JP4103850B2 - Pixel circuit, active matrix device, and display device - Google Patents
Pixel circuit, active matrix device, and display device Download PDFInfo
- Publication number
- JP4103850B2 JP4103850B2 JP2004164681A JP2004164681A JP4103850B2 JP 4103850 B2 JP4103850 B2 JP 4103850B2 JP 2004164681 A JP2004164681 A JP 2004164681A JP 2004164681 A JP2004164681 A JP 2004164681A JP 4103850 B2 JP4103850 B2 JP 4103850B2
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- drive transistor
- potential
- drive
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011159 matrix material Substances 0.000 title claims description 20
- 239000003990 capacitor Substances 0.000 claims description 73
- 238000001514 detection method Methods 0.000 claims description 43
- 238000005070 sampling Methods 0.000 claims description 41
- 239000010409 thin film Substances 0.000 claims description 10
- 238000005401 electroluminescence Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 101150010989 VCATH gene Proteins 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- Y02B20/36—
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Electroluminescent Light Sources (AREA)
- Control Of El Displays (AREA)
Description
本発明は、画素毎に配した負荷素子を電流駆動する画素回路に関する。又この画素回路がマトリクス状に配列されたマトリクス装置であって、特に各画素回路内に設けた絶縁ゲート型電界効果トランジスタによって負荷素子に流れる電流量が制御される、いわゆるアクティブマトリクス装置に関する。更には、負荷素子として有機ELなど電流値によって輝度が制御される電気光学素子を有するアクティブマトリクス型の表示装置に関する。 The present invention relates to a pixel circuit that current-drives a load element arranged for each pixel. The present invention also relates to a matrix device in which the pixel circuits are arranged in a matrix, and particularly to a so-called active matrix device in which the amount of current flowing to a load element is controlled by an insulated gate field effect transistor provided in each pixel circuit. Furthermore, the present invention relates to an active matrix display device having an electro-optic element whose luminance is controlled by a current value such as an organic EL as a load element.
画像表示装置、例えば液晶ディスプレイなどでは、多数の液晶画素をマトリクス状に並べ、表示すべき画像情報に応じて画素毎に入射光の透過強度又は反射強度を制御することによって画像を表示する。これは、有機EL素子を画素に用いた有機ELディスプレイなどにおいても同様であるが、液晶画素と異なり有機EL素子は自発光素子である。その為、有機ELディスプレイは液晶ディスプレイに比べて画像の視認性が高く、バックライトが不要であり、応答速度が速いなどの利点を有する。又、各発光素子の輝度レベル(階調)はそれに流れる電流値によって制御可能であり、いわゆる電流制御型であるという点で液晶ディスプレイなどとは大きく異なる。 In an image display device such as a liquid crystal display, an image is displayed by arranging a large number of liquid crystal pixels in a matrix and controlling the transmission intensity or reflection intensity of incident light for each pixel in accordance with image information to be displayed. This also applies to an organic EL display using an organic EL element as a pixel, but unlike a liquid crystal pixel, the organic EL element is a self-luminous element. Therefore, the organic EL display has advantages such as higher image visibility than the liquid crystal display, no backlight, and a high response speed. Further, the luminance level (gradation) of each light emitting element can be controlled by the value of the current flowing therethrough, and is greatly different from a liquid crystal display or the like in that it is a so-called current control type.
有機ELディスプレイにおいては、液晶ディスプレイと同様、その駆動方式として単純マトリクス方式とアクティブマトリクス方式とがある。前者は構造が単純であるものの、大型且つ高精細のディスプレイの実現が難しいなどの問題がある為、現在はアクティブマトリクス方式の開発が盛んに行なわれている。この方式は、各画素回路内部の発光素子に流れる電流を、画素回路内部に設けた能動素子(一般には薄膜トランジスタ,TFT)によって制御するものである。
図8は、一般的な有機EL表示装置の構成を示すブロック図である。この表示装置100は、画素回路(PXLC)101がm×nのマトリクス状に配列された画素アレイ部102、水平セレクタ(HSEL)103、ライトスキャナ(WSCN)104、ドライブスキャナ(DSCN)105、水平セレクタ103により選択され輝度情報に応じた信号が供給される信号線DTL101〜DTL10n、ライトスキャナ104により選択駆動される走査線WSL101〜WSL10m、及びドライブスキャナ105により選択駆動される走査線DSL101〜DSL10mを有する。
FIG. 8 is a block diagram showing a configuration of a general organic EL display device. The
図9は、図8に示した画素回路の一構成例を示す回路図である。図示する様に、この画素回路101は、基本的にpチャネル型の薄膜電界効果トランジスタ(以下、TFTと言う)で構成されている。すなわち画素回路101は、ドライブTFT111、スイッチングTFT112、サンプリングTFT115、有機EL素子117、保持容量C111を有する。係る構成を有する画素回路101は、信号線DTL101と走査線WSL101,DSL101との交差部に配されている。信号線DTL101はサンプリングTFT115のドレインに接続し、走査線WSL101はサンプリングTFT115のゲートに接続し、他の走査線DSL101はスイッチングTFT112のゲートに接続している。
FIG. 9 is a circuit diagram showing a configuration example of the pixel circuit shown in FIG. As shown in the figure, the
ドライブTFT111、スイッチングTFT112及び有機EL素子117は、電源電位Vccと接地電位GNDの間で直列に接続されている。すなわちドライブトランジスタ111のソースが電源電位Vccに接続される一方、有機EL素子(発光素子)117のカソードが接地電位GNDに接続されている。一般に、有機EL素子117は整流性がある為ダイオードの記号で表わしている。一方、サンプリングTFT115及び保持容量C111は、ドライブTFT111のゲートに接続している。ドライブTFT111のゲート・ソース間電圧をVgsで表わしている。
The
画素回路101の動作であるが、まず走査線WSL101を選択状態(ここでは低レベル)とし、信号線DTL101に信号を印加すると、サンプリングTFT115が導通して信号が保持容量C111に書き込まれる。保持容量C111に書き込まれた信号電位がドライブトランジスタ111のゲート電位となる。続いて、走査線WSL101を非選択状態(ここでは高レベル)とすると、信号線DTL101とドライブTFT111とは電気的に切り離されるが、ドライブTFT111のゲート電位Vgsは保持容量C111によって安定に保持される。続いて他の走査線DSL101を選択状態(ここでは低レベル)にすると、スイッチングTFT112が導通し、電源電位Vccから接地電位GNDに向かって駆動電流がTFT111,TFT112及び発光素子117を流れる。DSL101が非選択状態になるとスイッチングトランジスタ112がオフし、駆動電流は流れなくなる。スイッチングTFT112は発光素子117の発光時間を制御する為に挿入されたものである。
The operation of the
TFT111及び発光素子117に流れる電流は、TFT111のゲート・ソース間電圧Vgsに応じた値となり、発光素子117はその電流値に応じた輝度で発光し続ける。上記の様に、走査線WSL101を選択して信号線DTL101に与えられた信号を画素回路101の内部に伝える動作を、以下「書き込み」と呼ぶ。上述の様に、一度信号の書き込みを行なえば、次に書き換えられるまでの間、発光素子117は一定の輝度で発光を続ける。
The current flowing through the
上述した様に画素回路101では、ドライブトランジスタであるTFT111のゲート印加電圧を入力信号に応じて変化させることで、EL発光素子117に流れる電流値を制御している。この時、pチャネル型のドライブトランジスタ111のソースは電源電位Vccに接続されており、このTFT111は常に飽和領域で動作している。よって、ドライブトランジスタ111は下記の式(1)に示した値を持つ定電流源となっている。
As described above, in the
Ids=(1/2)・μ・(W/L)・Cox・(Vgs−Vth)2・・・(1)
ここでIdsは飽和領域で動作するトランジスタのドレイン・ソース間に流れる電流を表わしている。又μは移動度、Wはチャネル幅、Lはチャネル長、Coxはゲート容量、Vthはトランジスタの閾電圧を表わしている。式(1)から明らかな様に、飽和領域ではトランジスタのドレイン電流Idsはゲート・ソース間電圧Vgsによって制御される。図9に示したドライブトランジスタ111は、Vgsが一定に保持される為、ドライブトランジスタ111は定電流源として動作し、発光素子117を一定の輝度で発光させることができる。
Ids = (1/2) · μ · (W / L) · Cox · (Vgs−Vth) 2 (1)
Here, Ids represents a current flowing between the drain and source of a transistor operating in the saturation region. Further, μ represents mobility, W represents channel width, L represents channel length, Cox represents gate capacitance, and Vth represents a threshold voltage of the transistor. As apparent from the equation (1), in the saturation region, the drain current Ids of the transistor is controlled by the gate-source voltage Vgs. Since the
図10は、有機EL素子の電流−電圧(I−V)特性の経時変化を示すグラフである。グラフにおいて、実線で示す曲線が初期状態時の特性を示し、破線で示す曲線が経時変化後の特性を示している。一般的に、有機EL素子のI−V特性は、グラフに示す様に時間が経過すると劣化してしまう。これに対して、図9に示した画素回路は、ドライブトランジスタが定電流駆動である為、有機EL素子には定電流Idsが流れ続け、有機EL素子のI−V特性が劣化してもその発光輝度が経時劣化することはない。 FIG. 10 is a graph showing a change with time of current-voltage (IV) characteristics of the organic EL element. In the graph, the curve indicated by the solid line indicates the characteristic in the initial state, and the curve indicated by the broken line indicates the characteristic after change with time. Generally, the IV characteristic of an organic EL element deteriorates over time as shown in the graph. On the other hand, in the pixel circuit shown in FIG. 9, since the drive transistor is driven at a constant current, the constant current Ids continues to flow through the organic EL element, and the IV characteristic of the organic EL element deteriorates. The light emission luminance does not deteriorate with time.
図9に示した画素回路は、pチャネル型のTFTにより構成されているが、nチャネル型のTFTにより構成することができれば、TFT作成において従来のアモルファスシリコン(a−Si)プロセスを用いることが可能になる。これにより、TFT基板の低コスト化が可能となり、開発が期待されている。 The pixel circuit shown in FIG. 9 is configured by a p-channel TFT. However, if the pixel circuit can be configured by an n-channel TFT, a conventional amorphous silicon (a-Si) process can be used for TFT fabrication. It becomes possible. As a result, the cost of the TFT substrate can be reduced, and development is expected.
図11は、図9に示した画素回路のpチャネルTFTをnチャネルTFTに置き換えた構成を示す回路図である。図示する様に、この画素回路101は、nチャネル型のTFT111,112,115、保持容量C111、発光素子である有機EL素子117で構成されている。TFT111はドライブトランジスタ、TFT112はスイッチングトランジスタ、TFT115はサンプリングトランジスタである。又図において、DTL101は信号線を表わし、DSL101及びWSL101は走査線をそれぞれ示している。この画素回路101では、ドライブトランジスタであるTFT111のドレイン側が電源電位Vccに接続され、ソースはEL素子117のアノードに接続されており、ソースフォロワ回路を形成している。
FIG. 11 is a circuit diagram showing a configuration in which the p-channel TFT of the pixel circuit shown in FIG. 9 is replaced with an n-channel TFT. As shown in the figure, the
図12は、図11に示した画素回路の動作説明に供するタイミングチャートである。走査線WSL101に選択パルスが印加されると、サンプリングトランジスタ115が導通し、信号線DTL101から信号をサンプリングして保持容量C111に書き込む。これにより、ドライブトランジスタ111のゲート電位がサンプリングされた信号電位に保持される。このサンプリング動作は線順次で行なわれる。すなわち1行目の走査線WSL101に選択パルスが印加された後、続いて2行目の走査線WSL102に選択パルスが印加され、以下1水平期間(1H)毎に1行分の画素が選択されていく。WSL101の選択と同時にDSL101も選択される為、スイッチングトランジスタ112がオンする。これにより、ドライブトランジスタ111及びスイッチングトランジスタ112を介して発光素子に駆動電流が流れる為、発光が行なわれる。1フィールド期間(1f)の途中でDSL101は非選択状態となり、スイッチングトランジスタ112はオフになる。これにより発光は停止する。走査線DSL101は1フィールド期間に占める発光時間(デューティ)を制御するものである。
FIG. 12 is a timing chart for explaining the operation of the pixel circuit shown in FIG. When a selection pulse is applied to the scanning line WSL101, the
ここで図13の(A)は、初期状態におけるドライブトランジスタ111とEL素子117の動作点を示すグラフである。図において、横軸はドライブトランジスタ111のドレイン・ソース間電圧Vdsを示し、縦軸はドレイン・ソース間電流Idsを示している。図示する様に、ソース電位はドライブトランジスタ111とEL素子117との動作点で決まり、その電圧値はゲート電圧によって異なる値を持つ。ドライブトランジスタ111は飽和領域で駆動されるので、動作点のソース電圧に対応したVgsに関し、前述の式(1)に規定された電流値の駆動電流Idsを流す。
Here, FIG. 13A is a graph showing operating points of the
しかしながら、EL素子のI−V特性は前述した様に経時劣化する。(B)に示す様に、この経時劣化により動作点が変化してしまい、同じゲート電圧を印加してもトランジスタのソース電圧は変化してしまう。これによりドライブトランジスタ111のゲート・ソース間電圧Vgsは変化してしまい、流れる電流値が変動する。同時にEL素子117に流れる電流値も変化する。この様にEL素子117のI−V特性が変化すると、図11に示したソースフォロワ構成の画素回路では、有機EL素子の発光輝度が経時的に変化してしまうという課題がある。
However, the IV characteristic of the EL element deteriorates with time as described above. As shown in (B), the operating point changes due to the deterioration over time, and the source voltage of the transistor changes even when the same gate voltage is applied. As a result, the gate-source voltage Vgs of the
尚、上記課題を回避する為、ドライブトランジスタ111とEL素子117の配置を逆にすることも考えられる。すなわち、ドライブトランジスタ111のソースを接地電位GNDに接続し、ドレインをEL素子117のカソードに接続し、EL素子117のアノードを電源電位Vccに接続する回路構成も考えられるところである。この方式では、図9に示したpチャネルTFT構成の画素回路と同様に、ソースの電位が固定されており、ドライブトランジスタ111は定電流源として駆動し、EL素子のI−V特性の劣化による輝度変化も防止できる。しかしながら、この方式ではドライブトランジスタをEL素子のカソード側に接続する必要があり、このカソード接続は新規にアノード電極及びカソード電極の開発が必要であり、現状の技術では非常に困難であるとされている。以上により、従来の方式では輝度変化のない、nチャネルトランジスタ使用の有機ELディスプレイの実用化は成されていなかった。
In order to avoid the above problem, it may be possible to reverse the arrangement of the
アクティブマトリクス型の有機ELディスプレイは、EL素子の特性変動に加え、画素回路を構成するnチャネル型TFTの閾電圧も経時的に変化する。前述の式(1)から明らかな様に、ドライブトランジスタの閾電圧Vthが変動すると、ドレイン電流Idsが変化してしまう。これにより、同じゲート電圧Vgsを与えても、Vthの変動により発光輝度が変化するという課題がある。 In the active matrix organic EL display, in addition to fluctuations in the characteristics of the EL elements, the threshold voltage of the n-channel TFT constituting the pixel circuit also changes over time. As is clear from the above equation (1), when the threshold voltage Vth of the drive transistor fluctuates, the drain current Ids changes. Thereby, even if the same gate voltage Vgs is given, there is a problem that the light emission luminance changes due to the variation of Vth.
上述した従来の技術の課題に鑑み、本発明は発光素子など電流駆動型の負荷素子(例えば有機EL素子等の電気光学素子)のI−V特性が経時変化しても、発光輝度を一定に保持することが可能な画素回路を提供することを一般的な目的とする。又、画素回路を構成するトランジスタの閾電圧が経時変化しても、安定して負荷素子を駆動可能な画素回路を提供することを一般的な目的とする。加えて、負荷素子の特性変動に対する補償機能及びトランジスタの閾電圧変動に対する補償機能を付加した画素回路において、特にこれら補償機能の付加に必要な回路要素の個数を極力少なくした画素回路構成を提供することを特定の目的とするものである。 In view of the above-described problems of the prior art, the present invention makes the light emission luminance constant even if the IV characteristic of a current-driven load element such as a light-emitting element (for example, an electro-optical element such as an organic EL element) changes with time. It is a general object to provide a pixel circuit that can be held. It is another general object of the present invention to provide a pixel circuit that can stably drive a load element even when a threshold voltage of a transistor constituting the pixel circuit changes with time. In addition, in the pixel circuit to which the compensation function for the characteristic variation of the load element and the compensation function for the threshold voltage variation of the transistor are added, a pixel circuit configuration in which the number of circuit elements necessary for adding these compensation functions is reduced as much as possible is provided. This is for a specific purpose.
係る目的を達成する為に以下の手段を講じた。即ち本発明は、第1ないし第4走査線と信号線とが交差する部分に配された画素回路であって、電気光学素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、該ドライブトランジスタのソースとゲートとの間に該保持容量が接続し、該ドライブトランジスタのソースと所定のカソード電位との間に該電気光学素子が接続し、該ドライブトランジスタのソースと第1の接地電位との間に該第1検知トランジスタが接続し、該ドライブトランジスタのゲートと第2の接地電位との間に該第2検知トランジスタが接続し、該ドライブトランジスタのゲートと該信号線との間に該サンプリングトランジスタが接続し、該ドライブトランジスタのドレインと所定の電源電位との間に該スイッチングトランジスタが接続しており、前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該電気光学素子を電流駆動し、前記スイッチングトランジスタは第2走査線によって選択された時導通して該電源電位から該ドライブトランジスタに電流を供給し、前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該電気光学素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする。
In order to achieve this purpose, the following measures were taken. That is, the present invention is a pixel circuit disposed at a portion where the first to fourth scanning lines and the signal line intersect, and includes an electro-optical element, one storage capacitor, a sampling transistor, a drive transistor, and a switching transistor. , Five N-channel thin film transistors each including a first detection transistor and a second detection transistor, the storage capacitor being connected between the source and gate of the drive transistor, and the source of the drive transistor and a predetermined cathode potential The electro-optic element is connected between the source of the drive transistor and the first ground potential, the first detection transistor is connected between the gate of the drive transistor and the second ground potential. second detection preparative transistor is connected to, the between the gate and the signal line of the drive transistor sampling Grayed transistor is connected, the switching transistor is connected between the drain and the predetermined power supply potential of the drive transistor, said sampling transistor operates when selected by the first scan line, the input from the signal line The signal is sampled and held in the holding capacitor, the drive transistor drives the electro-optic element in accordance with the signal potential held in the holding capacitor, and the switching transistor is selected by the second scanning line When the first and second detection transistors are selected by the third and fourth scanning lines, the first and second detection transistors are activated to supply current to the drive transistor from the power supply potential. In advance, the threshold voltage of the drive transistor is detected and the detection is performed in order to cancel the influence in advance. The potential and wherein the holding by the holding capacitor.
好ましくは、前記第1の接地電位は、前記第2の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも低く設定されており、前記カソード電位に該電気光学素子の閾電圧を加えたレベルは、前記第2の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも高く設定されている。また、前記第2の接地電位のレベルは、該信号線から供給される入力信号の最低レベルに応じて設定されている。
Preferably, the first ground potential is set lower than a level obtained by subtracting a threshold voltage of the drive transistor from the second ground potential, and the threshold voltage of the electro-optic element is added to the cathode potential. The level is set higher than the level obtained by subtracting the threshold voltage of the drive transistor from the second ground potential. The level of the second ground potential is set according to the lowest level of the input signal supplied from the signal line.
又本発明は、行状の第1ないし第4走査線と、列状の信号線と、両者が交差する部分にマトリクス状に配された画素とからなるアクティブマトリクス装置であって、各画素は、負荷素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、該ドライブトランジスタのソースとゲートとの間に該保持容量が接続し、該ドライブトランジスタのソースと所定のカソード電位との間に該負荷素子が接続し、該ドライブトランジスタのソースと第1の接地電位との間に該第1検知トランジスタが接続し、該ドライブトランジスタのゲートと第2の接地電位との間に該第2検知トランジスタが接続し、該ドライブトランジスタのゲートと該信号線との間に該サンプリングトランジスタが接続し、該ドライブトランジスタのドレインと所定の電源電位との間に該スイッチングトランジスタが接続しており、前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該負荷素子を電流駆動し、前記スイッチングトランジスタは第2走査線によって選択された時導通して該電源電位から該ドライブトランジスタに電流を供給し、前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該負荷素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする。
Further, the present invention is an active matrix device comprising row-like first to fourth scanning lines, column-like signal lines, and pixels arranged in a matrix at a portion where both intersect, wherein each pixel is A load element; one holding capacitor; and five N-channel thin film transistors each including a sampling transistor, a drive transistor, a switching transistor, a first detection transistor, and a second detection transistor, and a source and a gate of the drive transistor The holding capacitor is connected between the source of the drive transistor and a predetermined cathode potential, and the first sensing transistor is connected between the source of the drive transistor and a first ground potential. There connected, the second detecting preparative transistor is contact between the gate and the second ground potential of the drive transistor And, the sampling transistor is connected between the gate and the signal line of the drive transistor, the switching transistor is connected between the drain and the predetermined power supply potential of the drive transistor, said sampling transistor is first It operates when selected by one scanning line, samples an input signal from the signal line and holds it in the holding capacitor, and the drive transistor applies current to the load element according to the signal potential held in the holding capacitor. The switching transistor is turned on to supply current from the power supply potential to the drive transistor when selected by the second scan line, and the first and second detection transistors are driven by the third and fourth scan lines, respectively. Operates when selected, and threshold voltage of the drive transistor prior to current drive of the load element. Characterized by holding the sensed potential to the storage capacitor in order to cancel the detected advance its influence.
更に本発明は、行状の第1ないし第4走査線と、列状の信号線と、両者が交差する部分にマトリクス状に配された画素とからなる表示装置であって、各画素は、有機エレクトロルミネッセンス素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、該ドライブトランジスタのソースとゲートとの間に該保持容量が接続し、該ドライブトランジスタのソースと所定のカソード電位との間に該有機エレクトロルミネッセンス素子が接続し、該ドライブトランジスタのソースと第1の接地電位との間に該第1検知トランジスタが接続し、該ドライブトランジスタのゲートと第2の接地電位との間に該第2検知トランジスタが接続し、該ドライブトランジスタのゲートと該信号線との間に該サンプリングトランジスタが接続し、該ドライブトランジスタのドレインと所定の電源電位との間に該スイッチングトランジスタが接続しており、前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該有機エレクトロルミネッセンス素子を電流駆動し、前記スイッチングトランジスタは第2走査線によって選択された時導通して該電源電位から該ドライブトランジスタに電流を供給し、前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該有機エレクトロルミネッセンス素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする。
Furthermore, the present invention is a display device comprising row-like first to fourth scanning lines, column-like signal lines, and pixels arranged in a matrix at a portion where both intersect, each pixel being an organic An electroluminescence element, one storage capacitor, and five N-channel thin film transistors including a sampling transistor, a drive transistor, a switching transistor, a first detection transistor, and a second detection transistor, and a source and a gate of the drive transistor, The storage capacitor is connected between the source of the drive transistor and a predetermined cathode potential, the organic electroluminescence element is connected between the source of the drive transistor and the first ground potential. 1 sense transistor is connected, the gate of the drive transistor and the second ground potential Second detection preparative transistor is connected between, the sampling transistor is connected between the gate and the signal line of the drive transistor, the switching transistor between the drain and the predetermined power supply potential of the drive transistor And the sampling transistor operates when selected by the first scanning line, samples the input signal from the signal line and holds it in the holding capacitor, and the drive transistor is held in the holding capacitor. The organic electroluminescence element is driven by current according to the signal potential, and the switching transistor is turned on when selected by the second scanning line to supply current from the power supply potential to the drive transistor, and 2 detection transistor operates when selected by respectively the third and fourth scanning line, The sensed potential to cancel advance the impact detecting the threshold voltage of prior the drive transistor to the current driving of the organic electroluminescent device characterized in that it held in the storage capacitor.
本発明によれば画素回路は、電気光学素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとで構成されている。この画素回路は、保持容量のブートストラップ機能を備えており、発光素子など電流駆動型の電気光学素子のI−V特性が経時変化しても、発光輝度を一定に保持することができる。また、第1及び第2検知トランジスタでドライブトランジスタの閾電圧を検出し、その経時変化を回路的に補償することで、安定して電気光学素子を駆動できる。特に本画素回路は、1個の保持容量と5個のトランジスタとで構成されており、回路素子数を可能な限り抑えた合理的構成となっている。構成素子の個数が少ない分、歩留りが向上し低コスト化が図れる。 According to the present invention, the pixel circuit includes an electro-optic element, one storage capacitor, and five N-channel thin film transistors including a sampling transistor, a drive transistor, a switching transistor, a first detection transistor, and a second detection transistor. Has been. This pixel circuit has a bootstrap function of a storage capacitor, and can maintain the light emission luminance constant even when the IV characteristic of a current-driven electro-optical element such as a light-emitting element changes with time. Further, the threshold voltage of the drive transistor is detected by the first and second detection transistors, and the change over time is compensated in a circuit, so that the electro-optic element can be driven stably. In particular, this pixel circuit is composed of one storage capacitor and five transistors, and has a rational configuration in which the number of circuit elements is minimized. Since the number of constituent elements is small, the yield is improved and the cost can be reduced.
以下図面を参照して本発明の実施の形態を詳細に説明する。説明の都合上、まず負荷素子である発光素子の特性変動補償機能(ブートストラップ機能)を備えた画素回路を説明し、続いてドライブトランジスタの閾電圧変動補償機能を追加した画素回路を説明し、最後にこれらの補償機能を備えつつ回路要素の構成数を抑えた画素回路を説明する。図1は電気光学素子である発光素子の特性変動に対する補償機能であるブートストラップ機能を備えた画素回路を含む表示装置の構成を示すブロック図である。尚、この画素回路構成は、同一出願人の先願である特願2003−146758(2003年5月23日出願)に記載されているものと同一である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. For convenience of explanation, a pixel circuit having a characteristic variation compensation function (bootstrap function) of a light emitting element that is a load element will be described first, followed by a pixel circuit having a drive transistor threshold voltage variation compensation function added, Finally, a pixel circuit having these compensation functions and having a reduced number of circuit elements will be described. FIG. 1 is a block diagram illustrating a configuration of a display device including a pixel circuit having a bootstrap function that is a compensation function for characteristic variation of a light-emitting element that is an electro-optical element. This pixel circuit configuration is the same as that described in Japanese Patent Application No. 2003-146758 (filed on May 23, 2003), which is a prior application of the same applicant.
図1に示すように、表示装置100は、画素回路(PXLC)101がマトリクス状に配列された画素アレイ部102、水平セレクタ(HSEL)103、ライトスキャナ(WSCN)104、ドライブスキャナ(DSCN)105、水平セレクタ103により選択され輝度情報に応じた映像信号が供給される信号線DTL101〜DT110n、ライトスキャナ104により選択駆動される走査線WSL101〜WSL10m、およびドライブスキャナ105により選択駆動される走査線DSL101〜DSL10mを有する。なお図1においては、図面の簡単化のために一つの画素回路の具体的な構成を示している。
As shown in FIG. 1, the
本画素回路101は、図1に示すように、nチャネルTFT111〜TFT115、キャパシタC111、有機EL素子(OLED:電気光学素子)からなる発光素子117、およびノードND111,ND112を有する。また、図1において、DTL101は信号線を、WSL101は走査線を、DSL101は別の走査線をそれぞれ示している。これらの構成要素のうち、TFT111が駆動用電界効果トランジスタを構成し、サンプリング用TFT115が第1のスイッチを構成し、TFT114が第2のスイッチを構成し、キャパシタC111が保持容量素子を構成している。
As shown in FIG. 1, the
画素回路101において、TFT111のソースと接地電位GNDとの間に発光素子(OLED)117が接続されている。具体的には、発光素子117のアノードがTFT111のソースに接続され、カソード側が接地電位GNDに接続されている。発光素子117のアノードとTFT111のソースとの接続点によりノードND111が構成されている。TFT111のソースがTFT114のドレインおよびキャパシタC111の第1電極に接続され、TFT111のゲートがノードND112に接続されている。TFTll4のソースが固定電位(本実施形態では接地電位GND)に接続され、TFT114のゲートが走査線DSL101に接続されている。また、キャパシタC111の第2電極がノードND112に接続されている。信号線DTL101とノードND112とにサンプリング用TFT115のソース・ドレインがそれぞれ接続されている。そして、TFT115のゲートが走査線WSL101に接続されている。
In the
このように、本実施形態に係る画素回路101は、ドライブトランジスタとしてのTFT111のゲート・ソース間にキャパシタC111が接続され、TFT111のソース電位をスイッチトランジスタとしてのTFT114を介して固定電位に接続するよう構成されている。
Thus, in the
次に、上記構成の動作を、画素回路の動作を中心に、図2(A)〜(F)および図3(A)〜(F)に関連付けて説明する。なお、図3(A)は画素配列の第1行目の走査線WSL101に印加される走査信号ws〔1〕を、図3(B)は画素配列の第2行目の走査線WSL102に印加される走査信号ws〔2〕を、図3(C)は画素配列の第1行目の走査線DSL101に印加される駆動信号ds〔1〕を、図3(D)は画素配列の第2行目の走査線DSL102に印加される駆動信号ds〔2〕を、図3(E)はTFT111のゲート電位Vg(ノードND112)を、図3(F)はTFT111のソース電位Vs(ノードND111)をそれぞれ示している。
Next, the operation of the above configuration will be described with reference to FIGS. 2A to 2F and FIGS. 3A to 3F, focusing on the operation of the pixel circuit. 3A shows the scanning signal ws [1] applied to the first row scanning line WSL101 of the pixel array, and FIG. 3B shows the scanning signal WSL102 applied to the second row scanning line WSL102 of the pixel array. 3C shows the scanning signal ws [2] to be applied, FIG. 3C shows the driving signal ds [1] applied to the scanning line DSL101 in the first row of the pixel array, and FIG. 3D shows the second signal of the pixel array. FIG. 3E shows the gate potential Vg (node ND112) of the
まず、通常のEL発光素子117の発光状態時は、図3(A)〜(D)に示すように、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・が選択的にローレベルに設定され、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・が選択的にローレベルに設定される。その結果、画素回路101においては、図2(A)に示すように、TFT115とTFT114がオフした状態に保持される。
First, when the normal EL
次に、EL発光素子117の非発光期間において、図3(A)〜(D)に示すように、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・がローレベルに保持され、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・が選択的にハイレベルに設定される。その結果、画素回路101においては、図2(B)に示すように、TFT115はオフ状態に保持されたままで、TFT114がオンする。このとき、TFT114を介して電流が流れ、図3(F)に示すように、TFT111のソース電位Vsは接地電位GNDまで下降する。そのため、EL発光素子117に印加される電圧も0Vとなり、EL発光素子117は非発光となる。
Next, during the non-light emitting period of the EL
次に、EL発光素子117の非発光期間において、図3(A)〜(D)に示すように、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・がハイレベルに保持されたまま、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・が選択的にハイレベルに設定される。その結果、画素回路101においては、図2(C)に示すように、TFT114がオン状態に保持されたままで、TFT115がオンする。これにより、水平セレクタ103により信号線DTL101に伝搬された入力信号(Vin)が保持容量としてのキャパシタC111に書き込まれる。このとき、図3(F)に示すように、ドライブトランジスタとしてのTFT111のソース電位Vsは接地電位レベル(GNDレベル)にあるため、図3(E),(F)に示すように、TFT111のゲート・ソース間の電位差は入力信号の電圧Vinと等しくなる。
Next, during the non-light emission period of the EL
その後、EL発光素子117の非発光期間において、図3(A)〜(D)に示すように、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・がハイレベルに保持されたまま、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・が選択的にローレベルに設定される。その結果、画素回路101においては、図2(D)に示すように、TFT115がオフ状態となり、保持容量としてのキャパシタC111への入力信号の書き込みが終了する。
Thereafter, during the non-light emitting period of the EL
その後に図3(A)〜(D)に示すように、ライトスキャナ104より走査線WSL101,WSL102,・・への走査信号ws〔1〕,ws〔2〕,・・はローレベルに保持され、ドライブスキャナ105により走査線DSL101,DSL102,・・への駆動信号ds〔1〕,ds〔2〕,・・が選択的にローレベルに設定される。その結果、画素回路101においては、図2(E)に示すように、TFT114がオフ状態となる。TFT114がオフすることで、図3(F)に示すように、ドライブトランジスタとしてのTFT111のソース電位Vsは上昇し、EL発光素子117にも電流が流れる。
Thereafter, as shown in FIGS. 3A to 3D, the scanning signals ws [1], ws [2],... From the
TFT111のソース電位Vsは変動するにもかかわらず、TFT111のゲート・ソース間には容量があるために、図3(E),(F)に示すように、ゲート・ソース電位は常にVinにて保たれている。このとき、ドライブトランジスタとしてのTFT111は飽和領域で駆動しているので、このTFT111に流れる電流値IdsはTFT111のゲート・ソース電圧であるVinにて決められる。この電流IdsはEL発光素子117にも同様に流れ、EL発光素子117は発光する。EL発光素子117の等価回路は図2(F)に示すようになっているため、このときノードND111の電位はEL発光素子117に電流Idsが流れるゲート電位まで上昇する。この電位上昇に伴い、キャパシタ111(保持容量)を介してノードND112の電位も同様に上昇する。これにより、前述した通りTFT111のゲート・ソース電位はVinに保たれる。
Although the source potential Vs of the
ここで一般に、EL発光素子は発光時間が長くなるに従い、そのI−V特性は劣化する。そのため、ドライブトランジスタが同じ電流値を流したとしても、EL発光素子に印加される電位は変化し、ノードND111の電位は下降する。しかしながら、本回路ではドライブトランジスタのゲート・ソース間電位が一定に保たれたままノードND111の電位は下降するので、ドライブトランジスタ(TFT111)に流れる電流は変化しない。よって、EL発光素子に流れる電流も変化せず、EL発光素子のI−V特性が劣化しても、入力電圧Vinに相当した電流が常に流れつづける。 Here, in general, the EL characteristics of the EL light emitting element deteriorate as the light emission time becomes longer. Therefore, even if the drive transistor passes the same current value, the potential applied to the EL light emitting element changes, and the potential of the node ND111 decreases. However, in this circuit, since the potential of the node ND111 decreases while the gate-source potential of the drive transistor is kept constant, the current flowing through the drive transistor (TFT 111) does not change. Therefore, the current flowing through the EL light emitting element does not change, and a current corresponding to the input voltage Vin continues to flow even if the IV characteristics of the EL light emitting element deteriorate.
以上説明したように、本参考形態によれば、ドライブトランジスタとしてのTFT111のソースが発光素子117のアノードに接続され、ドレインが電源電位Vccに接続され、TFT111のゲート・ソース間にキャパシタC111が接続され、TFT111のソース電位をスイッチトランジスタとしてのTFT114を介して固定電位に接続するよう構成されていることから、次の効果を得ることができる。即ちEL発光素子のI−V特性が経時変化しても、輝度劣化の無いソースフォロワー出力が行える。nチャネルトランジスタのソースフォロワー回路が可能となり、現状のアノード・カソード電極を用いたままで、nチャネルトランジスタをEL発光素子の駆動素子として用いることができる。また、nチャネルのみで画素回路のトランジスタを構成することができ、TFT作成においてa−Siプロセスを用いることができるようになる。これにより、TFT基板の低コスト化が可能となる。
As described above, according to this embodiment, the source of the
図4は、図1に示したブートストラップ機能を備えた画素回路に更に閾電圧キャンセル機能を追加した画素回路構成を表わしている。尚、この画素回路は同一出願人の先願である特願2003−159646(2003年6月4日出願)に記載されているものと同一である。理解を容易にする為、図1に示した画素回路と対応する部分には対応する参照番号を付してある。図4の画素回路は基本的に、図1の画素回路に閾電圧キャンセル回路を追加したものである。但し、ブートストラップ回路に含まれるスイッチングトランジスタ114のゲートには、走査線DSL101に代えて走査線WSL101を接続し、回路の簡略化を図っている。基本的に、ブートストラップ回路に含まれるスイッチングトランジスタ114は、映像信号のサンプリングに合わせて開閉制御すれば良いので、この様な簡略化は可能である。勿論、スイッチングトランジスタ114のゲートには、図1の例と同様に別途専用の走査線DSL101を接続しても良い。
FIG. 4 shows a pixel circuit configuration in which a threshold voltage canceling function is further added to the pixel circuit having the bootstrap function shown in FIG. This pixel circuit is the same as that described in Japanese Patent Application No. 2003-159646 (filed on June 4, 2003), which is a prior application of the same applicant. In order to facilitate understanding, portions corresponding to those of the pixel circuit shown in FIG. The pixel circuit of FIG. 4 is basically obtained by adding a threshold voltage cancel circuit to the pixel circuit of FIG. However, the gate of the switching
閾電圧キャンセル回路は、基本的にドライブトランジスタ111、スイッチングトランジスタ112、追加のスイッチングトランジスタ113及び保持容量C111とで構成されている。これらに加え本画素回路は結合容量C112及びスイッチングトランジスタ116を含んでいる。追加されたスイッチングトランジスタ113のソース/ドレインは、ドライブトランジスタ111のゲートとドレインとの間に接続されている。又スイッチングトランジスタ116のドレインはサンプリングトランジスタ115のドレインに接続され、ソースはオフセット電圧Vofsが供給されている。結合容量C112はサンプリングトランジスタ115側のノードND114とドライブトランジスタ側のノードND112との間に介在している。スイッチングトランジスタ113及び116のゲートには閾電圧(Vth)キャンセル用の走査線AZL101が接続されている。
The threshold voltage cancel circuit basically includes a
図5は、図4に示した画素回路の動作説明に供するタイミングチャートである。この画素回路は1フィールド(1f)の間で、Vth補正、信号書込、ブートストラップ動作を順に行なう。Vth補正と信号書込は1fの内非発光期間に行なわれ、ブートストラップ動作は発光期間の先頭で行なわれる。まずVth補正期間では、走査線DSL101がハイレベルにある間に走査線AZL101がハイレベルに立ち上がる。これにより、スイッチングトランジスタ112及び113が同時にオンする為、電流が流れドライブトランジスタ111のゲートに連なるノードND112の電位が上昇する。その後DSL101がローレベルに立ち下がり非発光状態となる。これによりノードND112に蓄積された電荷がスイッチングトランジスタ113を介して放電され、ND112の電位は徐々に低下する。そして、ノードND112とノードND111の電位差がVthとなったところで、ドライブトランジスタ111に電流は流れなくなる。図から明らかな様に、ND112とND111の電位差はVgsに相当し、式(1)からVgs=Vthとなったところで、Idsは0になる。この結果、ND112とND111の電位差Vthが保持容量C111に保持されることになる。
FIG. 5 is a timing chart for explaining the operation of the pixel circuit shown in FIG. This pixel circuit sequentially performs Vth correction, signal writing, and bootstrap operation during one field (1f). Vth correction and signal writing are performed during the non-light emission period of 1f, and the bootstrap operation is performed at the beginning of the light emission period. First, in the Vth correction period, the scanning line AZL101 rises to a high level while the scanning line DSL101 is at a high level. As a result, the switching
続いて走査線WSL101が1Hの期間ハイレベルとなってサンプリングトランジスタ115が導通し、信号書込が行なわれる。すなわちDTL101に供給された映像信号Vsigはサンプリングトランジスタ115によってサンプリングされ、結合容量C112を介して保持容量C111に書き込まれる。この結果、保持容量C111の保持電位Vinは、先に書き込まれたVthとVsigの合計になる。但し、Vsigの入力ゲインは100%ではなく、ある程度の損失がある。
Subsequently, the scanning line WSL101 becomes high level for 1H and the
この後DSL101がハイレベルに立ち上がり発光を開始するとともにブートストラップ動作が行なわれる。これにより、ドライブトランジスタ111のゲートに印加される信号電位Vinは発光素子117のI−D特性に応じてΔVだけ上昇する。この様にして、図4の画素回路は、ドライブトランジスタ111のゲートに印加する正味の信号成分に加え、Vth及びΔVを上乗せしている。Vth及びΔVが変化しても常にその影響をキャンセルできるので、発光素子117を安定に駆動可能である。
Thereafter, the
図6は本発明に係る画素回路で、図4に示した画素回路に比べ素子数を節約した実施形態を示す回路図である。図示する様に、本画素回路101は走査線と信号線とが交差する部分に配されており、アクティブマトリクス形の表示装置に適用できる。信号線はDTL101の1本であるのに対し、走査線はWSL101、DSL101、AZL101a、AZL101bの計4本が平行に配されている。画素回路101は、電気光学素子117と、1個の保持容量C111と、サンプリングトランジスタ115、ドライブトランジスタ111、スイッチングトランジスタ112、第1検知トランジスタ114及び第2検知トランジスタ113からなる5個のNチャネル薄膜トランジスタとで構成されている。この様に本画素回路101は、1個の保持容量と5個のトランジスタとで構成されており、図4に示した画素回路に比べ、容量素子が1個少なくトランジスタも1個少ない構成となっている。構成素子の個数が少ない分、歩留りが向上し低コスト化が図れる。
FIG. 6 is a circuit diagram showing an embodiment in which the number of elements is saved as compared with the pixel circuit shown in FIG. 4 in the pixel circuit according to the present invention. As shown in the figure, the
保持容量C111は、一方の端子がドライブトランジスタ111のソースに接続し、他方の端子が同じくドライブトランジスタ111のゲートに接続している。図では、ドライブトランジスタ111のゲートがノードND112で表わされ、同じくドライブトランジスタ111のソースがノードND111で表わされている。従って、保持容量C111はノードND111とノードND112の間に接続していることになる。電気光学素子117は例えばダイオード構造の有機EL素子からなり、アノードとカソードを備えている。有機EL素子117のアノードはドライブトランジスタ111のソース(ノードND111)に接続し、カソードは所定のカソード電位Vcathに接続されている。尚有機EL素子117はアノード/カソード間に容量成分を含んでおり、これをCpで表わしてある。
The storage capacitor C111 has one terminal connected to the source of the
第1検知トランジスタ114は、そのソースが第1接地電位Vss1に接続し、そのドレインがドライブトランジスタ111のソース(ノードND111)に接続し、ゲートが走査線AZL101aに接続している。第2検知トランジスタ113は、そのソースが第2接地電位Vss2に接続し、そのドレインがドライブトランジスタ111のゲート(ノードND112)に接続し、そのゲートは走査線AZL101bに接続している。
The
サンプリングトランジスタ115は、そのソースが信号線DTL101に接続し、そのドレインがドライブトランジスタ111のゲート(ノードND112)に接続し、そのゲートが走査線WSL101に接続している。スイッチングトランジスタ112は、そのドレインが電源電位Vccに接続し、そのソースがドライブトランジスタ111のドレインに接続し、そのゲートが走査線DSL101に接続している。走査線AZL101a,AZL101b,DSL101は走査線WSL101と平行に配され、周辺スキャナによって適切なタイミングで線順次走査される。
サンプリングトランジスタ115は走査線WSL101によって選択された時動作し、信号線DTL101から入力信号VsigをサンプリングしてノードND112を介し保持容量C111に保持する。ドライブトランジスタ111は、保持容量C111に保持された信号電位Vinに応じて電気光学素子117を電流駆動する。スイッチングトランジスタ112は走査線DSL101によって選択された時導通して電源電位Vccからドライブトランジスタ111に電流を供給する。第1検知トランジスタ114及び第2検知トランジスタ113は走査線AZL101a,AZL101bによってそれぞれ選択された時動作し、電気光学素子117の電流駆動に先立ってドライブトランジスタ111の閾電圧Vthを検知しあらかじめその影響をキャンセルする為に該検知した電位を保持容量C111に保持する。
The
本画素回路101の正常な動作を保証する為の条件として、第1の接地電位Vss1は、第2の接地電位Vss2からドライブトランジスタの閾電圧Vthを差し引いたレベルよりも低く設定されている。すなわち、Vss1<Vss2−Vthである。又、カソード電位Vcathに有機EL素子117の閾電圧VthELを加えたレベルは、第2接地電位Vss2からドライブトランジスタ111の閾電圧Vthを差し引いたレベルよりも高く設定されている。式で表わすと、Vcath+VthEL>Vss2−Vthとなっている。好ましくは、第2接地電位Vss2のレベルは、信号線DTL101から供給される入力信号Vsigの最低レベルの近傍に設定されている。
As a condition for ensuring the normal operation of the
図7のタイミングチャートを参照して、図6に示した画素回路の動作を詳細に説明する。図示のタイミングチャートは、タイミングT1で1フィールド(1F)がスタートし、タイミングT6で1フィールドが終わる様に表わしてある。当該フィールドに入る前のタイミングT0では、走査線WSL101,AZL101a,AZL101bがローレベルにある一方、走査線DSL101がハイレベルにある。従ってスイッチングトランジスタ112がオン状態にある一方、サンプリングトランジスタ115及び一対の検知トランジスタ113,114はオフ状態にある。この時ドライブトランジスタ111はノードND112に現われる信号電位に応じて駆動電流を流し、有機EL素子117を発光させている。この時ドライブトランジスタ111のソース電位(ノードND111の電位)は所定の動作点に保持されている。図7のタイミングチャートは、ノードND112の電位とノードND111の電位が記されており、それぞれドライブトランジスタ111のゲート電位及びソース電位の変化を表わしている。
The operation of the pixel circuit shown in FIG. 6 will be described in detail with reference to the timing chart of FIG. The timing chart shown in the figure shows that one field (1F) starts at timing T1 and one field ends at timing T6. At timing T0 before entering the field, the scanning lines WSL101, AZL101a, and AZL101b are at a low level, while the scanning line DSL101 is at a high level. Accordingly, the switching
タイミングT1になると、走査線AZL101a及びAZL101bが共にローレベルからハイレベルに立ち上がる。この結果、第1検知トランジスタ114及び第2検知トランジスタ113が共にオフ状態からオン状態に切り替わる。この結果ノードND112は急速にVss2まで下がり、ノードND111も急速に第1接地電位Vss1まで下がる。この時、Vss1<Vss2−Vthに設定されている為、ドライブトランジスタ111はオン状態を維持し、ドレイン電流Idsが流れる。この時、Vcath+Vth(EL)>Vss2−Vthの関係にある為、有機EL素子117は逆バイアス状態となっており、電流は流れない。従って、非発光状態になる。ドライブトランジスタ111のドレイン電流Idsはオン状態にある第1検知トランジスタ114を介してVss1側に流れることになる。
At timing T1, both the scanning lines AZL101a and AZL101b rise from the low level to the high level. As a result, both the
続いてタイミングT2になると、走査線AZL101aがハイレベルからローレベルに戻る為、第1検知トランジスタ114はオン状態からオフ状態になる。この結果、ドライブトランジスタ111を流れるドレイン電流Idsの電流路が遮断される為、ノードND111の電位は徐々に上昇する。ノードND111の電位とノードND112の電位差がちょうどVthとなったところでドライブトランジスタ111はオン状態からオフ状態となり、ドレイン電流は流れなくなる。ノードND111とノードND112の間に現われた電位差Vthは保持容量C111に保持されることになる。この様に、第1及び第2検知トランジスタ114,113は走査線AZL101a,AZL101bによってそれぞれ適切なタイミングで選択された時動作し、ドライブトランジスタ111の閾電圧Vthを検知し、これを保持容量C111に保持する。
Subsequently, at timing T2, since the scanning line AZL 101a returns from the high level to the low level, the
この後タイミングT3で走査線AZL101bがハイレベルからローレベルに切り替わるとともに、走査線DSL101もほぼ同時刻にハイレベルからローレベルに切り替わる。この結果第2検知トランジスタ113とスイッチングトランジスタ112はオン状態からオフ状態に切り替わる。タイミングチャートではタイミングT2からT3の間をVth補正期間と称し、検知したドライブトランジスタ111の閾電圧Vthを保持容量C111に補正用電位として保持させている。
Thereafter, at the timing T3, the scanning line AZL101b is switched from the high level to the low level, and the scanning line DSL101 is also switched from the high level to the low level at substantially the same time. As a result, the
この後タイミングT4に進むと走査線WSL101がローレベルからハイレベルに立ち上がる。これによりサンプリングトランジスタ115が導通し、保持容量C111に入力電位Vinが書き込まれる。この入力電位Vinはドライブトランジスタの閾電圧Vthに足し込む形で保持される。この結果、ドライブトランジスタ111の閾電圧Vthの変動は常にキャンセルされる形となるので、Vth補正を行なっていることになる。尚、保持容量C111に書き込まれる入力電位Vinは以下の式によって表わされる。
Vin=Cp/(Cs+Cp)×(Vsig−Vss2)
ここでCsは保持容量C111の容量値を表わしている。一方Cpは前述した様に有機EL素子117の容量成分である。一般にCpはCsよりもはるかに大きい。従って、VinはほぼVsig−Vss2に等しい。この時Vss2はVsigの黒レベル付近に設定しておけば、結果的にVinはほぼVsigと等しいことになる。
Thereafter, at timing T4, the scanning line WSL101 rises from the low level to the high level. As a result, the
Vin = Cp / (Cs + Cp) × (Vsig−Vss2)
Here, Cs represents the capacitance value of the storage capacitor C111. On the other hand, Cp is a capacitance component of the
この後走査線WSL101はハイレベルからローレベルに戻って入力信号Vsigのサンプリングを終了するが、続くタイミングT5で走査線DSL101がローレベルからハイレベルに立ち上がり、スイッチングトランジスタDSL101がオン状態となる。これにより電源電位Vccからドライブトランジスタ111に駆動電流が供給され、有機EL素子117の発光動作を開始する。有機EL素子117に電流が流れる為電圧降下が生じ、ノードND111の電位が上昇する。これに連動してノードND112の電位も上昇する為、ドライブトランジスタ111のゲート電位VgsはノードND111の電位上昇に関わらず、常にVin+Vthに維持される。この結果、有機EL素子117は入力電圧Vinに応じた輝度で発光を続けることになる。1フィールドの終わりのタイミングT6で再び走査信号AZL101a,AZL101bが立ち上がると、次のフィールドのVth補正期間に入るとともに有機EL素子117の発光も停止する。
Thereafter, the scanning line WSL101 returns from the high level to the low level to finish sampling the input signal Vsig, but at the subsequent timing T5, the scanning line DSL101 rises from the low level to the high level, and the switching transistor DSL101 is turned on. As a result, a drive current is supplied from the power supply potential Vcc to the
101・・・画素回路、111・・・ドライブトランジスタ、112・・・スイッチングトランジスタ、113・・・第2検知トランジスタ、114・・・第1検知スイッチングトランジスタ、115・・・サンプリングトランジスタ、117・・・電気光学素子、C111・・・保持容量
DESCRIPTION OF
Claims (5)
電気光学素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、
該ドライブトランジスタのソースとゲートとの間に該保持容量が接続し、
該ドライブトランジスタのソースと所定のカソード電位との間に該電気光学素子が接続し、
該ドライブトランジスタのソースと第1の接地電位との間に該第1検知トランジスタが接続し、
該ドライブトランジスタのゲートと第2の接地電位との間に該第2検知トランジスタが接続し、
該ドライブトランジスタのゲートと該信号線との間に該サンプリングトランジスタが接続し、
該ドライブトランジスタのドレインと所定の電源電位との間に該スイッチングトランジスタが接続しており、
前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、
前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該電気光学素子を電流駆動し、
前記スイッチングトランジスタは第2走査線によって選択された時導通して該電源電位から該ドライブトランジスタに電流を供給し、
前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該電気光学素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする画素回路。 A pixel circuit disposed at a portion where the first to fourth scanning lines and the signal line intersect,
An electro-optical element, one storage capacitor, and five N-channel thin film transistors each including a sampling transistor, a drive transistor, a switching transistor, a first detection transistor, and a second detection transistor,
The storage capacitor is connected between the source and gate of the drive transistor,
The electro-optic element is connected between the source of the drive transistor and a predetermined cathode potential,
The first sensing transistor is connected between a source of the drive transistor and a first ground potential;
Second detection preparative transistor is connected between the gate and the second ground potential of the drive transistor,
The sampling transistor is connected between the gate of the drive transistor and the signal line;
The switching transistor is connected between the drain of the drive transistor and a predetermined power supply potential,
The sampling transistor operates when selected by the first scanning line, samples an input signal from the signal line, and holds it in the storage capacitor,
The drive transistor drives the electro-optic element in accordance with the signal potential held in the holding capacitor,
The switching transistor is turned on when selected by the second scanning line to supply current to the drive transistor from the power supply potential;
The first and second detection transistors operate when selected by the third and fourth scanning lines, respectively, to detect the threshold voltage of the drive transistor and cancel its influence in advance prior to current driving of the electro-optic element. A pixel circuit which holds the detected potential in the storage capacitor.
前記カソード電位に該電気光学素子の閾電圧を加えたレベルは、前記第2の接地電位から該ドライブトランジスタの閾電圧を差し引いたレベルよりも高く設定されていることを特徴とする請求項1記載の画素回路。 The first ground potential is set lower than a level obtained by subtracting a threshold voltage of the drive transistor from the second ground potential.
2. The level obtained by adding the threshold voltage of the electro-optic element to the cathode potential is set higher than the level obtained by subtracting the threshold voltage of the drive transistor from the second ground potential. Pixel circuit.
各画素は、負荷素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、
該ドライブトランジスタのソースとゲートとの間に該保持容量が接続し、
該ドライブトランジスタのソースと所定のカソード電位との間に該負荷素子が接続し、
該ドライブトランジスタのソースと第1の接地電位との間に該第1検知トランジスタが接続し、
該ドライブトランジスタのゲートと第2の接地電位との間に該第2検知トランジスタが接続し、
該ドライブトランジスタのゲートと該信号線との間に該サンプリングトランジスタが接続し、
該ドライブトランジスタのドレインと所定の電源電位との間に該スイッチングトランジスタが接続しており、
前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、
前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該負荷素子を電流駆動し、
前記スイッチングトランジスタは第2走査線によって選択された時導通して該電源電位から該ドライブトランジスタに電流を供給し、
前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該負荷素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とするアクティブマトリクス装置。 An active matrix device comprising row-shaped first to fourth scanning lines, column-shaped signal lines, and pixels arranged in a matrix at a portion where both intersect,
Each pixel includes a load element, one storage capacitor, and five N-channel thin film transistors including a sampling transistor, a drive transistor, a switching transistor, a first detection transistor, and a second detection transistor,
The storage capacitor is connected between the source and gate of the drive transistor,
The load element is connected between the source of the drive transistor and a predetermined cathode potential,
The first sensing transistor is connected between a source of the drive transistor and a first ground potential;
Second detection preparative transistor is connected between the gate and the second ground potential of the drive transistor,
The sampling transistor is connected between the gate of the drive transistor and the signal line;
The switching transistor is connected between the drain of the drive transistor and a predetermined power supply potential,
The sampling transistor operates when selected by the first scanning line, samples an input signal from the signal line, and holds it in the storage capacitor,
The drive transistor drives the load element in accordance with the signal potential held in the holding capacitor,
The switching transistor is turned on when selected by the second scanning line to supply current to the drive transistor from the power supply potential;
The first and second detection transistors operate when selected by the third and fourth scan lines, respectively, to detect the threshold voltage of the drive transistor and cancel its influence in advance prior to current driving of the load element. An active matrix device characterized in that the detected potential is held in the holding capacitor.
各画素は、有機エレクトロルミネッセンス素子と、1個の保持容量と、サンプリングトランジスタ、ドライブトランジスタ、スイッチングトランジスタ、第1検知トランジスタ及び第2検知トランジスタからなる5個のNチャネル薄膜トランジスタとを備え、
該ドライブトランジスタのソースとゲートとの間に該保持容量が接続し、
該ドライブトランジスタのソースと所定のカソード電位との間に該有機エレクトロルミネッセンス素子が接続し、
該ドライブトランジスタのソースと第1の接地電位との間に該第1検知トランジスタが接続し、
該ドライブトランジスタのゲートと第2の接地電位との間に該第2検知トランジスタが接続し、
該ドライブトランジスタのゲートと該信号線との間に該サンプリングトランジスタが接続し、
該ドライブトランジスタのドレインと所定の電源電位との間に該スイッチングトランジスタが接続しており、
前記サンプリングトランジスタは第1走査線によって選択された時動作し、該信号線から入力信号をサンプリングして該保持容量に保持し、
前記ドライブトランジスタは、該保持容量に保持された信号電位に応じて該有機エレクトロルミネッセンス素子を電流駆動し、
前記スイッチングトランジスタは第2走査線によって選択された時導通して該電源電位から該ドライブトランジスタに電流を供給し、
前記第1及び第2検知トランジスタは夫々第3及び第4走査線によって選択された時動作し、該有機エレクトロルミネッセンス素子の電流駆動に先だって該ドライブトランジスタの閾電圧を検知しあらかじめその影響をキャンセルする為に該検知した電位を該保持容量に保持することを特徴とする表示装置。 A display device comprising row-like first to fourth scanning lines, column-like signal lines, and pixels arranged in a matrix at a portion where both intersect,
Each pixel includes an organic electroluminescence element, one storage capacitor, and five N-channel thin film transistors including a sampling transistor, a drive transistor, a switching transistor, a first detection transistor, and a second detection transistor,
The storage capacitor is connected between the source and gate of the drive transistor,
The organic electroluminescence element is connected between the source of the drive transistor and a predetermined cathode potential,
The first sensing transistor is connected between a source of the drive transistor and a first ground potential;
Second detection preparative transistor is connected between the gate and the second ground potential of the drive transistor,
The sampling transistor is connected between the gate of the drive transistor and the signal line;
The switching transistor is connected between the drain of the drive transistor and a predetermined power supply potential,
The sampling transistor operates when selected by the first scanning line, samples an input signal from the signal line, and holds it in the storage capacitor,
The drive transistor current-drives the organic electroluminescence element according to the signal potential held in the storage capacitor,
The switching transistor is turned on when selected by the second scanning line to supply current to the drive transistor from the power supply potential;
It said first and second sensing transistor operates when selected by respectively the third and fourth scanning line, to cancel advance the impact detecting the threshold voltage of prior the drive transistor to the current driving the organic electroluminescence element Therefore, the display device is characterized in that the detected potential is held in the holding capacitor.
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004164681A JP4103850B2 (en) | 2004-06-02 | 2004-06-02 | Pixel circuit, active matrix device, and display device |
US11/140,199 US7173590B2 (en) | 2004-06-02 | 2005-05-31 | Pixel circuit, active matrix apparatus and display apparatus |
KR1020050046906A KR101200066B1 (en) | 2004-06-02 | 2005-06-01 | Pixel circuit, active matrix apparatus and display apparatus |
TW094118071A TWI295459B (en) | 2004-06-02 | 2005-06-01 | Pixel circuit, active matrix apparatus and display apparatus |
CN200510073577.6A CN100524416C (en) | 2004-06-02 | 2005-06-02 | Pixel circuit, active matrix apparatus and display apparatus |
US11/643,711 US8441417B2 (en) | 2004-06-02 | 2006-12-22 | Pixel circuit, active matrix apparatus and display apparatus |
US11/702,069 US9454928B2 (en) | 2004-06-02 | 2007-02-05 | Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to source, and gate of drive transistor |
US11/702,165 US8823607B2 (en) | 2004-06-02 | 2007-02-05 | Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to source and gate of drive transistor |
US13/912,822 US20130271435A1 (en) | 2004-06-02 | 2013-06-07 | Pixel circuit, active matrix apparatus and display apparatus |
US14/994,509 US9454929B2 (en) | 2004-06-02 | 2016-01-13 | Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to source, and gate of drive transistor |
US15/260,878 US10002567B2 (en) | 2004-06-02 | 2016-09-09 | Pixel circuit, active matrix apparatus and display apparatus with first and second reference potentials applied to gate and other terminal of drive transistor |
US15/869,738 US10276102B2 (en) | 2004-06-02 | 2018-01-12 | Pixel circuit, active matrix apparatus and display apparatus |
US15/879,235 US10270532B2 (en) | 2004-06-02 | 2018-01-24 | Optical transmission module |
US16/296,757 US11183119B2 (en) | 2004-06-02 | 2019-03-08 | Display apparatus including pixel circuit with transistors connected to different control lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004164681A JP4103850B2 (en) | 2004-06-02 | 2004-06-02 | Pixel circuit, active matrix device, and display device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008005043A Division JP2008146091A (en) | 2008-01-11 | 2008-01-11 | Pixel circuit and driving method thereof |
JP2008005042A Division JP2008146090A (en) | 2008-01-11 | 2008-01-11 | Pixel circuit and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005345722A JP2005345722A (en) | 2005-12-15 |
JP4103850B2 true JP4103850B2 (en) | 2008-06-18 |
Family
ID=35498171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004164681A Expired - Lifetime JP4103850B2 (en) | 2004-06-02 | 2004-06-02 | Pixel circuit, active matrix device, and display device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4103850B2 (en) |
CN (1) | CN100524416C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006227238A (en) * | 2005-02-17 | 2006-08-31 | Sony Corp | Display device and display method |
JP2006227237A (en) * | 2005-02-17 | 2006-08-31 | Sony Corp | Display device and display method |
JP2006227239A (en) * | 2005-02-17 | 2006-08-31 | Sony Corp | Display device and display method |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173590B2 (en) | 2004-06-02 | 2007-02-06 | Sony Corporation | Pixel circuit, active matrix apparatus and display apparatus |
US7317434B2 (en) * | 2004-12-03 | 2008-01-08 | Dupont Displays, Inc. | Circuits including switches for electronic devices and methods of using the electronic devices |
JP4923410B2 (en) * | 2005-02-02 | 2012-04-25 | ソニー株式会社 | Pixel circuit and display device |
JP2006243525A (en) * | 2005-03-04 | 2006-09-14 | Sony Corp | Display device |
JP4706288B2 (en) * | 2005-03-14 | 2011-06-22 | ソニー株式会社 | Pixel circuit and display device |
JP2006251632A (en) * | 2005-03-14 | 2006-09-21 | Sony Corp | Pixel circuit and display device |
JP2007108378A (en) | 2005-10-13 | 2007-04-26 | Sony Corp | Driving method of display device and display device |
JP2007108381A (en) | 2005-10-13 | 2007-04-26 | Sony Corp | Display device and driving method of same |
JP4636006B2 (en) * | 2005-11-14 | 2011-02-23 | ソニー株式会社 | Pixel circuit, driving method of pixel circuit, display device, driving method of display device, and electronic device |
JP5448257B2 (en) * | 2005-12-02 | 2014-03-19 | 株式会社半導体エネルギー研究所 | Semiconductor device, display device, display module, and electronic apparatus |
KR101359362B1 (en) | 2005-12-02 | 2014-02-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device, display device, and electronic device |
EP1793366A3 (en) | 2005-12-02 | 2009-11-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, display device, and electronic device |
TWI570691B (en) | 2006-04-05 | 2017-02-11 | 半導體能源研究所股份有限公司 | Semiconductor device, display device, and electronic device |
JP5508664B2 (en) * | 2006-04-05 | 2014-06-04 | 株式会社半導体エネルギー研究所 | Semiconductor device, display device and electronic apparatus |
JP2007286452A (en) * | 2006-04-19 | 2007-11-01 | Sony Corp | Image display device |
JP2007304225A (en) * | 2006-05-10 | 2007-11-22 | Sony Corp | Image display device |
CN100458903C (en) * | 2006-05-16 | 2009-02-04 | 友达光电股份有限公司 | Light-emitting diode display and its pixel driving method |
JP4240059B2 (en) | 2006-05-22 | 2009-03-18 | ソニー株式会社 | Display device and driving method thereof |
JP2007316453A (en) * | 2006-05-29 | 2007-12-06 | Sony Corp | Image display device |
JP2007316454A (en) | 2006-05-29 | 2007-12-06 | Sony Corp | Image display device |
JP4203770B2 (en) | 2006-05-29 | 2009-01-07 | ソニー株式会社 | Image display device |
CN101401145B (en) * | 2006-06-15 | 2012-06-13 | 夏普株式会社 | Current drive type display and pixel circuit |
KR101245218B1 (en) * | 2006-06-22 | 2013-03-19 | 엘지디스플레이 주식회사 | Organic light emitting diode display |
JP4240068B2 (en) | 2006-06-30 | 2009-03-18 | ソニー株式会社 | Display device and driving method thereof |
JP5011863B2 (en) * | 2006-07-20 | 2012-08-29 | ソニー株式会社 | Display device |
JP5092304B2 (en) | 2006-07-31 | 2012-12-05 | ソニー株式会社 | Display device and pixel circuit layout method |
JP4203773B2 (en) * | 2006-08-01 | 2009-01-07 | ソニー株式会社 | Display device |
JP5092306B2 (en) | 2006-08-02 | 2012-12-05 | ソニー株式会社 | Display device and pixel circuit layout method |
JP5055879B2 (en) | 2006-08-02 | 2012-10-24 | ソニー株式会社 | Display device and driving method of display device |
JP4168290B2 (en) * | 2006-08-03 | 2008-10-22 | ソニー株式会社 | Display device |
JP4211820B2 (en) | 2006-08-15 | 2009-01-21 | ソニー株式会社 | Pixel circuit, image display device and driving method thereof |
JP2008046377A (en) * | 2006-08-17 | 2008-02-28 | Sony Corp | Display device |
JP2008051990A (en) * | 2006-08-24 | 2008-03-06 | Sony Corp | Display device |
CN101136168B (en) * | 2006-08-31 | 2010-12-01 | 奇美电子股份有限公司 | System used for displaying image and organic light-emitting component driving method |
JP2008122647A (en) | 2006-11-13 | 2008-05-29 | Sony Corp | Display device, driving method of electro-optical element, and electronic equipment |
CN101192369B (en) * | 2006-11-30 | 2011-04-27 | 奇晶光电股份有限公司 | Display device and its pixel drive method |
JP2008139520A (en) * | 2006-12-01 | 2008-06-19 | Sony Corp | Display device |
JP5665256B2 (en) * | 2006-12-20 | 2015-02-04 | キヤノン株式会社 | Luminescent display device |
JP2008158378A (en) * | 2006-12-26 | 2008-07-10 | Sony Corp | Display device and method of driving the same |
JP4281018B2 (en) * | 2007-02-19 | 2009-06-17 | ソニー株式会社 | Display device |
JP4245057B2 (en) * | 2007-02-21 | 2009-03-25 | ソニー株式会社 | Display device, driving method thereof, and electronic apparatus |
JP4300491B2 (en) * | 2007-03-13 | 2009-07-22 | ソニー株式会社 | Display device |
JP2008281671A (en) * | 2007-05-09 | 2008-11-20 | Sony Corp | Pixel circuit and display device |
US8179343B2 (en) * | 2007-06-29 | 2012-05-15 | Canon Kabushiki Kaisha | Display apparatus and driving method of display apparatus |
JP5414161B2 (en) | 2007-08-10 | 2014-02-12 | キヤノン株式会社 | Thin film transistor circuit, light emitting display device, and driving method thereof |
JP5056265B2 (en) * | 2007-08-15 | 2012-10-24 | ソニー株式会社 | Display device and electronic device |
JP5119889B2 (en) * | 2007-11-26 | 2013-01-16 | ソニー株式会社 | Display device, driving method thereof, and electronic apparatus |
US8004479B2 (en) * | 2007-11-28 | 2011-08-23 | Global Oled Technology Llc | Electroluminescent display with interleaved 3T1C compensation |
JP5115180B2 (en) * | 2007-12-21 | 2013-01-09 | ソニー株式会社 | Self-luminous display device and driving method thereof |
JP2008146091A (en) * | 2008-01-11 | 2008-06-26 | Sony Corp | Pixel circuit and driving method thereof |
JP2008146090A (en) * | 2008-01-11 | 2008-06-26 | Sony Corp | Pixel circuit and driving method thereof |
JP4760840B2 (en) * | 2008-02-28 | 2011-08-31 | ソニー株式会社 | EL display panel, electronic device, and driving method of EL display panel |
JP2009237558A (en) | 2008-03-05 | 2009-10-15 | Semiconductor Energy Lab Co Ltd | Driving method for semiconductor device |
JP2009237041A (en) | 2008-03-26 | 2009-10-15 | Sony Corp | Image displaying apparatus and image display method |
JP2009271200A (en) * | 2008-05-01 | 2009-11-19 | Sony Corp | Display apparatus and driving method for display apparatus |
JP2009271199A (en) * | 2008-05-01 | 2009-11-19 | Sony Corp | Display apparatus and driving method for display apparatus |
JP2010002498A (en) * | 2008-06-18 | 2010-01-07 | Sony Corp | Panel and drive control method |
JP2008250348A (en) * | 2008-07-04 | 2008-10-16 | Sony Corp | Pixel circuit and driving method thereof |
JP4544355B2 (en) * | 2008-08-04 | 2010-09-15 | ソニー株式会社 | Pixel circuit, driving method thereof, display device, and driving method thereof |
JP5027755B2 (en) * | 2008-08-04 | 2012-09-19 | ソニー株式会社 | Display device and driving method thereof |
JP2010048866A (en) * | 2008-08-19 | 2010-03-04 | Sony Corp | Display and display driving method |
JP2010113188A (en) * | 2008-11-07 | 2010-05-20 | Sony Corp | Organic electroluminescence emitting unit driving method |
JP4844634B2 (en) * | 2009-01-06 | 2011-12-28 | ソニー株式会社 | Driving method of organic electroluminescence light emitting unit |
JP5736114B2 (en) | 2009-02-27 | 2015-06-17 | 株式会社半導体エネルギー研究所 | Semiconductor device driving method and electronic device driving method |
US9047815B2 (en) | 2009-02-27 | 2015-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Method for driving semiconductor device |
JP5262930B2 (en) * | 2009-04-01 | 2013-08-14 | ソニー株式会社 | Display element driving method and display device driving method |
JP4930547B2 (en) * | 2009-05-25 | 2012-05-16 | ソニー株式会社 | Pixel circuit and driving method of pixel circuit |
JP2011141418A (en) * | 2010-01-07 | 2011-07-21 | Sony Corp | Display apparatus, light detection method and electronic apparatus |
KR101152466B1 (en) | 2010-06-30 | 2012-06-01 | 삼성모바일디스플레이주식회사 | Pixel and Organic Light Emitting Display Device Using the Same |
TWI557711B (en) | 2011-05-12 | 2016-11-11 | 半導體能源研究所股份有限公司 | Method for driving display device |
WO2013021621A1 (en) * | 2011-08-09 | 2013-02-14 | パナソニック株式会社 | Image display device |
CN103258498B (en) * | 2012-02-15 | 2015-07-29 | 群康科技(深圳)有限公司 | Display panel, pixel-driving circuit and driving pixels approach |
TWI466091B (en) | 2012-02-15 | 2014-12-21 | Innocom Tech Shenzhen Co Ltd | Display panels, pixel driving circuits and pixel driving methods |
JP5939135B2 (en) | 2012-07-31 | 2016-06-22 | ソニー株式会社 | Display device, driving circuit, driving method, and electronic apparatus |
JP2014109703A (en) * | 2012-12-03 | 2014-06-12 | Samsung Display Co Ltd | Display device, and drive method |
CN103117040B (en) * | 2013-01-25 | 2016-03-09 | 北京大学深圳研究生院 | Image element circuit, display device and display drive method |
JP5617962B2 (en) * | 2013-06-13 | 2014-11-05 | ソニー株式会社 | Display device and electronic device |
JP6478688B2 (en) | 2014-04-17 | 2019-03-06 | キヤノン株式会社 | Image processing apparatus and image processing method |
CN105280136B (en) * | 2014-07-10 | 2018-11-30 | 信利半导体有限公司 | A kind of AMOLED pixel circuit and its driving method |
TW201618072A (en) * | 2014-11-12 | 2016-05-16 | 奕力科技股份有限公司 | Liquid crystal display and driving method of the same |
CN104751804A (en) * | 2015-04-27 | 2015-07-01 | 京东方科技集团股份有限公司 | Pixel circuit, driving method thereof and relevant device |
CN107134258B (en) | 2017-06-26 | 2019-10-08 | 京东方科技集团股份有限公司 | OLED compensation circuit and preparation method thereof, OLED compensation device and display device |
CN108389553B (en) | 2018-03-27 | 2021-01-12 | 深圳创维-Rgb电子有限公司 | Backlight control method, apparatus and computer readable storage medium |
CN108288453B (en) | 2018-04-28 | 2023-04-07 | 京东方科技集团股份有限公司 | Pixel circuit, driving method thereof, display panel and display device |
JP7117974B2 (en) * | 2018-10-30 | 2022-08-15 | キヤノン株式会社 | Displays and electronics |
JP7550598B2 (en) * | 2020-10-12 | 2024-09-13 | 株式会社ジャパンディスプレイ | Detection device |
WO2023195279A1 (en) * | 2022-04-08 | 2023-10-12 | キヤノン株式会社 | Light-emitting device, display device, photoelectric conversion device, electronic apparatus, illumination device, and mobile body |
-
2004
- 2004-06-02 JP JP2004164681A patent/JP4103850B2/en not_active Expired - Lifetime
-
2005
- 2005-06-02 CN CN200510073577.6A patent/CN100524416C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006227238A (en) * | 2005-02-17 | 2006-08-31 | Sony Corp | Display device and display method |
JP2006227237A (en) * | 2005-02-17 | 2006-08-31 | Sony Corp | Display device and display method |
JP2006227239A (en) * | 2005-02-17 | 2006-08-31 | Sony Corp | Display device and display method |
Also Published As
Publication number | Publication date |
---|---|
CN1705001A (en) | 2005-12-07 |
JP2005345722A (en) | 2005-12-15 |
CN100524416C (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4103850B2 (en) | Pixel circuit, active matrix device, and display device | |
US11183119B2 (en) | Display apparatus including pixel circuit with transistors connected to different control lines | |
JP4103851B2 (en) | Pixel circuit, active matrix device, and display device | |
JP4062179B2 (en) | Pixel circuit, display device, and driving method of pixel circuit | |
JP2006215275A (en) | Display apparatus | |
JP2006227237A (en) | Display device and display method | |
JP4645881B2 (en) | Pixel circuit, active matrix device, and display device | |
JP2006227238A (en) | Display device and display method | |
JP2006243526A (en) | Display device, and pixel driving method | |
JP4826870B2 (en) | Pixel circuit, driving method thereof, active matrix device, and display device | |
JP2006227239A (en) | Display device and display method | |
JP2006243525A (en) | Display device | |
JP4831393B2 (en) | Pixel circuit, image display device, and driving method thereof | |
JP4747528B2 (en) | Pixel circuit and display device | |
JP4547900B2 (en) | Pixel circuit, driving method thereof, active matrix device, and display device | |
JP5011863B2 (en) | Display device | |
JP2008250348A (en) | Pixel circuit and driving method thereof | |
JP2008146091A (en) | Pixel circuit and driving method thereof | |
JP2008146090A (en) | Pixel circuit and driving method thereof | |
JP2008026514A (en) | Display device | |
JP2008065199A (en) | Display device and manufacturing method thereof | |
JP4639730B2 (en) | Pixel circuit, display device, and driving method of pixel circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080317 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4103850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140404 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |