043】
まず、有機金属気相成長(MOCVD)装置を用いてn型GaN基板100上に素子構造を順次積層する。V族原料としてNH3を、III族原料としてTMGa(トリメチルガリウム)またはTEGa(トリエチルガリウム)を用い、n型不純物としてSiH4を用いて、1050℃にてn型GaN層101の下地層を1μm形成する。このn型GaN層101はn型GaN基板100の表面モフォロジーの改善と研磨によるGaN基板表面に残留した応力歪みを緩和させてエピタキシャル成長に相応しい最表面を形成するためのものである。
【0044】
次に、III族原料としてTMAl(トリメチルアルミニウム)またはTEAl(トリエチルアルミニウム)を追加して、1.2μm厚のn型AlGaNクラッド層102(Si不純物濃度1×1018/cm3)を成長させ、続いてn型GaN光ガイド層103(Si不純物濃度1×1018/cm3)を0.1μm成長させる。ここで、n型AlGaNクラッド層102のAl組成比は0.07とした。
【0045】
その後、基板温度を800℃に安定させ、厚さ4nmでSiがドーピングされたGaN障壁層(Si不純物濃度は1×1018/cm3)、厚さ4nmでアンドープのIn0.05Ga0.95N中間層および厚さ4nmでアンドープのIn0.15Ga0.85N井戸層を1周期とした3周期の多重量子井戸活性層を交互に積層し、最後にGaN障壁層を積層した発光層104を形成する。その際、障壁層の厚さとして、好ましくは4nmであるが、4nmから12nmの範囲であれば、なんら差し支えない。
【0046】
次に、基板温度を1050℃として安定させ、厚さ20nmのp型AlGaNキャリアブロック層105、厚さ0.1μmのp型GaN光ガイド層106、厚さ0.5μmのp型AlGaNクラッド層107および厚さ0.1μmのp型GaNコンタクト層108を順次成長させる。ここで、p型AlGaNキャリアブロック層105のAl組成比は0.3、p型AlGaNクラッド層107のAl組成比は0.1とした。また、p型不純物としてMg(EtCP2Mg:ビスエチルシクロペンタジエニルマグネシウム)を用いた。
【0047】
続いて、成長が完了したウエハーをMOCVD装置より取り出し、電極を形成する。n電極109は、ウエハーの裏面にHf/Alの順序で形成し、n電極109にn型電極パッドとしてAuを蒸着する。n電極材料としては、他に、Ti/Al、Ti/MoやHf/Au等を用いることができる。
【0048】
p電極110はストライプ状にエッチングし、リッジストライプ構造とする。リッジストライプの幅は1.7μmとした。その後、SiO2誘電体膜111を200nm蒸着し、p型GaNコンタクト層108が露出するように加工し、p電極110としてPd(15nm)/Mo(15nm)/Au(200nm)を順に蒸着し、素子が完成する。
【0049】
〈実施形態3〉
実施形態3は、図2で説明した多重量子井戸構造の発光層を含む窒化物半導体レーザ素子である。実施形態3で用いられる各種の構成やそのパラメータ等は適宜実施形態1と同様に変更することができる。
【0050】
実施形態2と同様に、有機金属気相成長(MOCVD)装置を用いてn型GaN基板100上に素子構造を順次積層する。実施形態2と異なる点は、基板温度を800℃に安定させ、厚さ4nmでSiがドーピングされたGaN障壁層(Si不純物濃度は1×1018/cm3)、厚さ4nmでアンドープのIn0.05Ga0.95N中間層、厚さ4nmでアンドープのIN0.15Ga0.85N井戸層および厚さ4nmでアンドープのIn0.05Ga0.95N中間層を1周期とした3周期の多重量子井戸活性層を交互に積層し、最後にGaN障壁層を積層した発光層104を形成する点である。その際、障壁層の厚さとして、好ましくは4nmであるが、4nmから12nmの範囲であれば、なんら差し支えない。
【0051】
実施形態2又は実施形態3の窒化物半導体レーザ素子には、n型GaN層101とn型AlGaNクラッド層102との間にクラック防止層を挿入することができる。クラック防止層として、実施形態1で述べた、GaNP、GaNAs、GaNP/GaN超格子およびGaNAs/GaN超格子を用いることができる。クラック防止層を挿入することにより、主としてAlGaNからなるクラッド層に生じるクラックを防止することが可能となる。
【0052】
なお実施形態2又は実施形態3において、井戸層は3周期に限らず、10周期以下であれば閾値電流密度を低く保つことができ、室温連続発振が可能であった。
【0053】
発明者らの知見によれば、発光層104のp型窒化物半導体層側の最外層である障壁層とp型AlGaNキャリアブロック層105との間に厚さ7nm以上35nm以下のアンドープInGaN層またはアンドープGaN層またはアンドープAlGaN層またはSiドープGaN層またはSiドープAlGaN層を挿入すると、閾値電流密度がより低減して好ましい。
【0054】
p型AlGaNキャリアブロック層105のAl組成比が高いことにより結晶性が低下し、転位等の結晶欠陥を発生させ、その欠陥を介したスパイク拡散によりMgが発光層に侵入するモデルを考える。このモデルによれば、前記のいずれかの層を挿入することによって、p型層からのスパイク拡散でMgが発光層に侵入することを防止することができる。また、これらの層を挿入することによって、p−nジャンクションの位置を固定することができるため、製造歩留まりを向上させることが可能となる。なお、p型AlGaNキャリアブロック層105のAl組成は0.3以外であっても差し支えない。
【0055】
また、n型GaN光ガイド層103とp型GaN光ガイド層106は、その層に実施形態1で述べたAsまたはPが結晶組成として添加されても差し支えない。n型AlGaNクラッド層102とp型AlGaNクラッド層107のAl組成は、上記以外であっても構わないし、GaN/AlGaNからなる超格子を用いても構わない。また、実施形態1で述べたAsまたはPが組成として添加されても構わない。
【0056】
実施形態2又は実施形態3では、基板としてGaN基板100を用いたが、AlGaN基板、サファイア基板、(111)面Si基板、サファイア基板上に形成されたELOG(Epitaxially Laterally Overgrown GaN)基板、GaN基板上に形成されたELOG基板またはSi(111)面上に形成されたELOG基板を用いても構わない。ELOG基板を用いる場合は、成長抑制膜(例えばSiO2膜)の幅の中央上方、および成長抑制膜が形成されていない領域の幅の中央上方に、窒化物半導体レーザ素子のリッジストライプ部分またはその電流狭窄部分が含まれないようにすることによって、レーザが長寿命化する。
【0057】
また実施形態2又は実施形態3では、本発明を窒化物半導体レーザ素子に適用したが、発光ダイオードやスーパールミネッセントダイオード等、発光素子全般に問題無く用いることができる。
【0058】
〈実施形態4〉
本実施形態では、本発明の窒化物半導体レーザ素子を半導体光学装置に適用した場合について説明する。
【0059】
本発明の窒化物半導体レーザ素子は、半導体光学装置、例えば光ピックアップに組み込むことでその特性を発揮できる。窒化物半導体レーザ素子は、レーザ発振閾値電流密度が低い(発光効率が高い)ことから低消費電力であり、電源容量が限られる携帯機器との親和性が高い。例えば、携帯型の高密度記録再生用光ディスク装置に用いることができる。
【0060】
図4に本発明の窒化物半導体レーザ素子を光ディスク装置(DVD装置などの光ピックアップを有する装置)に組み込んだ場合の概略図を示す。光ピックアップ207の窒化物半導体レーザ素子208から発振されたレーザ光200は、入力情報に応じて光変調器201で変調され、スプリッター205、追従鏡210、及びレンズ203を通して光ディスク204上に集光され、情報を記録する。再生時は、光ディスク204上に記録されたピット配列により光学的に変調されたレーザ光がスプリッター205を通して光検出器209で検出され、再生信号となる。これらの動作は制御回路206によって逐次制御され、光ディスク204はモータ211によって回転される。それぞれの動作でのレーザ出力は、典型的に、記録時において30mW、再生時において5mW程度である。
【0061】
本発明の光学装置は、光ピックアップを含む光ディスク装置の他に、例えば、レーザプリンタ、バーコードリーダおよび三原色(青色、緑色、赤色)レーザによるプロジェクタ等にも利用可能することができる。また、本発明の窒化物半導体レーザ素子を適用した発光ダイオードやスーパールミネッセントダイオードは、高輝度白色光源装置として利用することができる。
【0062】
【発明の効果】
本発明によると、発光効率が高く、レーザ発振閾値電流密度の低い窒化物半導体発光素子、その製造方法、及びその窒化物半導体発光素子を利用した高性能半導体光学装置の提供が可能となる。
【図面の簡単な説明】
【図1】 実施形態1の発光層のバンドダイヤグラムの一例を示す図である。
【図2】 実施形態1の発光層のバンドダイヤグラムの他の例を示す図である。
【図3】 実施形態2の窒化物半導体レーザ素子の断面図である。
【図4】 本発明の光ディスク装置の概略図である。
【図5】 従来の多重量子井戸構造である発光層のバンドダイヤグラムを示す図である。
【符号の説明】
100 n型GaN基板
101 n型GaN層
102 n型AlGaNクラッド層
103 n型GaN光ガイド層
104 発光層
105 p型AlGaNキャリアブロック層
106 p型GaN光ガイド層
107 p型AlGaNクラッド層
108 p型GaNコンタクト層
109 n電極
110 p電極
111 SiO2誘電体膜

Claims (9)

  1. n型窒化物半導体からなる第1層とp型窒化物半導体からなる第2層との間に、不純物を含まないInGaN又はn型の不純物を含むGaNからなる障壁層と不純物を含まないInGaNからなる井戸層とを有する量子井戸構造の発光層を形成した窒化物半導体発光素子において、
    前記障壁層は前記井戸層の第2層側の主面と接し、前記井戸層の第1層側の主面及び前記障壁層の第2層側の主面に接したInGaNからなる中間層を設け、前記障壁層、井戸層、及び中間層のIn組成比がそれぞれ異なり、
    前記中間層はInGa1−xN(0<x≦0.1)であり、且つ前記井戸層はInGa1−yN(x<y≦0.18)であることを特徴とする窒化物半導体発光素子。
  2. 前記中間層の一主面が、前記第1層側の障壁層の一主面と接することを特徴とする請求項1記載の窒化物半導体発光素子。
  3. 前記中間層のIn組成比は、前記障壁層と井戸層のIn組成比の間の値であることを特徴とする請求項1又は2記載の窒化物半導体発光素子。
  4. 前記中間層の層厚は、前記井戸層の層厚以下であることを特徴とする請求項1〜3の何れかに記載の窒化物半導体発光素子。
  5. 前記障壁層の層厚は、4nm以上12nm以下であることを特徴とする請求項1〜4の何れかに記載の窒化物半導体発光素子。
  6. 前記井戸層の層厚は、2nm以上7nm以下であることを特徴とする請求項1〜5の何れかに記載の窒化物半導体発光素子。
  7. 前記第1層、第2層、又は発光層に、As又はPの何れかを含むことを特徴とする請求項1〜6の何れかに記載の窒化物半導体発光素子。
  8. 請求項1〜7の何れかに記載の窒化物半導体発光素子を備えた光学装置。
  9. n型窒化物半導体からなる第1層とp型窒化物半導体からなる第2層との間に、不純物を含まないIn Ga 1−y N(x<y≦0.18)からなる井戸層と、前記井戸層の第2層側の主面に接する、不純物を含まないInGaN又はn型の不純物を含むGaNからなる障壁層と、前記井戸層の第1層側の主面及び前記障壁層の第2層側の主面に接したIn Ga 1−x N(0<x≦0.1)からなる中間層とを有する量子井戸構造の発光層を形成した窒化物半導体発光素子の製造方法であって、
    前記障壁層を積層する工程の成長温度は、前記中間層を積層する工程の成長温度以上、且つ該成長温度より高温側に150℃以内の温度であることを特徴とする窒化物半導体発光素子の製造方法。
JP2003150315A 2003-05-28 2003-05-28 窒化物半導体発光素子及びその製造方法 Expired - Fee Related JP4412918B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150315A JP4412918B2 (ja) 2003-05-28 2003-05-28 窒化物半導体発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150315A JP4412918B2 (ja) 2003-05-28 2003-05-28 窒化物半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004356256A JP2004356256A (ja) 2004-12-16
JP4412918B2 true JP4412918B2 (ja) 2010-02-10

Family

ID=34046151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150315A Expired - Fee Related JP4412918B2 (ja) 2003-05-28 2003-05-28 窒化物半導体発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP4412918B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329191B1 (en) * 2015-06-05 2022-05-10 Ostendo Technologies, Inc. Light emitting structures with multiple uniformly populated active layers

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482511B1 (ko) * 2004-02-05 2005-04-14 에피밸리 주식회사 Ⅲ-질화물계 반도체 발광소자
JP2006332258A (ja) * 2005-05-25 2006-12-07 Matsushita Electric Ind Co Ltd 窒化物半導体装置及びその製造方法
KR100818269B1 (ko) 2006-06-23 2008-04-01 삼성전자주식회사 질화물 반도체 발광소자
JP2009059784A (ja) * 2007-08-30 2009-03-19 Sharp Corp 窒化物系半導体発光素子
DE102007044439B4 (de) 2007-09-18 2022-03-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip mit Quantentopfstruktur
CN102138227A (zh) * 2008-08-29 2011-07-27 株式会社东芝 半导体装置
DE102009015569B9 (de) * 2009-03-30 2023-06-29 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip
KR101408610B1 (ko) 2009-12-21 2014-06-17 가부시끼가이샤 도시바 질화물 반도체 발광 소자 및 그 제조 방법
JP5443324B2 (ja) * 2010-11-26 2014-03-19 株式会社東芝 光半導体素子
JP5340351B2 (ja) * 2011-08-12 2013-11-13 パナソニック株式会社 窒化物半導体装置
JP5607106B2 (ja) * 2012-05-15 2014-10-15 株式会社東芝 窒化物半導体発光素子およびその製造方法
KR20140019635A (ko) * 2012-08-06 2014-02-17 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
JP6190585B2 (ja) * 2012-12-12 2017-08-30 スタンレー電気株式会社 多重量子井戸半導体発光素子
FR3050872B1 (fr) * 2016-04-27 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Diode electroluminescente comprenant au moins une couche intermediaire de plus grand gap disposee dans au moins une couche barriere de la zone active
DE102016116425A1 (de) * 2016-09-02 2018-03-08 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
JP7295371B2 (ja) 2018-08-31 2023-06-21 日亜化学工業株式会社 半導体レーザ素子
CN114825048A (zh) * 2022-04-08 2022-07-29 安徽格恩半导体有限公司 一种半导体激光元件
CN114825049A (zh) * 2022-04-20 2022-07-29 安徽格恩半导体有限公司 一种半导体激光器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329191B1 (en) * 2015-06-05 2022-05-10 Ostendo Technologies, Inc. Light emitting structures with multiple uniformly populated active layers
US11335829B2 (en) * 2015-06-05 2022-05-17 Ostendo Technologies, Inc. Multi-color light emitting structures with controllable emission color

Also Published As

Publication number Publication date
JP2004356256A (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
JP5186436B2 (ja) 窒化物半導体発光素子及びその製造方法
JP4412918B2 (ja) 窒化物半導体発光素子及びその製造方法
JP4703014B2 (ja) 窒化物半導体発光素子、光学装置、および半導体発光装置とその製造方法
JP2004087908A (ja) 窒化物半導体発光素子、その製造方法、それを搭載した光学装置
US6452216B1 (en) Nitride semiconductor light emitting device and apparatus including the same
JP4416297B2 (ja) 窒化物半導体発光素子、ならびにそれを使用した発光装置および光ピックアップ装置
JP3639789B2 (ja) 窒化物系半導体発光素子
JP3594826B2 (ja) 窒化物半導体発光素子及びその製造方法
US6858882B2 (en) Nitride semiconductor light-emitting device and optical device including the same
US6815728B2 (en) Nitride semiconductor light-emitting device and optical device and light-emitting apparatus with the nitride semiconductor light-emitting device
JP2008182275A (ja) 窒化物系半導体発光素子
WO2003043097A1 (fr) Dispositif emetteur ultraviolet
JP2002319702A (ja) 窒化物半導体素子の製造方法、窒化物半導体素子
JPH11298090A (ja) 窒化物半導体素子
JPH10145000A (ja) 窒化物半導体素子及びその製造方法
JP4854133B2 (ja) 窒化物半導体レーザ素子とこれを含む光学装置
JP4291960B2 (ja) 窒化物半導体素子
JP3314620B2 (ja) 窒化物半導体発光素子
JP4683730B2 (ja) 窒化物半導体発光素子とこれを含む装置
JP4936598B2 (ja) 窒化物半導体発光素子とその製法
JP4683731B2 (ja) 窒化物半導体レーザ素子とこれを含む光学装置
JP4334129B2 (ja) 窒化物半導体発光素子とそれを含む光学装置
JP4146881B2 (ja) 窒化物半導体発光素子およびエピウエハとその製造方法
JP2004146420A (ja) 窒化物半導体レーザ素子、その製造方法及びそれを備えた半導体光学装置
JP2005150568A (ja) 窒化物半導体発光素子及び光ピックアップ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees