JP4314035B2 - 超音波診断装置 - Google Patents
超音波診断装置 Download PDFInfo
- Publication number
- JP4314035B2 JP4314035B2 JP2003006932A JP2003006932A JP4314035B2 JP 4314035 B2 JP4314035 B2 JP 4314035B2 JP 2003006932 A JP2003006932 A JP 2003006932A JP 2003006932 A JP2003006932 A JP 2003006932A JP 4314035 B2 JP4314035 B2 JP 4314035B2
- Authority
- JP
- Japan
- Prior art keywords
- frame data
- elastic
- data
- signal
- elasticity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012545 processing Methods 0.000 claims description 97
- 238000000034 method Methods 0.000 claims description 42
- 239000000523 sample Substances 0.000 claims description 30
- 238000006073 displacement reaction Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000012935 Averaging Methods 0.000 claims description 16
- 238000007906 compression Methods 0.000 claims description 14
- 230000006835 compression Effects 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 11
- 238000002604 ultrasonography Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 21
- 230000015654 memory Effects 0.000 description 19
- 230000006837 decompression Effects 0.000 description 17
- 210000001519 tissue Anatomy 0.000 description 16
- 230000008859 change Effects 0.000 description 13
- 238000003745 diagnosis Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 238000005457 optimization Methods 0.000 description 8
- 230000002123 temporal effect Effects 0.000 description 8
- 238000009530 blood pressure measurement Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000009877 rendering Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4272—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
- A61B8/429—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by determining or monitoring the contact between the transducer and the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
- G01S7/52042—Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/52071—Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8934—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
- G01S15/8936—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in three dimensions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20216—Image averaging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Acoustics & Sound (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
【発明の属する技術分野】
本発明は、超音波を利用して被検体内の診断部位について断層像を得て表示する超音波診断装置に係り、特に時系列に並んだの1組のRF信号フレームデータからその画像上の各点の歪み及び弾性率を演算し、生体組織の硬さまたは柔らかさを定量的に示す弾性画像として表示することができる超音波診断装置に関する。
【0002】
【従来の技術】
従来の一般的な超音波診断装置は、被検体に超音波を送信及び受信する超音波送受信手段と、この超音波送受信手段からの反射エコー信号を用いて運動組織を含む被検体内の断層像データを所定周期で繰り返して得る断層走査手段と、この断層走査手段によって得た時系列断層像データを表示する画像表示手段とを有して構成されている。そして、被検体内部の生体組織の構造を例えばBモード像として表示している。
【0003】
これに対して、最近では、この超音波装置を用いて、診断部位の生体組織の弾性率を計測し、これを弾性率画像として表示することが行われるようになってきた。このような超音波装置として、特許文献1又は特許文献2に記載されたものなどがある。
【特許文献1】
特開平5−317313号公報
【特許文献2】
特開2000−60853号公報
【0004】
【発明が解決しようとする課題】
最近では、被検体の体表面から加圧装置もしくは超音波探触子で人為的に外力を与えて、その状態で時系列的に変化する隣接する2フレーム(連続2フレーム)同士の超音波受信信号の相関演算を行い、各点における変位を求め、さらにその変位を空間微分することにより歪みを計測し、この歪みデータを画像化する手法が行われるようになってきた。また、外力による応力分布と歪みデータに基づいて生体組織のヤング率等に代表される弾性率データを画像化する手法も現実的になってきている。このような歪み及び弾性率データ(以下、弾性フレームデータ)を基にして作成された弾性画像によれば、生体組織の硬さや柔らかさを計測して表示することができる。
【0005】
しかし、このような従来の超音波診断装置による弾性フレームデータの画像化処理は、一連の加圧もしくは減圧操作の過程の間に取得された時系列的に隣接するRF信号フレームデータ間の相関演算を利用している関係上、これらの複数のRF信号フレームデータの組を構成するRF信号フレームデータの間の時間間隔において与えられた加圧量もしくは減圧量が、弾性画像データの描出に適した加圧量もしくは減圧量(一般に1%程度)に十分に達しなかった場合、弾性フレームデータによる弾性画像を適切に描出することが困難であるという問題があった。
【0006】
また、一連の加圧もしくは減圧操作の過程の間に、その加圧時もしくは減圧時の速度が時間的に一定であっても、対象となる被検体を垂直方向に均等に加圧できている時相ばかりであるとは限らない。対象を斜め方向に及び/又は不均等に加圧もしくは減圧してしまうことによって生じる時相、即ち、対象物内の応力分布の時間的変化が不連続になっている時相が生じ得る。このような時相においては、時間軸方向の1連の弾性フレームデータ(歪みデータ)の中に応力分布の時間的変化に不連続な飛びのある座標領域が生じるため、弾性画像としても、時間的に不連続な飛びのある領域をノイズとして含む映像となり画像診断を困難なものとしてしまうという問題があった。
【0007】
本発明の目的は、上述の点に鑑み、弾性画像診断において、弾性の違いを画像として効果的に、且つ、高いS/N比を持って、任意の時相においても安定して映像化することができる超音波診断装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の超音波診断装置の第1の特徴は、被検体に超音波を発生させる振動子を含む超音波探触子と、前記超音波探触子に超音波を送受信させる超音波送受信手段と、受信した超音波に基づきRF信号フレームデータを生成する整相加算手段と、 少なくとも2つの前記RF信号フレームデータを選択するRF信号フレームデータ選択手段と、前記RF信号フレームデータ選択手段によって選択された一組のRF信号フレームデータに基づいて歪み又は弾性率を表す弾性フレームデータを生成する弾性演算手段と、前記弾性フレームデータの特徴量に基づいて、画像化する範囲の上限値及び下限値を前記弾性フレームデータに設定し、前記上限値及び下限値を所定の表示階調の範囲に対応させて弾性画像を生成する弾性データ処理手段と、前記弾性画像を表示する画像表示手段と、を有する。加圧もしくは減圧速度が変動した場合でも、時系列的に取得された一連の弾性画像データの中の同一領域の白黒輝度もしくは色相の変動を抑制し、時間的に安定した映像を提供することができるようになり、画像診断を容易なものとすることができる。
【0009】
本発明の超音波診断装置の第2の特徴は、前記第1の特徴に記載の超音波診断装置において、前記RF信号フレームデータ選択手段が、変位計測対象となるRF信号フレームデータの組として、現時点のRF信号フレームデータと、これより任意のフレーム数だけ過去に遡った所定フレーム間隔数だけ離れたRF信号フレームデータとを選択することができ、前記フレーム間隔数をユーザーインターフェイスによって任意に設定・変更できるようにしたことにある。これは、現RF信号フレームデータと過去のRF信号フレームデータとの間のフレーム間隔数を、弾性フレームデータによる弾性画像を適切に描出することが可能となるように、ユーザーインターフェイスで任意に十分大きくできるようにしたものである。
【0010】
本発明の超音波診断装置の第3の特徴は、前記第1の特徴に記載の超音波診断装置において、前記RF信号フレームデータ選択手段が、変位計測対象となるRF信号フレームデータの組として、現時点のRF信号フレームデータと、任意の固定時刻のRF信号フレームデータとを選択することができ、前記固定時刻をユーザーインターフェイスによって任意に設定・切り替えられるようにしたことにある。これは、過去のRF信号フレームデータを任意の固定時刻のものとすることによって、現RF信号フレームデータと固定時刻のRF信号フレームデータとの間のフレーム間隔数を、弾性フレームデータによる弾性画像を適切に描出することが可能となるように、ユーザーインターフェイスで任意に十分大きくできるようにしたものである。
【0011】
本発明の超音波診断装置の第4の特徴は、前記第1、第2又は第3の特徴に記載の超音波診断装置において、前記弾性フレームデータ演算手段が、現時点の弾性フレームデータと数フレーム分過去の弾性フレームデータとの間で、同座標データ点同士の加算平均処理を行い、その加算平均処理後の弾性フレームデータを現時点の弾性フレームデータとして前記弾性画像生成手段に出力するものであって、前記加算平均処理において選択される前記数フレーム分過去の弾性フレームデータのフレーム総数と前記加算平均処理の採否をユーザーインターフェイスによって任意に設定・変更できるようにしたことにある。これは、弾性フレームデータの加算平均処理を現弾性フレームデータと過去数フレーム分の弾性フレームデータとの間で行うようにしたものである。これによって、時間軸方向の弾性フレームデータの間での加算平均処理を行うことにより、時間的に不連続な飛びのある領域を連続的になるように緩和することができ、これによってノイズを低減することができる。また、加算平均処理の採否やフレーム総数をユーザーインターフェイスによって任意に設定・変更できるようにした。
【0012】
本発明の超音波診断装置の第5の特徴は、前記第1、第2又は第3の特徴に記載の超音波診断装置において、前記弾性フレームデータ演算手段が、生成された前記弾性フレームデータを対数変換など圧縮方式に従って圧縮処理を行うものであって、前記圧縮方式とその採否をユーザーインターフェイスによって任意に設定・変更できるようにしたことにある。これは、弾性フレームデータに対して対数変換など圧縮処理を行うようにしたものである。これによって、入力された弾性フレームデータにおいて、小さい値を有した領域(硬い部分の領域)の座標空間的な値の変化過程は敏感な弾性フレームデータとなり、大きい値を有した領域(柔らかい部分の領域)の座標空間的な値の変化過程は鈍感な弾性フレームデータとなり、硬い領域を際立たせて、硬化部の輪郭を把握することが容易にできるようにすることができる。
【0013】
本発明の超音波診断装置の第6の特徴は、前記第1、第2又は第3の特徴に記載の超音波診断装置において、前記弾性フレームデータ演算手段が、生成された前記第1の弾性フレームデータに対して所定の統計処理を行い、その結果の統計的特徴量を基準にして、前記弾性画像を生成する際に画像化する範囲として選択される前記第2の弾性フレームデータの上限値及び下限値を決定し、前記第2の弾性フレームデータと、前記上限値及び下限値を前記情報変換手段に出力するにようにしたことにある。このように弾性フレームデータの統計的特徴量を基準にして画像化する範囲の上限値及び下限値を決定することによって、加圧もしくは減圧速度が変動した場合でも、時系列的に取得された一連の弾性画像の中の同一領域の白黒輝度もしくは色相の変動を抑制し、時間的に安定した映像を提供することができるようになり、画像診断を容易なものとすることができる。
【0014】
本発明の超音波診断装置の第7の特徴は、前記第1の特徴から第6の特徴までのいずれか1の特徴に記載の超音波診断装置において、時系列のRF信号フレームデータに基づいて断層フレームデータを生成する信号処理手段と、この信号処理手段によって生成された時系列の断層フレームデータを断層像に変換する断層像変換手段とを備え、前記断層像及び弾性画像の少なくとも一方を表示することにある。これは、弾性画像の表示に加えて通常の断層像を表示することのできる超音波診断装置に関するものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。図1は、本発明による超音波診断装置の実施の形態を示すブロック図である。この超音波診断装置は、超音波を利用して被検体100の診断部位について断層像を得ると共に、生体組織の硬さ又は柔らかさを表す弾性画像を表示することのできるものである。この超音波診断装置は、図1に示すように、超音波探触子101と、送波回路102と、受信回路103と、整相加算回路104と、信号処理部105と、白黒スキャンコンバータ106と、画像表示器107と、RF信号フレームデータ選択部108と、変位計測部109と、圧力計測部110と、歪み及び弾性率演算部111と、弾性データ処理部112と、カラースキャンコンバータ113と、切替加算器114とを具備して構成されている。
【0016】
超音波探触子101、送波回路102、受信回路103、整相加算回路104及び信号処理部105によって、超音波送受信手段が構成される。この超音波送受信手段は、超音波探触子101を用いて超音波ビームを被検体の体内で一定方向に走査させることにより、一枚の断層像を得るものである。超音波探触子101は、多数の振動子を短冊状に配列して形成されたものであり、機械式または電子的にビーム走査を行って被検体に超音波を送信及び受信するもので、図示は省略したがその中には超音波の発生源であると共に反射エコーを受信する振動子が内蔵されている。各振動子は、一般に、入力されるパルス波、または連続波の送波信号を超音波に変換して発射する機能と、被検体の内部から反射する超音波を受けて電気信号の受波信号に変換して出力する機能を有して形成される。
【0017】
送波回路102は、超音波探触子101を駆動して超音波を発生させるための送波パルスを生成すると共に、内蔵された送波整相加算回路によって送信される超音波の収束点をある深さに設定するものである。受信回路103は、超音波探触子101で受信した反射エコー信号を所定のゲインで増幅するものである。増幅された各振動子の数に対応した数の受波信号がそれぞれ独立した受波信号として整相加算回路104に入力される。整相加算回路104は、受信回路103で増幅された受波信号を入力し、それらの位相を制御し、一点又は複数の収束点に対して超音波ビームを形成するものである。信号処理部105は、整相加算回路104からの受波信号を入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の各種信号処理を行うものである。
【0018】
白黒スキャンコンバータ106は、前述の超音波送受信手段の信号処理部105から出力される反射エコー信号を用いて運動組織を含む被検体100内のRF信号フレームデータを超音波周期で取得し、このRF信号フレームデータを切り替え加算器114を介して画像表示器107に表示するものである。従って、白黒スキャンコンバータ106は、テレビジョン方式の周期でRF信号フレームデータを順次読み出すための断層走査手段及びシステムの制御を行うための手段、例えば、信号処理部105からの反射エコー信号をディジタル信号に変換するA/D変換器と、このA/D変換器でディジタル化された断層像データを時系列に記憶する複数枚のフレームメモリと、これらの動作を制御するコントローラなどを含んで構成される。
【0019】
画像表示器107は、白黒スキャンコンバータ106によって得られた時系列の断層像データを表示するものであり、切替加算器114を介して白黒スキャンコンバータ106から出力される画像データをアナログ信号に変換するD/A変換器と、このD/A変換器からのアナログビデオ信号を入力して画像として表示するカラーテレビモニタとから構成される。
【0020】
この実施の形態においては、整相加算回路104の出力側から分岐してRF信号フレームデータ選択部108と変位計測部109とが設けられると共に、これと並列に圧力計測部110が設けられている。変位計測部109及び圧力計測部110の後段には、歪み及び弾性率演算部111と弾性データ処理部112とカラースキャンコンバータ113とが設けられ、このカラースキャンコンバータ113と白黒スキャンコンバータ116の出力側には切替加算器114が設けられている。
【0021】
この実施の形態に係るRF信号フレームデータ選択部108の動作について、図2を用いて説明する。図2は、図1のRF信号フレームデータ選択部の一実施例を示す図である。RF信号フレームデータ選択部108は、変位計測の基準となる一つのRF信号フレームデータとして過去に遡るフレーム数(現フレームデータとのフレーム間隔数)を任意に選択するものである。すなわち、RF信号フレームデータ選択部108は、超音波診断装置のフレームレートで整相加算回路104から経時的に次々と出力されるRF信号フレームデータをフレームメモリ1081内に順次確保する。RF信号フレームデータ選択部108は、フレームメモリ1081内に現時点で確保されているものをRF信号フレームデータNとする。RF信号フレームデータ選択部108は、超音波診断装置の制御部200からの制御命令に従って時間的に過去のRF信号フレームデータN−1,N−2,N−3,・・・,N−Mの中から1つのRF信号フレームデータを選択し、それをRF信号フレームデータXとして、RF信号フレームデータ選択回路1082に一時的に格納する。RF信号フレームデータ選択部108は、フレームメモリ1081に格納されている最新のRF信号フレームデータNとRF信号フレームデータ選択回路1082に格納されているRF信号フレームデータXとを、並列的に変位計測部109に出力する。
【0022】
すなわち、RF信号フレームデータ選択部108は、まず、変位計測部109に送出する1組のRF信号フレームデータを構成する過去のRF信号フレームデータXとして、現在のRF信号フレームデータNに時間的に隣接するRF信号フレームデータN−1のみならず、過去のRF信号フレームデータXとしてMフレーム(M=1、2、3、・・・)を間引いたRF信号フレームデータN−Mを任意に選択することができるものである。なお、間引いたフレーム間隔数M(M=1、2、3、・・・)は、超音波診断装置のユーザーインターフェイスによって任意に設定・変更できるようになっている。
【0023】
図3は、図1のRF信号フレームデータ選択部の別の実施例を示す図である。図3のRF信号フレームデータ選択部108は、超音波診断装置の制御部200からの制御命令に従って、過去のある時相Pにおいて取得されたRF信号フレームデータPをフレームメモリ1081内に確保する。RF信号フレームデータ選択回路1082は、フレームメモリ1081内に確保されているRF信号フレームデータPを、アップデートすることなく、任意の時相における過去のRF信号フレームデータとして常に参照する。従って、変位計測部109には、現在確保されたRF信号フレームデータNとRF信号フレームデータPから構成される1組のRF信号フレームデータが取り込まれる。図3のような機能を採用するかどうか、また採用した場合にRF信号フレームデータPを取得するタイミングはどうするかなどの設定は、超音波診断装置のユーザーインターフェイスによって任意に切り替え・設定・変更できるようになっている。
【0024】
1組のRF信号フレームデータを構成する過去と現在のRF信号フレームデータN,Pの間隔を隣接フレームに限定した場合、一連の加圧もしくは減圧操作過程の間に取得された複数のRF信号フレームデータの組を構成するRF信号フレームデータの間の時間間隔において与えられた加圧量もしくは減圧量は、弾性画像データの描出に適した加圧量もしくは減圧量(一般に1%程度)に十分に達することができない場合がある。これに対して、図2及び図3に示すようにRF信号フレームデータ選択部を構成することによって、過去と現在のRF信号フレームデータの間のフレーム間隔を十分に大きくすることができ、弾性フレームデータによる弾性画像を適切に描出することが可能となる。これは特に、超音波検査において、被検者の体格の物理的な制約により、一連の加圧もしくは減圧操作過程における加圧もしくは減圧の速度を十分に大きくできないような状況において非常に有用である。
【0025】
変位計測部109は、RF信号フレームデータ選択部108によって選択された1組のRF信号フレームデータに基づいて1次元もしくは2次元相関処理を実行し、断層像上の各点の変位もしくは移動ベクトル(変位の方向と大きさ)を計測するものである。この移動ベクトルの検出法としては、例えば、特許文献1に記載されたようなブロック・マッチング法とグラジェント法とがある。ブロックマッチング法は、画像を例えばN×N画素からなるブロックに分け、現フレーム中の着目しているブロックに最も近似しているブロックを前フレームから探し、これを参照して予測符号化を行うものである。
【0026】
圧力計測部110は、被検体100の診断部位の体腔内圧力を計測又は推定するものである。この超音波診断装置は、探触子ヘッド1011に設けられた超音波探触子101を用いて制御部200の制御の下で超音波送受信を行いつつ、探触子ヘッド1011に設けられた加圧器115によって加圧もしくは減圧し、被検体100の診断部位の体腔内に応力分布を与える方法を採用している。この方法では、探触子ヘッド1011と被検体100との間にどの程度の圧力が印加されているかを計測するために、例えば、図4に示すように、棒状部材に架かる圧力を検出する圧力センサ1012を探触子ヘッド1011の側面に取り付け、探触子ヘッド1011と被検体100の間の圧力を任意の時相で測定し、測定された圧力値を歪み及び弾性率演算部111に送出するようになっている。なお、図4では、探触子ヘッド1011を加圧・減圧する加圧器115は省略してある。
【0027】
歪み及び弾性率演算部111は、変位計測部109及び圧力計測部110からそれぞれ出力される移動量(変位)及び圧力に基づいて断層像上の各点の歪み及び弾性率を演算して、歪みもしくは弾性率の数値データ(弾性フレームデータ)を生成し、それを弾性データ処理部112に出力するものである。歪み及び弾性率演算部111が行う歪みの演算についは、例えば、圧力のデータを必要とせず、その変位を空間微分することによって計算上求めるものとする。また、弾性率の内の一つであるヤング率の演算については、圧力の変化を移動量の変化で除することによって計算上求めるものとする。
【0028】
図5は、図1の弾性データ処理部の動作の一実施例を示す図である。弾性データ処理部112は、歪み及び弾性率演算部111から経時的に次々と入力される弾性フレームデータXをフレームメモリ1121内に順次確保する。弾性データ処理部112は、フレームメモリ1121内に現時点で確保された弾性フレームデータを弾性フレームデータNとする。従って、フレームメモリ1121内には、弾性フレームデータがN,N−1,N−2,・・・,N−Mの順番で経時的に記憶されている。加算平均処理回路1122は、超音波診断装置の制御部200からの制御命令に従って、フレームメモリ1121に確保されている弾性フレームデータの中から現時点に最も近いものから順番にMフレーム分の弾性フレームデータを選択する。加算平均処理回路1122は、フレームメモリ1121の中から選択された現在の弾性フレームデータN及び過去のMフレーム分の弾性フレームデータN−1,N−2,・・・,N−Mとに基づいて、同座標データ点同士の加算平均処理を行う。この加算平均処理によって得られた弾性フレームデータを現在の弾性フレームデータYとしてカラースキャンコンバータ113に送出する。なお、弾性フレームデータの加算平均処理において選択される過去の弾性フレームデータのフレーム数Mと、弾性フレームデータの加算平均処理機能の採否は、超音波診断装置のユーザーインターフェイスにおいて任意に設定・変更できるようになっている。
【0029】
上述の動作を式で表すと以下のようになる。
ここで、指標i,jは、各フレームデータの座標を表す。
【0030】
一連の加圧もしくは減圧操作の過程の間に、加圧もしくは減圧の速度が時間的に一定であっても、対象を垂直方向に均等に加圧できている時相ばかりあるとは限らず、斜め方向に不均等に加圧もしくは減圧してしまう時相が生じ、対象物内の応力分布の時間的変化を不連続にしてしまう時相が生じ得る。演算された弾性フレームデータをそのままカラースキャンコンバータ113に送出した場合、このような時相においては、時間軸方向の1連の弾性フレームデータ(歪みデータ)の中に応力分布の時間的変化に不連続な飛びのある座標領域が生じるため、弾性画像としても、時間的に不連続な飛びのある領域をノイズとして含む映像となり画像診断を困難なものとすることがある。この実施の形態による弾性データ処理部における加算平均処理回路1122は、時間軸方向の弾性フレームデータの間での加算平均処理を行うことにより、時間的に不連続な飛びのある領域を連続的になるように緩和することができ、これによってノイズを低減することができる。
【0031】
図6は、図1の弾性データ処理部の動作の別の実施例を示す図である。この実施例の弾性データ処理部112は、入力される弾性フレームデータに対して対数変換を行うものである。弾性データ処理部112は、歪み及び弾性率演算部111から経時的に次々と出力される弾性フレームデータXをフレームメモリ1123内に確保し、圧縮処理回路1124によって、超音波診断装置の制御部200からの制御命令の指示を反映した弾性フレームデータと弾性画像データとの間の対応関係により、データの対数変換を行い、変換後の弾性フレームデータを弾性フレームデータYとして、カラースキャンコンバータ113に送出するものである。図6の弾性データ処理部112が行う対数処理は、入力される弾性フレームデータを(弾性フレームデータX)i,j、出力される弾性フレームデータを(弾性フレームデータY)i,jで表すと、以下の式によって表される。
(弾性フレームデータY)i,j=A×Log10[B×{(弾性フレームデータX)i,j+C}+1]
ここで、指標i,jは、各フレームデータの座標を表し、また、上記A,B,Cはそれぞれある定数を示す。特に、上式における定数A、B、Cの値の組合せと圧縮処理機能の採否は、超音波診断装置のユーザーインターフェイスにおいて任意に設定・変更できるようになっている。
【0032】
特に弾性画像による画像診断においては、癌組織の疑いのある硬化部を明確に検出することに大きな意義があり、硬い領域を際立たせて描出できることが重要である。生体組織の性状として、例えば乳腺領域においては、脂肪組織と癌組織の硬さの違いが数十倍にもなるという報告がある(T.A.Krouskopet al, Ultrasonic Imaging, 1998)。しかし、現存の超音波診断装置による色相情報変換手段もしくは白黒輝度情報変換手段における弾性フレームデータの弾性画像化は、弾性フレームデータの各値と弾性画像データの各値が線形の関係を有しているため、これらの組織の硬さの違いを同一の弾性画像に描出した場合、弾性フレームデータのどの領域を画像化する範囲として選択しても、柔らかい領域と硬い領域の2領域の間の硬さの空間的な変化過程を線形の関係でしか描出できず、硬い領域を際立たせて、硬化部の輪郭として把握することは困難である。すなわち、極端に柔らかい領域と極端に硬い領域の2領域だけが浮き出されて描出され、それは2値化されたような画像になり、柔らかい領域から固い領域への大きな硬さの変化過程を色相情報もしくは白黒輝度情報として適切に表現することが困難であった。従って、弾性画像診断として、硬化した癌組織の大きさの判定が困難になる場合があったが、上述の実施の形態にように弾性データ処理部112に圧縮処理回路1124を用いることによって、図7に示すように、入力された弾性フレームデータにおいて、小さい値を有した領域(硬い部分の領域)の座標空間的な値の変化過程は敏感な弾性フレームデータとなり、大きい値を有した領域(柔らかい部分の領域)の座標空間的な値の変化過程は鈍感な弾性フレームデータとなり、弾性データ処理部112から出力される弾性フレームデータに基づいて弾性画像データを生成した場合、硬い領域を際立たせて、硬化部の輪郭を把握することが容易になる。
【0033】
図6の弾性データ処理部112の圧縮処理回路1124が行うデータ変換処理として、対数変換を例に説明したが、上述に示した目的を達成する特性をもった別の変換関数を用いて圧縮処理を行ってもよい。例えば、A,Bを定数として、Y=A×(1−Exp(−B×X))等を用いても良い。また、数種類の変換関数を準備し、超音波診断装置のユーザーインターフェイスで任意に設定・変更できるようにしても良い。さらに、例えば、図8に示すような、複数の曲線で1つの変換関数を構成するようにしてもよい。図8の関数において、交点Aを上下左右の任意に設定・変更できるようにしても良い。
【0034】
図9は、図1の弾性データ処理部の動作のさらに別の実施例を示す図である。図9の弾性データ処理部112は、入力される弾性フレームデータに対して統計処理を行うものである。すなわち、図9の弾性データ処理部112は、歪み及び弾性率演算部111から経時的に次々と出力される弾性フレームデータXを弾性データ処理部112のフレームメモリ1123内に確保する。弾性データ処理部112の統計処理回路1125は、超音波診断装置の制御部200からの制御命令(統計処理領域情報1126)の指示を反映した弾性フレームデータの座標領域において、弾性フレームデータの統計処理を行い、その結果である統計的特徴量を基準にして、弾性画像データを生成する際に画像データ化する範囲として選択される弾性フレームデータの上限値及び下限値を決定し、それを弾性フレームデータY及び上限値及び下限値をカラースキャンコンバータ113に送出するようにしたものである。
【0035】
図9の統計処理回路1125における統計的特徴量として、例えば、平均値、分散値を求めてもよく、入力される弾性フレームデータを(弾性フレームデータX)i,jと表すと、平均値及び分散値は以下の式によって表される。
(平均値)=[Σ(弾性フレームデータX)i,j]÷(処理領域データ数)
(分散値)2 =[Σ{(弾性フレームデータX)i,j−(平均値)}2 ]÷(処理領域データ数)
ただし、上式におけるΣは、超音波診断装置の制御部200からの制御命令である統計処理領域情報1126を反映した弾性フレームデータの座標領域におけるデータ要素の和を表す。
【0036】
なお、弾性画像データを生成する際に画像データ化する範囲として選択する弾性フレームデータの上限値及び下限値として、
(上限値)=(平均値)+(定数D)×(分散値)
{もしくは(上限値)=(定数D’)×(平均値)}
(下限値)=(平均値)−(定数E)×(分散値)
{もしくは(下限値)=(定数E’)×(平均値)}
とし、求められた上限値及び下限値をカラースキャンコンバータ113に送出してもよい。また、超音波診断装置のユーザーインターフェイスにおいて定数D又はD’及びE又はE’を任意に設定・変更できるようにしてもよい。さらに、上限値及び下限値の内、一方のみを上式で設定し、他方は弾性フレームデータの統計的特徴を反映しない固定値に設定してもよい。例えば、下限値を歪み量0%に固定、上限値を平均値+2×分散値のように設定してもよい。
【0037】
図10は、加圧・減圧速度の時間的な変化とRF信号の取得タイミングとの間の関係の一例を示す図である。図10から明かなように、一連の加圧もしくは減圧操作過程の間に、加圧もしくは減圧速度Vが変動した場合、RF信号フレームデータS1とRF信号フレームデータS2との組で算出された弾性フレームデータをE1とし、RF信号フレームデータS2とRF信号フレームデータS3との組で算出された弾性フレームデータをE2、RF信号フレームデータS3とRF信号フレームデータS4との組で算出された弾性フレームデータをE3、RF信号フレームデータS4とRF信号フレームデータS5との組で算出された弾性フレームデータをE4とし、それぞれの弾性フレームデータE1〜E4の同一座標領域の統計分布(ヒストグラム)を、縦軸をデータ要素の個数、横軸を歪み量として同一スケールで模式的に描くと、図11に示したようになる。
【0038】
図11に示すように、時系列的に取得された一連の弾性フレームデータの中の同一領域の弾性フレームデータE1〜E4は経時的に変動している。すなわち、一連の加圧もしくは減圧操作過程の間に、加圧もしくは減圧速度が変動した場合、時系列的に取得された一連の弾性フレームデータの中の同一領域の弾性フレームデータは経時的に変動することを意味する。従来の超音波診断装置による色相情報変換手段もしくは白黒輝度情報変換手段における弾性フレームデータの弾性画像化は、弾性フレームデータの各値と弾性画像データの各値が一対一に固定されて対応している。例えば、図11に示すような弾性フレームデータE2で最適化した場合の上限値及び下限値を用いて、任意の時相における弾性フレームデータE1〜E4の上限値及び下限値を固定して弾性画像データを生成している。この場合、弾性フレームデータE3の時相においては、比較的大きな歪みが算出された領域が過大飽和した弾性画像データEP3となり、逆に、弾性フレームデータE1の時相においては、比較的小さい歪みが算出された領域が過小飽和した弾性画像データEP1となり、弾性フレームデータE2を取得した時相におけるような、階調性が最適化された弾性画像データEP2を、任意の時相において生成できるとは限らない。
【0039】
このように従来の超音波診断装置によるカラースキャンコンバータにおける弾性フレームデータの弾性画像化は、加圧もしくは減圧速度が変動した場合、それに応じて時系列的に取得された一連の弾性画像データの中の同一領域の白黒輝度もしくは色相が変動した映像となり画像診断を困難なものにしていた。すなわち、すべての時相において、その固定された対応関係が弾性画像のコントラストを最適化しているとは限らなかった。この実施の形態による弾性データ処理部における統計処理回路においては、図10に示したような一連の加圧もしくは減圧操作過程の間に、加圧もしくは減圧速度Vが変動した場合、任意の時相において、弾性フレームデータの統計処理を施し、その統計的特徴量を基準にした上限値及び下限値を設定するようにした。例えば、図12に示すような、(平均値)±(定数D)×(分散値)を任意の時相の弾性フレームデータに対して算出する。ここで、定数Dは任意の時相において共通の値とする。
【0040】
このようにして求められた任意の時相における弾性フレームデータの統計学的に共通な上限値及び下限値をカラースキャンコンバータに送出し、その上限値及び下限値の範囲で弾性画像データを生成することにより、図12に示したような、任意の時相において弾性フレームデータ要素を効率良く階調化した弾性画像データを生成することができる。この実施の形態に係る弾性データ処理部における統計処理回路によれば、加圧もしくは減圧速度が変動した場合でも、時系列的に取得された一連の弾性画像データの中の同一領域の白黒輝度もしくは色相の変動を抑制し、時間的に安定した映像を提供することができるようになり、画像診断を容易なものとすることができる。すなわち、弾性画像データ内の過大飽和した画素数の比率と過小飽和した画素数の比率とを任意の時相において一定の分布曲線に規格化することができ、白黒輝度若しくは色相の変動を抑制した映像を得ることができるようになる。
【0041】
上述の実施の形態では、RF信号フレームデータ選択部の動作の一つとして、1組のRF信号フレームデータを選択し、その1組のRF信号フレームデータの間のフレーム間隔数を可変とする場合について説明し、また、弾性データ処理部における動作の一例として、弾性データ処理部に備えられた統計処理回路において、弾性フレームデータの統計処理を行う場合について説明した。次は、RF信号フレームデータ選択部と弾性データ処理部とが連携して動作する場合について説明する。
【0042】
図13は、RF信号フレームデータ選択部と弾性データ処理部との連携した動作の一例を示す図である。まず、RF信号フレームデータ選択部108において、今回の弾性フレームデータを生成する際に採択される1組のRF信号フレームデータの間のフレーム間隔数の情報(今回フレーム間隔数情報131)を、弾性データ処理部112のフレーム間隔最適化回路1127に送出する。さらに、弾性データ処理部112の統計処理回路1125によって、今回の弾性フレームデータの統計処理を行い、その結果の統計的特徴量の情報をフレーム間隔最適化回路1127に送出する。フレーム間隔最適化回路1127は、RF信号フレームデータ選択回路1082から出力された今回フレーム間隔数情報131と、統計処理回路1125から出力された今回の弾性フレームデータの統計的特徴量の情報とに基づいて、次回の弾性フレームデータを生成する際に採択される1組のRF信号フレームデータの間のフレーム間隔数として最適なフレーム間隔数を演算し、その最適なフレーム間隔数の情報を、RF信号フレームデータ選択回路1082に次回フレーム間隔数情報132としてフィードバックする。RF信号フレームデータ選択回路1082は、フレーム間隔最適化回路1127から出力された最適なフレーム間隔数(次回フレーム間隔数情報132)に基づいて、次回の弾性フレームデータを生成する際に採択される1組のRF信号フレームデータの間のフレーム間隔数を設定する。
【0043】
フレーム間隔最適化回路1127の動作の一例を以下に説明する。今回の弾性フレームデータを生成する1組のRF信号フレームデータのフレーム間隔数(今回のフレーム間隔数)と、今回の弾性フレームデータの統計処理結果として、歪み量の平均値がフレーム間隔最適化回路1127に入力され、定数Aを0.5〜2.5の範囲とした場合に求めれる最適なフレーム間隔数は、次式によって求められる。
(最適なフレーム間隔数)=(定数A)×(今回のフレーム間隔数)÷(歪み量の平均値)
このようにして求められた最適なフレーム間隔数に最も近い自然数が次回の弾性フレームデータを生成する1組のRF信号フレームデータのフレーム間隔数の情報(次回フレーム間隔数情報132)として、RF信号フレーム選択回路1082に送出される。例えば、定数Aとして「1」を設定した場合、次回の弾性フレームデータにおける歪み量として約1%近くのものが得られるものと予測されるフレーム間隔数がRF信号フレーム選択部に送出されることになる。
【0044】
弾性画像による画像診断における硬い領域と柔らかい領域のコントラスト分解能は、1組のRF信号フレームデータを取得する間の時間間隔において、物理的に与えられた加圧量もしくは減圧量に大きく依存し、一般には、結果として0.5%〜2.5%程度の歪み量を与えられる加圧量もしくは減圧量の範囲において、最もコントラスト分解能の高い弾性像が得られると言われている。図13に示す実施の形態のように、RF信号フレームデータ選択部108と弾性データ処理部112のフレーム間隔最適化回路1127とを連携して構成した場合、弾性像として歪み量の最適な範囲を大きく逸脱するような、瞬時的に大きく、もしくは、小さく、加圧もしくは減圧された過程においても、1組のRF信号フレームデータの間のフレーム間隔数を最適化することにより瞬時に対応し、コントラスト分解能の高い弾性像を時間的に安定して描出することができる。
【0045】
カラースキャンコンバータ113は、弾性データ処理部112から出力される弾性フレームデータと、超音波診断装置の制御部200から出力される命令又は弾性データ処理部112から出力される弾性フレームデータの中の階調化選択範囲とする上限値及び下限値とを入力し、その弾性フレームデータから弾性画像データとして赤、緑、青などの色相情報を付与する色相情報変換手段を備えている。この色相情報変換手段は、例えば、弾性データ処理部112から出力される弾性フレームデータにおいて、歪みが大きく計測された領域を、弾性画像データ内で赤色コードに変換し、逆に歪みが小さく計測された領域を、弾性画像データ内で青色コードに変換するように動作する。また、カラースキャンコンバータ113は、上述の白黒スキャンコンバータ106で構成してもよい。この場合には、歪みが大きく計測された領域は、弾性画像データ内で輝度を明るくし、逆に歪みが小さく計測された領域は、弾性画像データ内で輝度を暗くすればよい。また、RF信号フレームデータ選択部108と、図5,図6,図9又は図13に示すようなそれぞれ異なる働きをする弾性データ処理部を複数組合せることによって構成された弾性データ処理部と、カラースキャンコンバータ113とを用いて、弾性画像データを生成するようにしてもよい。
【0046】
さらに、切替加算器114は、白黒スキャンコンバータ106からの白黒の断層像データとカラースキャンコンバータ113からのカラーの弾性画像データとを入力し、両画像を加算又は切り替える手段となるもので、白黒の断層像データだけ又はカラーの弾性画像データだけを出力したり、あるいは両画像データを加算合成して出力したりするように切り替えるようになっている。また、例えば、特許文献2に記載してあるように、2画面表示において白黒断層像とカラーもしくは白黒スキャンコンバータによる白黒弾性画像を同時に表示しても良い。切替加算器114から出力された画像データは画像表示器107に出力されるようになっている。
【0047】
次に図1のように構成された超音波診断装置の動作について説明する。まず、被検体100の体表面に接触された超音波探触子101に送波回路102により高電圧電気パルスを印加して超音波を打出し、診断部位からの反射エコー信号を超音波探触子101で受信する。この受波信号は、受信回路103へ入力して前置増幅された後、整相加算回路104へ入力する。そして、この整相加算回路104により位相が揃えられた受波信号は、次の信号処理部105で圧縮・検波などの信号処理を受けた後、白黒スキャンコンバータ106へ入力する。この白黒スキャンコンバータ106では、受波信号がA/D変換されると共に、時系列的に連続する複数の断層像データとして内部の複数枚のフレームメモリに記憶される。
【0048】
次にRF信号フレームデータ選択部108に記憶されたRF信号フレームデータの内、時系列的に連続する複数枚のRF信号フレームデータが選択され、変位計測部109へ出力され、1次元又は2次元の変位分布が求められる。この変位分布の算出は、前述の移動ベクトルの検出法として、例えばブロック・マッチング法によって行うが、特にこの方法によらなくても良いのは言うまでもなく、一般的に用いられる、2画像データの同一領域における自己相関を計算して変位を算出しても良い。
【0049】
一方、圧力計測部110には、圧力センサ1012によって体表面に加えられた圧力が計測され、その計測信号が保持される。変位計測部109及び圧力計測部110から出力された変位ΔL及び圧力ΔPのそれぞれの計測信号は、歪み及び弾性率演算部111に入力され、歪みはΔLを空間微分(ΔL/ΔX)することによって計算される。特に弾性率の内、ヤング率Ymは次式によって計算される。
Ym=(ΔP)/(ΔL/L)
このようにして求められた弾性率Ymにより、各点の弾性率が求められ、2次元の弾性画像データが連続的に得られる。
【0050】
このようにして求められた弾性フレームデータは、カラースキャンコンバータ113もしくは白黒スキャンコンバータ106に入力され、色相情報もしくは白黒輝度情報に変換される。その後、切替加算器114を介して、白黒の断層像とカラーの弾性画像が加算合成され、又は、白黒の断層像と白黒の弾性画像を加算せずに画像表示器107に送り込み、1つの表示画面中に白黒断層像とカラーの弾性画像を重畳して表示する。または、白黒断層像と白黒弾性画像を2画面を同一画面上に同時に表示しても良い。また、白黒断層像は、特に一般のB像のみに限ったものではなく、受信信号の高調波成分を選択して画像化するティシューハーモニック断層像を用いても良い。また、同様に白黒断層像の代わりに、ティシュードプラ像を表示しても良く、その他、2画面に表示する画像を様々な組合せにより選択されても良い。
【0051】
なお、上述の弾性画像の形成については、生体組織の歪み若しくはヤング率Ymを求めてから弾性画像データを生成する場合について説明したが、この発明では、これに限定されることなく、例えば、スティフネスパラメータβ、圧弾性係数Ep、増分弾性係数Eincなどの他のパラメータを用いて弾性率を演算しても良い。(特許文献1を参照のこと)
また、図1に示した実施の形態では、被検体の体表面に超音波探触子を接触させる場合について説明したが、本発明はこれに限らず、経食道探触子又は血管内探触子を用いた場合でも同様に適用できる。この実施の形態によれば、超音波診断装置の高い信頼性と安定性を実現することができる。
【0052】
【発明の効果】
この発明によれば、任意時刻において弾性画像を高分解能且つ安定的に描出することができ、また同時に、従来、医師の試みる触診の応答を視覚的に動画像で表現する手段を実現することにより、超音波診断の実時間性、簡便性を保持した、臨床上有用な超音波装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明による超音波診断装置の実施の形態を示すブロック図である。
【図2】 図1のRF信号フレームデータ選択部の一実施例を示す図である。
【図3】 図1のRF信号フレームデータ選択部の別の実施例を示す図である。
【図4】 超音波探触子に圧力計測部(圧力センサ)を取りつけ、探触子のヘッドと被検体の間の圧力を計測する方法の一例を示す図である。
【図5】 図1の弾性データ処理部の動作の一実施例を示す図である。
【図6】 図1の弾性データ処理部の動作の別の実施例を示す図である。
【図7】 図6の弾性データ処理部において、弾性フレームデータの対数変換を行う前後の関係を示す図である。
【図8】 図6の弾性データ処理部において、複数の関数を組合せて弾性フレームデータを変換する一例を示す図である。
【図9】 図1の弾性データ処理部の動作のさらに別の実施例を示す図である。
【図10】 加圧・減圧速度の時間的な変化とRF信号の取得タイミングとの間の関係の一例を示す図である。
【図11】 弾性フレームデータの上限値及び下限値を固定して設定した時の弾性画像輝度分布の時間的変動を示す図である。
【図12】 図9の弾性データ処理部において、弾性フレームデータの上限値及び下限値を統計学的な共通の条件にて適宜的に設定した時の弾性画像輝度分布の時間的変動を示す図である。
【図13】 RF信号フレームデータ選択部と弾性データ処理部との連携した動作の一例を示す図である。
【符号の説明】
100…被検体
101…超音波探触子
1011…探触子ヘッド
1012…圧力センサ
102…送波回路
103…受信回路
104…整相加算回路
105…信号処理部
106…白黒スキャンコンバータ
107…画像表示器
108…RF信号フレームデータ選択部
1081…フレームメモリ
1082…RF信号フレーム選択回路
109…変位計測部
110…圧力計測部
111…歪み及び弾性率演算部
112…弾性データ処理部
1121…フレームメモリ
1122…加算平均処理回路
1123…フレームメモリ
1124…圧縮処理回路
1125…統計処理回路
1126…統計処理領域情報
1127…フレーム間隔最適化回路
113…カラースキャンコンバータ
114…切替加算器
115…加圧器
131…今回フレーム間隔数情報
132…次回フレーム間隔数情報
200…超音波装置制御部
14…変位・歪み変換回路
15…織歪み分布データ
16…超音波断層画像探触子位置メモリ
17…歪み弾性画像探触子位置メモリ
18…画像処理部
19…位置合わせ回路
20…重ね合わせ画像データ
28…xyzステージ
29…xyzステージ制御部
30…閾値設定・判定部
Claims (9)
- 被検体に超音波を発生させる振動子を含む超音波探触子と、
前記超音波探触子に超音波を送受信させる超音波送受信手段と、
受信した超音波に基づきRF信号フレームデータを生成する整相加算手段と、
少なくとも2つの前記RF信号フレームデータを選択するRF信号フレームデータ選択手段と、
前記RF信号フレームデータ選択手段によって選択された一組のRF信号フレームデータに基づいて歪み又は弾性率を表す弾性フレームデータを生成する弾性演算手段と、
前記弾性フレームデータの特徴量に基づいて、画像化する範囲の上限値及び下限値を前記弾性フレームデータに設定し、前記上限値及び下限値を所定の表示階調の範囲に対応させて弾性画像を生成する弾性データ処理手段と、
前記弾性画像を表示する画像表示手段と、
を有することを特徴とする超音波診断装置。 - 前記弾性フレームデータの特徴量は、前記歪みの平均値又は分散値であることを特徴とする請求項1記載の超音波診断装置。
- 前記弾性データ処理手段は、生成された第1の弾性フレームデータに対して所定の統計処理を行い、その結果の統計的特徴量を基準にして、前記弾性画像を生成する際に画像化する範囲として選択される第2の弾性フレームデータの上限値及び下限値を決定し、第2の弾性フレームデータを出力することを特徴とする請求項1記載の超音波診断装置。
- 前記RF信号フレームデータ選択手段は、変位計測対象となるRF信号フレームデータの組として、現時点のRF信号フレームデータと、これより任意のフレーム数だけ過去に遡った所定フレーム間隔数だけ離れたRF信号フレームデータとを選択することができ、前記フレーム間隔数をユーザーインターフェイスによって任意に設定・変更できるようにしたことを特徴とする請求項1記載の超音波診断装置。
- 前記RF信号フレームデータ選択手段は、変位計測対象となるRF信号フレームデータの組として、現時点のRF信号フレームデータと、任意の固定時刻のRF信号フレームデータとを選択することができ、前記固定時刻をユーザーインターフェイスによって任意に設定・切り替えられるようにしたことを特徴とする請求項1記載の超音波診断装置。
- 前記弾性データ処理手段は、現時点の弾性フレームデータと数フレーム分過去の弾性フレームデータとの間で、同座標データ点同士の加算平均処理を行い、その加算平均処理後の弾性フレームデータを現時点の弾性フレームデータとして出力する加算平均処理手段を有することを特徴とする請求項1記載の超音波診断装置。
- 前記弾性データ処理手段は、生成された弾性フレームデータを対数変換など圧縮方式に従って圧縮処理を行うものであって、前記圧縮方式とその採否をユーザーインターフェイスによって任意に設定・変更できるようにしたことを特徴とする請求項1記載の超音波診断装置。
- 取得された時系列のRF信号フレームデータに基づいて断層フレームデータを生成する信号処理手段と、この信号処理手段によって生成された時系列の断層フレームデータを断層像に変換する断層像変換手段とを備え、 前記断層像及び弾性画像の少なくとも一方を表示することを特徴とする請求項1記載の超音波診断装置。
- 被検体に超音波を発生させる振動子を含む超音波探触子と、
前記超音波探触子に超音波を送受信させる超音波送受信手段と、
受信した超音波に基づきRF信号フレームデータを生成する整相加算手段と、
少なくとも2つの前記RF信号フレームデータを選択するRF信号フレームデータ選択手段と、
前記RF信号フレームデータ選択手段によって選択された一組のRF信号フレームデータに基づいて歪み又は弾性率を表す弾性フレームデータを生成する弾性演算手段と、
前記弾性フレームデータの特徴量に基づいて、画像化する範囲の上限値及び下限値を前記弾性フレームデータに設定し、前記上限値及び下限値を所定の表示階調の範囲に対応させるとともに、現時点の弾性フレームデータと数フレーム分過去の弾性フレームデータとの間で、同座標データ点同士の加算平均処理を行い、その加算平均処理後の弾性フレームデータに基づいて弾性画像を生成する弾性データ処理手段と、
前記弾性画像を表示する画像表示手段と、を有することを特徴とする超音波診断装置。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003006932A JP4314035B2 (ja) | 2003-01-15 | 2003-01-15 | 超音波診断装置 |
CNB2004800022804A CN100556369C (zh) | 2003-01-15 | 2004-01-14 | 超声波诊断装置 |
US10/542,206 US7628754B2 (en) | 2003-01-15 | 2004-01-14 | Ultrasonographic device |
CN2008101852304A CN101427932B (zh) | 2003-01-15 | 2004-01-14 | 超声波诊断装置 |
EP11006687.5A EP2387948B1 (en) | 2003-01-15 | 2004-01-14 | Ultrasonographic device for generating and displaying elastic images |
EP04702080.5A EP1591068B1 (en) | 2003-01-15 | 2004-01-14 | Ultrasonographic device |
EP13000323.9A EP2591730A1 (en) | 2003-01-15 | 2004-01-14 | Ultrasonographic device for generating and displaying elastic images |
PCT/JP2004/000202 WO2004062503A1 (ja) | 2003-01-15 | 2004-01-14 | 超音波診断装置 |
US12/393,822 US8206298B2 (en) | 2003-01-15 | 2009-02-26 | Ultrasonographic elasticity imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003006932A JP4314035B2 (ja) | 2003-01-15 | 2003-01-15 | 超音波診断装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009047467A Division JP5225158B2 (ja) | 2009-03-02 | 2009-03-02 | 超音波診断装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004261198A JP2004261198A (ja) | 2004-09-24 |
JP2004261198A5 JP2004261198A5 (ja) | 2006-03-02 |
JP4314035B2 true JP4314035B2 (ja) | 2009-08-12 |
Family
ID=32709096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003006932A Expired - Lifetime JP4314035B2 (ja) | 2003-01-15 | 2003-01-15 | 超音波診断装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US7628754B2 (ja) |
EP (3) | EP1591068B1 (ja) |
JP (1) | JP4314035B2 (ja) |
CN (2) | CN101427932B (ja) |
WO (1) | WO2004062503A1 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4263943B2 (ja) * | 2003-05-07 | 2009-05-13 | テルモ株式会社 | 超音波診断装置 |
WO2005112772A2 (en) * | 2004-05-07 | 2005-12-01 | Johns Hopkins University | Ultrasound strain imaging in tissue therapies |
US20080051659A1 (en) * | 2004-06-18 | 2008-02-28 | Koji Waki | Ultrasonic Diagnostic Apparatus |
US20070232916A1 (en) * | 2004-10-08 | 2007-10-04 | Koji Waki | Ultrasound Diagnostic Apparatus |
US20080033295A1 (en) * | 2004-10-12 | 2008-02-07 | Takeshi Matsumura | Ultrasonic Probe and Ultrasonic Imaging Device |
CN101564309B (zh) * | 2004-10-12 | 2014-10-01 | 株式会社日立医药 | 超声波成像装置 |
US8287455B2 (en) * | 2004-10-30 | 2012-10-16 | Sonowise, Inc. | Synchronized power supply for medical imaging |
JP5113322B2 (ja) * | 2005-04-28 | 2013-01-09 | 株式会社日立メディコ | 超音波診断装置 |
JP4772417B2 (ja) * | 2005-08-11 | 2011-09-14 | 株式会社日立メディコ | 超音波診断装置 |
FR2889659B1 (fr) * | 2005-08-12 | 2007-10-12 | Echosens Sa | Systeme imageur d'un organe hyumain ou animal permettant la mesure de l'elasticite dudit organe |
JP4732086B2 (ja) * | 2005-09-12 | 2011-07-27 | 株式会社日立メディコ | 超音波診断装置 |
JP4444195B2 (ja) * | 2005-10-04 | 2010-03-31 | パナソニック株式会社 | 送風装置およびそれを搭載した電気機器 |
JP2007105400A (ja) | 2005-10-17 | 2007-04-26 | Toshiba Corp | 超音波診断装置及び画像処理装置 |
US20090143676A1 (en) * | 2005-10-19 | 2009-06-04 | Takeshi Matsumura | Ultrasonograph for Creating Elastic Image |
US20090292205A1 (en) * | 2006-07-18 | 2009-11-26 | Takashi Osaka | Ultrasonic diagnostic apparatus |
JP5415669B2 (ja) * | 2006-09-25 | 2014-02-12 | 株式会社日立メディコ | 超音波診断装置 |
US8123692B2 (en) * | 2006-12-06 | 2012-02-28 | General Electric Company | Apparatus, system, and method for adaptively controlling a frame interval between ultrasound scanning frames for an ultrasound elasticity imaging scan |
CN101553174B (zh) * | 2006-12-20 | 2011-06-15 | 株式会社日立医药 | 超声波诊断装置 |
KR100983770B1 (ko) | 2007-03-23 | 2010-09-28 | 주식회사 메디슨 | 초음파 탄성영상을 형성하기 위한 시스템 및 방법 |
US20100268084A1 (en) * | 2007-11-06 | 2010-10-21 | Takashi Osaka | Ultrasonic diagnostic apparatus |
WO2009063691A1 (ja) * | 2007-11-16 | 2009-05-22 | Hitachi Medical Corporation | 超音波撮像システム |
JP5280379B2 (ja) * | 2008-02-18 | 2013-09-04 | 株式会社日立メディコ | 超音波診断装置、超音波弾性情報処理方法及び超音波弾性情報処理プログラム |
JP2009219794A (ja) * | 2008-03-18 | 2009-10-01 | Olympus Medical Systems Corp | 超音波診断装置 |
CN101569540B (zh) * | 2008-04-29 | 2011-05-11 | 香港理工大学 | 无线超声波扫描系统 |
KR101014558B1 (ko) * | 2008-07-16 | 2011-02-16 | 주식회사 메디슨 | 스트레인 정규화를 통한 탄성영상 형성 방법 및 그를 위한초음파 시스템 |
KR101100498B1 (ko) * | 2008-08-05 | 2011-12-29 | 삼성메디슨 주식회사 | 컬러맵을 형성하는 초음파 시스템 및 방법 |
US20110194748A1 (en) * | 2008-10-14 | 2011-08-11 | Akiko Tonomura | Ultrasonic diagnostic apparatus and ultrasonic image display method |
US20100305438A1 (en) * | 2009-05-29 | 2010-12-02 | Kenneth Wayne Rigby | System and method for scaling strain image data |
JP5552120B2 (ja) * | 2009-06-11 | 2014-07-16 | 株式会社日立メディコ | 加振ユニット、超音波探触子、及び超音波診断装置 |
WO2011010626A1 (ja) * | 2009-07-24 | 2011-01-27 | 株式会社 日立メディコ | 超音波診断装置、弾性画像の保存/再生方法、及び弾性画像の保存/再生プログラム |
JP5484826B2 (ja) * | 2009-08-26 | 2014-05-07 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置 |
JP5665040B2 (ja) | 2009-09-10 | 2015-02-04 | 学校法人上智学院 | 変位計測方法及び装置、並びに、超音波診断装置 |
US8726734B1 (en) | 2010-09-15 | 2014-05-20 | Sonowise, Inc. | Shear wave generation system and methods for ultrasound imaging |
US9820913B2 (en) | 2010-12-06 | 2017-11-21 | Aktivax, Inc. | Aseptic cartridge and dispenser arrangement |
JP2012055742A (ja) * | 2011-12-19 | 2012-03-22 | Hitachi Medical Corp | 超音波診断装置 |
TWI453404B (zh) * | 2011-12-27 | 2014-09-21 | Ind Tech Res Inst | 超音波成像系統及其影像處理方法 |
CN102626327B (zh) * | 2012-04-26 | 2014-02-19 | 声泰特(成都)科技有限公司 | 基于接收端空间复合的超声弹性成像及压力反馈方法 |
JP5879230B2 (ja) * | 2012-08-21 | 2016-03-08 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置及びその制御プログラム |
WO2014038702A1 (ja) * | 2012-09-10 | 2014-03-13 | 株式会社東芝 | 超音波診断装置、画像処理装置及び画像処理方法 |
JP5638641B2 (ja) * | 2013-02-04 | 2014-12-10 | 株式会社日立メディコ | 超音波診断装置 |
JP6246098B2 (ja) * | 2014-08-27 | 2017-12-13 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波診断装置及びその制御プログラム |
KR102035993B1 (ko) | 2015-09-03 | 2019-10-25 | 지멘스 메디컬 솔루션즈 유에스에이, 인크. | 탄성 영상을 형성하는 초음파 시스템 및 방법 |
CN114469175B (zh) * | 2021-12-21 | 2024-04-05 | 上海深至信息科技有限公司 | 一种甲状腺扫查完整性的判断方法及装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608822B2 (ja) | 1978-08-15 | 1985-03-06 | 株式会社東芝 | 超音波診断装置 |
JPH0642882B2 (ja) * | 1987-04-20 | 1994-06-08 | 富士写真フイルム株式会社 | 所望画像信号範囲決定方法 |
JP3052149B2 (ja) | 1990-11-30 | 2000-06-12 | 株式会社日立メディコ | 超音波診断装置 |
JPH05184577A (ja) | 1992-01-14 | 1993-07-27 | Ken Ishihara | 超音波診断装置 |
JP3268396B2 (ja) | 1992-05-15 | 2002-03-25 | 石原 謙 | 超音波診断装置 |
JP3833282B2 (ja) * | 1994-06-24 | 2006-10-11 | 株式会社東芝 | 超音波診断装置 |
US5839441A (en) * | 1996-06-03 | 1998-11-24 | The Trustees Of The University Of Pennsylvania | Marking tumors and solid objects in the body with ultrasound |
JP3871747B2 (ja) | 1996-11-25 | 2007-01-24 | 株式会社日立メディコ | 超音波診断装置 |
US5995644A (en) * | 1997-06-30 | 1999-11-30 | Siemens Corporate Research, Inc. | Robust and automatic adjustment of display window width and center for MR images |
CN1240123A (zh) * | 1998-05-19 | 2000-01-05 | 皇家菲利浦电子有限公司 | 检测弹性变化的方法和用于实施该方法的回波探测装置 |
JP4201396B2 (ja) | 1998-08-20 | 2008-12-24 | 株式会社日立メディコ | 超音波診断装置 |
US6558324B1 (en) * | 2000-11-22 | 2003-05-06 | Siemens Medical Solutions, Inc., Usa | System and method for strain image display |
JP4030288B2 (ja) * | 2001-10-19 | 2008-01-09 | アロカ株式会社 | 超音波診断装置 |
-
2003
- 2003-01-15 JP JP2003006932A patent/JP4314035B2/ja not_active Expired - Lifetime
-
2004
- 2004-01-14 EP EP04702080.5A patent/EP1591068B1/en not_active Expired - Lifetime
- 2004-01-14 CN CN2008101852304A patent/CN101427932B/zh not_active Expired - Lifetime
- 2004-01-14 WO PCT/JP2004/000202 patent/WO2004062503A1/ja active Application Filing
- 2004-01-14 CN CNB2004800022804A patent/CN100556369C/zh not_active Expired - Lifetime
- 2004-01-14 EP EP13000323.9A patent/EP2591730A1/en not_active Ceased
- 2004-01-14 US US10/542,206 patent/US7628754B2/en active Active
- 2004-01-14 EP EP11006687.5A patent/EP2387948B1/en not_active Expired - Lifetime
-
2009
- 2009-02-26 US US12/393,822 patent/US8206298B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP1591068A4 (en) | 2011-01-19 |
US7628754B2 (en) | 2009-12-08 |
CN1738576A (zh) | 2006-02-22 |
EP1591068A1 (en) | 2005-11-02 |
US8206298B2 (en) | 2012-06-26 |
EP1591068B1 (en) | 2016-09-14 |
JP2004261198A (ja) | 2004-09-24 |
EP2591730A1 (en) | 2013-05-15 |
US20060173306A1 (en) | 2006-08-03 |
EP2387948B1 (en) | 2013-07-03 |
US20090171211A1 (en) | 2009-07-02 |
CN101427932A (zh) | 2009-05-13 |
EP2387948A1 (en) | 2011-11-23 |
CN101427932B (zh) | 2010-12-15 |
CN100556369C (zh) | 2009-11-04 |
WO2004062503A1 (ja) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4314035B2 (ja) | 超音波診断装置 | |
JP4455003B2 (ja) | 超音波診断装置 | |
JP5371199B2 (ja) | 超音波診断装置 | |
JP5496302B2 (ja) | 超音波診断装置 | |
JP5559788B2 (ja) | 超音波診断装置 | |
JP4685633B2 (ja) | 超音波診断装置 | |
JP5436533B2 (ja) | 超音波診断装置及び弾性画像表示方法 | |
US20070112270A1 (en) | Ultrasonic imaging apparatus | |
JP2005066041A (ja) | 超音波探触子及び超音波診断装置 | |
JP5016911B2 (ja) | 超音波診断装置 | |
JP5473527B2 (ja) | 超音波診断装置 | |
JPWO2009104525A1 (ja) | 超音波診断装置、超音波弾性情報処理方法及び超音波弾性情報処理プログラム | |
JP2005013283A (ja) | 超音波探触子及び超音波診断装置 | |
JP5415669B2 (ja) | 超音波診断装置 | |
JP5225158B2 (ja) | 超音波診断装置 | |
JP5802790B2 (ja) | 超音波診断装置 | |
JP4889540B2 (ja) | 超音波診断装置 | |
JP5623609B2 (ja) | 超音波診断装置 | |
JP5555286B2 (ja) | 超音波診断装置 | |
JP5128149B2 (ja) | 超音波診断装置 | |
JP4601413B2 (ja) | 超音波診断装置 | |
JP2005152405A (ja) | 超音波診断装置 | |
JP4615528B2 (ja) | 超音波診断装置 | |
JP5325847B2 (ja) | 超音波探触子及び超音波診断装置 | |
JP2010246818A (ja) | 超音波診断装置及びその制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060112 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060112 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090518 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4314035 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |