Nothing Special   »   [go: up one dir, main page]

JP4372663B2 - エンジン動弁系部品 - Google Patents

エンジン動弁系部品 Download PDF

Info

Publication number
JP4372663B2
JP4372663B2 JP2004312908A JP2004312908A JP4372663B2 JP 4372663 B2 JP4372663 B2 JP 4372663B2 JP 2004312908 A JP2004312908 A JP 2004312908A JP 2004312908 A JP2004312908 A JP 2004312908A JP 4372663 B2 JP4372663 B2 JP 4372663B2
Authority
JP
Japan
Prior art keywords
hard carbon
valve system
carbon film
amorphous hard
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312908A
Other languages
English (en)
Other versions
JP2006125254A (ja
Inventor
浩司 森谷
博治 所
広行 森
俊英 大森
英男 太刀川
元一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2004312908A priority Critical patent/JP4372663B2/ja
Publication of JP2006125254A publication Critical patent/JP2006125254A/ja
Application granted granted Critical
Publication of JP4372663B2 publication Critical patent/JP4372663B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)

Description

本発明は、潤滑油を用いた湿式条件で使用されるエンジン動弁系部品に関し、特に摺動時の摩擦係数が小さいエンジン動弁系部品に関する。
資源保護や環境問題等の観点から、自動車の燃費向上が望まれる。このため、自動車エンジンの摩擦によるエネルギー損失を、できるだけ低減する必要がある。自動車エンジンの主な摺動部として、動弁系、ピストン系、軸受系が挙げられる。これらの摩擦損失に占める動弁系の割合は少なくなく、動弁系部品について摩擦の低減が強く求められる。
従来より、摺動部材の摩擦係数の低減や耐摩耗性の向上を図る方法として、摺動面への被膜の形成、窒化処理等の表面処理が知られている。例えば、DLC(ダイヤモンドライクカーボン)膜と呼ばれる非晶質硬質炭素膜は、摺動面の摺動性を高める被膜として期待されている(例えば、特許文献1、2参照。)。
特開平3−240957号公報 特開2001−192864号公報
例えば、上記特許文献1には、珪素(Si)を含む非晶質硬質炭素膜が開示されている。この非晶質硬質炭素膜は、潤滑油を用いない乾式条件では、低い摩擦係数を示す。しかし、潤滑油を用いた湿式条件では、摩擦係数を低減することは難しい。例えば、動力伝達のための高摩擦を想定した駆動系油を潤滑油として用いた場合には、摩擦係数は高くなる。この要因として、潤滑油に含まれる各種添加剤の影響が考えられる。潤滑油中の添加剤は、非晶質硬質炭素膜の表面に吸着、反応して境界膜を形成する。摩擦係数は、この境界膜により決定されると考えられる。
一方、上記特許文献2には、芳香族化合物を含有した潤滑油を用いる試みが開示されている。芳香族化合物は、非晶質硬質炭素膜への吸着力が高いため、非晶質硬質炭素膜の表面に強固な境界膜を形成する。つまり、非晶質硬質炭素膜の表面に強固な境界膜を形成させることで、固体接触割合を減らし、摩擦係数の低減を図っている。しかし、この方法では、添加剤が変更された場合、芳香族化合物以外の物質の吸着、反応で、摩擦係数の低減が阻害されてしまうおそれがある。また、環境問題等の観点から、今後、添加剤の種類の見直しや量の適正化が進むことも考えられる。この場合、添加剤の吸着、反応に依存した上記方法では、摩擦係数を低減することが困難になると予想される。
本発明は、このような実状に鑑みてなされたものであり、潤滑油を用いた湿式条件で使用した場合に、潤滑油に含まれる添加剤の吸着、反応に依存することなく低摩擦係数を実現できるエンジン動弁系部品を提供することを課題とする。
本発明のエンジン動弁系部品は、潤滑油を用いた湿式条件で使用されるエンジン動弁系部品であって、動弁系部品本体と、該動弁系部品本体の相手材との摺動面の少なくとも一部に形成された非晶質硬質炭素膜と、からなり、該非晶質硬質炭素膜のSi含有量はat%より多く20at%以下であり、表面粗さはRzjis0.μm以下であり、該非晶質硬質炭素膜は摺接時に表面にシラノールが生成されることを特徴とする。
本発明のエンジン動弁系部品は、Si含有量がat%より多く20at%以下であり、かつ、表面粗さはRzjis0.μm以下であり、該非晶質硬質炭素膜は摺接時に表面にシラノールが生成される非晶質硬質炭素膜を備える。非晶質硬質炭素膜の表面粗さは非常に小さい。このため、非晶質硬質炭素膜を摺動面とした場合、固体−固体接触による境界摩擦の割合が低減し、潤滑油による潤滑割合が増加する。これより、摩擦係数が低減する。また、非晶質硬質炭素膜は、鋼材と比較して硬く、摩耗し難い。このため、相手材と摺接しても、初期の表面粗さを維持することができる。さらに、非晶質硬質炭素膜は所定量のSiを含む。本発明者の分析によれば、Siを含むことにより、摺接時に非晶質硬質炭素膜の表面にシラノール(SiOH)が生成される。このシラノールの生成により、仮に固体同士が接触した場合でも、境界摩擦は大幅に低減すると考えられる。このように、本発明のエンジン動弁系部品は、潤滑油による潤滑割合の増加および境界摩擦の低減の両作用により、低摩擦係数を示す。
本発明のエンジン動弁系部品は、Si含有量がat%より多く20at%以下であり、かつ、表面粗さはRzjis0.μm以下であり、該非晶質硬質炭素膜は摺接時に表面にシラノールが生成される非晶質硬質炭素膜を備える。非晶質硬質炭素膜の表面粗さが小さいため、潤滑油による潤滑割合が増加する。また、非晶質硬質炭素膜はSiを含むため、境界摩擦も低減する。よって、本発明のエンジン動弁系部品を用いれば、潤滑油中の添加剤の吸着、反応に依存することなく、低摩擦係数を実現できる。また、本発明のエンジン動弁系部品どうしを組み合わせて用いることで、より一層、摩擦係数を低減することができる。
以下、本発明のエンジン動弁系部品について詳細に説明する。本発明のエンジン動弁系部品は、潤滑油を用いた湿式条件で使用される。潤滑油には、通常用いられるエンジン油を用いればよい。
本発明のエンジン動弁系部品は、動弁系部品本体と、動弁系部品本体の相手材との摺動面の少なくとも一部に形成された非晶質硬質炭素膜と、からなる。動弁系部品本体としては、カムシャフトの回転によりバルブを開閉する動弁機構を構成する種々の部品が挙げられる。例えば、カムシャフト、カム、シム、バルブリフタ、プッシュロッド、ロッカアーム、ローラ、ピボット、ラッシュアジャスタ、バルブ、ステムキャップ等が挙げられる。これら動弁系部品本体の材質は、部品の種類に応じて適宜選択される。例えば、カムシャフト、カムには、主に鋳鉄が用いられる。バルブリフタ、プッシュロッド、シム、ピボット、ラッシュアジャスタ、ステムキャップ、ロッカアーム、ローラ、カム軸受には、炭素鋼、アルミニウム合金等が用いられる。バルブには、炭素鋼にクロム等を加えた耐熱鋼、チタン合金が用いられる。
摩擦係数の低減を図るには、非晶質硬質炭素膜は、少なくとも相手材との摺動面に形成されることが必要である。ここで、非晶質硬質炭素膜は、摺動面の全体に形成されていてもよく、摺動面の一部のみに形成されていてもよい。
一対の部材が摺動し、摺動面にすべりと転がりとが生じる場合には、すべりの割合(すべり率)が大きい摺動面に、非晶質硬質炭素膜を形成することにより、摩擦係数の低減効果を存分に発揮させることができる。例えば、非晶質硬質炭素膜を、すべり率が1%以上の摺動面、さらには、すべり率が5%以上の摺動面に形成すると効果的である。本明細書では、「すべり率」を「摺動する一対の部材における、両部材の平均転がり速度に対する両部材の転がり速度の差の割合」と定義する。よって、「すべり率」は、次式(1)で算出される。式(1)中、U1は一方の部材の転がり速度を、U2はもう一方の部材の転がり速度を示す(U1>U2)。
すべり率(%)=[(U1−U2)/{(U1+U2)/2}]×100・・・式(1)
すべり率が1%以上になる摺動面としては、例えば、ローラロッカ式動弁系におけるピボット軸とピボット軸受との摺動面や、ロッカアームのバルブ押圧部とステムキャップとの摺動面、直打式動弁系におけるカムとシムとの摺動面等が挙げられる。
本発明のエンジン動弁系部品が備える非晶質硬質炭素膜は、炭素(C)、水素(H)、Siを含む。Si含有量は、1at%以上20at%以下である。Si含有量が1at%未満の場合には、境界摩擦の低減効果が小さい。境界摩擦をより低減するためには、Si含有量を5at%以上、さらには6at%以上とすることが望ましい。また、実用的な成膜速度を得るという観点では、Si含有量を5at%より多くすることが望ましい。一方、Si含有量が20at%を超えると、非晶質硬質炭素膜の摩耗量が増加してしまう。耐摩耗性および耐焼付き性を考慮した場合には、Si含有量を9.8at%以下とすることが望ましい。9.5at%以下とするとより好適である。
また、H含有量は、20at%以上40at%以下とするとよい。H含有量が20at%未満の場合には、非晶質硬質炭素膜の硬さは大きくなるが、密着力や靱性が低下する。H含有量を25at%以上とすると好適である。反対に、H含有量が40at%を超えると、非晶質硬質炭素膜の硬さが小さくなり、耐摩耗性が低下する。H含有量を35at%以下とすると好適である。
非晶質硬質炭素膜の表面粗さは、Rzjis0.5μm以下である。表面粗さがRzjis0.5μmを超えると、潤滑油による潤滑割合の増加は期待できず、摩擦係数を低減することができない。好ましくは、表面粗さをRzjis0.45μm以下とする。さらにRzjis0.3μm以下とするとより好適である。表面粗さの算出方法は、JIS B 0601(1994)に規定された方法に従う。
非晶質硬質炭素膜の硬さは、特に限定されるものではない。例えば、耐摩耗性等を考慮した場合には、15GPa以上であるとよい。本明細書では非晶質硬質炭素膜の硬さとして、ナノインデンター試験機(株式会社東陽テクニカ製 MTS)による測定値を採用する。
一般に、自動車エンジンの寿命は30万km以上と言われており、エンジン動弁系部品には高い耐久性が要求される。このため、摩耗等を考慮して、非晶質硬質炭素膜の膜厚を2μm以上とすることが望ましい。5μm以上とするとより好適である。
摺動面圧が100MPa以上と高い摺動環境では、動弁系部品本体から非晶質硬質炭素膜が剥離し易い。よって、そのような摺動環境であっても、非晶質硬質炭素膜の剥離を抑制すべく、動弁系部品本体と非晶質硬質炭素膜との密着力を大きくすることが望ましい。例えば、動弁系部品本体が鋼製の場合には、動弁系部品本体と非晶質硬質炭素膜との密着力を20N以上とすることが望ましい。また、摺動面圧が1000MPa以上の摺動環境で使用する場合には、密着力を30N以上とすることが望ましい。ここで、動弁系部品本体と非晶質硬質炭素膜との密着力としては、通常のスクラッチ試験による膜の剥離荷重を採用する。すなわち、頂角120度、先端半径0.2mmのダイヤモンドコーンに荷重をかけて膜を引掻き、膜が剥離した時の荷重を密着力とする。
一方、アルミニウム合金の硬さはHV100前後であり、鋼材の硬さよりも小さい。このため、動弁系部品本体がアルミニウム合金製の場合には、上記スクラッチ試験法では密着性の評価が難しい。また、鋳鉄はグラファイトを含んだ組織である。このため、動弁系部品本体が鋳鉄製の場合にも、スクラッチ試験法では密着性の評価が難しい。同様に、動弁系部品本体がチタン合金製の場合にも、スクラッチ試験法では密着性の評価が難しい。よって、例えば、動弁系部品本体が、アルミニウム合金製、鋳鉄製、またはチタン合金製である場合には、以下に述べるロックウェル圧痕試験法により密着性を評価する。
ロックウェル圧痕試験法は、円錐型ダイヤモンド圧子(ロックウェルCスケール圧子)に荷重を100〜1500N負荷し、その圧痕周辺の膜の剥離状態から密着性を評価する方法である。ロックウェル圧痕試験法は、ドイツでDIN規格化されようとしている。例えば、W.Heinke et al,「Eval-uation of PVD nitride coatings,using impact,scratch and Rockwell-C adhesion tests」,Thin Solid Films,270(1995)p.431-438に記載されているように、圧痕周辺に膜の剥離が見られない場合(HF1〜4)には、密着性は良好と評価される。一方、膜の剥離が見られる場合(HF5、6)には、密着性は不良と評価される。したがって、動弁系部品本体がアルミニウム合金製、鋳鉄製、またはチタン合金製である場合には、動弁系部品本体と非晶質硬質炭素膜との密着状態は、1500Nの荷重を負荷したロックウェル圧痕試験による評価で、HF1〜4の状態であることが望ましい。
非晶質硬質炭素膜は、プラズマCVD法、イオンプレーティング法、スパッタリング法等、既に公知のCVD法、PVD法により形成することができる。しかし、スパッタリング法に代表されるように、PVD法では成膜原料に指向性がある。よって、均一に成膜するためには、装置内に複数のターゲットを配置したり、成膜対象の動弁系部品本体を回転させることが必要となる。その結果、成膜装置の構造が複雑化し、高価になる。また、動弁系部品の形状によっては成膜し難い場合がある。一方、プラズマCVD法は、反応ガスにより成膜するため、動弁系部品の形状に関わらず均一に成膜することができる。また、成膜装置の構造も単純で安価である。プラズマCVD法には、例えば、高周波放電を利用する高周波プラズマCVD法や、直流放電を利用する直流プラズマCVD法等がある。特に、直流プラズマCVD法は、成膜装置を真空炉と直流電源とから構成すればよく、また、様々な形状の動弁系部品に対して容易に成膜できるため好適である。
例えば、非晶質硬質炭素膜を、直流プラズマCVD法により成膜する場合には、まず、真空容器内に動弁系部品本体を配置して、反応ガスおよびキャリアガスを導入する。そして、放電によりプラズマを生成させ、動弁系部品本体に付着させればよい。反応ガスには、メタン(CH4)、アセチレン(C22)等の炭化水素ガス、Si(CH34[TMS]、SiH4、SiCl4、SiH24等の珪素化合物ガス、および水素ガスを用い、キャリアガスにはアルゴンガスを用いればよい。
本発明のエンジン動弁系部品が、非晶質硬質炭素膜を摺動面として相手材と摺接した場合、含有されるSiにより非晶質硬質炭素膜の表面にはシラノールが生成される。シラノールの生成は、例えば、誘導体化法を利用したXPS分析により検出することができる。誘導体化XPS分析は、次の手順で行う。まず、反応試薬のトリデカフルオロ−1,1,2,2−テトラヒドロオクチル−ジメチルクロロシランが入った硫酸中に、摺動後の非晶質硬質炭素膜を1時間浸漬する。この時、シラノールが生成していれば、膜表面のOH基と反応試薬中のClとが反応し脱塩酸される。次に、非晶質硬質炭素膜を取り出し、クロロホルムにより充分洗浄する。その後、XPS分析によりF量を求めることで、シラノール量を定量することができる。
動弁系部品本体と非晶質硬質炭素膜との密着性を向上させるという観点から、非晶質硬質炭素膜が形成される動弁系部品本体の表面には、予めイオン衝撃法による凹凸形成処理が施されていることが望ましい。凹凸形成処理により、動弁系部品本体の表面は、平均高さが10nm以上100nm以下、平均幅が300nm以下の凸部をもつ凹凸面となる。この凹凸面に非晶質硬質炭素膜を形成することで、密着性が向上する。形成された凹凸面の凸部は半球状である。この半球状の凸部の底から頂点までの距離を、凸部の高さとする。また、半球状の凸部の底の最大径(凸部の底面形状が真円の場合は直径、凸部の底面形状が楕円の場合は長軸径)に相当する水平方向の距離を、凸部の幅とする。
この場合、平均高さが10nm未満では、機械的なアンカー効果が得られず、密着性の向上効果が充分ではない。一方、100nmを越えると、平滑な非晶質硬質炭素膜を成膜し難くなる。なお、平均高さを20nm以上70nm以下とすると、より密着性が向上する。また、平均幅が300nmを越えると、アンカー効果が得られず、密着性の向上効果が充分ではない。凸部の高さ、幅は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)等により測定すればよい。
また、凹凸面に占める凸部の面積割合は、凹凸面の面積を100%とした場合に30%以上であるとよい。凸部の面積割合を30%以上とすることで、非晶質硬質炭素膜の密着性向上効果を充分発揮させることができる。
イオン衝撃法の手順は以下の通りである。まず、密閉容器内に動弁系部品本体を設置し、容器内のガスを排気して所定のガス圧とする。ガス圧は、0.13Pa以上2666Pa以下とすることが望ましい。ガス圧力が0.13Pa未満では、動弁系部品本体を充分に加熱することができない。2666Paを越えると、微細な凹凸を形成することができない。次に、凹凸形成処理用ガスを導入する。この凹凸形成処理用ガスには、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンから選ばれる一種または二種以上からなる希ガスを利用すればよい。また、希ガスに水素を加えると、動弁系部品本体の表面の酸化を抑制することができる。次に、イオン衝撃を与える。イオン衝撃を与える手段としては、グロー放電またはイオンビームを利用すればよい。放電電圧200〜1000V、電流0.5〜3.0Aで、30〜60分間イオン衝撃を行うと、均一で微細なナノメートルオーダの凹凸を形成することができる。また、イオン衝撃を与えている時に、動弁系部品本体の硬さが低下しない温度(200℃以上は必要)にまで加熱すると、さらに均一で微細な凹凸を形成することができる。
また、動弁系部品本体の表面に、均一で微細な凹凸を形成するため、凹凸形成処理の前に、窒化処理を施しておくことが望ましい。窒化処理の方法としては、例えば、ガス窒化法、塩浴窒化法、イオン窒化法がある。窒化処理の後、その表面を表面粗さがRzjis0.5μm以下となるよう研磨加工して、上述したイオン衝撃を加えればよい。
本発明のエンジン動弁系部品は、相手材との摺接において低摩擦係数を示す。ここで、相手材の摺動面は、炭素鋼、合金鋼、鋳鉄、アルミニウム合金等、相手材の材質そのものの態様でもよく、既に公知の表面処理が施された態様であってもよい。特に、相手材の摺動面にも、Si含有量1at%以上20at%以下、表面粗さRzjis0.5μm以下の非晶質硬質炭素膜が形成されている場合には、より摩擦係数が低減され好適である。つまり、本発明のエンジン動弁系部品どうしを組み合わせて用いることで、より一層、摩擦係数を低減することができる。
以下に、本発明のエンジン動弁系部品の一実施形態を示す。まず、本実施形態のエンジン動弁系部品が配設された動弁機構の構成について説明する。図1に、本実施形態のエンジン動弁系部品が配設された動弁機構の一部断面図を示す。図2に、図1中の点線枠IIの拡大図を示す。
図1に示すように、動弁機構3は、カムシャフト40と、カム41と、ロッカアーム5と、バルブ7と、ピボット6とからなる。カム41は、カムシャフト40に配置される。カム41は、拡径方向に突出した突出部410を持つ。ロッカアーム5は、ローラ50と支持軸51とニードル52とバルブ押圧部53とピボット軸連結部54とアーム本体55とを備える。
アーム本体55は、矩形状を呈する。ローラ50は、円筒状を呈する。ローラ50は、アーム本体55の長手方向ほぼ中央に配置される。ローラ50外周面は、カム41の突出部410の外周面に当接する。
支持軸51は、ローラ50と別体である。支持軸51は、ローラ50の内周側に配置される。ニードル52は、丸棒状を呈する。ニードル52は、支持軸51の外周面とローラ50の内周面との間に介装される。ニードル52は、周方向に並んで複数配置される。ローラ50は、支持軸51に対して回転可能である。
バルブ押圧部53は、矩形板状を呈する。バルブ押圧部53は、アーム本体55の長手方向一端に配置される。ピボット軸連結部54は、矩形板状を呈する。ピボット軸連結部54は、アーム本体55の長手方向他端に配置される。ピボット軸連結部54には、連結孔540が穿設される。
バルブ7は、バルブ本体70と、ステムキャップ71と、リテーナ72と、コッタ73と、バルブスプリング74と、オイルシール75とを備える。バルブ本体70は、下方に向かって広がるラッパ状を呈する。バルブ本体70は、図示しないシリンダヘッドのバルブガイドに挿入される。コッタ73は、二つの円筒半割体からなる。コッタ73は、バルブ本体70の上部に環装される。リテーナ72は、リング状を呈する。リテーナ72は、コッタ73の外周側に配置される。
バルブスプリング74は、リテーナ72の下面と、シリンダヘッドに形成されたスプリングシート(図略)との間に介装される。バルブスプリング74は、リテーナ72、つまりバルブ本体70を、上方に付勢する。ステムキャップ71は、下方に開口するカップ状を呈する。ステムキャップ71は、バルブ本体70の上端を覆っている。ステムキャップ71の上底壁は、バルブ押圧部53に当接する。オイルシール75は、リング状を呈する。オイルシール75は、バルブ本体70におけるリテーナ72の下方部分に環装される。オイルシール75は、バルブガイド(図略)の上端を覆っている。
ピボット6は、ピボット軸60と、ナット61と、ピボット軸受62と、を備える。ピボット軸60は、炭素鋼製であり、下端が球形面の円柱状を呈する。ピボット軸60の上方の部分は、ピボット軸連結部54の連結孔540に螺着される。ナット61は、ピボット軸60の外周面に螺着される。ピボット軸60の下端の半球面64には、図2に示すように、非晶質硬質炭素膜のDLC−Si膜600が形成される。DLC−Si膜600の組成は、Si:6at%、C:64at%、H:30at%であり、表面粗さはRzjis0.2μmである。つまり、ピボット軸60は、本発明のエンジン動弁系部品に含まれる。
ピボット軸受62は、炭素鋼製であり、ボルト状を呈する。ピボット軸受62は、シリンダヘッド66に固定される。ピボット軸受62の頂部上面には、ピボット軸60の半球面64と略型対称の逆半球面65が凹設される。逆半球面65には、前出図2に示すように、非晶質硬質炭素膜のDLC−Si膜620が形成される。DLC−Si膜620の組成は、DLC−Si膜600の組成と同じである。つまり、ピボット軸受62も、本発明のエンジン動弁系部品に含まれる。逆半球面65のDLC−Si膜620と、半球面64のDLC−Si膜600とは、摺接する。
次に、本実施形態のエンジン動弁系部品が配設された動弁機構の動きについて説明する。カムシャフト40が時計回り方向に回転すると、カム41も同方向に回転する。そして、カム41の突出部410がローラ50と接触すると、ローラ50は押圧され、ローラ50は、支持軸51を中心に、反時計回り方向に回転する。ローラ50が押圧されると、アーム本体55は、ピボット軸60の半球面64の中心Oを支点として、下方に揺動する。これにより、バルブ押圧部53も下方に揺動する。バルブ押圧部53が下方に揺動すると、バルブスプリング74の付勢力に抗して、バルブ本体70が下方に移動し、開弁する。カム41の突出部410がローラ50を通過すると、バルブスプリング74の付勢力により、バルブ本体70が上方に移動し、閉弁する。また、バルブ押圧部53、つまりアーム本体55は、中心Oを支点として上方に揺動する。
このようなアーム本体55の揺動に伴い、ピボット軸連結部54の連結孔540に螺着されたピボット軸60は、半球面64の中心Oを支点として揺動する。これに対して、ピボット軸受62は、シリンダヘッド66に固定され動かない。この動きの違いにより、ピボット軸60の半球面64に形成されたDLC−Si膜600と、ピボット軸受62の逆半球面65に形成されたDLC−Si膜620とは、圧接しながら、相対的に摺動する。
本実施形態によれば、以下に示す効果が得られる。すなわち、本実施形態では、DLC−Si膜600、620のSi含有量は6at%であり、かつその表面粗さはRzjis0.2μmである。表面粗さが小さいため、固体−固体接触による境界摩擦の割合は少なく、潤滑油による潤滑割合が多くなる。また、Siを所定量含むため、摺動時にDLC−Si膜600、620の表面にシラノールが生成され、境界摩擦が大幅に低減する。このように、潤滑油による潤滑割合の増加および境界摩擦の低減の両作用により、DLC−Si膜600を持つピボット軸60と、DLC−Si膜620を持つピボット軸受62と、の摩擦係数は低減する。
以上、本発明のエンジン動弁系部品の一実施形態を説明した。しかし、本発明のエンジン動弁系部品は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
例えば、上記実施形態では、ピボット軸60とピボット軸受62とを、本発明のエンジン動弁系部品で構成した。しかし、本発明のエンジン動弁系部品は、これらの部品に限定されるものではない。例えば、上記実施形態のカムシャフト40、カム41、ロッカアーム5、バルブ7のバルブ本体70、ステムキャップ71等、種々の部品として具現化することができる。この場合、各部品の形状、配置等は、上記実施形態に限定されない。また、非晶質硬質炭素膜の組成、表面粗さについても、上記実施形態に限定されない。
上記実施形態に基づいて、表面粗さの異なる基材に、それぞれ非晶質硬質炭素膜を形成した。そして、リング・オン・ブロック型摩擦試験機による摺動試験を行って、非晶質硬質炭素膜の摩擦係数を測定した。また、本発明のエンジン動弁系部品を、ピボットのピボット軸とピボット軸受とに具現化し、実機エンジンによる運転試験を行って、それらの摩擦係数を測定した。以下、各試験方法および摩擦係数の測定結果について説明する。
(1)リング・オン・ブロック型摩擦試験機による摺動試験
(a)Si含有非晶質硬質炭素膜(以下、適宜「DLC−Si膜」と称す。)の形成
図3に示す直流プラズマCVD(PCVD)成膜装置を用いて、基材の表面にDLC−Si膜を形成した。図3に示すように、直流プラズマCVD成膜装置1は、ステンレス製の容器10と、基台11と、ガス導入管12と、ガス導出管13とを備える。ガス導入管12は、バルブ(図略)を介して各種ガスボンベ(図略)に接続される。ガス導出管13は、バルブ(図略)を介してロータリーポンプ(図略)および拡散ポンプ(図略)に接続される。
まず、容器10内に設置された基台11の上に、基材15を配置した。基材15は、マルテンサイト系ステンレス鋼SUS440C(焼入れ焼戻し品 HRC58)製のブロック試験片(6.3mm×15.7mm×10.1mm)とした。次に、容器10を密閉し、ガス導出管13に接続されたロータリーポンプおよび拡散ポンプにより、容器10内のガスを排気した。容器10内にガス導入管12から水素ガスを15sccm導入し、ガス圧を約133Paとした。その後、容器10の内側に設けたステンレス製陽極板14と基台11との間に200Vの直流電圧を印加して、放電を開始した。そして、基材15の温度が500℃になるまで、イオン衝撃による昇温を行った。次に、ガス導入管12から、窒素ガス500sccmおよび水素ガス40sccmを導入し、圧力約800Pa、電圧400V(電流1.5A)、温度500℃でプラズマ窒化処理を1時間行った。基材15の断面組織を観察したところ、窒化深さは30μmであった。
プラズマ窒化処理後、ガス導入管12から水素ガスとアルゴンガスとを30sccmずつ導入し、圧力約533Pa、電圧300V(電流1.6A)、温度500℃でスパッタリングし、基材15の表面に微細な凹凸を形成した(凹凸形成処理)。凸部の幅は60nm、高さは30nmであった。次に、ガス導入管12から反応ガスとしてTMSガスを1sccm、およびメタンガスを100sccm導入し、さらに水素ガスとアルゴンガスとを30sccmずつ導入し、圧力約533Pa、電圧320V(電流1.8A)、温度500℃で成膜した。成膜時間を制御して、膜厚を2.7μmとした。
このような方法で、ブロック試験片に表面粗さの異なる三種類(Rzjis0.15μm、0.45μm、0.80μm)のDLC−Si膜を形成した。形成したDLC−Si膜を、それぞれDLC−Si−1〜3と番号付けした。これらDLC−Si膜の組成は、Si:6at%、C:64at%、H:30at%であった。また、DLC−Si膜と基材との密着力は、いずれも50Nであった。DLC−Si膜の硬さは、いずれも17GPaであった。以下の摺動試験では、各ブロック試験片に形成されたDLC−Si膜が、相手材との摺動面となる。
DLC−Si膜中のSi含有量は、電子プローブ微小部分析法(EPMA)、X線光電子分光法(XPS)、オージェ電子分光法(AES)、ラザフォード後方散乱法(RBS)により定量した。また、H含有量は、弾性反跳粒子検出法(ERDA)により定量した。ERDAは、2MeVのヘリウムイオンビームを被膜表面に照射して、被膜からはじき出される水素を半導体検出器により検出し、被膜中の水素濃度を測定する方法である。
(b)摺動試験および摩擦係数の測定
作製した各ブロック試験片について、リング・オン・ブロック型摩擦試験機(LFW−1、FALEX社製)による摺動試験を行った。図4に、リング・オン・ブロック型摩擦試験機の概略図を示す。図4に示すように、リング・オン・ブロック型摩擦試験機2は、ブロック試験片20と、相手材となるリング試験片21とから構成される。ブロック試験片20とリング試験片21とは、ブロック試験片20に形成された被膜200とリング試験片21とが当接する状態で設置される。リング試験片21はオイルバス22中に回転可能に設置される。本摺動試験では、リング試験片21として、本摩擦試験機の標準試験片であるS−10リング試験片(材質:SAE4620スチール浸炭処理材、形状:φ35mm、幅8.8mm、表面粗さ:Rzjis0.37μm、1.95μmの二種類、FALEX社製)を用いた。また、オイルバス22には、80℃に加熱保持したエンジン油(キャッスルモーターオイルSL5W−30)を用いた。
まず、無負荷の状態で、リング試験片21を回転させた。次いで、ブロック試験片20の上から300Nの荷重(ヘルツ面圧310MPa)をかけ、ブロック試験片20とリング試験片21とを摺動速度0.3m/sで30分間摺動させた後、摩擦係数を測定した。ここで、ヘルツ面圧とは、ブロック試験片20とリング試験片21との接触部の弾性変形を考慮した実接触面の圧力の最大値である。
一方、比較のため、DLC−Si膜を形成したのと同様のブロック試験片に、Siを含有しないDLC膜(以下、単に「DLC膜」と称す。)を、マグネトロンスパッタリング(SP)法により成膜した。形成したDLC膜は、表面粗さの異なる三種類であり、各々をDLC−1〜3と番号付けした。同様に、ブロック試験片に、ホロカソード(HCD)法によりCrN膜を成膜した。形成したCrN膜は、表面粗さの異なる三種類であり、各々をCrN−1〜3と番号付けした。DLC膜、CrN膜を形成した各ブロック試験片、および被膜を形成しないブロック試験片自体について、上記同様のリング・オン・ブロック型摩擦試験機による摺動試験を行った。
図5に、各ブロック試験片の摩擦係数の測定結果を示す。図5の横軸は、各ブロック試験片の摺動前の摺動面の表面粗さである。図5には、リング試験片の表面粗さがRzjis0.37μmの場合、およびRzjis1.95μmの場合の両方の測定結果が示されている。具体的には、図5中、各ブロック試験片における同一の表面粗さのプロットのうち、摩擦係数の高い方がRzjis1.95μm、低い方がRzjis0.37μmの結果である。また、表1に、各ブロック試験片に形成された被膜の厚さ、表面粗さ、密着力をまとめて示す。なお、被膜が形成されていないブロック試験片自体(SUS440C)は、表面粗さの違いによりSUS440C−1、2として示す。
Figure 0004372663
図5に示すように、DLC膜、CrN膜、SUS440Cでは、表面粗さを小さくしても、摩擦係数はあまり低下しなかった。これに対して、DLC−Si膜では、表面粗さをRzjis0.5μm以下と小さくすることにより、摩擦係数は大幅に低下した。これは、潤滑油による潤滑割合の増加に加え、境界摩擦の低減効果が発揮されたためと考えられる。特に、相手材の表面粗さがRzjis0.37μmの場合、DLC−Si膜の表面粗さをRzjis0.45μmから0.15μmにすることで、摩擦係数は約50%低下した。これより、Si含有量1at%以上20at%以下、表面粗さRzjis0.5μm以下のDLC−Si膜を摺動面とすることにより、摩擦係数を低減できることがわかる。特に、表面粗さをRzjis0.3μm以下とすると、摩擦係数の低減効果が大きいことがわかる。
(2)エンジン運転試験
本発明のエンジン動弁系部品を、ピボットのピボット軸とピボット軸受とに具現化し、エンジン運転試験を行った。すなわち、前出図1、図2に示した動弁機構を持つ実機エンジン(ディーゼルエンジン、排気量1.4L)を使用して、エンジン運転試験を行った。試験条件は、エンジン油温度80℃、バルブスプリング荷重39kg(ヘルツ面圧500MPa)である。カムシャフト回転数を500〜2000rpmと変化させ、所定の回転数において、ピボット軸とピボット軸受との間の摩擦係数を測定した。そして、測定された摩擦係数の平均値を、平均摩擦係数として採用した。
また、ピボット軸およびピボット軸受の摺動面の状態を変更し、上記同様のエンジン運転試験を行った。表2に、エンジン運転試験に供したピボット軸およびピボット軸受の各摺動面におけるDLC−Si膜の有無、および表面粗さの値をまとめて示す。また、図6に、摩擦係数の測定結果を示す。
Figure 0004372663
図6に示すように、ピボット軸およびピボット軸受のいずれの摺動面にもDLC−Si膜が形成されていない場合(#3〜#5)には、各摺動面の表面粗さが小さくなるとともに、摩擦係数は低下した。例えば、#3の摩擦係数を基準とすると、#3より両摺動面の表面粗さが小さい#5の摩擦係数は、20%程度低下した。一方、ピボット軸側の摺動面の表面粗さが大きくても、ピボット軸受側の摺動面がRzjis0.2μmのDLC−Si膜である場合(#2)には、#5と同程度の低摩擦係数となった。さらに、両摺動面をRzjis0.2μmのDLC−Si膜とした場合(#1)には、#3と比較して、摩擦係数は50%程度低下した。これより、Si含有量1at%以上20at%以下、表面粗さRzjis0.5μm以下のDLC−Si膜による摩擦低減効果が確認された。また、同DLC−Si膜どうしを摺動させた場合には、摩擦係数の低減効果が大きいことが確認された。
本発明の一実施形態のエンジン動弁系部品が配設された動弁機構の一部断面図である。 図1中の点線枠IIの拡大図である。 直流プラズマCVD成膜装置の概略図である。 リング・オン・ブロック型摩擦試験機の概略図である。 種々の被膜の表面粗さと摩擦係数との関係を示すグラフである。 エンジン運転試験における摩擦係数の測定結果を示すグラフである。
符号の説明
1:直流プラズマCVD成膜装置 10:容器 11:基台 12:ガス導入管
13:ガス導出管 14:ステンレス製陽極板 15:基材
2:リング・オン・ブロック型摩擦試験機
20:ブロック試験片 21:リング試験片 22:オイルバス 200:被膜
3:動弁機構 40:カムシャフト 41:カム 410:突出部
5:ロッカアーム 50:ローラ 51:支持軸 52:ニードル
53:バルブ押圧部 54:ピボット軸連結部 540:連結孔 55:アーム本体
6:ピボット 60:ピボット軸 61:ナット 62:ピボット軸受 64:半球面
65:逆半球面 66:シリンダヘッド 600、620:DLC−Si膜
7:バルブ 70:バルブ本体 71:ステムキャップ 72:リテーナ
73:コッタ 74:バルブスプリング 75:オイルシール

Claims (6)

  1. 潤滑油を用いた湿式条件で使用されるエンジン動弁系部品であって、
    動弁系部品本体と、該動弁系部品本体の相手材との摺動面の少なくとも一部に形成された非晶質硬質炭素膜と、からなり、
    該非晶質硬質炭素膜のSi含有量はat%より多く20at%以下であり、表面粗さはRzjis0.μm以下であり、該非晶質硬質炭素膜は摺接時に表面にシラノールが生成されることを特徴とするエンジン動弁系部品。
  2. 前記非晶質硬質炭素膜は、相手材との摺動面に形成され、
    該摺動面のすべり率は1%以上である請求項1に記載のエンジン動弁系部品。
  3. 前記非晶質硬質炭素膜の膜厚は1μm以上である請求項1に記載のエンジン動弁系部品。
  4. 前記動弁系部品本体は鋼製であり、
    該動弁系部品本体と前記非晶質硬質炭素膜との密着力は20N以上である請求項1に記載のエンジン動弁系部品。
  5. 前記非晶質硬質炭素膜が形成される動弁系部品本体の表面は、イオン衝撃法による凹凸形成処理により、平均高さが10nm以上100nm以下、平均幅が300nm以下の凸部をもつ凹凸面となっている請求項1に記載のエンジン動弁系部品。
  6. 前記非晶質硬質炭素膜は、直流プラズマCVD法で形成される請求項1に記載のエンジン動弁系部品。
JP2004312908A 2004-10-27 2004-10-27 エンジン動弁系部品 Expired - Fee Related JP4372663B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312908A JP4372663B2 (ja) 2004-10-27 2004-10-27 エンジン動弁系部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312908A JP4372663B2 (ja) 2004-10-27 2004-10-27 エンジン動弁系部品

Publications (2)

Publication Number Publication Date
JP2006125254A JP2006125254A (ja) 2006-05-18
JP4372663B2 true JP4372663B2 (ja) 2009-11-25

Family

ID=36720240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312908A Expired - Fee Related JP4372663B2 (ja) 2004-10-27 2004-10-27 エンジン動弁系部品

Country Status (1)

Country Link
JP (1) JP4372663B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290564B2 (ja) * 2007-11-13 2013-09-18 トーヨーエイテック株式会社 炭素質薄膜
JP5099693B2 (ja) * 2008-02-06 2012-12-19 地方独立行政法人山口県産業技術センター 非晶質炭素膜及びその成膜方法
WO2011152182A1 (ja) * 2010-05-31 2011-12-08 株式会社ジェイテクト 被覆部材の製造方法
JP2012162998A (ja) * 2011-02-03 2012-08-30 Toyota Motor Corp 内燃機関のバルブスプリングシート
JP5538275B2 (ja) * 2011-03-14 2014-07-02 株式会社クボタ 頭上弁エンジンの動弁装置
JP2013108156A (ja) * 2011-11-24 2013-06-06 Toyota Central R&D Labs Inc 内燃機関用バルブ駆動系部材およびその使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971928B2 (ja) * 1989-12-28 1999-11-08 株式会社豊田中央研究所 潤滑性を有する硬質非晶質炭素―水素―珪素薄膜、表面に該薄膜を有する鉄系金属材料、およびその製造方法
JPH0790553A (ja) * 1993-09-27 1995-04-04 Shojiro Miyake 摺動部品およびその製造方法
JP3453033B2 (ja) * 1996-10-23 2003-10-06 株式会社豊田中央研究所 被覆部材およびその製造方法
JP4251738B2 (ja) * 1998-12-25 2009-04-08 住友電気工業株式会社 硬質被膜及び被覆部材
JP4427706B2 (ja) * 2002-05-21 2010-03-10 株式会社豊田中央研究所 高耐摩耗性および高耐焼付き性摺動部材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition

Also Published As

Publication number Publication date
JP2006125254A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
US6844068B1 (en) Slidably movable member and method of producing same
JP5013445B2 (ja) ピストンリング、それを備えたピストンおよびそれらの使用方法
JP4076169B2 (ja) 非晶質硬質炭素膜を備えたピストンリング、ピストン、シリンダ、ピストンピン
JP5051453B2 (ja) 非晶質炭素膜、その形成方法、および非晶質炭素膜を備えた高耐摩耗摺動部材
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
JP6177267B2 (ja) 摺動部材および摺動機械
JP5575989B2 (ja) シリンダとピストンリングとの組合せ
US7156061B2 (en) Valve lifter
EP1154035A1 (en) Amorphous carbon film containing oxide
Kolawole et al. The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study
JP4372663B2 (ja) エンジン動弁系部品
JP4572688B2 (ja) 低摩擦摺動部材
JP2003247060A (ja) 非晶質炭素被膜の製造方法及び非晶質炭素被覆摺動部品
JP6533818B2 (ja) 摺動部材およびピストンリング
JPH11315924A (ja) 組合せオイルリングのスペ―サエキスパンダ及び組合せオイルリング
JP3625041B2 (ja) タペット
JP4721450B2 (ja) 動弁装置の摺動部品
JP2005314454A (ja) 低摩擦摺動部材
JP2013108156A (ja) 内燃機関用バルブ駆動系部材およびその使用方法
JP3776750B2 (ja) Dlcを施したカムおよびカムシャフト
US11236861B2 (en) Friction piece, mechanical system comprising such a friction piece and method of implementation
JP3904411B2 (ja) Dlcを施したリテーナー
JP3776754B2 (ja) Dlcを施したシム
KR20090070347A (ko) 다이아몬드상 카본 박막을 갖는 로커암 샤프트 및 상기로커암 샤프트의 제조방법
JP2008248791A (ja) 密封型ラッシュアジャスタ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees