Nothing Special   »   [go: up one dir, main page]

JP4196302B2 - 情報処理装置および方法、並びにプログラム - Google Patents

情報処理装置および方法、並びにプログラム Download PDF

Info

Publication number
JP4196302B2
JP4196302B2 JP2006168636A JP2006168636A JP4196302B2 JP 4196302 B2 JP4196302 B2 JP 4196302B2 JP 2006168636 A JP2006168636 A JP 2006168636A JP 2006168636 A JP2006168636 A JP 2006168636A JP 4196302 B2 JP4196302 B2 JP 4196302B2
Authority
JP
Japan
Prior art keywords
model
image
feature
feature points
feature point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006168636A
Other languages
English (en)
Other versions
JP2007334795A (ja
Inventor
章 中村
隆之 芦ヶ原
嘉昭 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006168636A priority Critical patent/JP4196302B2/ja
Priority to US11/764,449 priority patent/US8401308B2/en
Publication of JP2007334795A publication Critical patent/JP2007334795A/ja
Application granted granted Critical
Publication of JP4196302B2 publication Critical patent/JP4196302B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/50Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/757Matching configurations of points or features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/24Character recognition characterised by the processing or recognition method
    • G06V30/248Character recognition characterised by the processing or recognition method involving plural approaches, e.g. verification by template match; Resolving confusion among similar patterns, e.g. "O" versus "Q"
    • G06V30/2504Coarse or fine approaches, e.g. resolution of ambiguities or multiscale approaches

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Image Analysis (AREA)

Description

本発明は、情報処理装置および方法並びにプログラムに関し、特に、入力画像とモデル画像とのマッチング精度をより一段と高めることができる情報処理装置および方法並びにプログラムに関する。
従来、画像認識手法として、画像から特徴点を抽出し、特徴点とその局所近傍の画像情報から得られる特徴量を用いたマッチング手法も存在する。
例えば、C.シュミット及びR.ムーア は、非特許文献1において、Harrisコーナー検出器を用いて検出されたコーナーを特徴点とし、その特徴点付近の回転不変特徴量を用いたマッチング 手法を提案している。このような特徴点の部分的画像変形に対して不変な局所特徴量を用いるマッチング手法では、上述の手法と比較して画像の変形に対しても 検出対象が部分的に隠されるような場合にも安定した検出が可能となる。しかしながら、この非特許文献1で用いられている特徴量は、画像の拡大縮小変換に対 して不変性を持たないものであるため、拡大縮小変換のある場合には認識が困難となる。
これに対して、D.ロウは、下記非特許文献2において、画像の拡大縮小変換に対しても不変であるような特徴点及び特徴量を用いたマッチング手法を提案している。このD.ロウの提案した画像認識装置について、図1を用いて説明する。
図1に示す画像認識装置において、特徴点抽出部1a,1bは、特徴点抽出対象画像(モデル画像又は入力画像)から得られた画像の多重解像度表現(スケールスペース表現。文献「Lindeberg T.,“Scale−space: A framework for handling image structures at multiple scales.”,Journal of Applied Statistics, vol.21, no.2, pp.224−270,1994」参照)の各解像度画像に対してDoG(Difference of Gaussian)フィルタを適用し、DoGフィルタ出力画像の局所点(局所極大点及び局所極小点)のうち、所定の範囲内の解像度変化によって位置の変化がないような点を特徴点として検出する。ここで、解像度の階層数は予め設定しておく。
続いて特徴量保持部2a,2bは、特徴点抽出部1a,1bにて抽出された各特徴点について特徴量を抽出し、保持する。この際、特徴点抽出部1a,1bは、特徴点近傍領域のカノニカル・オリエンテーション(canonical orientation;支配的方向)と、オリエンテーション・プレーン(orientation plane)とを用いる。ここで、カノニカル・オリエンテーションは、ガウス重み付き勾配強度を累積した方向ヒストグラムのピーク値を与える方向であり、特徴量保持部2a,2bは、このカノニカル・オリエンテーションを特徴量として保持する。また、特徴量保持部2a,2bは、特徴点近傍領域の勾配強度情報をカノニカル・オリエンテーションで正規化、即ちカノニカル・オリエンテーションを0deg として方向補正し、近傍領域内各点の勾配強度情報を位置情報と共に勾配方向で分類する。例えば、45deg 毎の全部で8つのオリエンテーション・プレーンに近傍領域内各点の勾配強度情報を分類する場合、近傍領域の局所座標系上の点(x、y)における方向 93deg 、強度mの勾配情報は、90deg のラベルを持つと共に近傍領域と同一の局所座標系を持つオリエンテーション・プレーンの位置(x、y)に強度mの情報としてマッピングされる。その後、各オリエンテーション・プレーンは、解像度のスケールに応じたぼかし及びリサンプリングが施される。特徴量保持部2a,2bは、このようにして求めた(解像度数)×(オリエンテーション・プレーン数)×(各オリエンテーション・プレーンのサイズ)次元の特徴量ベクトルを保持する。
続いて、特徴量マッチング部3は、各オブジェクト特徴点の特徴量と最も特徴量の類似するモデル特徴点をk−d tree法(検索効率のよい特徴空間上のNearest Neighbor探索法)を用いて検索し、得られたマッチペアをマッチペア群として保持する。
一方で、認識判定部4のモデル姿勢粗推定部11は、一般化ハフ変換により、モデル特徴点とオブジェクト特徴点との空間的位置関係からモデルの入力画像上での姿勢(回転角度,拡大縮小率,平行移動量の画像変換パラメータ)を推定する。この際、一般化ハフ変換のパラメータ参照テーブル(Rテーブル)のインデックスとして、上述した各特徴点のカノニカル・オリエンテーションが用いられると予想される。このモデル姿勢粗推定部11の出力は、画像変換パラメータ空間上への投票結果であり、最多投票数を獲得したパラメータがモデル姿勢の粗い推定を与える。
そこで、認識判定部4の候補対応特徴点ペア選択部12は、そのパラメータに投票を行ったオブジェクト特徴点をメンバに持つマッチペアのみを選択することにより、マッチペア群の絞り込みを行う。
最後に、認識判定部4のモデル姿勢推定部13は、「検出されるモデルは入力画像上へのアフィン変換による画像変形が施されている」という拘束条件の下、対応特徴点ペア群の空間的配置から最小自乗推定によりアフィン変換パラメータを推定する。そして、モデル姿勢推定部13は、マッチペア群の各モデル特徴点をこのアフィン変換パラメータにより入力画像上に変換し、対応するオブジェクト特徴点との位置のずれ(空間的距離)を求め、このずれが著しいマッチペアを排除し、マッチペア群を更新する。この際、モデル姿勢推定部13は、マッチペア群が2組以下の場合には「モデル検出不可」と出力して終了し、そうでなければ所定の終了条件が満たされるまでこの操作を繰り返し、終了条件を満たした際のアフィン変換パラメータで決定されるモデル姿勢をモデル認識結果として出力する。
C.シュミット(C. Schmid)、R.ムーア(R. Mohr),「画像検索のための局所グレイバリュー不変量(Local grayvalue invariants for image retrieval)」,(米国),電気・電子通信学会報,(IEEE PAMI),1997年,第19巻,第5号,p.530−534 D. ロウ(D. Lowe),「スケール不変な局所特徴量を用いた物体認識(Object recognition from local scale−invariant features)」,(ギリシャ),コンピュータ画像に関する国際会議録(Proc. of the International Conference on Computer Vision),1999年9月,第2巻,p.1150−1157
しかしながら、この非特許文献2に記載されたD.ロウの手法には幾つかの問題点がある。
先ず第1に、特徴点におけるカノニカル・オリエンテーションの抽出に問題がある。上述したように、カノニカル・オリエンテーションは、特徴点近傍領域の局所勾配情報から求めた、ガウス重み付き勾配強度を累積した方向ヒストグラムのピーク値を与える方向により求まる。ここで、非特許文献2の手法では、物体のコーナーの若干内側に特徴点が検出される傾向があるが、このような特徴点の近傍の方向ヒストグラムには、2つのピークがそれぞれエッジに直交する方向に出現するため、複数の競合するカノニカル・オリエンテーションが検出されうるが、後段の特徴量マッチング部3およびモデル姿勢推定部13ではこのような場合を想定しておらず、対処できない。また、ガウス重み関数のパラメータに依存して方向ヒストグラムの形状が変化し、カノニカル・オリエンテーションの安定した抽出ができないという問題点もある。その一方で、このカノニカル・オリエンテーションは、後段の特徴量マッチング部3およびモデル姿勢推定部13で用いられるため、不適切なカノニカル・オリエンテーションの抽出は特徴量マッチングの結果に重大な影響を与えてしまう。
第2に、オリエンテーション・プレーンによる特徴量比較において、局所領域内各点の濃度勾配強度情報による特徴量マッチングを行っているが、一般に勾配強度は明度の変化に対して不変な特徴量ではないため、モデル画像と入力画像との間に明度差がある場合には、安定なマッチングが保証されないという問題がある。
第3に、各オブジェクト特徴点に対して、特徴空間上での距離が最短ではないが十分小さい、即ち特徴量が十分類似するモデル特徴点が複数存在し、その中に真の特徴点ペア(インライヤ)が含まれている場合が想定されるが、特徴量マッチング部3においては、各オブジェクト特徴点は特徴空間上で最短距離を与えるモデル特徴点のみとペアが組まれるため、先のようなインライヤが候補対応ペアとして考慮されていない点も問題として挙げられる。
第4に、認識判定部74におけるアフィン変換パラメータ推定の際に問題が起こり得る。ここで、候補対応特徴点ペア選択部12で絞り込みを受けた対応特徴点ペア群の中には偽の特徴点ペア(アウトライヤ)が含まれているが、マッチペア群中のアウトライヤが多い場合や真のアフィン変換パラメータから極端に逸脱したアウトライヤが存在する場合には、アフィン変換パラメータ推定はアウトライヤに影響を受け、場合によっては繰り返し操作によってインライヤが次第に排除されてアウトライヤが残り、誤ったモデル姿勢を出力してしまうという問題も起こり得る。
本発明は、このような状況に鑑みてなされたものであり、複数の物体を含み、物体同士が部分的に重なり合っているような入力画像からも対象物を検出可能であり、さらに視点の変化(平行移動,拡大縮小,回転,ストレッチを含む画像変化)、明度変化、ノイズによる画像情報の変形がある場合であっても安定に対象物を検出できることを目的のひとつとして、入力画像とモデル画像とのマッチング精度を高めることができるようにするものである。
なお、本発明の上述した目的を同様に達成できる発明が、本出願人により出願され、特開2004−326693号に開示されている。本発明は、この特開2004−326693号に開示された発明に対してさらに、マッチング精度をより一段と向上できる、という効果を奏するようにするものである。特に、モデル画像と入力画像の撮影角度の差が大きい場合に、本発明の効果はより一段と顕著になる。
本発明の一側面の情報処理装置は、入力画像とモデル画像とを比較する情報処理装置であって、前記モデル画像上の1以上のモデル特徴点の各特徴量を保持し、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ保持する保持手段と、前記入力画像上の特徴点をオブジェクト特徴点として1以上抽出するオブジェクト特徴点抽出手段と、前記特徴点抽出手段により抽出された1以上の前記オブジェクト特徴点のそれぞれについての特徴量を抽出するオブジェクト特徴量抽出手段と、前記オブジェクト特徴量抽出手段により前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、前記保持手段により保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成する特徴量比較手段とを備え、前記保持手段は、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置を前記特徴量と対応付けて保持しており、前記特徴量比較手段により生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、前記保持手段により保持されている前記モデル特徴点の位置とが含まれ、前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置である。
既知の前記N個の変換係数のそれぞれを利用して、前記モデル画像から前記N枚の変換画像をそれぞれ生成する変換画像生成手段と、前記モデル画像上、および前記変換画像生成手段により生成された前記N枚の変換画像上の各特徴点を前記モデル特徴点としてそれぞれ1以上抽出するモデル特徴点抽出手段と、前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のそれぞれについての前記特徴量を抽出するモデル特徴量抽出手段と、前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のうちの、前記N枚の変換画像上の1以上の前記モデル特徴点のそれぞれについて、前記N個の変換係数のうちの対応する1つを利用して、前記第1の位置から前記第2の位置に変換する位置変換手段とをさらに備える。
前記モデル画像における視点の周辺に別の視点をN個定めて、そのN個の別の視点からそれぞれ撮影されたN枚の画像が、前記N枚の変換画像として入力され、前記モデル画像上、および入力された前記N枚の変換画像上の各特徴点を前記モデル特徴点としてそれぞれ1以上抽出するモデル特徴点抽出手段と、前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のそれぞれについての前記特徴量を抽出するモデル特徴量抽出手段と、前記モデル画像と、入力された前記N枚の変換画像のそれぞれとに基づいて、前記N個の変換係数のそれぞれを推定する推定手段と、前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のうちの、入力された前記N枚の変換画像上の1以上の前記モデル特徴点のそれぞれについて、前記推定手段により推定された前記N個の変換係数のうちの対応する1つを利用して、前記第1の位置から前記第2の位置に変換する位置変換手段とをさらに備える。
所定の手法を1以上利用して、前記特徴量比較手段により生成された1以上の前記マッチペアの中からミスマッチペアを除外し、残存した前記マッチペアに基づいて、前記モデル画像に含まれるオブジェクトと同一のオブジェクトが前記入力画像の中に存在するか否かを認識する認識手段をさらに備える。
本発明の一側面の情報処理方法は、入力画像とモデル画像とを比較する情報処理装置の情報処理方法であって、前記モデル画像上の1以上のモデル特徴点の各特徴量を保持し、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ保持し、前記入力画像上の特徴点をオブジェクト特徴点として1以上抽出し、抽出された1以上の前記オブジェクト特徴点のそれぞれについての前記特徴量を抽出し、前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成し、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置を前記特徴量と対応付けて保持しており、生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、保持されている前記モデル特徴点の位置とが含まれ、前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置であるステップを含む。
本発明の一側面のプログラムは、上述した本発明の一側面の情報処理方法に対応するプログラムである。
本発明の一側面の情報処理装置および方法並びにプログラムにおいては前記モデル画像上の1以上のモデル特徴点の各特徴量が保持され、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量がそれぞれ保持され、前記入力画像上の特徴点がオブジェクト特徴点として1以上抽出され、抽出された1以上の前記オブジェクト特徴点のそれぞれについての前記特徴量が抽出され、前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとが比較され、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアが1以上生成され、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置を前記特徴量と対応付けて保持され、生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、保持されている前記モデル特徴点の位置とが含まれ、前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置である。
以上のごとく、本発明によれば、複数の物体を含み、物体同士が部分的に重なり合っているような入力画像からも対象物を検出可能であり、さらに視点の変化(平行移動,拡大縮小,回転,ストレッチを含む画像変化)、明度変化、ノイズによる画像情報の変形がある場合であっても安定に対象物を検出できるという目的を達成できる。特に、モデル画像と入力画像の撮影角度の差が大きい場合等において、入力画像とモデル画像とのマッチング精度を高めることができる。
以下に本発明の実施の形態を説明するが、請求項に記載の構成要件と、明細書又は図面における具体例との対応関係を例示すると、次のようになる。この記載は、請求項に記載されている発明をサポートする具体例が、明細書又は図面に記載されていることを確認するためのものである。従って、明細書又は図面中には記載されているが、構成要件に対応するものとして、ここには記載されていない具体例があったとしても、そのことは、その具体例が、その構成要件に対応するものではないことを意味するものではない。逆に、具体例が構成要件に対応するものとしてここに記載されていたとしても、そのことは、その具体例が、その構成要件以外の構成要件には対応しないものであることを意味するものでもない。
さらに、この記載は、明細書又は図面に記載されている具体例に対応する発明が、請求項に全て記載されていることを意味するものではない。換言すれば、この記載は、明細書又は図面に記載されている具体例に対応する発明であって、この出願の請求項には記載されていない発明の存在、すなわち、将来、分割出願されたり、補正により追加される発明の存在を否定するものではない。
本発明の一側面の情報処理装置(例えば図6や図23の画像認識装置)は、
入力画像(例えば図6や図23の入力画像82)とモデル画像(例えば図6や図23のモデル画像81)とを比較する情報処理装置において、
前記モデル画像上の1以上のモデル特徴点の各特徴量を保持し、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像(例えば図6の例では自己変調画像91−1乃至91−Nであり、図23の例ではモデル周辺画像151−1乃至151−N)のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ保持する保持手段(例えば図6の特徴量データベース52)と、
前記入力画像上の特徴点をオブジェクト特徴点として1以上抽出するオブジェクト特徴点抽出手段(例えば図6や図23の特徴点抽出部71)と、
前記特徴点抽出手段により抽出された1以上の前記オブジェクト特徴点のそれぞれについての特徴量を抽出するオブジェクト特徴量抽出手段(例えば図6や図23の特徴量抽出部72)と、
前記オブジェクト特徴量抽出手段により前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、前記保持手段により保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成する特徴量比較手段(例えば図23の特徴量マッチング部73)と
を備える。
前記保持手段は、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置を前記特徴量と対応付けて保持しており、
前記特徴量比較手段により生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、前記保持手段により保持されている前記モデル特徴点の位置とが含まれ、
前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置である。
情報処理装置が例えば図6の画像認識装置で構成される場合には、
既知の前記N個の変換係数のそれぞれを利用して、前記モデル画像から前記N枚の変換画像(例えば図6の自己変調画像91−1乃至91−N)をそれぞれ生成する変換画像生成手段(例えば図6の自己変調画像生成部111)と、
前記モデル画像上、および前記変換画像生成手段により生成された前記N枚の変換画像上の各特徴点を前記モデル特徴点としてそれぞれ1以上抽出するモデル特徴点抽出手段(例えば図6の特徴点抽出部61,112)と、
前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のそれぞれについての前記特徴量を抽出するモデル特徴量抽出手段(例えば図6の特徴量抽出部62,114)と、
前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のうちの、前記N枚の変換画像上の1以上の前記モデル特徴点のそれぞれについて、前記N個の変換係数のうちの対応する1つを利用して、前記第1の位置から前記第2の位置に変換する位置変換手段(例えば図6の特徴点位置変換部113)と
をさらに備える。
一方、情報処理装置が例えば図23の画像認識装置で構成される場合には
前記モデル画像における視点の周辺に別の視点をN個定めて、そのN個の別の視点からそれぞれ撮影されたN枚の画像が、前記N枚の変換画像(例えば図23のモデル周辺画像151−1乃至151−N)として入力され、
前記モデル画像上、および入力された前記N枚の変換画像上の各特徴点を前記モデル特徴点としてそれぞれ1以上抽出するモデル特徴点抽出手段(例えば図23の特徴点抽出部61,112)と、
前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のそれぞれについての前記特徴量を抽出するモデル特徴量抽出手段(例えば図23の特徴量抽出部62,114)と、
前記モデル画像と、入力された前記N枚の変換画像のそれぞれとに基づいて、前記N個の変換係数のそれぞれを推定する推定手段(例えば図23の変換係数推定部211)と、
前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のうちの、入力された前記N枚の変換画像上の1以上の前記モデル特徴点のそれぞれについて、前記推定手段により推定された前記N個の変換係数のうちの対応する1つを利用して、前記第1の位置から前記第2の位置に変換する位置変換手段(例えば図23の特徴点位置変換部113)と
をさらに備える。
所定の手法を1以上利用して、前記特徴量比較手段により生成された1以上の前記マッチペアの中からミスマッチペアを除外し、残存した前記マッチペアに基づいて、前記モデル画像に含まれるオブジェクトと同一のオブジェクト前記入力画像の中に存在するか否かを認識する認識手段(例えば図6や図23の認識判定部74)
入力画像とモデル画像とを比較する情報処理装置(例えば図6や図23の画像認識装置)の情報処理方法において、
前記モデル画像上の1以上のモデル特徴点の各特徴量を保持し、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ保持し(例えば図7の学習処理であって、特にステップS8)、
前記入力画像上の特徴点をオブジェクト特徴点として1以上抽出し(例えば図13のステップS41)、
抽出された1以上の前記オブジェクト特徴点のそれぞれについての特徴量を抽出し(例えば図13のステップS42)、
前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成する(例えば図13のステップS44)
ステップを含む。
さらに、本発明によれば、上述した本発明の一側面の情報処理方法に対応するプログラムや、そのプログラムを記録した記録媒体も提供されるという一側面を有する。このプログラムは、後述するように、例えば図25のコンピュータにより実行される。
次に、本発明の実施の形態を説明する前に、本発明の原理について説明する。
はじめに、本発明の原理の理解を容易なものとするために、上述した特開2004−326693号公報に開示された画像認識装置(以下、単に従来の画像認識装置と称する)の概略について説明する。
図2は、従来の画像認識装置の構成例を示している。
なお、図2において、実線で囲まれた四角は、装置またはその構成要素としてのブロックを示し、点線で囲まれた四角は、所定の情報、例えば画像情報を示している。このような実線と点線の四角の使い分けは、後述する他の図においても同様とされる。
従来の画像認識装置は、学習部51、特徴量データベース52、および認識部53を含むように構成されている。
学習部51は、特徴点抽出部61および特徴量抽出部62を含むように構成されている。
特徴点抽出部61は、モデル画像81から特徴点を抽出し、特徴量抽出部62に提供する。
なお、以下、モデル画像81等のモデル画像から抽出された特徴点と、後述する入力画像82から抽出された特徴点とを区別する必要がある場合適宜、前者をモデル特徴点と称し、後者をオブジェクト特徴点と称する。
特徴量抽出部62は、特徴点抽出部61により抽出された各モデル特徴点について後述する特徴量を抽出し、モデル特徴点の位置情報とともに特徴量データベース52に記憶させる。
なお、図2の例では1枚のモデル画像81しか描画されていないが、実際には、複数のモデル画像が学習部51に与えられる。即ち、特徴量データベース52には、実際には、複数のモデル画像のそれぞれについての各特徴量が、対応するモデル特徴点の位置情報とともにそれぞれ記憶されている。
認識部53は、特徴点抽出部71乃至認識判定部74から構成されている。
特徴点抽出部71は、入力画像82からオブジェクト特徴点を抽出し、特徴量抽出部72に提供する。特徴量抽出部72は、特徴点抽出部71により抽出されたオブジェクト特徴点について後述する特徴量を抽出し、オブジェクト特徴点の位置情報とともに特徴量マッチング部73に提供する。
特徴量マッチング部73は、特徴量データベース52に記憶されているモデル画像81についての各モデル特徴点の特徴量と、特徴量抽出部72により抽出された各オブジェクト特徴点の特徴量とを比較して類似度や相違度を計算し、その計算結果としての類似尺度を用いて特徴量が類似する特徴点のペア、即ち対応する可能性の高いモデル特徴点とオブジェクト特徴点とのペアを1以上生成する。以下、かかるペアを、マッチペアと称し、1以上のマッチペアの集合をマッチペア群と称する。
特徴量マッチング部73により生成されたマッチペア群は、認識判定部74に提供される。認識判定部74は、このマッチペア群を用いて入力画像82上のモデルの有無を検出し、「モデル有」の判定結果の場合には、「検出されるモデルは入力画像上へのアフィン変換による画像変形が施されている」という拘束条件の下、マッチペア群からランダムに選択した3ペアにより決定されるアフィン変換パラメータをパラメータ空間に投射する操作を繰り返し、パラメータ空間上で形成されたクラスタのうち最多メンバ数を持つクラスタの各メンバを真のマッチペア(インライヤ)とし、このインライヤを用いた最小自乗推定によりアフィン変換パラメータを求める。そして、認識判定部74は、例えばこのアフィン変換パラメータで決定されるモデル姿勢を認識結果83として出力することができる。
以上説明したように、従来の特徴量マッチング部73においては、例えば図3に示されるようなモデル画像81と入力画像82とのそれぞれについての局所特徴量同士のマッチングが行われることになる。
この場合、例えばモデル画像81と入力画像82との撮影角度が違う場合、換言すると、例えばモデル画像81と視点が大きく異なるような入力画像82が入力された場合、一般的に局所特徴量同士のマッチング精度は悪くなってしまう。また、立体物が撮影された画像であって、その立体物のうちのとある面は拡大され、別の面は縮小されるような画像が入力画像82として入力された場合にも、同様に、局所特徴量同士のマッチング精度は悪くなってしまう。
そこで、このような場合でもマッチング精度を向上すべく、本発明人は、図4と図5に示される手法を発明した。
即ち、本発明人により発明された手法とは、次の第1乃至第6の工程からなる手法をいう。
即ち、第1の工程とは、図4に示されるように、モデル画像81から、N個(Nは1以上の整数値)の変換係数のそれぞれを利用して、N枚の自己変調画像91−1乃至91−Nのそれぞれを作成する、という工程である。
第2の工程とは、これらのモデル画像81および自己変調画像91−1乃至91−Nのそれぞれについて、モデル特徴点の抽出を行い、その周辺から局所特徴量を抽出する、という工程である。
第3の工程とは、特徴量と、対応するモデル特徴点の位置情報とを保持する、という工程である。ここで注意すべき点は、自己変調画像91−1乃至91−Nの各特徴量については、第1の工程において自画像が作成されたときに利用された変換係数を利用して、自画像上から抽出された特徴点の元のモデル画像81の対応点の位置を求め、その対応点の位置をモデル特徴点の位置情報として保持しておく、という点である。
以上の第1の工程乃至第3の工程までが学習工程である。即ち、従来の学習工程とは図2の学習部51の処理工程をいうが、かかる従来の学習工程では、単にモデル画像81についてのみの特徴量が抽出されて保持されていた。これに対して、本発明人が発明した手法の一部の第1の工程乃至第3の工程では、モデル画像81のみならず、N枚の自己変調画像91−1乃至91−Nのそれぞれについても、特徴量が抽出されて保持される。
このような学習工程に対して、認識時に行われる入力画像82との局所特徴量のマッチング処理工程が次の第4乃至第6の工程である。
第4の工程とは、入力画像82の局所特徴量と、第3の工程で保持された各局所特徴量とのマッチングを行う、という工程である。ここで注目すべき点は、第3の工程で保持された各局所特徴量とは、上述したように、モデル画像81についてのみならず、N枚の自己変調画像91−1乃至91−Nのそれぞれについての各局所特徴量も含んでいる点である。即ち、第4の工程とは、図5に示されるように、入力画像82に対して、モデル画像81のみならず、自己変調画像91−1乃至91−のそれぞれとの局所特徴量のマッチングを行う工程であるといえる。
第5の工程とは、第4の工程の結果からマッチペア群を得る工程である。この場合、マッチペア群に含まれるマッチペアのうちの、自己変調画像91−1乃至91−Nにおけるモデル特徴点についてのマッチペアについては、そのモデル特徴点の位置情報は、自己変調画像91−1乃至91−N上のモデル特徴点の位置ではなく、上述した第3の工程で保持された位置、即ち、元のモデル画像81の対応点の位置が、入力画像82のマッチしたオブジェクト特徴点の位置と結合されることになる。即ち、図5に示されるように、入力画像82のオブジェクト特徴点と、自己変調画像91−1乃至91−N上に存在する各特徴点自身とのマッチペアが生成されるのではなく、入力画像82のオブジェクト特徴点と、自己変調画像91−1乃至91−Nの各特徴点に対する元のモデル画像81上の対応点とのマッチペアが生成される。
第6の工程とは、第5の工程で得られたマッチペア群は、入力画像82とモデル画像81のマッチペア候補の集合として、認識工程の後段、即ち、後述する図6の認識判定部74に送られる、という工程である。
以上の第1乃至第6の工程からなる手法を、以下、自己変調画像マッチング手法と称する。
このように、モデル画像81と入力画像82との視点が大きく異なる場合等でも、自己変調画像91−1乃至91−Nの中には、視点が入力画像82とより類似した画像が含まれていると考えられるので、このような画像と入力画像82との局所特徴量のマッチング結果も利用できので、従来と比較してマッチング精度が向上することになる。
換言すると、入力画像82との局所特徴量のマッチング対象の画像として、モデル画像81のみならず、そのモデル画像81から所定の変換係数で変換できる画像を1枚以上用意しておけば、モデル画像81と入力画像82との視点が大きく異なる場合等であっても、その入力画像82とのマッチ度合いがモデル画像81よりも一段と高い変換画像が含まれることになり、即ち、視点が入力画像82とより類似するであろう変換画像も含まれることになり、従来と比較してマッチング精度が向上することになる。
以上の内容をまとめると、本発明の手法とは、結局、モデル画像81上の各モデル特徴点の各特徴量の他さらに、そのモデル画像81からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについて、自画像上の各モデル特徴点の各特徴量をそれぞれ保持しておき、入力画像82上の各オブジェクト特徴点のそれぞれに対して、モデル画像81と複数の変換画像のそれぞれについての各モデル特徴点のそれぞれと比較をし、類似すると比較判断された特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのペアを1以上生成する、という手法をいう。
この本発明の手法のうち、複数の変換画像として自己変調画像91−1乃至91−Nが採用された手法が、上述した自己変調画像マッチング手法である。即ち、自己変調画像マッチング手法とは、本発明の手法の一実施の形態である。換言すると、本発明の手法で利用される複数の変換画像は、自己変調画像91−1乃至91−Nに特に限定されず、所定の変換係数を利用してモデル画像81から生成できる画像であれば足りる。なお、複数の変換画像の別の具体例については、図22を参照して後述する。
次に、図面を参照して、本発明の実施の形態について説明する。
図6は、上述した本発明の手法のうちの自己変調画像マッチング手法が適用される画像認識装置の機能的構成例を表している。
なお、図6において、図2と対応する箇所には対応する符号が付してあり、かかる箇所については適宜説明を省略する。
図6の例では、画像認識装置は、学習部101、特徴量データベース52、および認識部53を含むように構成されている。
図2の従来の画像認識装置と同様に、特徴点抽出部61は、モデル画像81からモデル特徴点を抽出し、特徴量抽出部62に提供する。特徴量抽出部62は、特徴点抽出部61により抽出された各モデル特徴点について特徴量を抽出し、モデル特徴点の位置情報とともに特徴量データベース52に記憶させる。
自己変調画像生成部111は、N個の変換係数のそれぞれを利用してモデル画像81からN枚の自己変調画像91−1乃至91−Nをそれぞれ生成し、特徴点抽出部112に提供する。また、自己変調画像生成部111は、N個の変換係数のそれぞれを特徴点位置変換部113に通知する。
なお、以下、自己変調画像91−1乃至91−Nを個々に区別する必要が無い場合、単に自己変調画像91と称する。
特徴点抽出部112は、自己変調画像91からモデル特徴点を抽出し、その自己変調画像91上の位置を特徴点位置変換部113に通知する。特徴点位置変換部113は、自己変調画像生成部111から通知された変換係数を用いて、そのモデル特徴点の自己変調画像91上の位置を、モデル画像81上の対応位置に変換して、変換後の対応位置を特徴点抽出部112に通知する。換言すると、特徴点位置変換部113は、自己変調画像生成部111の変換処理に対する逆変換処理を実行することで、モデル特徴点の位置情報を、自己変調画像91上の位置からモデル画像81上の対応位置に変換する。特徴点抽出部112は、モデル特徴点と、その特徴点のモデル画像81上の対応位置とを対応付けて、特徴量抽出部114に提供する。
特徴量抽出部114は、特徴点抽出部112により抽出された各モデル特徴点について特徴量を抽出し、抽出した特徴量と、対応する特徴点のモデル画像81上の対応位置とを対応付けて、特徴量データベース52に記憶させる。即ち、自己変調画像91上のモデル特徴点の位置そのものではなく、そのモデル画像81上の対応点の位置が、自己変調画像91のモデル特徴点の位置情報として特徴量データベース52に記憶される。
なお、図6の例では、図2の例と同様に、1枚のモデル画像81しか描画されていないが、実際には、複数のモデル画像が学習部101に与えられる。即ち、特徴量データベース52には、実際には、複数のモデル画像のそれぞれについて、自画像とN枚の自己変調画像91−1乃至91−Nの各特徴量と各モデル特徴点の位置情報(自己変調画像91の場合にはモデル画像81の対応位置)とがそれぞれ記憶されている。
認識部53は、基本的に図2の例と同様の構成を有しているので、その構成の説明は省略する。
ただし、特徴量マッチング部73の入力画像82の特徴点とのマッチング対象は、図2の例では、モデル画像81の特徴点のみであったが、図6の例では、自己変調画像91−1乃至91−Nの各特徴点もさらに含まれる。なお、このことについては、後述する図13のステップS44の処理の説明の際に詳しく説明する。
また、認識判定部74は、従来と同様の処理(図16参照)を実行してもよいが、本発明の特徴を生かした別の処理、例えば後述する図21の処理を実行するとより好適である。
以下、かかる図6の構成の画像認識装置の各種処理例について、図7乃至図21を参照して説明していく。
図7は、学習部101が実行する処理(以下、学習処理と称する)の一例を説明するフローチャートである。
上述したように、学習部101には、1枚のモデル画像81のみならず複数のモデル画像が与えられるが、この図6の学習処理は、複数のモデル画像1枚1枚についてその都度実行される。以下においては、図面の記載に併せて、モデル画像81が学習部101に与えられたとして説明する。
ステップS1において、自己変調画像生成部111は、モデル画像81からN枚の自己変調画像91−1乃至91−Nを生成する。
ステップS2において、学習部101は、モデル画像81とN枚の自己変調画像91−1乃至91−Nのうちの、後述するステップS3乃至S6の処理が未実行の画像の中から所定の1枚を選択し、その所定の1枚を処理対象画像に設定する。
ステップS3において、特徴点抽出部61または特徴点抽出部112は、処理対象画像に対して特徴点処理を実行し、各各特徴点を抽出する。即ち、モデル画像81が処理対象画像に設定されている場合には、特徴点抽出部61によりステップS3の処理が実行される。一方、N枚の自己変調画像91−1乃至91−Nのうちの1枚が処理対象画像に設定されている場合には、特徴点抽出部112によりステップS3の処理が実行される。なお、特徴点抽出処理の詳細については、図8乃至図10を参照して後述する。
ステップS4において、学習部101は、処理対象画像は自己変調画像91であるか否かを判定する。
モデル画像81が処理対象画像に設定されている場合には、ステップS4の処理でNOであると判定されて、処理はステップS6に進む。
これに対して、自己変調画像91が処理対象画像に設定されている場合には、ステップS4の処理でYESであると判定されて、処理はステップS5に進む。ステップS5において、特徴点位置変換部113は、処理対象画像としての自己変調画像91から抽出された各特徴点のそれぞれの特徴点位置を、自己変調画像91上の位置からモデル画像81上の対応位置に変換する。
このようなステップS5の処理が実行された場合には特徴量抽出部114が、また、ステップS4の処理でNOであると判定された場合には特徴量抽出部62が、ステップS6において、ステップS3の処理で処理対象画像から抽出された各特徴点のそれぞれについて、各特徴量を抽出する。なお、ステップS6の詳細については図11や図12を用いて後述する。
ステップS7において、学習部101は、モデル画像81とN枚の自己変調画像91−1乃至91−Nとの全てが処理対象画像に設定されたか否かを判定する。
ステップS7の処理でNOであると判定された場合、処理はステップS2に戻されて、それ以降の処理が繰り返される。
そして、モデル画像81とN枚の自己変調画像91−1乃至91−Nとのそれぞれが処理対象画像となってステップS2乃至S7のループ処理が繰り返し実行されると、ステップS7の処理でYESであると判定されて、処理はステップS8に進む。
ステップS8において、学習部101は、モデル画像81のマッチング用データとして、
そのモデル画像81の各特徴点の各特徴量および各特徴点位置、並びに、N枚の自己変調画像91−1乃至91−Nのそれぞれについての各特徴点および各特徴点位置(モデル画像81上の各対応位置)を記憶する。
これにより、モデル画像81についての学習処理は終了となる。
ここで、ステップS3の特徴点抽出処理の詳細例について説明する。なお、ここでは、説明の簡略上、動作主体は特徴点抽出部61であるとする。また、以下、画像の水平方向をX軸、垂直方向をY軸として説明する。
特徴点抽出部61は、モデル画像81を特徴点抽出対象画像とし、特徴点抽出対象画像に対し、先ず平滑化フィルタリング、例えば以下の式(1)で示す2次元ガウス関数による畳み込み積(ガウスフィルタリ ング)と、双2次線形補間リサンプリングによる画像縮小とを繰り返し交互に適用することで、画像の多重解像度ピラミッド構造を構築する。ここで、リサンプリングファクタとしては、式(1)のガウスフィルタで用いたσを用いる。
Figure 0004196302
即ち、図8に示すように、例えば入力画像Iにσ=√2であるガウスフィルタg(x、y)を施すことにより第1レベル(最高解像度)の画像I1を生成し、さらにガウスフィルタを施すことにより画像g*I1を生成する。そして、この画像g*I1をリサンプリングしてガウスフィルタを施すことにより第2レベルの画像I2,g*I2を生成し、同様にして画像g*I2から第3レベルの画像I3,g*I3を生成する。
続いて、特徴点抽出部61は、各レベル(各解像度)の画像に対して、DoG(Difference of Gaussian)フィルタを適用する。このDoGフィルタは、画像の輪郭強調のために用いられる2次微分フィルタの一種であり、人間の視覚系で網膜から の情報が外側膝状体で中継されるまでに行われている処理の近似モデルとして、LoG(Laplacian of Gaussian)フィルタと共によく用いられるものである。DoGフィルタの出力は、2つのガウスフィルタ出力画像の差分を取ることにより容易に得られ る。即ち、図8に示すように、第1レベルの画像について画像DI1(=I1−g*I1)が得られ、第2レベル,第3レベルの画像について画像DI2(=I2−g*I2),画像DI3(=I3−g*I3)が得られる。
そして、特徴点抽出部61は、各レベルにおけるDoGフィルタ出力画像DI1,DI2,DI3・・・の局所点(局所極大点及び局所極小点)のうち、所定の範囲内の解像度変化によって位置の変化がないような点を特徴点として検出する。これにより、画像の拡大縮小操作に対してロバストな特徴点間のマッチングが実現できる。
ここで、多重解像度ピラミッド構造の第Lレベル、即ちσの(L−1)乗ファクタまでの解像度変化によって位置の変化がないような特徴点を検出する際の特徴点抽出処理の一例について、図9のフローチャートを用いて説明する。
ステップS21において、特徴点抽出部61は、第1レベル(最高解像度)におけるDoGフィルタ出力画像DI1の局所点(局所極大点及び局所極小点)を検出する。なお、局所近傍としては、例えば3×3直接近傍を用いることができる。
ステップS22において、特徴点抽出部61は、検出された各局所点について、その1つ上位レベル(解像度の1つ低い層)における対応点を解像度減少に伴う画像縮小を考慮して求め、この1つ上位レベルの対応点が局所点か否かを判定する。
局所点でない場合には、ステップS22の処理でNOであると判定されて、特徴点抽出処理は終了となる。
これに対して、局所点である場合には、ステップS22の処理でYESであると判定されて、処理はステップS23に進む。
ステップS23において、特徴点抽出部61は、第Lレベルまで探索が成功したか否かを判定する。
第Lレベルまで探索を行っていない場合にはステップS23の処理でNOであると判定されて、処理はステップS22に戻され、さらに上位レベルの探索が行われる。
そして、第Lレベルまで探索が成功した場合には、特徴点抽出部61は、その局所点が特徴点であるとして、ステップS23の処理でYESであると判定して、ステップS24において、特徴点としてその位置情報を保持する。
これにより、特徴点抽出処理が終了する。
例えば第3レベルまでの解像度変化によって位置の変化がないような特徴点を検出する場合、図10に示されるように、第1レベルの画像DI1において検出された局所点FP1,FP2のうち、FP1は第3レベルの画像DI3まで対応点が存在するため特徴点とされ、FP2は第2レベルまでしか対応点が存在しないため特徴点でないとされる。
なお、特徴点抽出部61等では、DoGフィルタの代わりにLoGフィルタを用いるようにしても構わない。また、文献「Harris C. and Stephens M.,“A combined corner and edge detector.”, in Proc. Alvey Vision Conf., pp.147−151, 1988」で物体のコーナー検出に用いられているcorner−ness 関数の出力値をDoGフィルタ出力の代わりに用いるようにしても構わない。
ここで、このような特徴点抽出部61の特徴点抽出処理に引き続いて行われる特徴量抽出部62の処理、即ち、図7のステップS6の処理の詳細例について説明していく。
上述したように、特徴量抽出部62は、特徴点抽出部61にて抽出された各特徴点について特徴量を抽出して、特徴量データベース52に記憶させる。特徴量としては、多重解像度ピラミッド構造の各レベルの画像(Il,l=1,…,L)の画像情報から導出される特徴点の近傍領域各点の濃度勾配情報(勾配強度及び勾配方向)を用いる。点(x、y)における勾配強度Mx,y及び勾配方向Rx,yは以下の式(2),(3)により与えられる。
Figure 0004196302
ここで、特徴量を算出する特徴点近傍領域としては、回転変化に対して構造の変わらないような、特徴点に関して対称なものを選択することが好ましい。これにより、回転変化に対するロバスト性を実現することができる。例えば、(i)特徴点から半径rピクセルの範囲内を特徴点近傍領域とする手法や、(ii)特徴点を中心に幅σの特徴点に関して対称な2次元ガウス重みを濃度勾配に掛ける手法を採用することができる。
特徴点から半径3.5ピクセルの範囲内を近傍領域とした場合における特徴点近傍領域の濃度勾配情報の例が図11に示されている。ここで、図11において矢印の長さは勾配強度を表し、矢印の方向は勾配方向を表している。
また、特徴量抽出部62は、特徴点近傍の勾配方向に関するヒストグラム(方向ヒストグラム)も特徴量として特徴量データベース52に記憶させる。図11の濃度勾配情報から得られる勾配方向ヒストグラムの例が図12に示されている。ここで、図12における階級幅Δθは10degとされ、階級数Nは36(=360deg /10deg )とされている。
ところで、以上説明した学習処理が実行されて、モデル画像81等の各モデル画像のマッチング用データが特徴量データベース52にそれぞれ記憶された後、入力画像82が図6の認識部53に与えられると、認識部53は、例えば図13のフローチャートに従った認識処理を実行する。
即ち、図13のステップS41において、特徴点抽出部71は、入力画像82に対して特徴点処理を実行し、各各特徴点を抽出する。なお、特徴点抽出処理の詳細については、図8乃至図10を参照して上述した通りである。
ステップS42において、特徴量抽出部72は、入力画像82から抽出された各特徴点のそれぞれについて、各特徴量を抽出する。なお、ステップS42の詳細については、図11や図12を用いて上述した通りである。
ステップS43において、特徴量マッチング部73は、比較対象のモデル画像を設定する。
即ち、上述したように、図6の例では1枚のモデル画像81のみが学習部101に与えられているが、実際には複数のモデル画像が学習部101に与えられ、複数のモデル画像のそれぞれについての各マッチング用データが特徴量データベース52に個別に記憶される。そこで、これらの複数のモデル画像のうちの所定の1枚が、ステップS43の処理で比較対象として設定されるのである。なお、ここでは、説明の簡略上、モデル画像81が比較対象として設定されたとする。
ステップS44において、特徴量マッチング部73は、入力画像82の各オブジェクト特徴点と、比較対象のモデル画像81のマッチング用データに含まれる各モデル特徴点とを用いたマッチング処理を行い、マッチペア群を出力する。
なお、マッチング処理の詳細については、図14と図15とを用いて後述する。ただし、ここで注目すべき点は、各オブジェクト特徴点と比較されるモデル特徴点とは、モデル画像81のマッチング用データに含まれる各モデル特徴点である点、即ち、従来のようにモデル画像81についてのモデル特徴点のみならず、N枚の自己変調画像91−1乃至91−Nのそれぞれについての各モデル特徴点も含む点である。
ステップS45において、認識判定部74は、マッチペア群を用いた認識判定処理を実行する。なお、認識判定処理の詳細については、図16乃至図21を用いて後述する。
ステップS46において、認識部53は、終了条件が満たされたか否かを判定する。
終了条件がまだ満たされていない場合、ステップS46の処理でNOであると判定されて、処理はステップS43に戻され、それ以降の処理が繰り返される。
これに対して、終了条件が満たされた場合、ステップS46の処理でYESであると判定されて、認識処理が終了となる。
なお、ステップS46における終了条件は特に限定されず、例えば、モデル画像の全てが比較対象となったことを終了条件としてもよいし、或いは、これまで比較対象に設定されていたモデル画像に含まれるモデルオブジェクトと同一オブジェクトが入力画像82の中から検出されたことを終了条件としてもよい。
次に、図14のフローチャートを参照して、図13のステップS44におけるマッチング処理の詳細例について説明する。
ステップS61において、特徴量マッチング部73は、各モデル特徴点の方向ヒストグラムと各オブジェクト特徴点の方向ヒストグラムとを比較してヒストグラム間相違度を計算し、モデル−オブジェクト間の推定回転角度を演算する。
ここで注目すべき点は、ステップS61で利用される各モデル特徴点の方向ヒストグラムとは、従来のようにモデル画像81についてのモデル特徴点の方向ヒストグラムのみならず、N枚の自己変調画像91−1乃至91−Nのそれぞれについての各モデル特徴点の方向ヒストグラムも含む点である。
ここで、階級幅Δθと階級数Nとが同一である2つの方向ヒストグラムH1={h1(n),n=1,…,N}及びH2={h2(n),n=1,…,N}を想定し、h1(n),h2(n)が階級nにおける度数を示すものとすると、ヒストグラムH1とヒストグラムH2との間の距離d(H1,H2)は、例えば以下の式(4)で与えられる。ここで、式(4)におけるrとしては、r=1,2,∞が一般的に用いられる。
Figure 0004196302
この式(4)を用いて各モデル特徴点及び各オブジェクト特徴点の方向ヒストグラム間相違度を計算するが、(i)モデル−オブジェクト間のスケール比がマッチング段階で未知であるため、モデル特徴点の各レベルとオブジェクト特徴点の各レベル間で方向ヒストグラム間のマッチングを行う必要がある。また、(ii)方向ヒストグラム間のマッチングに関しては、モデル−オブジェクト間の回転変換量を考慮する必要がある。
モデル特徴点mのレベルLVにおける方向ヒストグラムHm LV={hm LV(n),n=1,…,N}と、オブジェクト特徴点oのレベルlvにおける方向ヒストグラムHo lv={ho lv(n),n=1,…,N}との相違度を求める場合を考える。方向ヒストグラムは回転変換に対して巡回的に変化するため、Ho lvを巡回的に階級を1つずつシフトさせながら式(4)の計算を行い、その最小値をHm LVとHo lvとの間の相違度とする。このとき、相違度の最小値を与えた時のシフト量(ずらした階級数)からオブジェクト特徴点の回転角度を推定することができる。なお、この手法は方向ヒストグラム交差法として知られている。
Ho lvをk階級分シフトさせた方向ヒストグラムをHo lv(k)とすると、方向ヒストグラム交差法による方向ヒストグラム間相違度dissimilarity(Hm LV,Ho lv(k))は、以下の式(5)で与えられる。
Figure 0004196302
また、最小のd(Hm LV,Ho lv(k))を与えるkをk'とすると、オブジェクト特徴点oの近傍領域における推定回転角度θ(m,LV,o,lv)は以下の式(6)で与えられる。
Figure 0004196302
上述の(i)を考慮すると、モデル特徴点mとオブジェクト特徴点oとの方向ヒストグラム間相違度dissimilarity(Hm,Ho)は、以下の式(7)のようになる。
Figure 0004196302
特徴量マッチング部73は、モデル特徴点mとオブジェクト特徴点oとの各ペア(m、o)に対し、最小の方向ヒストグラム間相違度dissimilarity(Hm,Ho)を与えるレベルLV,lv(以下、それぞれLVm *,lvo *と表記する。)と、その推定回転角度θ(m,LVm *,o,lvo *)とを、方向ヒストグラム間相違度dissimilarity(Hm,Ho)と共に保持する。
次に、ステップS62において、特徴量マッチング部73は、各モデル特徴点mに対して、方向ヒストグラム間相違度の小さい順にK個のオブジェク特徴点om1,…,omKを選択してそれぞれマッチペアを組ませることで、マッチペア群を生成する。即ち、各モデル特徴点mに対してK個のマッチペア(m、om1),…,(m、omk),…,(m、omK)が組まれる。また、各マッチペア(m、omk)には対応するレベルLVm *,lvomk *と推定回転角度θ(m,LVm*,o,lvomk *)との情報が保持される。
このように、特徴量マッチング部73では、ヒストグラム度数に勾配強度を累積しておらず、単に勾配方向のみに注目しているため、明度変化に対してロバストな特徴量マッチングが可能になる。また、前述した非特許文献2の手法では、カノニカル・オリエンテーションのように抽出が不安定な特徴量を元にマッチングを行って いるのに対して、本実施の形態では方向ヒストグラムの形状を考慮したより安定なマッチングを行うことができる。また、二次的に安定した特徴量(推定回転角度)を得ることができる。
なお、上述したステップS62の処理では、各モデル特徴点mに対してK個のマッチペアを選択するものとして説明したが、これに限定されるものではなく、方向ヒストグラム間相違度が閾値を下回るペア全てを選択するようにしても構わない。
ここで、上述したステップS62の処理で生成されたマッチペア群は、方向ヒストグラムが類似するものの濃度勾配の空間的特徴が異なっているようなマッチペアも含んでいる。そこで、ステップS63において、特徴量マッチング部73は、濃度勾配ベクトル間類似度によるマッチペアの絞り込みを行うことで、マッチペア群の更新を行う。
具体的には、モデル特徴点mの近傍のレベルLVm *における濃度勾配ベクトルをUmとし、このモデル特徴点mと対応点ペアを組むオブジェクト特徴点oの近傍のレベルlvomk *における濃度勾配ベクトルをUoとしたとき、UmとUoとの類似度が閾値を下回るマッチペアを排除することで、マッチペア群を更新する。
ここで、図15を参照して、濃度勾配ベクトルUm,Uo間の類似度の計算手法について説明する。先ず、特徴量マッチング部73は、Umを空間的に4領域Ri(i=1,…,4)に分割し、各領域の平均濃度勾配ベクトルVi(i=1,…,4)を求める。このViをまとめた8次元ベクトルVでUmが表現される。一方、特徴量マッチング部73は、回転変換を考慮した濃度勾配情報のマッチングを行うために、Uoの勾配方向を先に求めた推定回転角度θ(m,LVm *,o,lvomk *)で補正し、Uo *を得る。この際、特徴量マッチング部73は、中間位置の値については、双2次線形補間により求める。先と同様に、特徴量マッチング部73は、Uo *を4領域Ri(i=1,…,4)に分割し、各領域の平均濃度勾配ベクトルWi(i=1,…,4)を求める。このWiをまとめた8次元ベクトルWでUoが表現される。このとき、UmとUoとの類似度similarity(Um、Uo)∈[0,1]は、平均濃度勾配ベクトルVとWとの類似度として解釈され、例えばコサイン相関値を用いて以下の式(8)により求められる。即ち、特徴量マッチング部73は、以下の式(8)を演算する。ここで、式(8)において(V・W)はVとWとの内積を表す。
Figure 0004196302
特徴量マッチング部73は、各マッチペアに対して上記式(8)で得られる平均濃度勾配ベクトル間の類似度を求め、類似度が閾値δを下回るマッチペアをマッチペア群から排除し、マッチペア群を更新する。
このように、特徴量マッチング部73では、部分領域の平均濃度勾配ベクトルを用いて特徴量の比較を行っているため、特徴点位置や推定回転角度の微妙なずれや、明度の変化による濃度勾配情報の変化に対してロバストなマッチングを実現することができ、計算量の削減にもなる。
以上のマッチング処理により、特徴点近傍の局所的な濃度勾配情報が類似する(モデル特徴点−オブジェクト特徴点)マッチペア群が特徴量マッチング部73により抽出されて、図6の認識判定部74に提供される。即ち、上述した図13の認識処理のステップS44の処理が終了する。
すると、上述したように、それに続くステップS45において、認識判定処理が認識判定部74により実行される。
この認識判定処理自体は、マッチペア群を利用するものであれば、そのアルゴリズムは特に限定されない。そこで、ここでは、アルゴリズムの一例として、従来の図2の認識判定部74に適用されていたい認識判定処理と、本発明人により新たに発明された認識判定処理との両者のアルゴリズムについて説明する。なお、前者と後者の認識判定処理とを個々に区別する必要がある場合、前者を旧認識判定処理と称し、後者を新認識判定処理と称する。
図16は、旧認識判定処理を説明するフローチャートである。
ステップS81において、認識判定部74は、マッチペア群からミスマッチペアを除去する。なお、このステップS81の処理の意義については、後述する。
ステップS82において、認識判定部74は、マッチペア群に含まれるマッチペアを対象にしてRANSAC処理を実行し、アフィン変換パラメータを決定する。RANSAC処理については後述する。
ステップS83において、認識判定部74は、アフィン変換パラメータからの誤差閾値以内のマッチペアの個数に基づいて、認識判定を行う。
これにより、認識判定処理は終了となる。
以下、ステップS82におけるRANSAC処理の詳細について説明する。
特徴量マッチング部73から認識判定部74に提供された段階のマッチペア群は、巨視的に見ると、対応特徴点間の空間的位置関係がモデルの入力画像82上での姿勢(モデル姿勢)と矛盾するような「偽のマッチペア(アウトライヤ)」を含んでしまっている。
ここで、マッチペアが3組以上ある場合には、最小自乗推定により近似アフィン変換パラメータの推定が可能であり、推定モデル姿勢と空間的位置関係の矛盾するマッチペアを排除し、残ったマッチペアで再びモデル姿勢推定を行うという操作を繰り返すことで、モデル姿勢を認識することができる。
しかしながら、マッチペア群中のアウトライヤが多い場合や真のアフィン変換パラメータから極端に逸脱したアウトライヤが存在する場合には、最小自乗推定による推定結果は一般的に満足のいくものではないことが知られている (Hartley R., Zisserman A.,“Multiple View Geometry in Computer Vision.”, Chapter 3, pp.69−116, Cambridge University Press, 2000)ため、本実施の形態における認識判定部74は、アフィン変換拘束の下、マッチペア群の空間的位置関係から「真のマッチペア(インライヤ)」を抽出し、抽出されたインライヤを用いてモデル姿勢としてのアフィン変換パラメータ、即ち、平行移動量,回転,拡大縮小,ストレッチを決定するアフィン変換パラメータを決定するための一連の処理を実行する。かかる一連の処理をここではRANSAC処理と称している。
即ち、上述したように、マッチペアが3組以上なければアフィン変換パラメータを決定できないため、マッチペアが2組以下の場合、認識判定部74は、入力画像82中にモデルが存在しない、又はモデル姿勢検出に失敗したとして、例えば認識結果83として「認識不可」を出力してRANSAC処理を終了する。一方、マッチペアが3組以上ある場合、認識判定部74は、モデル姿勢を検出可能であるとし、アフィン変換パラメータの推定を行う。なお、認識判定部74は、モデル画像81および入力画像82の例えば第1レベル(最高解像度)における特徴点の空間的位置を元にモデル姿勢を推定するものとする。
ここで、モデル特徴点[x y]Tのオブジェクト特徴点[u v]Tへのアフィン変換は、以下の式(9)で与えられる。
Figure 0004196302
この式(9)において、ai(i=1,…,4)は回転,拡大縮小,ストレッチを決定するパラメータを表し、[b1 b2]Tは平行移動パラメータを表す。決定すべきアフィン変換パラメータはa1,…,a4及びb1,b2の6つであるため、マッチペアが3組あればアフィン変換パラメータを決定することができる。
3組のマッチペアで構成されるペア群Pを([x1 y1]T,[u1 v1]T),([x2 y2]T,[u2 v2]T),([x3 y3]T,[u3 v3]T)とすると、ペア群Pとアフィン変換パラメータとの関係は、以下の式(10)に示す線形システムで表現することができる。
Figure 0004196302
この式(10)をAx=bのように書き直すと、アフィン変換パラメータxの最小自乗解は以下の式(11)で与えられる。
Figure 0004196302
さて、マッチペア群からアウトライヤが1つ以上混入するように繰り返しランダムにペア群Pを選択した場合、そのアフィン変換パラメータはパラメータ空間上に散らばって投射される。一方、インライヤのみから構成されるペア群Pを繰り返しランダムに選択した場合、そのアフィン変換パラメータは、何れもモデル姿勢の真のアフィン変換パラメータに極めて類似した、すなわちパラメータ空間上で距離の近いものとなる。したがって、マッチペア群からランダムにペア群Pを選択し、そのアフィン変換パラメータをパラメータ空間上に投射していく操作を繰り返すと、インライヤはパラメータ空間上で密度の高い(メンバ数の多い)クラスタを形成し、アウトライヤは散らばって出現することになる。このことから、パラメータ空間上でクラスタリングを行い、最多メンバ数を持つクラスタの要素がインライヤとなる。
図17は、このようなRANSAC処理の一例を説明するフローチャートである。
なお、図17の例では、認識判定部74におけるクラスタリング手法としては、NN(Nearest Neighbor)法を用いるものとする。この際、上述したb1,b2は、認識対象画像により様々な値を取り得るため、x空間でもクラスタリングにおいてクラスタリング閾値の選択が認識対象に依存してしまう。そこで、認識判定部74では、「真のパラメータとa1,…,a4は類似するがb1,b2が異なるようなアフィン変換パラメータを与えるペア群Pは殆ど存在しない」という仮定の下、パラメータa1,…,a4(以下、aと表記する。)で張られるパラメータ空間上のみでクラスタリングを行う。なお、上記仮定が成り立たない状況が生じたとしても、a空間とは独立にb1,b2で張られるパラメータ空間でクラスタリングを行いその結果を考慮することで、容易に問題を回避することができる。
ステップS101において、認識判定部74は、初期化を行う。具体的には、認識判定部74は、繰り返し数のカウント値cntをcnt=1とし、マッチペア群からランダムにペア群P1を選択し、アフィン変換パラメータa1を求める。また、認識判定部74は、クラスタ数NをN=1とし、アフィン変換パラメータ空間a上でa1を中心とするクラスタC1を作る。そして、認識判定部74は、このクラスタC1のセントロイドc1をc1=a1とし、メンバ数nc1をnc1=1とする。
ステップS102において、認識判定部74は、マッチペア群からランダムに3つのマッチペアからなるペア群Pcntを選択し、アフィン変換パラメータacntを計算する。
ステップS103において、認識判定部74は、NN法を用いてアフィン変換パラメータ空間のクラスタリングを行う。具体的には、認識判定部74は、先ず以下の式(12)に従ってアフィン変換パラメータacntと各クラスタCiのセントロイドci(i=1,…,N)との距離d(acnt、ci)のうち、最初の距離dminを求める。
Figure 0004196302
そして、認識判定部74は、所定の閾値τ(例えばτ=0.1)に対してdmin<τであればdminを与えるクラスタCiにacntを属させ、acntを含めた全メンバでクラスタCiのセントロイドciを更新する。また、認識判定部74は、クラスタCiのメンバ数nciをnci=nci+1とする。一方、認識判定部74は、dmin≧τであればクラスタ数NをN=N+1とし、アフィン変換パラメータ空間a上でacntをセントロイドcN+1とする新しいクラスタCN+1を作り、メンバ数ncN+1をncN+1=1とする。
ステップS104において、認識判定部74は、繰り返し終了条件を満たすか否かを判定する。
ステップS104における繰り返し終了条件は、特に限定されず、例えば次のような条件を採用することができる。即ち、例えば最多メンバ数が所定の閾値(例えば15)を超え、且つ最多メンバ数と2番目に多いメンバ数との差が所定の閾値(例えば3)を超える場合、或いは繰り返し数カウンタのカウント値cntが所定 の閾値(例えば5000回)を超える場合に終了するように設定する、といった条件を繰り返し終了条件として採用することができる。
ステップS104において、繰り返し終了条件を満たさないと判定した場合、認識判定部74は、ステップS105において、繰り返し数のカウント値cntをcnt=cnt+1とした後、処理をステップS102に戻し、それ以降の処理を繰り返す。
これに対して、ステップS104において、繰り返し終了条件を満たすと判定された場合、処理はステップS106に進む。
ステップS106において、認識判定部74は、以上で得られたインライヤを用いて、最小自乗法によりモデル姿勢を決定するアフィン変換パラメータを計算する。
ここで、インライヤを([xIN1 yIN1]T,[uIN1 vIN1]T),([xIN2 yIN2]T,[uIN2 vIN2]T),…とすると、インライヤとアフィン変換パラメータとの関係は、以下の式(13)に示す線形システムで表現することができる。
Figure 0004196302
この式(13)をAINxIN=bINのように書き直すと、アフィン変換パラメータxINの最小自乗解は以下の式(14)で与えられる。
Figure 0004196302
このようにして計算されたアフィン変換パラメータxINを用いて、上述した図16のステップS83の認識判定が行われ、その認識判定結果が認識結果83(図6)として出力される。
なお、以上の説明では、閾値τが定数値であるものとしたが、ステップS102乃至ステップS105のループ処理の実行の際に、始めは比較的大きな閾値τを用いて大雑把なインライヤ抽出を行い、繰り返し回数が増える毎に次第に小さい閾値τを用いる、いわゆる「焼きなまし法」のような手法を適用してもよい。これにより、精度よくインライヤを抽出することができる。
また、以上の説明では、マッチペア群からランダムに3つのマッチペアからなるペア群Pを選択し、そのアフィン変換パラメータをパラメータ空間上に投射していく操作を繰り返し、パラメータ空間上で最多メンバ数を持つクラスタの要素をインライヤとして、最小自乗法によりモデル姿勢を決定するアフィン変換パラメータを推定したが、これに限定されるものではなく、例えば最多メンバ数を持つクラスタのセントロイドを、モデル姿勢を決定するアフィン変換パラメータとしても構わない。
ところで、図6の特徴量マッチング部73で生成されたマッチペア群中のアウトライヤの比率が大きくなるほど認識判定部74におけるインライヤの選択確率が低下し、モデル姿勢を推定する際に多くの繰り 返し回数が必要となるため、計算時間が増大してしまう。従って、この特徴量マッチング部73から認識判定部74に提供された段階のマッチペア群から、できる限りアウトライヤを排除しておくことが望ましい。このため、図16の旧認識判定処理では、ステップS82の処理の前のステップS81の処理として、アウトライヤであるミスマッチペアが除去されるのである。これが、ステップS81の処理の意義である。なお、同様の趣旨で、後述する図21の新認識判定処理にもステップS121が設けられている。
この場合のミスマッチペア(アウトライヤ)を除去する除去手法は、特に限定されず、例えば次の第1の除去手法や第2の除去手法を採用することができる。
第1の除去手法とは、認識判定部74が次のような一連の処理を実現可能な手法をいう。
即ち、認識判定部74は、推定回転角度ヒストグラムを作成することによりマッチペアを選択する。具体的に、図18に示すようなモデルmdを含むモデル画像81およびオブジェクトob1,ob2を含む入力画像82を想定して説明する。特徴量マッチング部73により、モデル特徴点mとオブジェクト特徴点oとの間で、図18に示されるようなマッチペア群P1,…,P6が生成され、これらのうち、P1,P2,P5,P6はインライヤであり、P3,P4はアウトライヤであるとする。
ここで、特徴量マッチング部73により生成された各マッチペアには、モデルの入力画像82上での推定回転角度情報が保持されているが、図19に示されるように、インライヤの推定回転角度が何れも近い値(例えば40deg )を有するのに対し、アウトライヤの推定回転角度は様々な値(例えば110deg 、260deg )を有する。従って、図20に示されるような推定回転角度ヒストグラムを作成すると、そのピークを与える推定回転角度を有するマッチペアは、インライヤ(及び推定回転角度がインライヤと一致する極少数のアウトライヤ)となる。
そこで、認識判定部74は、特徴量マッチング部73で生成されたマッチペア群のうち、推定回転角度ヒストグラムのピークを与える推定回転角度を有するマッチペアを選択する。換言すると、認識判定部74は、選択した以外のマッチペアをミスマッチペアとして除去する。
以上の一連の処理を実現させる手法が、第1の除去手法である。
このような第1の除去手法により、安定且つ精密にモデル姿勢のアフィン変換パラメータを推定することが可能となる。ただし、モデルに対するストレッチ変換が著しい場合、画像中の各点における回転角度は一定ではなくなるため、この第1の除去手法は、著しいストレッチ変換を想定 していない場合にのみ有効である。
このような第1の除去手法に対して、第2の除去手法とは、認識判定部74が次のような一連の処理を実現可能な手法をいう。
即ち、認識判定部74は、一般化ハフ変換を用いてモデル姿勢の粗推定を行う。具体的には、特徴量マッチング部73により生成されたマッチペア群について、認識判定部74は、回転,拡大縮小率,平行移動(x、y方向)の4つの画像変換パラメータを特徴空間(投票空間)とした一般化ハフ変換を行う。最も投票の多かった画像変換パラメータ(最多投票パラメータ)によりモデルの入力画像82上での粗い推定モデル姿勢が決定されるが、一方で最多投票パラメータに投票したマッチペア群が、この粗い推定モデル姿勢をサポートするインライヤ(及び極少数のアウトライヤ)となっている。
そこで、認識判定部74は、最多投票パラメータに投票したマッチペア群を選択する。換言すると、認識判定部74は、選択した以外のマッチペアをミスマッチペアとして除去する。
以上の一連の処理を実現させる手法が、第2の除去手法である。
このような第2の除去手法により、安定且つ精密にモデル姿勢のアフィン変換パラメータを推定することが可能となる。
なお、上述した第1,第2の除去手法を併用して適用することも可能である。
以上説明したような図16の旧認識判定処理を実行することで、複数の物体を含み、物体同士が部分的に重なり合っているような入力画像82からもモデルを検出可能であり、さらに視点の変化(平行移動,拡大縮小,回転,ストレッチを含む画像変化)、明度変化、ノイズによる画像情報の変形に対してもロバストである、という効果を奏することが可能になる。
さらに、モデル画像81のみならずN枚の自己変調画像91−1乃至91−Nの情報を利用するといった本発明の特徴を生かした新認識判定処理、即ち、図21に示される新認識判定処理を実行することで、かかる効果はより顕著なものとなる。以下、この図21の新認識判定処理について説明していく。
なお、図21の例では、図6の自己変調画像生成部111におけるN個の変換係数として、既知のN個のアフィン変換パラメータが採用されていることが前提とされる。即ち、既知のN個のアフィン変換パラメータをそれぞれ利用したアフィン変換が、自己変調画像生成部111によりモデル画像81に対して施され、その結果、N枚の自己変調画像91−1乃至91−Nが得られたことが、図21の例の前提事項となっている。
図21のステップS121とS122とのそれぞれの処理は、上述した図16のステップS81とS82とのそれぞれと基本的に同様の処理である。そこで、以下、ステップS123以降の処理について説明する。
即ち、ステップS123において、認識判定部74は、所定の自己変調画像91を処理対象に設定する。ここでいう所定の自己変調画像91とは、N枚の自己変調画像91−1乃至91−Nのうちの未処理の1枚の画像をいう。
ステップS124において、認識判定部74は、処理対象の自己変調画像91とのマッチペアを対象にして、RANSAC処理を実行し、アフィン変換パラメータを決定する。処理対象の自己変調画像94とのマッチペアとは、処理対象の自己変調画像91から抽出されたモデル特徴点を含むマッチペアをいう。
ステップS125において、認識判定部74は、決定されたアフィン変換パラメータについての、モデル画像81から処理対象の自己変調画像91を生成する際に使用されたアフィン変換パラメータに対する誤差は閾値以内であるか否かを判定する。モデル画像81から処理対象の自己変調画像91を生成する際に使用されたアフィン変換パラメータとは、上述した既知のN個のアフィン変換パラメータのうちの所定の1つをいう。
ステップS125において、その誤差は閾値を超えていると判定した場合、認識判定部74は、ステップS129において、認識判定処理を禁止する。即ち、認識判定処理は終了となる。
これに対して、ステップS125において、その誤差は閾以下であると判定された場合、処理はステップS126に進む。
ステップS126において、認識判定部74は、自己変調画像91−1乃至91−Nの全てが処理対象に設定されたか否かを判定する。
自己変調画像91−1乃至91−Nの中にまだ処理対象に設定されていない画像がある場合、ステップS126の処理でNOであると判定されて、処理はステップS123に戻され、それ以降の処理が繰り返される。
即ち、自己変調画像91−1乃至91−Nのそれぞれに対して、ステップS123乃至S126のループ処理が繰り返し実行されると、ステップS126の処理でYESであると判定されて、処理はステップS127に進む。
ステップS127において、認識判定部74は、全マッチペアを対象にして決定されたアフィン変換パラメータに対する、各自己変調画像91−1乃至91−Nとのマッチペアをそれぞれ対象にして決定された各アフィン変換パラメータの平均からの距離が、閾値以内であるか否かを判定する。
ステップS127において、その誤差は閾値を超えていると判定した場合、認識判定部74は、ステップS129において、認識判定処理を禁止する。即ち、認識判定処理は終了となる。
これに対して、ステップS127において、その誤差は閾以下であると判定された場合、処理はステップS128に進む。
ステップS128において、認識判定部74は、全マッチペアを対象にして決定されたアフィン変換パラメータからの誤差閾値以内のマッチペアの個数に基づいて、認識判定を行う。
これにより、図21の新認識判定処理は終了となる。
以上、本発明が適用される自己変調画像マッチング手法について説明してきた。
ただし、上述したように、自己変調画像マッチング手法とは本発明の手法の一実施の形態に過ぎない。即ち、本発明の手法では、入力画像82との局所特徴量のマッチング対象は、モデル画像81の他としては、所定の変換係数を利用してモデル画像81から生成可能な画像(以下、変換画像と称する)であれば足りる。この変換画像として自己変調画像91が採用された場合の本発明の手法が、自己変調画像マッチング手法である。
従って、例えば図22に示されるように、モデル画像81の他に、そのモデル画像81における視点の周辺の別の視点をN個定めて、そのN個の別の視点からそれぞれ撮影されたN枚の画像151−1乃至151−N(以下、モデル周辺画像151−1乃至151−Nと称する)を用意しておけば、そのN枚のモデル周辺画像151−1乃至151−Nを変換画像として採用することもできる。ただし、この場合、モデル画像81と、N枚のモデル周辺画像151−1乃至151−Nのそれぞれとの関係から、変換係数を推定する必要がある。
なお、以下、本発明の手法のうちの、このようなモデル周辺画像151−1乃至151−Nを変換画像として採用した場合の手法を、モデル周辺画像マッチング手法と称する。
図23は、このモデル周辺画像マッチング手法が適用される画像認識装置の機能的構成例を表している。
なお、図23において、図6と対応する箇所には対応する符号が付してあり、かかる箇所については適宜説明を省略する。
図23の例では、画像認識装置は、学習部201、特徴量データベース52、および認識部53を含むように構成されている。
学習部201は、特徴点抽出部61および特徴量抽出部62、特徴点抽出部112乃至特徴量抽出部114、並びに、変換係数推定部211を含むように構成されている。
特徴点抽出部61は、モデル画像81からモデル特徴点を抽出し、特徴量抽出部62に提供する。特徴量抽出部62は、特徴点抽出部61により抽出された各モデル特徴点について特徴量を抽出し、モデル特徴点の位置情報とともに特徴量データベース52に記憶させる。
変換係数推定部211は、モデル画像81と、N枚のモデル周辺画像151−1乃至151−Nのそれぞれとの画像認識結果に基づいて、モデル画像81からN枚のモデル周辺画像151−1乃至151−Nのそれぞれを仮に生成したならば使用されるであろうN個の変換係数221−1乃至221−Nのそれぞれを推定する。変換係数推定部211により推定されたN個の変換係数221−1乃至221−Nは、特徴点位置変換部113に通知される。変換係数推定部211の具体例については図24を参照して後述する。
なお、以下、モデル周辺画像151−1乃至151−Nを個々に区別する必要が無い場合、単にモデル周辺画像151と称する。この場合、変換係数221−1乃至221−Nを、単に変換係数221と称する。
特徴点抽出部112は、モデル周辺画像151からモデル特徴点を抽出し、そのモデル周辺画像151上の位置を特徴点位置変換部113に通知する。特徴点位置変換部113は、変換係数推定部211から通知された変換係数221を用いて、そのモデル特徴点のモデル周辺画像151上の位置を、モデル画像81上の対応位置に変換して、変換後の対応位置を特徴点抽出部112に通知する。特徴点抽出部112は、モデル特徴点と、その特徴点のモデル画像81上の対応位置とを対応付けて、特徴量抽出部114に提供する。
特徴量抽出部114は、特徴点抽出部112により抽出された各モデル特徴点について特徴量を抽出し、抽出した特徴量と、その特徴点のモデル画像81上の対応位置とを対応付けて、特徴量データベース52に記憶させる。即ち、モデル周辺画像151上のモデル特徴点の位置そのものではなく、モデル画像81上の対応位置が、モデル周辺画像151のモデル特徴点の位置情報として特徴量データベース52に記憶される。
なお、図23の例では、図6の例と同様に、1枚のモデル画像81しか描画されていないが、実際には、複数のモデル画像が学習部201に与えられる。即ち、特徴量データベース52には、実際には、複数のモデル画像のそれぞれについて、自画像とN枚のモデル周辺画像151−1乃至151−Nの各特徴量とそのモデル特徴点の位置情報(モデル周辺画像151の場合にはモデル画像81の対応位置)とがそれぞれ記憶されている。
認識部53は、基本的に図6の例と同様の構成を有しているので、その説明は省略する。
図24は、上述した変換係数推定部211の詳細な構成例を示している。
図24の例の変換係数推定部211は、モデル画像81に対してアフィン変換を施した結果得られる画像がモデル周辺画像151であるという拘束条件の下、変換係数221としてアフィン変換パラメータを推定して出力する。
このため、図24の例の変換係数推定部211は、特徴点抽出部251乃至認識判定部257を含むように構成されている。即ち、図24の例の変換係数推定部211は、従来の図2の画像認識装置と基本的に同様の構成を有しており、図2でいう入力画像82としてモデル周辺画像151−1乃至151−Nのそれぞれが入力されることになる。
具体的には、特徴点抽出部251は、モデル画像81からモデル特徴点を抽出し、特徴量抽出部252に提供する。特徴量抽出部252は、特徴点抽出部251により抽出された各モデル特徴点について特徴量を抽出し、モデル特徴点の位置情報とともに特徴量データベース253に記憶させる。
一方、特徴点抽出部254は、モデル周辺画像151からオブジェクト特徴点を抽出し、特徴量抽出部255に提供する。特徴量抽出部255は、特徴点抽出部254により抽出されたオブジェクト特徴点について特徴量を抽出し、オブジェクト特徴点の位置情報とともに特徴量マッチング部256に提供する。
特徴量マッチング部256は、上述した図14等のマッチング処理を実行することでマッチペア群を生成して、それを認識判定部257に提供する。
認識判定部257は、上述した図17等のRANSAC処理を実行することでアフィン変換パラメータを算出して、それを変換係数221として出力する。
ところで、上述した一連の処理は、ハードウエアにより実行させることもできるが、ソフトウエアにより実行させることができる。
この場合、図6や図23の画像認識装置の全部または一部分は、例えば、図25に示されるパーソナルコンピュータで構成することができる。
図25において、CPU(Central Processing Unit)301は、ROM(Read Only Memory)302に記録されているプログラム、または記憶部308からRAM(Random Access Memory)303にロードされたプログラムに従って各種の処理を実行する。RAM303にはまた、CPU301が各種の処理を実行する上において必要なデータなども適宜記憶される。
CPU301、ROM302、およびRAM303は、バス304を介して相互に接続されている。このバス304にはまた、入出力インタフェース305も接続されている。
入出力インタフェース305には、キーボード、マウスなどよりなる入力部306、ディスプレイなどよりなる出力部307、ハードディスクなどより構成される記憶部308、および、モデム、ターミナルアダプタなどより構成される通信部309が接続されている。通信部309は、インターネットを含むネットワークを介して他の装置(図示せず)との間で行う通信を制御する。
入出力インタフェース305にはまた、必要に応じてドライブ310が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどよりなるリムーバブル記録媒体311が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部308にインストールされる。
一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、専用のハードウエアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、ネットワークや記録媒体からインストールされる。
このようなプログラムを含む記録媒体は、図25に示されるように、装置本体とは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク(フロッピディスクを含む)、光ディスク(CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk)を含む)、光磁気ディスク(MD(Mini-Disk)を含む)、もしくは半導体メモリなどよりなるリムーバブル記録媒体(パッケージメディア)311により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される、プログラムが記録されているROM302や、記憶部308に含まれるハードディスクなどで構成される。
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
また、本明細書において、システムとは、複数の装置や処理部により構成される装置全体を表すものである。
従来の画像処理装置の構成例を示すブロック図である。 従来の画像処理装置の別の構成例を示すブロック図である。 図2の従来の画像処理装置の特徴量マッチングの概略を説明する図である。 本発明の手法のうちの自己変調画像マッチング手法を説明する図である。 本発明の手法のうちの自己変調画像マッチング手法を説明する図である。 本発明が適用される画像認識装置であって、自己変調画像マッチング手法が適用された画像認識装置の構成例を示すブロック図である。 図6の画像認識装置が実行する学習処理例を説明するフローチャートである。 図7の学習処理における特徴点抽出処理例を説明する図である。 図7の学習処理における特徴点抽出処理例を説明するフローチャートである。 図7の学習処理における特徴点抽出処理例を説明する図である。 図7の学習処理における特徴量抽出処理例を説明する図である。 図7の学習処理における特徴量抽出処理例を説明する図である。 図6の画像認識装置が実行する認識処理例を説明するフローチャートである。 図13の認識処理におけるマッチング処理例を説明するフローチャートである。 図13の認識処理におけるマッチング処理例を説明する図である。 図13の認識処理における認識判定処理の一例を説明するフローチャートである。 図13の認識処理におけるRANSAC処理の一例を説明するフローチャートである。 図13の認識処理におけるミスマッチペア除去処理の一手法を説明する図である。 図13の認識処理におけるミスマッチペア除去処理の一手法を説明する図である。 図13の認識処理におけるミスマッチペア除去処理の一手法を説明する図である。 図13の認識処理における認識判定処理の一例であって、図16とは異なる例を説明するフローチャートである。 本発明の手法のうちのモデル周辺画像マッチング手法を説明する図である。 本発明が適用される画像認識装置であって、モデル周辺画マッチング手法が適用された画像認識装置の構成例を示すブロック図である。 図23の画像認識装置の変換係数推定部の詳細な構成例を示すブロック図である。 本発明が適用される情報処理装置をパーソナルコンピュータで構成した場合の構成例を示す図である。
符号の説明
52 特徴量データベース, 53 認識部, 61 特徴点抽出部, 62 特徴量抽出部, 71 特徴点抽出部, 72 特徴量抽出部, 73 特徴量マッチング部, 74 認識判定部, 81 モデル画像, 82 入力画像, 83 認識結果, 91−1乃至91−N 自己変調画像, 101 学習部, 111 自己変調, 112 特徴点抽出部, 113 特徴点位置変換部, 114 特徴量抽出部, 151−1乃至151−N モデル周辺画像, 201 学習部, 211 変換係数推定部, 221−1乃至221−N 変換係数, 251 特徴点抽出部, 252 特徴量抽出部, 253 特徴量データベース, 254 特徴点抽出部, 255 特徴量抽出部, 256 特徴量マッチング部, 257 認識判定部, 301 CPU, 302 ROM, 303 RAM, 308 記憶部, 311 リムーバブル記録媒体

Claims (6)

  1. 入力画像とモデル画像とを比較する情報処理装置において、
    前記モデル画像上の1以上のモデル特徴点の各特徴量を保持し、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ保持する保持手段と、
    前記入力画像上の特徴点をオブジェクト特徴点として1以上抽出するオブジェクト特徴点抽出手段と、
    前記特徴点抽出手段により抽出された1以上の前記オブジェクト特徴点のそれぞれについての特徴量を抽出するオブジェクト特徴量抽出手段と、
    前記オブジェクト特徴量抽出手段により前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、前記保持手段により保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成する特徴量比較手段と
    を備え、
    前記保持手段は、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置を前記特徴量と対応付けて保持しており、
    前記特徴量比較手段により生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、前記保持手段により保持されている前記モデル特徴点の位置とが含まれ、
    前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置である
    情報処理装置。
  2. 既知の前記N個の変換係数のそれぞれを利用して、前記モデル画像から前記N枚の変換画像をそれぞれ生成する変換画像生成手段と、
    前記モデル画像上、および前記変換画像生成手段により生成された前記N枚の変換画像上の各特徴点を前記モデル特徴点としてそれぞれ1以上抽出するモデル特徴点抽出手段と、
    前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のそれぞれについての前記特徴量を抽出するモデル特徴量抽出手段と、
    前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のうちの、前記N枚の変換画像上の1以上の前記モデル特徴点のそれぞれについて、前記N個の変換係数のうちの対応する1つを利用して、前記第1の位置から前記第2の位置に変換する位置変換手段と
    をさらに備える請求項1に記載の情報処理装置。
  3. 前記モデル画像における視点の周辺に別の視点をN個定めて、そのN個の別の視点からそれぞれ撮影されたN枚の画像が、前記N枚の変換画像として入力され、
    前記モデル画像上、および入力された前記N枚の変換画像上の各特徴点を前記モデル特徴点としてそれぞれ1以上抽出するモデル特徴点抽出手段と、
    前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のそれぞれについての前記特徴量を抽出するモデル特徴量抽出手段と、
    前記モデル画像と、入力された前記N枚の変換画像のそれぞれとに基づいて、前記N個の変換係数のそれぞれを推定する推定手段と、
    前記モデル特徴点抽出手段により抽出された1以上の前記モデル特徴点のうちの、入力された前記N枚の変換画像上の1以上の前記モデル特徴点のそれぞれについて、前記推定手段により推定された前記N個の変換係数のうちの対応する1つを利用して、前記第1の位置から前記第2の位置に変換する位置変換手段と
    をさらに備える請求項1に記載の情報処理装置。
  4. 所定の手法を1以上利用して、前記特徴量比較手段により生成された1以上の前記マッチペアの中からミスマッチペアを除外し、残存した前記マッチペアに基づいて、前記モデル画像に含まれるオブジェクトと同一のオブジェクト前記入力画像の中に存在するか否かを認識する認識手段
    をさらに備える請求項1の情報処理装置。
  5. 入力画像とモデル画像とを比較する、保持手段を有する情報処理装置が、
    前記モデル画像上の1以上のモデル特徴点の各特徴量を保持し、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ前記保持手段に保持させ、
    前記入力画像上の特徴点をオブジェクト特徴点として1以上抽出し、
    抽出された1以上の前記オブジェクト特徴点のそれぞれについての特徴量を抽出し、
    前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成する
    ステップを実行し、
    前記保持手段は、さらに、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置を前記特徴量と対応付けて保持しており、
    生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、保持されている前記モデル特徴点の位置とが含まれ、
    前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置である
    情報処理方法。
  6. 入力画像とモデル画像とを比較する処理を制御するコンピュータ
    所定の保持手段に前記モデル画像上の1以上のモデル特徴点の各特徴量が保持されている場合に、前記モデル画像からN個(Nは1以上の整数値)の変換係数のそれぞれで変換できるN枚の変換画像のそれぞれについての、自身の画像上の1以上のモデル特徴点の各特徴量をそれぞれ保持として1以上抽出し、
    抽出された1以上の前記オブジェクト特徴点のそれぞれについての特徴量を抽出し、
    前記特徴量がそれぞれ抽出された1以上の前記オブジェクト特徴点のそれぞれと、保持されている前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれとを比較し、類似すると比較判断された前記特徴量をそれぞれ有するオブジェクト特徴点とモデル特徴点とのマッチペアを1以上生成する
    ステップを含む制御処理を実行させるプログラムであって
    前記所定の保持手段は、前記モデル画像および前記N枚の変換画像のそれぞれについての1以上の前記モデル特徴点のそれぞれに関して、その位置前記特徴量と対応付けて保持されており、
    生成された1以上の前記マッチペアには、前記オブジェクト特徴点の位置と、保持されている前記モデル特徴点の位置とが含まれ、
    前記変換画像についての前記モデル特徴点の位置は、そのモデル特徴点の前記変換画像上の第1の位置に対応する前記モデル画像上の第2の位置である
    プログラム。
JP2006168636A 2006-06-19 2006-06-19 情報処理装置および方法、並びにプログラム Expired - Fee Related JP4196302B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006168636A JP4196302B2 (ja) 2006-06-19 2006-06-19 情報処理装置および方法、並びにプログラム
US11/764,449 US8401308B2 (en) 2006-06-19 2007-06-18 Information processing device, information processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168636A JP4196302B2 (ja) 2006-06-19 2006-06-19 情報処理装置および方法、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2007334795A JP2007334795A (ja) 2007-12-27
JP4196302B2 true JP4196302B2 (ja) 2008-12-17

Family

ID=38934189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168636A Expired - Fee Related JP4196302B2 (ja) 2006-06-19 2006-06-19 情報処理装置および方法、並びにプログラム

Country Status (2)

Country Link
US (1) US8401308B2 (ja)
JP (1) JP4196302B2 (ja)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2445982A (en) * 2007-01-24 2008-07-30 Sharp Kk Image data processing method and apparatus for a multiview display device
JP5096776B2 (ja) * 2007-04-04 2012-12-12 キヤノン株式会社 画像処理装置及び画像検索方法
JP5202037B2 (ja) * 2008-02-29 2013-06-05 キヤノン株式会社 特徴点位置決定方法及び装置
JP4547639B2 (ja) * 2008-08-26 2010-09-22 ソニー株式会社 画像処理装置および方法、並びにプログラム
JP5188334B2 (ja) * 2008-09-04 2013-04-24 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
CN101677389A (zh) * 2008-09-17 2010-03-24 深圳富泰宏精密工业有限公司 图片传输系统及方法
US8503730B2 (en) * 2008-09-19 2013-08-06 Honeywell International Inc. System and method of extracting plane features
JP2010092426A (ja) * 2008-10-10 2010-04-22 Canon Inc 画像処理装置、画像処理方法およびプログラム
JP5251489B2 (ja) * 2008-12-24 2013-07-31 富士ゼロックス株式会社 画像処理装置及び画像処理プログラム
JP5075861B2 (ja) * 2009-03-16 2012-11-21 株式会社東芝 画像処理装置及び画像処理方法
US8340400B2 (en) * 2009-05-06 2012-12-25 Honeywell International Inc. Systems and methods for extracting planar features, matching the planar features, and estimating motion from the planar features
JP5230525B2 (ja) * 2009-05-25 2013-07-10 キヤノン株式会社 画像検索装置およびその方法
JP5290867B2 (ja) 2009-05-25 2013-09-18 キヤノン株式会社 画像検索装置およびその方法
US8199977B2 (en) 2010-05-07 2012-06-12 Honeywell International Inc. System and method for extraction of features from a 3-D point cloud
JP2011243148A (ja) * 2010-05-21 2011-12-01 Sony Corp 情報処理装置、情報処理方法及びプログラム
US8660365B2 (en) 2010-07-29 2014-02-25 Honeywell International Inc. Systems and methods for processing extracted plane features
US8625902B2 (en) 2010-07-30 2014-01-07 Qualcomm Incorporated Object recognition using incremental feature extraction
JP2012033022A (ja) * 2010-07-30 2012-02-16 Panasonic Corp 空間における変化領域検出装置及び方法
US8837839B1 (en) * 2010-11-03 2014-09-16 Hrl Laboratories, Llc Method for recognition and pose estimation of multiple occurrences of multiple objects in visual images
TWI456509B (zh) * 2010-11-26 2014-10-11 Acer Inc 手指辨識方法及系統,及其電腦程式產品
CN103339921B (zh) 2011-01-31 2015-11-25 杜比实验室特许公司 恢复图像的颜色和非颜色相关的完整性的系统和方法
US8620095B2 (en) 2011-03-15 2013-12-31 Microsoft Corporation Performing structure from motion for unordered images of a scene with multiple object instances
EP2724316B1 (en) * 2011-06-24 2019-06-19 InterDigital Madison Patent Holdings Method and device for processing of an image
JP5110235B1 (ja) * 2011-06-27 2012-12-26 コニカミノルタホールディングス株式会社 画像処理装置、画像処理方法、およびプログラム
WO2013001710A1 (ja) * 2011-06-29 2013-01-03 コニカミノルタホールディングス株式会社 対応点探索装置
US8805117B2 (en) * 2011-07-19 2014-08-12 Fuji Xerox Co., Ltd. Methods for improving image search in large-scale databases
JP2013058174A (ja) * 2011-09-09 2013-03-28 Fujitsu Ltd 画像処理プログラム、画像処理方法および画像処理装置
US8521418B2 (en) 2011-09-26 2013-08-27 Honeywell International Inc. Generic surface feature extraction from a set of range data
US9141871B2 (en) * 2011-10-05 2015-09-22 Carnegie Mellon University Systems, methods, and software implementing affine-invariant feature detection implementing iterative searching of an affine space
US8908913B2 (en) * 2011-12-19 2014-12-09 Mitsubishi Electric Research Laboratories, Inc. Voting-based pose estimation for 3D sensors
TWI459310B (zh) * 2011-12-30 2014-11-01 Altek Corp 可簡化影像特徵值組之影像擷取裝置及其控制方法
US10146795B2 (en) 2012-01-12 2018-12-04 Kofax, Inc. Systems and methods for mobile image capture and processing
US11321772B2 (en) 2012-01-12 2022-05-03 Kofax, Inc. Systems and methods for identification document processing and business workflow integration
US9165188B2 (en) 2012-01-12 2015-10-20 Kofax, Inc. Systems and methods for mobile image capture and processing
JP5895569B2 (ja) * 2012-02-08 2016-03-30 ソニー株式会社 情報処理装置、情報処理方法およびコンピュータプログラム
JP5923744B2 (ja) * 2012-05-24 2016-05-25 パナソニックIpマネジメント株式会社 画像検索システム、画像検索方法及び検索装置
JP6143111B2 (ja) * 2012-08-23 2017-06-07 日本電気株式会社 物体識別装置、物体識別方法、及びプログラム
JP6278276B2 (ja) 2012-08-23 2018-02-14 日本電気株式会社 物体識別装置、物体識別方法、及びプログラム
US9123165B2 (en) 2013-01-21 2015-09-01 Honeywell International Inc. Systems and methods for 3D data based navigation using a watershed method
US9153067B2 (en) 2013-01-21 2015-10-06 Honeywell International Inc. Systems and methods for 3D data based navigation using descriptor vectors
US10783615B2 (en) * 2013-03-13 2020-09-22 Kofax, Inc. Content-based object detection, 3D reconstruction, and data extraction from digital images
US10127636B2 (en) 2013-09-27 2018-11-13 Kofax, Inc. Content-based detection and three dimensional geometric reconstruction of objects in image and video data
CN103473565B (zh) * 2013-08-23 2017-04-26 华为技术有限公司 一种图像匹配方法和装置
US9008391B1 (en) * 2013-10-22 2015-04-14 Eyenuk, Inc. Systems and methods for processing retinal images for screening of diseases or abnormalities
US9466009B2 (en) 2013-12-09 2016-10-11 Nant Holdings Ip. Llc Feature density object classification, systems and methods
JP6331517B2 (ja) * 2014-03-13 2018-05-30 オムロン株式会社 画像処理装置、システム、画像処理方法、および画像処理プログラム
US9400939B2 (en) * 2014-04-13 2016-07-26 International Business Machines Corporation System and method for relating corresponding points in images with different viewing angles
EP2993623B1 (en) * 2014-09-08 2017-08-16 Lingaro Sp. z o.o. Apparatus and method for multi-object detection in a digital image
US9760788B2 (en) 2014-10-30 2017-09-12 Kofax, Inc. Mobile document detection and orientation based on reference object characteristics
US9569692B2 (en) 2014-10-31 2017-02-14 The Nielsen Company (Us), Llc Context-based image recognition for consumer market research
KR101531530B1 (ko) * 2014-12-31 2015-06-25 (주)스타넥스 이미지 분석 방법, 장치 및 컴퓨터로 판독가능한 장치
JP6560757B2 (ja) * 2015-02-17 2019-08-14 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 検査室自動化のためのトップビューサンプルチューブ画像からのバーコードタグ状態の分類
US10838207B2 (en) 2015-03-05 2020-11-17 Magic Leap, Inc. Systems and methods for augmented reality
EP3265866B1 (en) 2015-03-05 2022-12-28 Magic Leap, Inc. Systems and methods for augmented reality
US10180734B2 (en) 2015-03-05 2019-01-15 Magic Leap, Inc. Systems and methods for augmented reality
JP6423314B2 (ja) * 2015-06-04 2018-11-14 株式会社Soken 対応点探索方法および距離測定装置
US10467465B2 (en) 2015-07-20 2019-11-05 Kofax, Inc. Range and/or polarity-based thresholding for improved data extraction
US10242285B2 (en) 2015-07-20 2019-03-26 Kofax, Inc. Iterative recognition-guided thresholding and data extraction
US9875427B2 (en) * 2015-07-28 2018-01-23 GM Global Technology Operations LLC Method for object localization and pose estimation for an object of interest
CA3007367A1 (en) * 2015-12-04 2017-06-08 Magic Leap, Inc. Relocalization systems and methods
US10002435B2 (en) 2016-01-29 2018-06-19 Google Llc Detecting motion in images
US20170323149A1 (en) * 2016-05-05 2017-11-09 International Business Machines Corporation Rotation invariant object detection
CN106023182A (zh) * 2016-05-13 2016-10-12 广州视源电子科技股份有限公司 印制电路板图像匹配方法和系统
CA3032567A1 (en) 2016-08-02 2018-02-08 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
US10600146B2 (en) * 2016-08-05 2020-03-24 2236008 Ontario Inc. Symbology monitoring system
US10013798B2 (en) 2016-08-30 2018-07-03 The Boeing Company 3D vehicle localizing using geoarcs
US10402675B2 (en) * 2016-08-30 2019-09-03 The Boeing Company 2D vehicle localizing using geoarcs
US10812936B2 (en) 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
IL303275B2 (en) 2017-03-17 2024-08-01 Magic Leap Inc A mixed reality system with the assembly of multi-source virtual content and a method for creating virtual content using it
US10769752B2 (en) 2017-03-17 2020-09-08 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
JP7009494B2 (ja) 2017-03-17 2022-01-25 マジック リープ, インコーポレイテッド カラー仮想コンテンツワーピングを伴う複合現実システムおよびそれを使用して仮想コンテンツ生成する方法
US10783393B2 (en) 2017-06-20 2020-09-22 Nvidia Corporation Semi-supervised learning for landmark localization
CN107330439B (zh) * 2017-07-14 2022-11-04 腾讯科技(深圳)有限公司 一种图像中物体姿态的确定方法、客户端及服务器
CN107563440B (zh) * 2017-09-01 2020-07-28 京东方科技集团股份有限公司 一种图像处理方法及装置
US11580721B2 (en) * 2017-11-07 2023-02-14 Nec Corporation Information processing apparatus, control method, and program
US10803350B2 (en) 2017-11-30 2020-10-13 Kofax, Inc. Object detection and image cropping using a multi-detector approach
CN116483200B (zh) 2018-07-23 2024-08-16 奇跃公司 确定虚拟对象深度以及使虚拟内容翘曲的计算机实现方法
CN117711284A (zh) 2018-07-23 2024-03-15 奇跃公司 场顺序显示器中的场内子码时序
CN109191515B (zh) * 2018-07-25 2021-06-01 北京市商汤科技开发有限公司 一种图像视差估计方法及装置、存储介质
US11288537B2 (en) 2019-02-08 2022-03-29 Honeywell International Inc. Image forensics using non-standard pixels
US11386636B2 (en) 2019-04-04 2022-07-12 Datalogic Usa, Inc. Image preprocessing for optical character recognition
JP7372076B2 (ja) * 2019-08-07 2023-10-31 ファナック株式会社 画像処理システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577908B2 (ja) 1997-09-04 2004-10-20 富士通株式会社 顔画像認識システム
US6272245B1 (en) * 1998-01-23 2001-08-07 Seiko Epson Corporation Apparatus and method for pattern recognition
JP4161659B2 (ja) 2002-02-27 2008-10-08 日本電気株式会社 画像認識システム及びその認識方法並びにプログラム
JP2004326603A (ja) 2003-04-25 2004-11-18 Canon Inc 印刷制御システム、印刷制御装置、機能提供装置、印刷機能表示方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP4492036B2 (ja) 2003-04-28 2010-06-30 ソニー株式会社 画像認識装置及び方法、並びにロボット装置

Also Published As

Publication number Publication date
JP2007334795A (ja) 2007-12-27
US20080013836A1 (en) 2008-01-17
US8401308B2 (en) 2013-03-19

Similar Documents

Publication Publication Date Title
JP4196302B2 (ja) 情報処理装置および方法、並びにプログラム
Patel et al. Latent space sparse subspace clustering
EP1594078B1 (en) Multi-image feature matching using multi-scale oriented patches
US10395098B2 (en) Method of extracting feature of image to recognize object
JP4605445B2 (ja) 画像処理装置および方法、記録媒体、並びにプログラム
Birdal et al. Point pair features based object detection and pose estimation revisited
JP4613617B2 (ja) 画像処理システム、学習装置および方法、並びにプログラム
US9141871B2 (en) Systems, methods, and software implementing affine-invariant feature detection implementing iterative searching of an affine space
CN103136520B (zh) 基于pca-sc算法的形状匹配和目标识别方法
Rabaud et al. Re-thinking non-rigid structure from motion
US9256802B2 (en) Object or shape information representation method
Carneiro et al. Flexible spatial configuration of local image features
Ma et al. Image feature matching via progressive vector field consensus
JP6612822B2 (ja) モデルを修正するためのシステムおよび方法
Chen et al. Image segmentation with one shape prior—a template-based formulation
Cheung et al. On deformable models for visual pattern recognition
Gu et al. Coarse-to-fine planar object identification using invariant curve features and B-spline modeling
JP2001034756A (ja) 被写体認識装置および記録媒体
Bristow et al. In defense of gradient-based alignment on densely sampled sparse features
Sun et al. Progressive match expansion via coherent subspace constraint
Strassburg et al. On the influence of superpixel methods for image parsing
Chang et al. Iterative graph cuts for image segmentation with a nonlinear statistical shape prior
Desai et al. Using affine features for an efficient binary feature descriptor
Mohanna et al. An efficient active contour model through curvature scale space filtering
Hofhauser et al. Edge-based template matching with a harmonic deformation model

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees