Nothing Special   »   [go: up one dir, main page]

JP2005150568A - 窒化物半導体発光素子及び光ピックアップ装置 - Google Patents

窒化物半導体発光素子及び光ピックアップ装置 Download PDF

Info

Publication number
JP2005150568A
JP2005150568A JP2003388706A JP2003388706A JP2005150568A JP 2005150568 A JP2005150568 A JP 2005150568A JP 2003388706 A JP2003388706 A JP 2003388706A JP 2003388706 A JP2003388706 A JP 2003388706A JP 2005150568 A JP2005150568 A JP 2005150568A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor light
light emitting
carrier block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003388706A
Other languages
English (en)
Inventor
Yoshihiko Tani
善彦 谷
Shigetoshi Ito
茂稔 伊藤
Mototaka Tanetani
元隆 種谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003388706A priority Critical patent/JP2005150568A/ja
Publication of JP2005150568A publication Critical patent/JP2005150568A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 本発明は、前記p層領域への光のしみだしを抑制し良好な光出力特性を有し、かつ、ジッタが十分に低い窒化物半導体発光素子、およびその製造方法および当該窒化物半導体発光素子を用いた光ピックアップ装置を提案することを目的とする。
【解決手段】 本発明の窒化物半導体発光素子は、キャリアをトラップして発光する活性層と、該活性層へのキャリアの閉じ込めを行うキャリアブロック層と、前記活性層と前記キャリアブロック層の間に構成される40nm以上の中間層とを、備える窒化物半導体発光素子において、前記中間層の一部に、前記キャリアブロック層に接するとともに、エネルギーギャップが連続的に変化するグレイデッド層が構成され、前記グレイデッド層がAlxGa1-xN(0≦x≦1)層からなることを特徴とする。この構成によると、前記グレイデッド層を構成する材料が、結晶性の良好なAlGaNであるので、前記中間層でのホールキャリアの再結合を低減し、前記活性層へのホールキャリアの注入効率を従来と同等に維持しつつ、ジッタ特性を改善することができる。
【選択図】 図2

Description

本発明は窒化物半導体発光素子並びに当該素子を使用した光ピックアップ装置に関する。
可視光短波長領域の発光素子として化合物半導体を用いたものが知られている。中でも窒化ガリウム系半導体発光素子は直接遷移型であり発光効率が高く、かつ光の3原色の一つである青色を発光することから、昨今特に注目を集めている。前記窒化ガリウム系半導体発光素子において、通常p型層を構成するためにMgが不純物ドーパントとして用いられているが、このMgドープ層の光吸収が非常に大きく、光出力特性を劣化させていることが、従来、問題となっていた。
この問題を解決するため、図9に示すバンドダイヤグラム構造のように、p型AlGaNキャリアブロック層と多重量子井戸構造活性層との間に中間層が設けられたレーザ素子が提案されている(非特許文献1参照)。 尚、図9において、3層のInGaN量子井戸層8a、8b、8cと3層のInGaN障壁層7a、7b、7cとからなる多重量子井戸構造活性層6、n型InGaN層9、n型AlGaN層10、p型AlGaNキャリアブロック層11、p型GaNガイド層12、p型AlGaNクラッド層13が示されており、通常、Mgは、前記p型AlGaNキャリアブロック層11から積層される層にドープされ、Mgドープ領域(p層領域)が形成される。ここで前記p型AlGaNキャリアブロック層11のAl組成比は、通常0.2〜0.3程度であり、p層領域への電子キャリアの漏れを防止する効果を持たせている。
本構造によれば、前記p型AlGaNキャリアブロック層11と前記多重量子井戸構造活性層6の間に、n型InGaN層9およびn型AlGaN層10からなる中間層が設けられているので、前記p型AlGaNキャリアブロック層11と前記多重量子井戸構造活性層6の間の距離が130nmにまで広げられている。そのため、前記p層領域への光のしみだしが大幅に削減され、光吸収ロスが低減されて、従来よりも良好な光出力特性が得られている。
電子情報通信学会技術研究報告 LQE2002−87「青紫色ハイパワー半導体レーザー」
上述の参考文献1による技術は、前記p型AlGaNキャリアブロック層11と前記多重量子井戸構造活性層6の距離を広げることによって前記p層領域への光のしみだしを削減し、光出力特性を改善するために提案されたものである。しかし、前記p型AlGaNキャリアブロック層11と前記多重量子井戸構造活性層6の距離を広げるに従って、ホールキャリアが少数キャリアとして拡散する距離が増大する。このため、前記レーザ素子をパルス駆動したときにレーザ光出力の立ち上がり、立下り時間が長くなり、ジッタが大きくなる。特に、前記p型AlGaNキャリアブロック層11と前記多重量子井戸構造活性層6の距離を40nm以上とした場合には、このような問題が顕著なものになる。
本発明は、前記p層領域への光のしみだしを抑制し良好な光出力特性を有し、かつ、ジッタが十分に低い窒化物半導体発光素子、およびその製造方法および当該窒化物半導体発光素子を用いた光ピックアップ装置を提案することを目的とする。
上記目的を達成するために、本発明の窒化物半導体発光素子は、キャリアをトラップして発光する活性層と、該活性層へのキャリアの閉じ込めを行うキャリアブロック層と、前記活性層と前記キャリアブロック層の間に構成される40nm以上の中間層とを、備える窒化物半導体発光素子において、前記中間層の一部に、前記キャリアブロック層に接するとともに、エネルギーギャップが連続的に変化するグレイデッド層が構成され、前記グレイデッド層がAlxGa1-xN(0≦x≦1)層からなることを特徴とする。
この構成によると、前記グレイデッド層を構成する材料が、結晶性の良好なAlGaNであるので、前記中間層でのホールキャリアの再結合を低減し、前記活性層へのホールキャリアの注入効率を従来と同等に維持しつつ、ジッタ特性を改善することができる。
また、このような窒化物半導体発光素子において、前記中間層が前記グレイデッド層と、InGaN層又はGaN層と、から構成されるものとしても構わない。更に、前記InGaN層又は前記GaN層の層厚を10nm以上とすることで、前記活性層と前記グレイデッド層の間の格子歪を効果的に防ぐことができる。また、前記InGaN層又は前記GaN層の層厚を40nm以下とすることで、ホールキャリアの拡散時間を十分に短くすることができる。
また、このような窒化物半導体発光素子において、前記キャリアブロック層がAlGaNで構成され、前記キャリアブロック層におけるAl組成比の値x1と前記グレイデッド層におけるのAl組成比の最大値x2の差x1−x2が、0.1以上とすることで、60℃以上の高温時において、p層領域への電子キャリアのオーバーフローを効果的に抑制することができる。
また、このような窒化物半導体発光素子において、前記グレイデッド層のAl組成比の最大値x2と最小値x3の差x2−x3が、0.02以上としても構わない。
また、このような窒化物半導体発光素子において、前記グレイデッド層のAl組成比の最小値x3を、0.02以上とすることで、前記グレイデッド層と前記InGaN層の界面にポテンシャルバリアを形成することができ、60℃以上の高温時において、p層領域への電子キャリアのオーバーフローを効果的に抑制することができる。
また、このような窒化物半導体発光素子において、前記グレイデッド層を、成長温度を連続的に上昇させながら成長を行うランピング成長により形成されているものとしても構わない。このランピング成長を用いた場合、前記グレイデッド層が前記活性層からのInの脱離による劣化を防止する効果を果たすと共に前記グレイデッド層自体の結晶性を向上することができるため、寿命特性を改善できる。更に、上述の各窒化物半導体発光素子において、前記活性層を複数の量子井戸層と複数の障壁層より構成される量子井戸構造活性層とする。
また、本発明の窒化物半導体発光素子は、キャリアをトラップして発光する活性層と、該活性層へのキャリアの閉じ込めを行うAlxGa1-xNキャリアブロック層と、前記活性層と前記AlxGa1-xNキャリアブロック層の間に構成される40nm以上の中間層とを、備える窒化物半導体発光素子において、前記AlxGa1-xNキャリアブロック層の一部又は全体において、Al組成比が前記中間層に接する側から、その反対側に向かって連続的に減少している部分を備えることを特徴とする。
このような構成によると、Al組成比を連続的に変化させることにより、バンドダイヤグラム上のエネルギーギャップを連続的に変化させる。そのため、前記AlxGa1-xNキャリアブロック層とp型ガイド層の界面に生じていたポテンシャルバリアが緩和され、ホールキャリアの注入効率が向上する。
また、このような窒化物半導体発光素子において、前記AlxGa1-xNキャリアブロック層において、Al組成が前記中間層に接する側から反対側にかけて連続的に減少している部分の層厚を5nm以上とすることで、ホールキャリアの注入効率を十分高くすることができる。
また、このような窒化物半導体発光素子において、前記AlxGa1-xNキャリアブロック層のAl組成比の最大値を0.1以上とすることで、60℃以上の高温時において、p層領域への電子キャリアのオーバーフローを効果的に抑制することができる。
また、このような窒化物半導体発光素子において、前記AlxGa1-xNキャリアブロック層の層厚を10nm以上とすることで、トンネル効果によるp層領域への電子キャリアの流出を効果的に抑制できる。
また、このような窒化物半導体発光素子において、前記中間層の一部に、前記キャリアブロック層に接するとともに、エネルギーギャップが連続的に変化するグレイデッド層を備えるものとしても構わない。
本発明に係る光ピックアップ装置は、上述の各窒化物半導体発光素子から発せられた光を用いている。
本発明に係る窒化物半導体発光素子によると、グレイデッド層のAl組成が連続的に変化しているため、そのエネルギーギャップも連続的に変化し、ポテンシャル勾配を生じる。そのため、従来と比較してp層領域から活性層までのホールの拡散時間が短縮されるため、レーザ素子をパルス駆動する場合において、ジッタ特性が改善される。また、グレイデッド層がキャリアブロック層に接するよう構成されているため、n型層との界面に形成されるポテンシャルの溝をなくすことができる。そのため、活性層へのホールキャリアの注入が促進され、ジッタ特性が向上する。また、ホールの拡散時間の短縮及び活性層への注入の促進に伴い、レーザが発振する閾値が低減し、又、スロープ効率が向上する。また、グレイデッド層によりキャリアブロック層と活性層の間の格子歪を効果的に防ぐことができ、寿命特性が改善される。
本発明に係る窒化物半導体発光素子によると、グレイデッド層と、量子井戸層との間には、InGaN層又はGaN層が構成されることで、グレイデッド層と活性層の間の格子歪をさらに効果的に防ぐため、寿命特性が改善される。更に、InGaN層もしくはGaN層からなる層の膜厚を10nm以上とすることで、特に効果的に格子歪を防ぐことができる。また、InGaN層もしくはGaN層からなる層の膜厚を40nm以内に設定することで、ホール拡散時間を十分に短くすることができる。
本発明に係る窒化物半導体発光素子によると、キャリアブロック層を構成する材料AlGaNのAl組成比をx1とし、グレイデッド層のAl組成比の最大値をx2としたとき、x1とx2の差x1−x2を0.1以上とすることで、60℃以上の高温時におけるp層領域への電子キャリアのオーバーフローを効果的に抑制することができる。また、グレイデッド層のAl組成比の最大値x2と最小値x3の差x2−x3を0.02以上とし、エネルギーギャップに勾配をつけることによって、ホールキャリアの拡散時間が短くなり、ジッタが効果的に改善される。
本発明に係る窒化物半導体発光素子によると、グレイデッド層のAl組成比の最小値x3を0.02以上とすることによって、グレイデッド層とInGaN層又はGaN層との界面で、エネルギーギャップの値を不連続に変化させて、段差を設けた構造のエネルギーダイヤグラムとすると、グレイデッド層とInGaN層又はGaN層との界面に電子キャリアに対するポテンシャルバリアが形成され、60℃以上の高温時におけるp層領域への電子キャリアのオーバーフローを効果的に抑制できる。
本発明に係る窒化物半導体発光素子によると、グレイデッド層をランピング成長により形成することで、活性層からのIn脱離による劣化を防止する役割を効果的に果たすと共に、前記グレイデッド層自体の結晶性も良好なものとすることができるため、寿命特性を改善できる。
本発明に係る窒化物半導体発光素子によると、AlxGa1-xNキャリアブロック層中のAl組成比が連続的に変化しているため、AlxGa1-xNキャリアブロック層のエネルギーギャップが連続的に変化し、AlxGa1-xNキャリアブロック層とp型ガイド層の界面に生じていたポテンシャルバリアが緩和され、中間層へのホールキャリアの注入効率が向上する。また、従来構造の窒化物半導体発光素子と比較して、pn接合に印加する電圧を下げることができ、したがって動作電圧を改善することができるとともにAlxGa1-xNキャリアブロック層とn型層界面に従来形成されていたポテンシャルの溝を緩和することができ、中間層から活性層へのホールキャリアの注入効率も向上する。以上の効果によって、ジッタ特性を改善することができた。
本発明に係る窒化物半導体発光素子によると、AlxGa1-xNキャリアブロック層におけるAl組成比が連続的に変化している部分の層厚は5nm以上とすることで、ホールキャリアの注入効率が十分に高くなる。また、AlxGa1-xNキャリアブロック層の最大Al組成比を0.1以上とすることで、60℃以上の高温時におけるp層領域への電子キャリアのオーバーフローを効果的に抑制できる。更に、AlxGa1-xNキャリアブロック層の層厚を10nm以上とすることで、トンネル効果によるp層領域への電子キャリアの流出を効果的に抑制する。
本発明の窒化物半導体発光素子を搭載した光ピックアップ装置によると、該窒化物半導体発光素子によるジッタが低減されるため、良好な周波数特性を得ることができる。
<第1の実施形態>
本発明の第1の実施形態について、図面を参照して説明する。窒化物半導体発光素子の一例として、窒化ガリウム系半導体レーザ素子について説明する。図1は、本実施形態における窒化ガリウム系半導体レーザ素子の構成を示す概略断面図である。
まず、窒化ガリウム系半導体レーザ素子の構造について説明する。図1の窒化ガリウム系半導体レーザ素子は、c面を表面とするサファイア基板1、GaNバッファ層2、n型GaNコンタクト層3、n型Al0.1Ga0.9Nクラッド層4、n型GaNガイド層5、3層のIn0.2Ga0.8N量子井戸層8a、8b、8c(図2)と3層のIn0.01Ga0.99N障壁層7a、7b、7c(図2)とからなる多重量子井戸構造活性層6、n型In0.01Ga0.99N層9a、n型AlxGaN1-xグレイデッド層10a、p型Al0.2Ga0.8Nキャリアブロック層11a、p型GaNガイド層12、p型Al0.1Ga0.9Nクラッド層13a、p型GaNコンタクト層14、p側電極15、n側電極16、SiO2 絶縁膜17から、構成されている。18はレーザ素子全体を示している。
尚、本実施形態を含む以下の各実施形態において、窒化ガリウム系半導体レーザ素子の共振器長を500μmとするとともに、その共振器前面反射率及び後面反射率をそれぞれ、20%、90%とする。又、前記サファイア基板1の表面の面方位は、c面に限定されず、a面、r面、m面等の他の面方位であっても構わない。
次に、図1を参照して、窒化ガリウム系半導体レーザ素子の製造方法を説明する。以下の説明ではMOCVD法(有機金属気相成長法)を用いた場合を示しているが、GaNをエピタキシャル成長できる成長法であれば、MOCVD法に限定されるものではなく、MBE法(分子線エピタキシャル成長法)やHDVPE(ハイドライド気相成長法)等、他の気相成長法を用いても構わない。
まず、所定の成長炉内に設置されたc面を表面として有する前記サファイア基板1上に、トリメチルガリウム(TMG)とアンモニア(NH3)を原料に用いて、成長温度550℃で前記GaNバッファ層2を35nm成長させる。次に、成長温度を1050℃まで上昇させて、TMGとNH3 、及びシランガス(SiH4)を原料に用いて、厚さ3μmのSiドープされた前記n型GaNコンタクト層3を成長させる。さらに続けて、トリメチルアルミニウム(TMA)を原料に加え、成長温度を1050℃で維持して、厚さ0.7μmのSiドープされた前記n型Al0.1Ga0.9Nクラッド層4を成長させる。続けて、TMAを原料から除外し、成長温度を1050℃のままとして、厚さ50nmのSiドープされた前記n型GaNガイド層5を成長させる。
次に、成長温度を750℃に下げ、TMGとNH3、及びトリメチルインジウム(TMI)を原料に用いて、前記3層のIn0.2Ga0.8N量子井戸層8a、8b、8c、前記3層のIn0.01Ga0.99N障壁層7a、7b、7cを順次、交互に成長させることにより、前記多重量子井戸構造活性層6を作製する。なお、それぞれの層厚はすべて5nmである。
次に、成長温度750℃を維持し、前記n型In0.01Ga0.99N層9aを20nm成長させ、引き続いて、TMGとTMAとNH3を原料に用い、これらの原料ガスの供給量をそれぞれ変化させながら、Al組成比が変化している前記n型AlxGaN1-xグレイデッド層10aを20nm作製する。このとき、例えばTMAの含有率を連続的に増加させるなどして、Al組成比を変化させる。このAl組成の分布は前記n型In0.01Ga0.99N層9aに接する界面においてAl組成比xが0、前記p型Al0.2Ga0.8Nキャリアブロック層11に接する界面にて前記Al組成比xが0.1となるよう作製する。
これに引き続き、TMGとTMAとNH3、及びシクロペンタジエニルマグネシウム(Cp2Mg) を原料に用いて、成長温度は750℃を維持し、厚さ10nmの前記p型Al0.2Ga0.8Nキャリアブロック層11aを成長させる。次に、成長温度を1050℃に上昇させ、TMGとNH3、及びシクロペンタジエニルマグネシウム(Cp2Mg)を原料に用いて、厚さ50nmのMgドープされた前記p型GaNガイド層12を成長させる。
なお、前記n型AlxGaN1-xグレイデッド層10a、前記p型Al0.2Ga0.8Nキャリアブロック層11aおよび前記p型GaNガイド層12は次のような方法によっても形成することができる。TMGとTMAとNH3を原料に用い、これらの原料ガスの供給量を一定もしくは変化させながら、前記多重量子井戸構造活性層6および前記n型In0.01Ga0.99N層9aの成長温度750℃から1050℃にまで、成長温度を連続的に上昇させながら、成長を行う。本成長方法をランピング成長と呼ぶ。以上の方法によって、Al組成比が連続的に変化している前記n型AlxGaN1-xグレイデッド層10aが形成される。
これに引き続き、成長温度を1050℃のままで、厚さ10nmの前記p型Al0.2Ga0.8Nキャリアブロック層11aを成長させ、さらに、TMGとNH3、及びシクロペンタジエニルマグネシウム(Cp2Mg)を原料に用いて、厚さ50nmのMgドープされた前記p型GaNガイド層12を成長させる。このような成長方法を用いた場合、ランピング成長により形成された前記n型AlxGaN1-xグレイデッド層10aが前記多重量子井戸構造活性層6からのIn脱離による劣化を防止する役割を効果的に果たすと共に、前記n型AlxGaN1-xグレイデッド層10aの結晶性を改善できるため、寿命特性を改善できる。
上述のようにして、前記n型AlxGaN1-xグレイデッド層10a、前記p型Al0.2Ga0.8Nキャリアブロック層11a、前記p型GaNガイド層12を形成すると、TMAを原料に加え、成長温度を1050℃で維持して、厚さ0.7μmのMgドープされた前記p型Al0.1Ga0.9Nクラッド層13aを成長させる。そして、さらに、成長温度を1050℃で維持した状態で、TMAを原料から除外し、厚さ0.2μmのMgドープされた前記p型GaNコンタクト層14を成長させ、窒化ガリウム系エピタキシャルウエーハを完成する。その後、当該窒化ガリウム系エピタキシャルウエーハを800℃の窒素ガス雰囲気中でアニールすることで、Mgドープされたp型層を低抵抗化する。
このように各層を前記サファイア基板1上に積層すると、まず、通常のフォトリソグラフィーとドライエッチング技術を用いて、200μm幅のストライプ状に前記p型GaNコンタクト層14の最表面から、前記n型GaNコンタクト層3が露出するまでエッチングを行う。そして、次に、同様のフォトリソグラフィーとドライエッチング技術を用いて、エッチングされずに残った前記p型GaNコンタクト層14の最表面に5μm幅のストライプ状にリッジ構造が形成されるように、前記p型GaNコンタクト層14、および前記p型Al0.1Ga0.9Nクラッド層13aをエッチングする。続いて、前記リッジの側面(前記p型GaNコンタクト層14の側面)と前記リッジ以外のp型層表面(前記p型Al0.1Ga0.9Nクラッド層13aの表面)に、厚さ200nmの前記SiO2 絶縁膜17を形成する。この前記SiO2 絶縁膜17と前記p型GaNコンタクト層14の表面にニッケルと金からなる前記p側電極15を形成し、エッチングにより露出した前記n型GaNコンタクト層3の表面に、チタンとアルミニウムからなる前記n側電極16を形成し、窒化ガリウム系半導体レーザ素子が作製されたウエーハが出来上がる。
その後、前記ウエーハをリッジストライプに垂直な方向に劈開してレーザの共振器端面を形成し、さらに個々のチップに分割する。そして、各チップをステムに搭載し、ワイヤーボンディングにより各電極とリード端子とを接続し、窒化ガリウム系半導体レーザ素子18を完成する。
図2に、以上の方法で作製された本実施形態の窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラムを示す。図2には、前記3層のIn0.2Ga0.8N量子井戸層8a、8b、8cと前記3層のIn0.01Ga0.99N障壁層7a、7b、7cとからなる前記多重量子井戸構造活性層6、前記n型In0.01Ga0.99N層9a、前記n型AlxGaN1-xグレイデッド層10a、前記p型Al0.2Ga0.8Nキャリアブロック層11a、前記p型GaNガイド層12、前記p型Al0.1Ga0.9Nクラッド層13a、それぞれのエネルギーギャップを示す。ここで前記n型AlxGaN1-xグレイデッド層10aにおいて、そのAl組成xは、前記多重量子井戸構造活性層6側で最も低く、活性層から離れるにしたがって連続的にAl組成比が高くなり、前記p型Al0.2Ga0.8Nキャリアブロック層11aに接する部分で最も高くなるよう構成される。
以上の構成において、前記n型AlxGaN1-xグレイデッド層10aのAl組成が連続的に変化しているため、図2に示されるようにそのエネルギーギャップも連続的に変化し、ポテンシャル勾配を生じる。そのため、従来と比較してp層領域から前記多重量子井戸構造活性層6までのホールの拡散時間が短縮されるため、レーザ素子をパルス駆動する場合において、ジッタ特性が改善される。また従来の構造では、前記p型AlGaNキャリアブロック層11とn型層の界面において、電圧印加時にn型層のバンドがプラスのエネルギー側に曲がり、前記p型AlGaNキャリアブロック層11との界面においてポテンシャルの溝が形成されていた。このポテンシャルの溝に電子キャリアが溜まり、前記多重量子井戸構造活性層6へのホールキャリアの注入が妨げられていた。しかし、本実施形態では、前記n型AlxGaN1-xグレイデッド層10aが前記p型Al0.2Ga0.8Nキャリアブロック層11aに接するよう構成されているため、n型層との界面に形成されるポテンシャルの溝をなくすことができる。そのため、活性層へのホールキャリアの注入が促進され、ジッタ特性が向上する。
また、ホールの拡散時間の短縮及び前記多重量子井戸構造活性層6への注入の促進に伴い、レーザが発振する閾値が低減し、又、スロープ効率が向上する。また、前記n型AlxGaN1-xグレイデッド層10aにより前記p型Al0.2Ga0.8Nキャリアブロック層11aと前記多重量子井戸構造活性層6の間の格子歪を効果的に防ぐことができ、寿命特性が改善される。尚、前記n型AlxGaN1-xグレイデッド層10aをn型InxGaN1-xにより構成した場合も、本実施形態と同様なバンドダイヤグラムを得ることが可能である。しかし、前記中間層すべてが結晶性の悪いInGaN層により構成されているため、ホールの注入効率が極端に低下し、光出力特性が逆に悪化し、結果、ジッタ特性が改善されることがない。すなわち、本実施形態における特性向上は、結晶性の良好なAlGaN材料からなる前記n型AlxGaN1-xグレイデッド層10aを前記p型Al0.2Ga0.8Nキャリアブロック層11aに接するよう構成することにより、達成されたと考えられる。
さらに、前記n型AlxGaN1-xグレイデッド層10aと、前記In0.2Ga0.8N量子井戸層8cとの間には、前記n型In0.01Ga0.99N層9aが構成されており、前記n型AlxGaN1-xグレイデッド層10aと前記多重量子井戸構造活性層6の間の格子歪をさらに効果的に防ぐため、寿命特性が改善される。また、前記n型In0.01Ga0.99N層9aに材料として用いられているInGaNの代わりに、GaNからなる層を設けることでも同様の効果が得られる。このとき、前記n型In0.01Ga0.99N層9aもしくは前記GaNからなる層の膜厚を10nm以上とすることで特に効果的に格子歪を防ぐことができるため、好ましい。また、前記n型In0.01Ga0.99N層9aもしくは前記GaNからなる層の膜厚は、ホール拡散時間を十分に短くするため、40nm以内に設定するのが好ましい。
また、前記p型Al0.2Ga0.8Nキャリアブロック層11aは、p型ドーパントとしてMgを適用することができる。このとき、通常、Mg濃度は1019cm-3以上1021cm-3以下とされている。Mg濃度が1019cm-3以下の場合、前記p型Al0.2Ga0.8Nキャリアブロック層11aが高抵抗化し、動作電圧の上昇を招く。またMg濃度が1021cm-3以上の場合、前記p型Al0.2Ga0.8Nキャリアブロック層11aの結晶性が悪化し、歩留まりの低下の原因となる。また、前記p型Al0.2Ga0.8Nキャリアブロック層11aの厚さが、5nmよりも薄くなると、トンネル効果により電子がp型層領域に注入され、一方、その厚さが30nmよりも厚くなると、前記多重量子井戸構造活性層6に与える結晶歪みの影響が大きくなり、歩留まりの低下を招く。よって、前記p型Al0.2Ga0.8Nキャリアブロック層11aの厚さは5nm以上30nm以下とするのが好ましい。
上述のように構成することで、本実施形態における窒化ガリウム系半導体レーザ素子において、良好な光出力特性とともに、良好なジッタ特性を得ることができる。
尚、本実施形態において、p型キャリアブロック層を構成する材料AlxGa1-xNのAl組成比をx1とし、n型AlxGaN1-xグレイデッド層のAl組成比の最大値をx2としたとき、x1とx2の差x1−x2を0.1以上とすることで、60℃以上の高温時におけるp層領域への電子キャリアのオーバーフローを効果的に抑制することができるため、好ましい。また、n型AlxGaN1-xグレイデッド層のAl組成比を、連続的ではなくステップ状に変化させても構わない。
<第2の実施形態>
本発明の第2の実施形態について、図面を参照して説明する。図3は、本実施形態の窒化ガリウム系半導体レーザ素子のバンドダイヤグラムである。尚、本実施形態における窒化ガリウム系半導体レーザ素子の構成は、図1のような構成となる。但し、図1において、前記n型AlxGaN1-xグレイデッド層10aが、本実施形態における後述のn型AlxGaN1-xグレイデッド層10bに相当する。又、本実施形態における窒化ガリウム系半導体レーザ素子の作製方法も第1の実施形態と同様であるので、その詳細な説明は、第1の実施形態を参照するものとして、省略する。
本実施形態の窒化ガリウム系半導体レーザ素子では、第1の実施形態と異なり、前記n型AlxGaN1-xグレイデッド層10bのAl組成比の最小値x3を0.02以上とすることによって、図3のように前記n型AlxGaN1-xグレイデッド層10bと前記n型In0.01Ga0.99N層9aとの界面で、エネルギーギャップの値を不連続に変化させて、段差を設けた構造のエネルギーダイヤグラムとする。結果、このような構造のエネルギーダイヤグラムとすることで、前記n型AlxGaN1-xグレイデッド層10bと前記n型In0.01Ga0.99N層9aとの界面に電子キャリアに対するポテンシャルバリアが形成され、60℃以上の高温時におけるp層領域への電子キャリアのオーバーフローを効果的に抑制できる。また、前記n型AlxGaN1-xグレイデッド層10bのAl組成比の最大値x2と最小値x3の差x2−x3を0.02以上とし、エネルギーギャップに勾配をつけることによって、ホールキャリアの拡散時間が短くなり、ジッタが効果的に改善される。
<第3の実施形態>
本発明の第3の実施形態について、図面を参照して説明する。図4は、本実施形態における窒化ガリウム系半導体レーザ素子の構成を示す概略断面図である。尚、本実施形態では、上述の第1の実施形態における前記n型In0.01Ga0.99N層9aおよび前記n型AlxGaN1-xグレイデッド層10aから構成される中間層と前記p型Al0.2Ga0.8Nキャリアブロック層11aからなる部分が変更されている。これらの部分以外については、第1の実施形態と同様の構成となるので、図4において、同一の符号を付すとともに、その詳細な説明は、第1の実施形態を参照するものとして、省略する。
図4に示す窒化ガリウム系半導体レーザ素子は、図1の窒化ガリウム系半導体レーザ素子におけるn型In0.01Ga0.99N層9a及びn型AlxGaN1-xグレイデッド層10a及びp型Al0.2Ga0.8Nキャリアブロック層11aに相当する部分に、層厚40nmのn型In0.01Ga0.99N層9b及び、p型AlxGa1-xNキャリアブロック層11bが構成される。このとき、前記p型AlxGa1-xNキャリアブロック層11bにおいて、そのAl組成比xは、前記多重量子井戸構造活性層6側で最も高く、前記p型GaNガイド層12に近づくに従って連続的にAl組成比が低くなり、前記p型GaNガイド層12に接する部分で最も低くなるよう構成されている。例えば、前記p型AlxGa1-xNキャリアブロック層11bにおいて、前記多重量子井戸構造活性層6側では、そのAl組成比xを20%とし、又、前記p型GaNガイド層12側では、そのAl組成比を0%とする。
次に、図4を参照して、本実施形態の窒化ガリウム系半導体レーザの作製方法を説明する。前記GaNバッファ層2、前記n型GaNコンタクト層3、前記n型Al0.1Ga0.9Nクラッド層4、前記n型GaNガイド層5、前記3層のIn0.2Ga0.8N量子井戸層8a、8b、8cと前記3層のIn0.01Ga0.99N障壁層7a、7b、7cから構成された前記多重量子井戸構造活性層6までの作製方法は、第1の実施形態と同様である。そして、前記多重量子井戸構造活性層6が構成されると、引き続き、成長温度を750℃として、前記n型In0.01Ga0.99N層9bを40nm成長させる。
そして、成長温度750℃を維持した状態で、TMGとTMAとNH3を原料に用いて、これらの原料ガスの供給量をそれぞれ変化させながら、Al組成が連続的に変化している前記p型AlxGa1-xNキャリアブロック層11bを成長させる。このとき、例えば、TMAの含有率を連続的に増加させるなどして、Al組成比を変化させる。当該p型AlxGa1-xNキャリアブロック層11b中のAl組成比の値が、前記n型In0.01Ga0.99N層9bに接する界面側で0.2であり、前記p型GaNガイド層12側に向かって、0.2から0へ連続的に変化する分布構成となるよう作製する。以後の作製方法は、第1の実施形態と同様である。
図5に、本実施形態における窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラムを示す。本実施形態では、前記p型AlxGa1-xNキャリアブロック層11bのエネルギーギャップが、前記多重量子井戸構造活性層6側で最も大きく、前記p型GaNガイド層12側に近づくに従って連続的に減少している。前記バンドダイヤグラムの構造は、前記p型AlxGa1-xNキャリアブロック層11bにおけるAl組成比が、前記多重量子井戸構造活性層6側で最も大きな値をとり、そして前記p型GaNガイド層12側に近づくに従って連続的に減少するよう構成することで得られた。
上述の構造のように、前記p型AlxGa1-xNキャリアブロック層11b中のAl組成比が連続的に変化しているため、図5に示されるように、前記p型AlxGa1-xNキャリアブロック層11bのエネルギーギャップが連続的に変化し、前記p型AlxGa1-xNキャリアブロック層11aと前記p型GaNガイド層12の界面に生じていたポテンシャルバリアが緩和され、中間層へのホールキャリアの注入効率が向上する。また、従来構造の窒化物半導体発光素子と比較して、pn接合に印加する電圧を下げることができ、動作電圧を改善することができるとともに、AlxGa1-xNキャリアブロック層とn型層界面に従来形成されていたポテンシャルの溝を緩和することができ、中間層から活性層へのホールキャリアの注入効率も向上する。以上の効果によって、ジッタ特性を改善することができた。
<第4の実施形態>
本発明の第4の実施形態について、図面を参照し以下に説明する。本実施形態において、窒化ガリウム系半導体レーザ素子の各層の断面構造は、図4のような構成になる。但し、図4において、前記p型AlxGa1-xNキャリアブロック層11bが、本実施形態における後述のp型AlxGa1-xNキャリアブロック層11c(図6)に相当する。それ以外の部分については、第3の実施形態と同様であるので、第3の実施形態を参照するものとして、詳細な説明は省略する。
本実施形態における窒化ガリウム系半導体レーザ素子の作製方法は、前記p型AlxGa1-xNキャリアブロック層11cを除き、第3の実施形態と同様である。当該p型AlxGa1-xNキャリアブロック層11cは、成長温度750℃でTMGとTMAとNH3を原料に用い、これらの原料ガスの供給量をそれぞれ変化させながら、Al組成が変化している前記p型AlxGa1-xNキャリアブロック層11cを作成する。本実施形態では、キャリアブロック層が10nm成長するまで、TMAの含有率を一定に保持したのち、TMAの含有率を連続的に増加させるなどして、Al組成比を変化させる。Al組成比の分布が前記p型AlxGa1-xNキャリアブロック層11cにおいて、前記n型In0.01Ga0.99N層9bに接する界面側の10nmでは、Al組成比を0.2と一定とするとともに、前記p型GaNガイド層12側の5nmでは、Al組成比は0.2から0へ連続的に減少させる。
図6に、本実施形態の窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラムを示す。本実施形態において、前記p型AlxGa1-xNキャリアブロック層11cが図6のように、バンドギャップが等しい層と前記p型GaNガイド層12に向かってバンドギャップが小さくなる層とを備えた構成となる。前記p型AlxGa1-xNキャリアブロック層11cの一部において、前記p型GaNガイド層12に向かってエネルギーギャップが連続的に小さくするようにすることで、第3の実施形態と同様の効果を得ることができる。
尚、ホールキャリアの注入効率を十分に高くするため、前記p型AlxGa1-xNキャリアブロック層11cにおけるAl組成比が連続的に変化している部分の層厚は5nm以上とすることが好ましい。また、60℃以上の高温時におけるp層領域への電子キャリアのオーバーフローを効果的に抑制するため、前記p型AlxGa1-xNキャリアブロック層11cの最大Al組成比を0.1以上とすることが好ましい。また、トンネル効果によるp層領域への電子キャリアの流出を効果的に抑制するため、前記p型AlxGa1-xNキャリアブロック層11cの層厚を10nm以上とすることが好ましい。
尚、第3の実施形態と第4の実施形態において、グレイデッド層を備えていない構成を例として説明したが、例えば第1の実施形態と同様に、活性層側からキャリアブロック側に向かって、バンドギャップが広がるようなグレイデッド層を設けるものとしても構わない。
例として、図7に窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラムを示す。このように、第1又は第2の実施形態と、第3又は第4の実施形態の構造を組み合わせることによって、良好な光出力特性を有し、かつ、ジッタを十分に低くすることに対し、より大きな効果を得ることができる。
尚、上述の各実施形態においては、サファイア基板を使用したが、基板に用いる材質は、サファイア基板に限定されず、SiC基板、スピネル基板、MgO基板、Si基板、またはGaAs基板でも構わない。このとき、特にSiC基板の場合はサファイア基板に比べて劈開しやすいため、劈開によるレーザ共振器端面の形成が容易であるという利点がある。また、前記サファイア基板上のバッファ層に用いる材質として、基板上に窒化ガリウム系半導体をエピタキシャル成長させることが出来るものであれば、GaNに限定されず、他の材料、例えばAlNやAlGaN3元混晶でも構わない。また、前記サファイア基板および前記GaNバッファ層の代わりに、GaN基板に置き換えても構わない。また、クラックを防止する目的として、InGaN層を前記サファイア基板の上に積層してもよい。
また、上述の各実施形態において、2つの前記クラッド層の組成材料として、Al0.1Ga0.9NのAl組成比を持つAlGaN3元混晶を用いたが、例えば、微量に他の元素を含んだ4元以上の混晶半導体などの他の材料を用いても構わない。さらに、クラッド層において、混晶の組成を変え、当該二つのクラッド層それぞれの混晶の組成比が異なるものとしても構わない。
また、前記2つのガイド層については、前記多重量子井戸構造活性層を構成する前記3層の量子井戸層のエネルギーギャップの値と、前記n型クラッド層及び前記p型クラッド層のエネルギーギャップの値との間に、そのエネルギーギャップの値があれば、例えばInGaN、AlGaN等の3元混晶やInGaAlN等の4元混晶等を用いても構わない。
また、前記多重量子井戸構造活性層を構成する前記量子井戸層と前記障壁層は、必要なレーザ発振波長に応じてその組成比を設定する。発振波長を長くしたいときは前記量子井戸層のIn組成比の値を大きくし、短くしたいときは前記量子井戸層のIn組成比の値を小さくする。また、前記量子井戸層と前記障壁層は、InGaN3元混晶に微量に他の元素を含んだ4元以上の混晶半導体としても構わない。また、前記障壁層は、その構成材料をGaNに置き換えても構わない。
さらに、前記多重量子井戸構造活性層を構成する前記量子井戸層と前記障壁層の層厚をともに、それぞれ、5nm以外の層厚としても構わない。それぞれの層厚が同一である必要はなく、異なるものとしても構わない。また、量子井戸層を3層以外の層数としても構わない。
<窒化ガリウム系半導体レーザ素子を用いた光ピックアップ装置の例>
本発明によって得られた窒化ガリウム系半導体レーザ素子を用いた光ピックアップ装置の光ピックアップ部分の構成図を図8に示す。窒化ガリウム系半導体レーザ素子19から出射した光が、トラッキングビーム生成用の回折格子20により、2つのトラッキング用副ビームと信号読み出し用主ビームとの3つの光ビームに分けられる。当該光は、ホログラム素子21を0次光として透過し、コリメートレンズ22で平行光に変換された後、対物レンズ23にてディスク盤面上24に集光される。
この集光された光はディスク盤面上に形成されたピットにより、光強度が変調されて反射し、前記対物レンズ23及び前記コリメートレンズ22を透過した後に、前記ホログラム素子21により回折され、この1次光成分がD1からD5の5分割の受光面からなる分割型受光素子25に入射される。そしてこの5分割の受光面からの出力を加減算することにより、信号読み出し用とトラッキング用の信号を得ることができる。
このような光ピックアップ部を有する光ピックアップ装置に対し、本発明で記載したジッタ-が低減された窒化ガリウム系半導体レーザ素子を使用することで、良好な周波数特性を得ることができる。また、本発明で得られた窒化ガリウム系半導体レーザ素子の適応は、本例に記載されている光学系に限定されるものではなく、他の光学系とそれを用いた光ピックアップ部からなる光ピックアップ装置に適応することが可能である。
本発明の第1の実施形態又は第2の実施形態における窒化ガリウム系半導体レーザ素子の構成を示す概略断面図である。 本発明の第1の実施形態における窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラム図である。 本発明の第2の実施形態における窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラム図である。 本発明の第3の実施形態又は第4の実施形態における窒化ガリウム系半導体レーザ素子の構成を示す概略断面図である。 本発明の第3の実施形態における窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラム図である。 本発明の第4の実施形態における窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラム図である。 本発明の第1又は第2の実施形態と、第3又は第4の実施形態の構造を組み合わせた窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラム図である。 本発明による窒化ガリウム系半導体レーザ素子を用いた光ピックアップ装置図である。 従来の窒化ガリウム系半導体レーザ素子の一部のバンドダイヤグラム図である。
符号の説明
1 サファイア基板
2 GaNバッファ層
3 n型GaNコンタクト層
4 n型Al0.1Ga0.9Nクラッド層
5 n型GaNガイド層
6 多重量子井戸構造活性層
7a In0.01Ga0.99N障壁層
7b In0.01Ga0.99N障壁層
7c In0.01Ga0.99N障壁層
8a In0.2Ga0.8N量子井戸層
8b In0.2Ga0.8N量子井戸層
8c In0.2Ga0.8N量子井戸層
9 n型InGaN層
9a n型In0.01Ga0.99N層
9b n型In0.01Ga0.99N層
10 n型AlGaN層
10a n型AlxGaN1-xグレイデッド層
10b n型AlxGaN1-xグレイデッド層
11 p型AlGaNキャリアブロック層
11a p型Al0.2Ga0.8Nキャリアブロック層
11b p型AlxGa1-xNキャリアブロック層
11c p型AlxGa1-xNキャリアブロック層
12 p型GaNガイド層
13 p型AlGaNクラッド層
13a p型Al0.1Ga0.9Nクラッド層
14 p型GaNコンタクト層
15 p側電極
16 n側電極
17 SiO2 絶縁膜
18 窒化ガリウム系半導体レーザ素子
19 窒化ガリウム系半導体レーザ素子
20 回折格子
21 ホログラム素子
22 コリメートレンズ
23 対物レンズ
24 ディスク盤面上
25 分割型受光素子
D1 5分割の受光面
D2 5分割の受光面
D3 5分割の受光面
D4 5分割の受光面
D5 5分割の受光面

Claims (14)

  1. キャリアをトラップして発光する活性層と、該活性層へのキャリアの閉じ込めを行うキャリアブロック層と、前記活性層と前記キャリアブロック層の間に構成される40nm以上の中間層とを、備える窒化物半導体発光素子において、
    前記中間層の一部に、前記キャリアブロック層に接するとともに、エネルギーギャップが連続的に変化するグレイデッド層が構成され、
    前記グレイデッド層がAlxGa1-xN(0≦x≦1)層からなることを特徴とする窒化物半導体発光素子。
  2. 前記中間層が、前記グレイデッド層と、InGaN層又はGaN層と、からなることを特徴とする請求項1に記載の窒化物半導体発光素子。
  3. 前記InGaN層又は前記GaN層の層厚が10nm以上であることを特徴とする請求項2に記載の窒化物半導体発光素子。
  4. 前記InGaN層又は前記GaN層の層厚が40nm以下であることを特徴とする請求項2に記載の窒化物半導体発光素子。
  5. 前記キャリアブロック層がAlGaNで構成され、前記キャリアブロック層におけるAl組成比の値x1と前記グレイデッド層におけるAl組成比の最大値x2との差x1−x2が、0.1以上であることを特徴とする請求項1〜請求項4のいずれかに記載の窒化物半導体発光素子。
  6. 前記グレイデッド層のAl組成比の最大値x2と最小値x3との差x2−x3が、0.02以上であることを特徴とする請求項1〜請求項5のいずれかに記載の窒化物半導体発光素子。
  7. 前記グレイデッド層のAl組成比の最小値x3が、0.02以上であることを特徴とする請求項1〜請求項6のいずれかに記載の窒化物半導体発光素子。
  8. 前記グレイデッド層が、成長温度を上昇させながら作製を行うランピング成長により、形成されていることを特徴とする請求項1〜請求項7のいずれかに記載の窒化物半導体発光素子。
  9. キャリアをトラップして発光する活性層と、該活性層へのキャリアの閉じ込めを行うAlxGa1-xNキャリアブロック層と、前記活性層と前記AlxGa1-xNキャリアブロック層の間に構成される40nm以上の中間層とを、備える窒化物半導体発光素子において、
    前記AlxGa1-xNキャリアブロック層の一部又は全体において、Al組成比が前記中間層に接する側から、その反対側に向かって連続的に減少している部分を備えることを特徴とする窒化物半導体発光素子。
  10. 前記AlxGa1-xNキャリアブロック層において、Al組成が前記中間層に接する側から、その反対側に向かって連続的に減少している部分の層厚が5nm以上であることを特徴とする請求項9に記載の窒化物半導体発光素子。
  11. 前記AlxGa1-xNキャリアブロック層のAl組成比の最大値が0.1以上であることを特徴とする請求項9又は請求項10に記載の窒化物半導体発光素子。
  12. 前記AlxGa1-xNキャリアブロック層の層厚が10nm以上であることを特徴とする請求項9〜請求項11のいずれかに記載の窒化物半導体発光素子。
  13. 前記中間層の一部に、前記AlxGa1-xNキャリアブロック層に接するとともに、エネルギーギャップが連続的に変化するグレイデッド層が構成され、前記AlxGa1-xNキャリアブロック層の一部又は全体において、Al組成比が前記中間層に接する側から、その反対側に向かって連続的に減少している部分を備えることを特徴とする請求項9〜請求項12のいずれかに記載の窒化物半導体発光素子。
  14. 請求項1〜請求項13のいずれかに記載の窒化物半導体発光素子を記録メディアに対して、レーザ光を放射するレーザ素子として用いることを特徴とする光ピックアップ装置。
JP2003388706A 2003-11-19 2003-11-19 窒化物半導体発光素子及び光ピックアップ装置 Pending JP2005150568A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388706A JP2005150568A (ja) 2003-11-19 2003-11-19 窒化物半導体発光素子及び光ピックアップ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388706A JP2005150568A (ja) 2003-11-19 2003-11-19 窒化物半導体発光素子及び光ピックアップ装置

Publications (1)

Publication Number Publication Date
JP2005150568A true JP2005150568A (ja) 2005-06-09

Family

ID=34695657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388706A Pending JP2005150568A (ja) 2003-11-19 2003-11-19 窒化物半導体発光素子及び光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP2005150568A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130097A (ja) * 2007-11-22 2009-06-11 Sharp Corp Iii族窒化物半導体発光素子及びその製造方法
JP2009267231A (ja) * 2008-04-28 2009-11-12 Rohm Co Ltd 窒化物半導体レーザ
US9124071B2 (en) 2012-11-27 2015-09-01 Nichia Corporation Nitride semiconductor laser element
JPWO2018003551A1 (ja) * 2016-06-30 2019-04-18 パナソニックIpマネジメント株式会社 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
WO2019146478A1 (ja) * 2018-01-23 2019-08-01 ソニーセミコンダクタソリューションズ株式会社 半導体レーザおよび電子機器
WO2019187583A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 半導体発光素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168158A (ja) * 1997-08-20 1999-03-09 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体装置
JPH11340580A (ja) * 1997-07-30 1999-12-10 Fujitsu Ltd 半導体レーザ、半導体発光素子、及び、その製造方法
JP2001102633A (ja) * 1999-07-26 2001-04-13 Sharp Corp 窒化物系化合物半導体発光素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340580A (ja) * 1997-07-30 1999-12-10 Fujitsu Ltd 半導体レーザ、半導体発光素子、及び、その製造方法
JPH1168158A (ja) * 1997-08-20 1999-03-09 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体装置
JP2001102633A (ja) * 1999-07-26 2001-04-13 Sharp Corp 窒化物系化合物半導体発光素子の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130097A (ja) * 2007-11-22 2009-06-11 Sharp Corp Iii族窒化物半導体発光素子及びその製造方法
JP2009267231A (ja) * 2008-04-28 2009-11-12 Rohm Co Ltd 窒化物半導体レーザ
US9124071B2 (en) 2012-11-27 2015-09-01 Nichia Corporation Nitride semiconductor laser element
US9312661B2 (en) 2012-11-27 2016-04-12 Nichia Corporation Nitride semiconductor laser element
JPWO2018003551A1 (ja) * 2016-06-30 2019-04-18 パナソニックIpマネジメント株式会社 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
JP7046803B2 (ja) 2016-06-30 2022-04-04 ヌヴォトンテクノロジージャパン株式会社 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
US11271368B2 (en) 2018-01-23 2022-03-08 Sony Semiconductor Solutions Corporation Semiconductor laser and electronic apparatus
CN111386638A (zh) * 2018-01-23 2020-07-07 索尼半导体解决方案公司 半导体激光器和电子设备
JPWO2019146478A1 (ja) * 2018-01-23 2021-01-07 ソニーセミコンダクタソリューションズ株式会社 半導体レーザおよび電子機器
WO2019146478A1 (ja) * 2018-01-23 2019-08-01 ソニーセミコンダクタソリューションズ株式会社 半導体レーザおよび電子機器
JP7412176B2 (ja) 2018-01-23 2024-01-12 ソニーセミコンダクタソリューションズ株式会社 半導体レーザおよび電子機器
CN111386638B (zh) * 2018-01-23 2024-05-14 索尼半导体解决方案公司 半导体激光器和电子设备
JPWO2019187583A1 (ja) * 2018-03-30 2020-07-16 パナソニック株式会社 半導体発光素子
CN111937261A (zh) * 2018-03-30 2020-11-13 松下半导体解决方案株式会社 半导体发光元件
US11070028B2 (en) 2018-03-30 2021-07-20 Nuvoton Technology Corporation Japan Semiconductor light emitting element
WO2019187583A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 半導体発光素子

Similar Documents

Publication Publication Date Title
EP1014455B1 (en) Nitride semiconductor device
JP3653169B2 (ja) 窒化ガリウム系半導体レーザ素子
US6614824B2 (en) Nitride semiconductor laser device and optical device using the same
US6858882B2 (en) Nitride semiconductor light-emitting device and optical device including the same
JP4703014B2 (ja) 窒化物半導体発光素子、光学装置、および半導体発光装置とその製造方法
JP5036617B2 (ja) 窒化物系半導体発光素子
US6815728B2 (en) Nitride semiconductor light-emitting device and optical device and light-emitting apparatus with the nitride semiconductor light-emitting device
JP5186436B2 (ja) 窒化物半導体発光素子及びその製造方法
US6617607B2 (en) Nitride semiconductor laser device and optical pickup apparatus therewith
JPWO2005020396A1 (ja) GaN系III−V族化合物半導体発光素子及びその製造方法
JP2004087908A (ja) 窒化物半導体発光素子、その製造方法、それを搭載した光学装置
JP4412918B2 (ja) 窒化物半導体発光素子及びその製造方法
JP3904709B2 (ja) 窒化物系半導体発光素子およびその製造方法
JPH10229217A (ja) 半導体発光素子
JPH10261838A (ja) 窒化ガリウム系半導体発光素子及び半導体レーザ光源装置
JP4854133B2 (ja) 窒化物半導体レーザ素子とこれを含む光学装置
JP2009510763A (ja) 発光ダイオード
JP2002270971A (ja) 窒化物半導体素子
JPH07176826A (ja) 窒化ガリウム系化合物半導体レーザ素子
JP2005150568A (ja) 窒化物半導体発光素子及び光ピックアップ装置
JP3933637B2 (ja) 窒化ガリウム系半導体レーザ素子
JP4334129B2 (ja) 窒化物半導体発光素子とそれを含む光学装置
JP4683731B2 (ja) 窒化物半導体レーザ素子とこれを含む光学装置
JPH10303459A (ja) 窒化ガリウム系半導体発光素子およびその製造方法
JP4146881B2 (ja) 窒化物半導体発光素子およびエピウエハとその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060125

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A131 Notification of reasons for refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914