Nothing Special   »   [go: up one dir, main page]

JP4025657B2 - 表示装置の駆動回路 - Google Patents

表示装置の駆動回路 Download PDF

Info

Publication number
JP4025657B2
JP4025657B2 JP2003034131A JP2003034131A JP4025657B2 JP 4025657 B2 JP4025657 B2 JP 4025657B2 JP 2003034131 A JP2003034131 A JP 2003034131A JP 2003034131 A JP2003034131 A JP 2003034131A JP 4025657 B2 JP4025657 B2 JP 4025657B2
Authority
JP
Japan
Prior art keywords
voltage
amplifier circuit
input terminal
terminal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003034131A
Other languages
English (en)
Other versions
JP2004247870A (ja
Inventor
弘 土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
NEC Corp
Original Assignee
NEC Electronics Corp
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp, NEC Corp filed Critical NEC Electronics Corp
Priority to JP2003034131A priority Critical patent/JP4025657B2/ja
Priority to US10/775,194 priority patent/US7078941B2/en
Priority to CNB2004100048952A priority patent/CN100454362C/zh
Publication of JP2004247870A publication Critical patent/JP2004247870A/ja
Application granted granted Critical
Publication of JP4025657B2 publication Critical patent/JP4025657B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Electronic Switches (AREA)
  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容量性負荷を所定の駆動期間内に、所望の電圧に駆動する駆動回路に関し、特にアクティブマトリクス駆動方式を用いた表示装置の駆動回路の出力段であるドライバ(バッファ)部等に好適な駆動回路に関する。
【0002】
【従来の技術】
近年、情報通信技術の発展に伴い携帯電話や携帯情報端末など表示部を有する携帯機器の需要が高まっている。一般に、携帯機器は連続使用時間が十分長いことが重要であり、液晶表示装置は低消費電力であることから、携帯機器の表示部に広く使われている。また液晶表示装置は、従来、バックライトを用いた透過型が用いられていたが、外光を利用してバックライトを用いない反射型も開発されており、更に、低電力化が図られている。そして、近年、液晶表示装置は高精細化とともに、鮮明な画像表示が求められるようになり、従来の単純マトリクス方式よりも、鮮明に表示可能なアクティブマトリクス駆動方式の液晶表示装置の需要が高まっている。液晶表示装置の低消費電力化の要求は、その駆動回路にも求められ、低消費電力の駆動回路の開発が盛んに行われている。以下、アクティブマトリクス駆動方式の液晶表示装置の駆動回路について説明する。
【0003】
アクティブマトリクス駆動方式を用いた液晶表示装置の表示部は、その典型的な構成として、周知のとおり、透明な画素電極及び薄膜トランジスタ(TFT)を配置した半導体基板と、面全体に1つの透明な電極を形成した対向基板と、これら2枚の基板を対向させて間に液晶を封入した構造からなり、スイッチング機能を持つTFTを制御することにより、各画素電極に所定の電圧を印加し、各画素電極と対向基板電極との間の電位差により液晶の透過率を変化させ、容量性を有する液晶がその電位差及び透過率を所定の期間保持することにより、画像を表示するものである。
【0004】
半導体基板上には、各画素電極へ印加する複数のレベル電圧(階調電圧)を送るデータ線と、TFTのスイッチング制御信号を送る走査線とが配線され、データ線は、対向基板電極との間に挟まれる液晶の容量や各走査線との交差部に生じる容量などによる容量性負荷となっている。
【0005】
図15は、従来の典型的なアクティブマトリクス型液晶表示装置の回路構成を簡単に示したものである。表示部は、複数の画素を含むが、図15では、簡単のため、表示部801には1画素の等価回路のみが示されている。図15を参照すると、1画素は、ゲート線811と、データ線812と、TFT814と、画素電極815と、液晶容量816と、対向電極817とを備えて構成される。ゲート線811は、ゲート線駆動回路802により駆動され、データ線812は、データ線駆動回路803により駆動される。なお、ゲート線811及びデータ線812は、通常、1画素行及び1画素列で共有されている。ゲート線811は、1画素行の複数のTFTのゲート電極をなし、データ線812は1画素列の複数のTFTのドレイン(又はソース)に接続され、1画素のTFTのソース(又はドレイン)は画素電極815に接続されている。
【0006】
各画素電極への階調電圧の印加はデータ線812を介して行われ、1フレーム期間(1/60秒程度)にデータ線812につながる全ての画素へ階調電圧の書込みが行われるため、データ線駆動回路803は、容量性負荷であるデータ線812を、高い電圧精度で、高速に駆動しなければならない。
【0007】
このように、データ線駆動回路803は、容量性負荷であるデータ線812を高い電圧精度で、高速に駆動する必要があり、さらに携帯機器用途については、低消費電力で省面積あることが求められる。
【0008】
これまで、データ線駆動回路として、様々な駆動回路が提案されている。最も単純な構成で素子数の少ない省面積な駆動回路として、例えば図16に示すような増幅回路が知られている。図16は、充電増幅回路20及び放電増幅回路30が組み合わされたボルテージフォロワ構成の増幅回路であり、入力電圧Vinを電流増幅して出力端子2に出力する駆動回路である。充電増幅回路20は、差動部が定電流源205によって駆動されるnチャネル差動対203、204の出力対にpチャネルカレントミラー回路201、202が負荷回路として接続された構成で、出力段が高電位電源VDDと出力端子2との間に接続されたpチャネルトランジスタ20から構成されている。そして、差動部の出力端をなすトランジスタ201のドレインとトランジスタ203のドレインの接続ノードと、pチャネルトランジスタ20の制御端(ゲート端子)とが接続される。nチャネル差動対203、204のそれぞれの制御端(ゲート端子)は、非反転入力端及び反転入力端をなし、nチャネル差動対203、204のそれぞれの制御端は、入力端子1及び出力端子2に接続されている。
【0009】
一方、放電増幅回路30は、差動部が定電流源305によって駆動されるpチャネル差動対303、304の出力対にnチャネルカレントミラー回路301、302が負荷回路として接続された構成よりなり、出力段が低電位電源VSSと出力端子2との間に接続されたnチャネルトランジスタ306から構成されている。そして、差動部の出力端をなすトランジスタ301のドレインと、トランジスタ303のドレインの接続ノードと、nチャネルトランジスタ306の制御端(ゲート端子)とが接続される。pチャネル差動対303、304のそれぞれの制御端(ゲート端子)は、非反転入力端及び反転入力端をなし、pチャネル差動対303、304のそれぞれの制御端(ゲート端子)は、入力端子1及び出力端子2に接続されている。
【0010】
図16に示した駆動回路は、素子数の少ない簡素な構成であるが、充電用増幅回路20及び放電用増幅回路30のそれぞれの動作範囲に、制約がある。すなわち、充電用増幅回路20は、入力電圧Vinがnチャネル差動対203、204の閾値電圧よりも低い低電位電源VSS付近の場合には、nチャネル差動対203、204がオフとなるため、出力端子2を充電することはできない。また放電増幅回路30は、入力電圧Vinが高電位電源VDDからpチャネル差動対303、304の閾値電圧の範囲内の場合には、pチャネル差動対303、304がオフとなるため、出力端子2を放電することはできない。
【0011】
ここで、nチャネル差動対203、204及びpチャネル差動対303、304が、それぞれ、オフ状態からオン状態(動作可能状態)への変わり目となる電圧(入力端子1の電圧)を、VL1及びVL2とすると、充電増幅回路20の動作範囲は、電圧VL1から高電位電源電圧VDDの範囲とされる。この範囲の入力電圧Vin(VL1≦Vin≦VDD)に対して、充電増幅回路20は、低電位状態にある出力端子2を、電圧Vinに充電駆動することができる。
【0012】
また放電増幅回路30の動作範囲は、低電位電源電圧VSSから電圧VL2までの範囲とされ、この範囲の入力電圧Vin(VSS≦Vin≦VL2)に対して高電位状態にある出力端子2を電圧Vinに放電駆動することができる。
【0013】
このように、充電用増幅回路20及び放電用増幅回路30は、それぞれの動作範囲に、上記のような制約がある。
【0014】
したがって、通常は、入力電圧Vinとして、電圧VL1とVL2の間の電圧を用いて、出力端子2を駆動する。一方、図16の駆動回路に対して、動作範囲を電源電圧範囲内に広げることのできる演算増幅器として、図17に示すような構成が知られている(例えば特許文献1参照)。
【0015】
【特許文献1】
特開平9−130171号公報(第10頁、第5図)
【0016】
図17を参照すると、この演算増幅器は、増幅回路62及び増幅回路63で構成されており、その構成は、図16の出力端子2に、負荷209と負荷309が付加した構成と同じである。図17において、図16と同等又は同一の要素には、同一の参照符号が付されており、同一要素の説明は省略する。図17のトランジスタ205’は、ゲート端子に入力されるバイアス電圧VB1によって電流値が規定される電流源(ソースが共通接続された差動対トランジスタ203、204の駆動電流を供給する定電流源)であり、トランジスタ305’は、ゲート端子に入力されるバイアス電圧VB2によって電流値が規定される電流源(差動対303、304の駆動電流を供給する)である。負荷209と負荷309は、それぞれ一端が出力端子2に接続され、それぞれの他端が低電位電源VSSおよび高電位電源VDDに接続されている。負荷209には、バイアス電圧VB1が入力され、負荷309にはバイアス電圧VB2が入力されている。なお、特許文献1では、増幅回路62及び増幅回路63は、第1、第2の入力端子の差動入力電圧を差動増幅する構成とされているが、図17では、後述する本発明との比較のため、出力端子を差動増幅回路の反転入力端子に帰還入力するボルテージフォロワ構成で示してある。図17に示した演算増幅器では、負荷209と309を所定の抵抗値をもつ負荷として作用させることにより、電源電圧範囲内で動作させるようにしたものである。具体的には、入力電圧Vinがnチャネル差動対203、204が動作しない電圧VL1よりも低い場合に、負荷309が高電位電源VDDと出力端子2との間に電流経路を形成することにより、増幅回路63の動作によって、出力端子2を電圧Vinに駆動する。また入力電圧Vinがpチャネル差動対303、304が動作しない電圧VL2よりも高い場合に、負荷209が低電位電源VSSと出力端子2との間に電流経路を形成することにより、増幅回路62の動作によって出力端子を電圧Vinに駆動する。また、入力電圧Vinがnチャネル差動対203、204およびpチャネル差動対303、304が共に動作する電圧VL1以上VL2以下の範囲では、増幅回路62、63が共に動作して出力端子を電圧Vinに駆動する。図17に示した演算増幅器は、以上のような原理で動作範囲を電源電圧範囲内に広げたものである。
【0017】
図16に示した駆動回路は、一般に知られた最も簡素な増幅回路であり、これを利用すれば、特段に、省面積な駆動回路を実現することができる。また、電流パス(電源VDDからVSSへ定常的に流れる電流経路)も少ない構成であるため、消費電力も比較的小さい。図17についても、簡素な構成の演算増幅器となっている。
【0018】
【発明が解決しようとする課題】
ところで、携帯機器用途の表示装置のデータ線駆動回路では、極力消費電力を抑えることが求められており、そのため、高電位電源VDDと低電位電源VSSの電位差を小さくすることが要求されている。このため、データ線駆動回路は、電源電圧範囲の全領域で動作することが求められている。
【0019】
図16に示した駆動回路の場合、高電位状態にある出力端子2を電圧VL2より高い電圧に放電することはできず、また低電位状態にある出力端子2を電圧VL1より低い電圧に充電することもできない。
【0020】
したがって、図16に示した駆動回路は、電源電圧範囲の全領域にわたって動作させることができない、という課題がある。
【0021】
また図16に示した駆動回路において、電圧VL2より高い電圧への充電や電圧VL1より低い電圧への放電ができたとしても、オーバーシュートやアンダーシュートが生じて、所望の電圧(「ターゲット電圧」という)に駆動することができない場合がある。この一例として、出力端子2をVSS付近からVL2より高い所望の電圧(ターゲット電圧)に駆動した場合の波形の一例を、図18に示す。図18には、出力端子の電圧変化が大きいため、ターゲット電圧を大きくオーバーシュートした波形が示されている。
【0022】
このような、オーバーシュートやアンダーシュートの原因は、増幅回路を構成する素子の寄生容量に起因する応答遅延によるもので、特に、図16や図17に示すような帰還型の増幅回路の構成では、出力電圧波形に、オーバーシュートやアンダーシュートが生じ易い。すなわち、出力端子の電圧の変化が入力に伝わって、再び、出力端子に反映されるまでの応答遅延の間に、出力電圧が変動してしまう現象である。そして、出力電圧変化が大きいほど、オーバーシュートやアンダーシュートも大きくなる。
【0023】
特に、携帯機器用途の液晶表示装置に関しては、極性反転を行うために、対向基板電極電圧を交流駆動する方法が広く用いられており、1データ駆動期間毎に、対向基板電極の電圧が変化する。この変化が、液晶容量を介して、表示パネル上のデータ線に伝わるため、1データ駆動期間の開始時のデータ線の電圧は、1つ前のデータ出力期間の駆動電圧から変化している場合もあり、また電源電圧範囲よりも外側まで、一時的に変化している場合もある。したがって、携帯機器用途の液晶表示装置のデータ線駆動回路では、任意な電位状態にある出力端子を所望の電圧に駆動することが求められている。
【0024】
このように、図16に示した駆動回路は、電源電圧範囲内の任意な所望の電圧を出力端子に駆動することができず、また所望の電圧が電源電圧付近の場合には高精度に駆動するのも難しい、という課題がある。
【0025】
一方、図17に示した駆動回路は、電源電圧範囲内の任意な所望の電圧を出力端子に駆動することはできる。しかしながら、図17に示した駆動回路は、低消費電力とするために、負荷209及び負荷309に流れる電流を十分小さくすると、出力端子2の電圧変化が大きい場合には、図16に示した駆動回路と同様に、オーバーシュート(図18参照)やアンダーシュートが大きく発生し、所望の電圧に速やかに戻すことができない、という課題がある。図17に示した駆動回路(演算増幅回路)で、負荷209と負荷309に流れる電流を大きく設定すると、オーバーシュートやアンダーシュートから速やかに戻して、所望の電圧を駆動することは可能となるが、この場合、消費電力が増加する、という課題が生じる。
【0026】
一方、電源電圧範囲内の所望の電圧を高速で高精度に駆動できる増幅回路も知られている(例えば特許文献2、3参照)。
【0027】
【特許文献2】
特開平5−63464号公報(第3−4頁、第1図)
【特許文献3】
特開2000−252768号公報(第14−15頁、第1図)
【0028】
しかしながら、上記特許文献2、3等に記載されている駆動回路は、素子数が多く、所要面積が大きく、また電流パスが多い構成で消費電力も大きい、という課題がある。
【0029】
したがって、本発明は上記課題に鑑みてなされたものであって、その目的は、容量性負荷を所望の電圧に駆動する駆動回路において、省面積かつ低消費電力化を図るとともに、さらに、任意の電位状態にある出力端子を電源電圧範囲内の任意な所望の電圧に駆動することができる駆動回路を提供することにある。より具体的には、本発明の主たる目的の1つは、1データ期間開始時の出力端子の任意の電位状態から所望の電圧(ターゲット電圧)までの電位差が大きい場合であっても、オーバーシュートやアンダーシュートを抑えて速やかに出力端子を所望の電圧に駆動できる駆動回路を提供することにある。
【0030】
【課題を解決するための手段】
上記目的を達成するため本発明の1つのアスペクトに係る駆動回路は、第1の動作範囲を有し出力端子を充電駆動する第1の増幅回路と、第2の動作範囲を有し前記出力端子を放電駆動する第2の増幅回路と、前記第1及び前記第2の動作範囲の共有範囲の上限側の電圧、下限側の電圧、及び、所望の電圧のうち少なくともいずれか1つを選択し、前記第1又は前記第2の増幅回路の入力端に供給する入力制御回路と、を備え、前記出力端子を所望の電圧に駆動する駆動期間において、前記入力制御回路が前記上限側電圧又は前記下限側電圧を前記第1及び前記第2の増幅回路の入力端に供給する第1の期間と、前記入力制御回路が前記所望の電圧を前記第1及び前記第2の増幅回路の入力端に供給する第2の期間と、を設ける。
【0031】
また本発明においては、前記入力制御回路が、前記第1の期間において、前記上限側電圧又は前記下限側電圧のいずれか一方を前記第1及び前記第2の増幅回路の両方の入力端に供給してもよい。
【0032】
また本発明においては、前記入力制御回路が、前記第1の期間において、前記下限側電圧を前記第1の増幅回路の入力端に供給し、前記上限電圧を前記第2の増幅回路の入力端に供給してもよい。
【0033】
さらに本発明の他のアスペクトに係る駆動回路においては、前記第1の増幅回路が、非反転入力端子と反転入力端子からの入力信号電圧を差動入力する第1極性の差動対と、前記第1極性の差動対の出力が制御端に入力され第1の電源と前記出力端子との間に接続された第1のトランジスタと、を含み、前記第2の増幅回路が、非反転入力端子と反転入力端子からの入力信号電圧を差動入力する第2極性の差動対と、前記第2極性の差動対の出力が制御端に入力され第2の電源と前記出力端子との間に接続された第2のトランジスタと、を含んで構成されてもよい。
【0034】
また本発明においては、所望の電圧が与えられた入力端子と前記出力端子との間に接続されたスイッチを備えていてもよい。
【0035】
【発明の実施の形態】
本発明の駆動回路の原理・作用について以下に説明する。なお、以下では、液晶表示装置のデータ線などの容量性負荷を所定の期間内に所望の電圧に駆動する駆動回路に本発明を適用した実施の形態について図面を参照して説明する。
【0036】
本発明は、第1の動作範囲(閾値電圧で規定される電圧VL1〜高位側電源電圧VDD)を有し出力端子(2)を充電する第1の増幅回路(20)と、第2の動作範囲(低位側電源電圧VSS〜閾値電圧で規定される電圧VL2)を有し前記出力端子を放電する第2の増幅回路(30)と、前記第1の動作範囲と前記第2の動作範囲とが重なる範囲の下限側の電圧(V1)、及び、上限側の電圧(V2)と、所望の電圧(入力端子電圧Vin)とのうちの少なくともいずれか1つを、前記第1及び/又は前記第2の増幅回路の入力端に供給する制御を行う入力制御回路(10)と、を備えている。出力端子(2)を所望の電圧に駆動する駆動期間が、第1の期間(T1)と、第2の期間(T2)とを少なくとも含む。入力制御回路(10)は、第1の期間(T1)において、前記第1の電圧(V1)、又は、前記第2の電圧(V2)、又は、前記第1の電圧及び前記第2の電圧を、前記第1の増幅回路(20)の入力端及び前記第2の増幅回路(30)の入力端に供給し、第2の期間(T2)において、前記所望の電圧(Vin)を、前記第1の増幅回路(20)の入力端及び前記第2の増幅回路(30)の入力端に共通に供給する、ように制御する。
【0037】
図1は、本発明の駆動回路の第1の実施の形態を示す図である。図1(A)は、充電用増幅回路20と、放電用増幅回路30と、入力制御回路10よりなる駆動回路の構成を示し、図1(B)は、充電用増幅回路20及び放電用増幅回路30の動作範囲を示す図である。以下、図1(A)、図1(B)を参照して説明する。
【0038】
充電用増幅回路20及び放電用増幅回路30は、それぞれの反転入力端子(−端子)が出力端子2に接続されたボルテージフォロワの構成よりなり、非反転入力端子(+端子)に供給された電圧を電流増幅して容量性負荷5が接続された出力端子2を充電駆動又は放電駆動する。また充電用増幅回路20及び放電用増幅回路30の非反転入力端子(+)どうしは共通接続される。
【0039】
入力制御回路10は、電圧Vin(入力端子に入力される信号電圧)、電圧V1、電圧V2がそれぞれ与えられる第1端子1、第2端子3、第3端子4に、一端がそれぞれ接続され、他端が、充電用増幅回路20及び放電用増幅回路30の共通接続された非反転入力端子(+)に、共通に接続されている第1乃至第3のスイッチ11、13、14を備えている。入力制御回路10の各スイッチ11、13、14は、制御信号S1によってオン、オフが制御される。
【0040】
充電増幅回路20の動作範囲は、電圧VL1から高電位電源電圧VDDの範囲までとされ、低電位状態にある出力端子2を、この範囲の入力電圧Vin(VL1≦Vin≦VDD)に対して、出力端子2を充電駆動することができる。
【0041】
また放電増幅回路30の動作範囲は、低電位電源電圧VSSから電圧VL2の範囲までとされ、高電位状態にある出力端子2を、この範囲の入力電圧Vin(VSS≦Vin≦VL2)に対して出力端子2を放電駆動することができる。
【0042】
電圧V1及び電圧V2は、充電用増幅回路20及び放電用増幅回路30の共通動作領域内(重複する範囲内)に設けられた所定の基準電圧Vmの高電位側と、低電位側の電圧とし、それぞれ電圧VL1、電圧VL2の近傍に設ける。例えば、図1(B)に示すように、
VSS<VL1<V1<Vm<V2<VL2<VDD
である。
【0043】
次に、図1の駆動回路における入力制御回路10の制御及び作用について図2を参照して説明する。図2は、出力端子2を所望の電圧に駆動する1データ駆動期間における第1乃至第3のスイッチ11、13、14の制御の仕方の例を一覧で示している。
【0044】
1データ駆動期間は、第1期間T1と第2期間T2の2つの期間が設けられている。図2における各スイッチの制御は、入力信号電圧Vinが基準電圧Vmに対して、VinがVm以上(Vin≧Vm)の場合と、VinがVm未満(Vin<Vm)の場合とで異なる。なお、入力制御回路10を制御する制御信号S1は、VinとVmの大小関係や、期間T1、T2のタイミングに応じて第1乃至第3のスイッチ11、13、14のオン・オフを制御するための信号であり、第1乃至第3のスイッチ11、13、14の制御端子にそれぞれ入力される3本の信号線で構成してもよい。
【0045】
本実施の形態では、入力制御回路10が、第1期間T1において、電圧V1又は電圧V2のいずれか一方を、充電用増幅回路20及び放電用増幅回路30の両方の入力端に与える場合の例である。具体的には、図2より、入力電圧Vinが基準電圧Vm以上の場合、第1期間T1では、第3のスイッチ14のみをオンとし、充電用増幅回路20及び放電用増幅回路30の非反転入力端子(+)に、電圧V2(<VL2)を入力する。このとき、充電用増幅回路20及び放電用増幅回路30は共に動作可能であるため、出力端子2は、第1期間T1より前の電位状態に関係なく、電圧V2に駆動される。
【0046】
次に、第2期間T2では、第1のスイッチ11のみオンとし、充電用増幅回路20及び放電用増幅回路30に入力電圧Vinを入力する。
【0047】
このとき、入力電圧Vinが電圧V2以上であれば、充電用増幅回路20による充電動作で、出力端子2を、電圧Vinに駆動する。
【0048】
入力電圧Vinが基準電圧Vm以上電圧V2以下であれば、放電用増幅回路30による放電動作で出力端子2を電圧Vinに駆動する。
【0049】
したがって、基準電圧Vm以上高電位電源電圧VDD以下の任意の入力電圧Vinに対して、出力端子2を、電圧Vinに駆動することができる。
【0050】
一方、入力電圧Vinが基準電圧Vm未満の場合、第1期間T1で、第2のスイッチ13のみをオンとし、充電用増幅回路20及び放電用増幅回路30に、電圧V1を入力する。このとき、充電用増幅回路20及び放電用増幅回路30は共に動作可能であるため、出力端子2は、第1期間T1より前の電位状態に関係なく、電圧V1に駆動される。
【0051】
次に、第2期間T2では、第1のスイッチ11のみをオンとし、充電用増幅回路20及び放電用増幅回路30に、入力電圧Vinを入力する。このとき、入力電圧Vinが電圧V1以下であれば、放電用増幅回路30による放電動作で、出力端子2を、電圧Vinに駆動する。
【0052】
また、入力電圧Vinが電圧V1以上基準電圧Vm未満であれば、充電用増幅回路20による充電動作で出力端子2を、電圧Vinに駆動する。
【0053】
したがって、低電位電源電圧VSS以上基準電圧Vm未満の任意の入力電圧Vinに対して、出力端子2を電圧Vinに駆動することができる。以上のように、図2に示した制御では、出力端子2を、一旦、電圧V1または電圧V2に駆動することにより、1データ期間開始時の電位状態に依存しない駆動を行うことができる。そして、入力電圧Vinが、電圧V1よりも低い場合には、期間T1でスイッチ13がオンされ、出力端子2は一旦電圧V1に駆動されているので、電圧V1から電圧Vinまでの電位差は小さく、したがって、電圧Vinに駆動されるときのアンダーシュートを小さく抑えて速やかに駆動することができる。また入力電圧Vinが、電圧V2より高い場合には、期間T1でスイッチ14がオンされ、出力端子2は一旦電圧V2に駆動されているので、電圧V2から電圧Vinまでの電位差は小さく、したがって、電圧Vinに駆動されるときのオーバーシュートを小さく抑えて速やかに駆動することができる。また入力電圧Vinが、電圧V1以上電圧V2以下では充電用増幅回路20及び放電用増幅回路30共に動作可能であるため、出力端子を電圧Vinに速やかに駆動することができる。
【0054】
ここで、所望の電圧(ターゲット電圧)を、入力電圧Vinとして与えれば、電源電圧範囲内の任意の電圧Vinに対して、出力端子2を、所望の電圧(ターゲット電圧)Vinに駆動することができる。
【0055】
本実施形態に係る回路について、さらに詳しくその作用を説明するため図3を参照する。図3(A)、図3(B)は、入力電圧Vinが基準Vm以上の場合の駆動波形の例を示す図である。
【0056】
図3(A)において、波形1及び波形2は、出力端子2に駆動する所望の電圧Vin(ターゲット電圧)が、電圧V2よりも高い場合の波形例であり、さらに、波形1は、低電位電源電圧VSS付近から変化したときの波形、波形2は高電位電源電圧VDD付近から変化したときの波形である。
【0057】
また図3(B)の波形3は、ターゲット電圧が基準電圧Vmと電圧V2の間の場合の波形の一例であり、低電位電源電圧VSS付近から変化するときの波形である。
【0058】
各波形とも、第1期間T1で、一旦、電圧V2に駆動され、第2期間T2で、ターゲット電圧まで駆動される。このように、第1期間T1で、一旦、電圧V2に駆動すると、最終的に駆動するターゲット電圧と電圧V2との電位差は小さくなり、ある一定の小さな電位差の範囲内におさまる。
【0059】
したがって、本実施の形態では、ターゲット電圧が電圧V2以上でも、従来の駆動回路(図16による出力波形(図1参照)のような、オーバーシュートは十分小さく抑えることができ、高精度出力が実現できる。
【0060】
またターゲット電圧が基準電圧Vm未満の場合についても同様に、ターゲット電圧と電圧V1との電位差が小さくなり、ある一定の小さな電位差の範囲内におさまるため、アンダーシュートを抑えて、高精度出力が実現できる。さらにオーバーシュートやアンダーシュートが抑えられることにより、第2期間T2におけるターゲット電圧へ駆動が速やかに行われ、第2期間T2を短い期間に設定することができる。
【0061】
なお、波形1や波形3のように、第1期間T1で電圧の変化が大きい場合には、電圧V2や、電圧V1まで駆動するときに、オーバーシュートやアンダーシュートが生じる場合がある。出力端子2を、所望の電圧(ターゲット電圧)に駆動するためには、第1期間T1で、出力端子2が充電用増幅回路20及び放電用増幅回路30の共通動作範囲内(すなわち下限がVL1と上限がVL2で規定される重複範囲内)に駆動されていることが必要であり、このためには、電圧V1や電圧V2の設定は、好ましくは、それぞれ、電圧VL1よりやや高電位側、及び電圧VL2よりもやや低電位側に設定される。なお第1期間T1では、前期共通動作範囲内で電圧VL1近傍(すなわち電圧V1付近)または電圧VL2近傍(すなわち電圧V2付近)に出力端子が駆動されていれば良く、高い駆動電圧精度はなくてもよい。そのため第1期間T1は十分短い時間に設定することができる。
【0062】
以上のように、本実施の形態では、入力制御回路10により、第1期間T1に、所望の電圧Vinの電圧レベルに応じて、電圧V1(>VL1)又は電圧V2(<VL2)のいずれか一方を、充電用増幅回路20及び放電用増幅回路30に入力して、出力端子2を、その電圧(電圧V1又はV2)に、一旦駆動し、第2期間T2に、所望の電圧Vinを、充電用増幅回路20及び放電用増幅回路30に入力して、出力端子2を所望の電圧に駆動する。
【0063】
これにより、出力端子2を、1データ期間開始時の電位状態に関係なく電源電圧範囲内(低電位電圧電圧VSSと高電位電圧VDDの範囲内)の任意の電圧に駆動することができ、また、出力端子2を、一旦、電圧V1又は電圧V2に駆動することで、オーバーシュートやアンダーシュートを小さく抑え、高精度出力も実現できる。また第1期間及び第2期間を短い時間に設定できるので、速やかな駆動を行うこともできる。
【0064】
図4は、本発明の駆動回路の第2の実施の形態の構成を示す図である。図4(A)は、充電用増幅回路20、放電用増幅回路30、入力制御回路10よりなる駆動回路の構成を示し、図4(B)は、充電用増幅回路20、及び放電用増幅回路30の動作範囲を示す図である。以下、図4(A)、図4(B)を参照して説明する。
【0065】
充電用増幅回路20及び放電用増幅回路30は、図1と同様のボルテージフォロワの構成からなり、非反転入力端子(+)に与えられた電圧を電流増幅して容量性負荷5が接続された出力端子2を、それぞれ、充電駆動、及び放電駆動する。
【0066】
図4では、入力制御回路10の構成が、図1に示した構成に、スイッチを1つ付加したものであり、入力電圧Vinが与えられる端子1と、充電用増幅回路20及び放電用増幅回路30のそれぞれの入力端(非反転入力端子)との間にそれぞれ接続された第1及第2のスイッチ11A、11Bと、電圧V1が与えられる端子3と充電用増幅回路20の入力端(非反転入力端子)との間に接続された第3のスイッチ13と、電圧V2が与えられる端子4と放電用増幅回路30の入力端(非反転入力端子)との間に接続された第4のスイッチ14とを備えて構成される。
【0067】
入力制御回路10の各スイッチ11A、11B、13、14は、制御信号S1によって、オン、オフが制御される。
【0068】
充電増幅回路20の動作範囲は、電圧VL1から高電位電源電圧VDDまでの範囲とされ、低電位状態にある出力端子2をこの範囲の入力電圧Vinに対して出力端子2を充電駆動することができる。
【0069】
放電増幅回路30の動作範囲は、低電位電源電圧VSSから電圧VL2までの範囲とされ、高電位状態にある出力端子2を、この範囲の入力電圧Vinに対して出力端子2を放電駆動することができる。
【0070】
また、電圧V1と電圧V2は、それぞれ、電圧VL1と電圧VL2の近傍に設ける。なお図4において、図1と同様、同等の要素については、同じ参照番号が用いられている。
【0071】
次に、図4の駆動回路における入力制御回路10の制御及び作用について図5を参照して説明する。
【0072】
図5は、出力端子2を所望の電圧に駆動する1データ駆動期間におけるスイッチ11A、11B、13、14の制御を示している。
【0073】
1データ駆動期間は第1期間T1と第2期間T2の2つの期間が設けられている。なお入力制御回路10を制御する制御信号S1は、第1期間T1、第2期間T2に応じて各スイッチを制御する。
【0074】
本実施の形態は、入力制御回路10が、第1期間T1において、電圧V1を、充電用増幅回路20の入力端(非反転入力端子)に与え、電圧V2を放電用増幅回路30の入力端(非反転入力端子)に与える場合の例である。
【0075】
具体的には、図5より、第1期間T1でスイッチ11A、11Bをオフとし、スイッチ13、14をオンとし、充電用増幅回路20の非反転入力端子に電圧V1、放電用増幅回路30の非反転入力端子に電圧V2を入力する。
【0076】
このとき、充電用増幅回路20は、電圧V1以下の状態にある出力端子2を電圧V1まで引き上げる。
【0077】
また、電圧V1以上の状態にある出力端子2については、充電用増幅回路20は作用しない(充電作用は行わない)。
【0078】
一方、放電用増幅回路30は、電圧V2以上の状態にある出力端子2を電圧V2まで引き下げる。また電圧V2以下の状態にある出力端子2については、放電用増幅回路30は作用しない(放電作用を行わない)。
【0079】
したがって、第1期間T1では、出力端子2は、第1期間T1より前の電位状態に関係なく、電圧V1以上電圧V2以下の範囲内に駆動される。なお、ここでは高い駆動電圧精度がなくてもよいので、第1期間T1は十分短い時間に設定できる。
【0080】
次に、第2期間T2では、スイッチ11A、11Bをオン、スイッチ13、14をオフとし、充電用増幅回路20及び放電用増幅回路30の入力端(非反転入力端子)に、入力電圧Vinを入力する。このとき、入力電圧Vinが電圧V2以上であれば、充電用増幅回路20による充電動作により、出力端子2を電圧Vinに駆動する。
【0081】
入力電圧VinがV1以下であれば、放電用増幅回路30による放電動作で、出力端子2を、電圧Vinに駆動する。
【0082】
入力電圧Vinが電圧V1以上V2以下であれば、充電用増幅回路20又は放電用増幅回路30の動作により、出力端子2を、電圧Vinに駆動する。
【0083】
したがって、電源電圧範囲内(低電位電源電圧VSS以上、高電位電源電圧VDD以下)の任意の入力電圧Vinに対して、出力端子2を、電圧Vinに駆動することができる。
【0084】
以上のように、図5に示した制御では、出力端子を一旦電圧V1以上V2以下に駆動することにより、1データ期間開始時の電位状態に依存しない駆動を行うことができる。そして、入力電圧Vinが、電圧V1より低い場合には、出力端子2が一旦電圧V1以上V2以下に駆動されているので、電圧Vinまでの電位差は小さく、したがって、電圧Vinに駆動されるときのアンダーシュートを小さく抑えて速やかに駆動することができる。また入力電圧Vinが、電圧V2より高い場合には、出力端子が一旦電圧V1以上V2以下に駆動されているので、電圧Vinまでの電位差は小さく、したがって電圧Vinに駆動されるときのオーバーシュートを小さく抑えて速やかに駆動することができる。また入力電圧Vinが、電圧V1以上電圧V2以下では、充電用増幅回路20及び放電用増幅回路30共に動作可能であるため、出力端子2を電圧Vinに速やかに駆動することができる。このように第2期間T2においても、オーバーシュートやアンダーシュートを抑えて、ターゲット電圧への速やかな駆動が行われるため、第2期間T2を短い期間に設定することができる。
【0085】
ここで、所望の電圧(ターゲット電圧)を、入力電圧Vinとして与えれば、電源電圧範囲内の任意の電圧Vinに対して、出力端子2を所望の電圧(ターゲット電圧)Vinに駆動することができる。
【0086】
さらに、本実施の形態を詳しく作用を説明するため、図6を参照する。図6において、波形4及び波形5は、出力端子2に駆動する所望の電圧Vin(ターゲット電圧)が、電圧V2より高い場合の波形例である(波形4は低電位電源電圧VSS付近から変化するときの波形、波形5は高電位電源電圧VDD付近から変化するときの波形である)。
【0087】
各波形4、5とも、第1期間T1で、一旦電圧、電圧V1以上、且つ電圧V2以下の範囲内に駆動され、第2期間T2で、ターゲット電圧まで駆動される。
【0088】
このように、第1期間T1で、一旦、電圧V1以上V2以下の範囲内に駆動すると、第1期間T1に駆動された電圧と、最終的に駆動するターゲット電圧との電位差は小さくなり、ある一定の小さな電位差の範囲内におさまる。
【0089】
したがって、本実施の形態でも、ターゲット電圧が、電圧V2より大きいか、又は、電圧V1より小さい場合でも、オーバーシュートやアンダーシュートを小さく抑えることができ、高精度出力が実現できる。なお第1の実施の形態と同様に、第1期間及び第2期間を短い時間に設定して、速やかな駆動を行うこともできる。
【0090】
以上のように、本実施の形態では、入力制御回路10により、第1期間T1に電圧V1を、充電用増幅回路20の非反転入力端子に入力し、電圧V2を放電用増幅回路30の非反転入力端子に入力し、出力端子2を、電圧V1と電圧V2の範囲内に、一旦駆動し、第2期間T2に、所望の電圧Vinを、充電用増幅回路20及び放電用増幅回路30の非反転入力端子に入力して、出力端子2を所望の電圧に駆動する。これにより、1データ期間開始時の電位状態に関係なく、電源電圧範囲内の任意の電圧を駆動することができ、また、一旦、電圧V1以上V2以下の範囲内に駆動することで、オーバーシュートやアンダーシュートを小さく抑えて高精度出力も実現できる。なお第1の実施の形態と同様に、第1期間及び第2期間を短い時間に設定して、速やかな駆動を行うこともできる。
【0091】
さらに第1及び第2の実施の形態において、充電用増幅回路20及び放電用増幅回路30を簡素な構成で低消費電力の増幅回路を用いれば、省面積及び低消費電力が実現できる。
【0092】
【実施例】
上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の実施例について図面を参照して説明する。実施の形態では、動作範囲の異なる2つの増幅回路よりなる駆動回路に対して、入力制御回路10を設けることで出力端子を電源電圧範囲の任意の電圧に駆動できることを示した。ここでは、充電用増幅回路20及び放電用増幅回路30の具体例を示し、本発明が省面積及び低消費電力を実現できることを示す。また本発明を用いた表示装置についても説明する。
【0093】
[第1実施例]
図7、図8は、図1、図4の充電用増幅回路20と放電用増幅回路30の具体的構成の一例を示す図である。以下、充電用増幅回路20と放電用増幅回路30の構成について説明する。
【0094】
充電用増幅回路20は、定電流源205によって駆動されるnチャネル差動対(トランジスタ203、204)と、差動対の能動負荷回路をなすpチャネルカレントミラー回路(トランジスタ201、202)を備えて構成される。より具体的には、定電流源205は、一端が低電位電源VSSに接続され、他端が差動対をなすnチャネルトランジスタ203、204の共通ソースと接続される。カレントミラー回路201、202は、pチャネルトランジスタ201、202よりなり、それぞれのソースが高電位電源VDDと接続され、pチャネルトランジスタ202はダイオード接続され、そのドレイン(ゲート)は、nチャネルトランジスタ204のドレインと接続される。一方、pチャネルトランジスタ201は、制御端(ゲート端子)がpチャネルトランジスタ202の制御端(ゲート端子)と共通接続され、そのドレインは、nチャネルトランジスタ203のドレインと接続される。そして、トランジスタ201、203のドレインの接続ノードが、高電位電源VDDと出力端子2との間に接続されたpチャネルトランジスタ206の制御端(ゲート端子)と接続されている。
【0095】
nチャネル差動対203、204のそれぞれの制御端(ゲート端子)は、非反転入力端及び反転入力端をなし、nチャネル差動対203、204のそれぞれの制御端(ゲート端子)は、入力制御回路10及び出力端子2に接続されている。
【0096】
一方、放電用増幅回路30は、定電流源305によって駆動されるpチャネル差動対(トランジスタ303、304)と、差動対の能動負荷回路をなすnチャネルカレントミラー回路(トランジスタ301、302)を備えて構成されている。より具体的には、定電流源305は一端が高電位電源VDDに接続され、他端が差動対をなすpチャネルトランジスタ303、304の共通ソースと接続される。カレントミラー回路301、302は、nチャネルトランジスタ301、302よりなり、それぞれのソースが低電位電源VSSと接続される。nチャネルトランジスタ302はダイオード接続され、そのドレイン(ゲート)は、pチャネルトランジスタ304のドレインと接続される。一方nチャネルトランジスタ301は、制御端(ゲート端子)がnチャネルトランジスタ302の制御端(ゲート端子)と共通接続され、そのドレインはpチャネルトランジスタ303のドレインと接続される。そしてトランジスタ301、303の接続ノードが、低電位電源VSSと出力端子2との間に接続されたnチャネルトランジスタ306の制御端(ゲート端子)と接続されている。pチャネル差動対303、304のそれぞれの制御端(ゲート端子)は非反転入力端及び反転入力端をなし、pチャネル差動対303、304のそれぞれの制御端は入力制御回路10’及び出力端子2が接続される。なお図7及び図8において、図16と同等の要素については同じ参照番号が付されている。
【0097】
充電用増幅回路20及び放電用増幅回路30は、一般に良く知られた素子数の少ない簡素なボルテージフォロワ構成の増幅回路である。充電用増幅回路20及び放電用増幅回路30のそれぞれの動作範囲に関し、充電用増幅回路20は、入力電圧Vinがnチャネル差動対203、204の閾値電圧(Vtn)よりも低い低電位電源VSS付近の場合(VSS≦Vin<Vt)には、nチャネル差動対203、204がオフとなるため、出力端子2を充電することはできない。また、放電用増幅回路30は、入力電圧Vinが、高電位電源VDDからpチャネル差動対303、304の閾値電圧(Vhp)の範囲内(VDD−|Vhp|<Vin≦VDD)の場合には、pチャネル差動対303、304がオフとなるため出力端子2を放電することはできない。
【0098】
ここで、nチャネル差動対203、204、及びpチャネル差動対303、304が、それぞれ、オフ状態からオン状態(動作可能状態)への変わり目となる電圧を、それぞれ、VL1及びVL2とする。
【0099】
充電用増幅回路20の動作範囲は、電圧VL1から高電位電源電圧VDDまででの範囲であり、この範囲の入力電圧Vinに対して、低電位状態にある出力端子2を、電圧Vinに充電駆動することができる。
【0100】
また放電用増幅回路30の動作範囲は、電圧VSSから電圧VL2までの範囲であり、この範囲の入力電圧Vinに対して高電位状態にある出力端子2を電圧Vinに放電駆動することができる。
【0101】
以上のように、図7及び図8に示した充電用増幅回路20及び放電用増幅回路30の構成は、実施の形態で説明した充電用増幅回路20及び放電用増幅回路30の動作範囲や作用の性能を満たしている。したがって、図7及び図8に示した実施例の駆動回路は、前述したように、電源電圧範囲内の任意の電圧を駆動することができ、また高精度出力が実現できる。
【0102】
また、図7及び図に示した充電用増幅回路20及び放電用増幅回路30の構成は、素子数の少ない非常に簡素な構成とされ、また電流パスの数が少なく低消費電力が可能な構成である。すなわち定電流源205、305の電流を十分小さく設定し、また出力電圧が安定している状態において、電源電圧VDDからVSSへトランジスタ206とトランジスタ306を介して流れる電流が十分小さくなるように設定することにより、充電用増幅回路20及び放電用増幅回路30に流れる電流を制御することができ、消費電力を小さく抑えることが可能である。
【0103】
また入力制御回路10は、電圧Vin、V1、V2をトランジスタ203や303の制御端に与える制御を行うだけであり、消費電力はほとんど生じない。したがって図7及び図8に示した駆動回路は、省面積及び低消費電力を実現することができる。
【0104】
[第2実施例]
図9及び図10は、本発明の第2の実施例を示す図であり、それぞれ図7及び図8の充電用増幅回路20と放電用増幅回路30の変更例を示す図である。図9及び図10の、充電用増幅回路20’と放電用増幅回路30’における図7及び図8との変更点は、充電用増幅回路20’において出力端子2と低電位電源VSSとの間に、定電流源207とスイッチ253が直列形態で接続されており、放電用増幅回路30’において、出力端子2と高電位電源VDDとの間に、定電流源307とスイッチ353が直列形態で接続される点である。定電流源207と定電流源307は十分小さな電流に設定する。充電用増幅回路20’と放電用増幅回路30’における,その他の構成は、入力制御回路10を備えた図7、及び入力制御回路10’を備えた図8と同様である。
【0105】
本実施例において、定電流源207及び307を設けることの作用効果は、出力端子2に駆動する所望の電圧の電圧精度を高めることができる点である。
【0106】
図7や図8に示した駆動回路では、所望の電圧(ターゲット電圧)が、電圧VL2よりも大きい(高い)場合、又は電圧VL1より小さい(低い)場合には、それぞれ充電用増幅回路20又は放電用増幅回路30の一方だけしか動作しない。第2期間T2での電圧変化を小さくして、オーバーシュートやアンダーシュートを十分小さく抑えることはできるが、充電用増幅回路20は充電のみしかできず、放電用増幅回路30は、放電のみしかできないため、わずかにオーバーシュートやアンダーシュートが生じても、図7や図8の駆動回路では、それを戻すことができない。
【0107】
そこで、本実施例では、出力端子2を、電圧VL2よりも大きい電圧に駆動する場合、及び、電圧VL1よりも小さい電圧に駆動する場合に、わずかに生じたオーバーシュートやアンダーシュートを戻すために、定電流源207、307を設けている。
【0108】
前述したとおり、本発明に係る構成の駆動回路では、オーバーシュートやアンダーシュートは十分小さく抑えられるので、定電流源207、307の電流は、十分小さく設定でき、消費電力の増加を最小限に抑えることができる。
【0109】
なお第2期間T2では、定電流源207、307を同時に動作させると、それぞれの作用が相殺されてしまうため、スイッチ253、353の一方だけがオンとなるように制御する。そのように制御するためには、入力電圧Vinに応じたスイッチ253とスイッチ353の制御が必要であり、図1の入力制御回路10の制御で設けた基準電圧Vmを、図9及び図10でも設定する。
【0110】
図11は、図9、図10に示した駆動回路におけるスイッチ253とスイッチ353の制御の具体例である。なお図9及び図10のそれぞれの入力制御回路10、10’の各スイッチの制御については、それぞれ図2及び図5に従うものとし、図11では省略している。図11を参照すると、第1期間T1では、入力電圧Vinに関係なく、スイッチ253とスイッチ353をオフとして、定電流源207と定電流源307を共に非活性とする。
【0111】
一方、第2期間T2では、入力電圧Vinが基準電圧Vm以上の場合、スイッチ253のみをオンとする。ターゲット電圧(Vin)が電圧V2より高く、第2期間T2の駆動で、わずかにオーバーシュートが生じても、定電流源207の放電作用により、出力端子電圧をターゲット電圧まで戻すことができるので、高精度出力が可能である。
【0112】
またターゲット電圧(Vin)が基準電圧Vm以上電圧V2以下の場合、増幅トランジスタ206、306は共に動作可能であるため、放電能力の低い定電流源207の作用は影響せず、増幅トランジスタ206又は増幅トランジスタ306の動作により、出力端子2がターゲット電圧に駆動される。
【0113】
また第2期間T2において、入力電圧Vinが基準電圧Vm未満の場合、スイッチ353のみをオンとする。ターゲット電圧(Vin)が電圧V1より低く、第2期間T2の駆動でわずかにアンダーシュートが生じても、定電流源307の充電作用により、ターゲット電圧まで戻すことができるので、高精度出力が可能である。
【0114】
また、ターゲット電圧(Vin)が電圧V1以上基準電圧Vm未満の場合、増幅トランジスタ206、306は共に動作可能であるため、充電能力の低い定電流源307の作用は影響せず、増幅トランジスタ206又は増幅トランジスタ306の動作により、出力端子2がターゲット電圧に駆動される。
【0115】
以上のように、スイッチ253とスイッチ353を、図11に示すように、オン・オフ制御することにより、図9及び図10の駆動回路は、さらに高精度出力が実現できる。
【0116】
[第3実施例]
図12及び図13は、本発明の第3の実施例を示す図である。図12及び図13を参照すると、入力端子1と出力端子2の間に信号S0で制御されるトランスファーゲートスイッチ40が付加された構成である。図12及び図13の増幅回路20、30は、図7乃至図10の構成を適用することができる。
【0117】
図12及び図13に示した駆動回路では、1データ駆動期間における、第1期間T1及び第2期間T2に引き続く期間T3を設け、そして第3期間T3において、図12の駆動回路では、入力制御回路10のスイッチ13、14をオフとし、図13の駆動回路では、入力制御回路10’のスイッチ11A、11B、13、14をオフとし、トランスファーゲートスイッチ40をオンとすることで、入力端子1に与えられた入力電圧Vinの電流供給能力により、直接、出力端子2に接続された容量性負荷5を駆動することができる。また第3期間T3では、充電用増幅回路20及び放電用増幅回路30も非活性(停止)とするのが望ましい。
【0118】
[第4実施例]
図14は、本発明の駆動回路の第4の実施例を示す図であり、表示装置のデータドライバの構成を示している。図14を参照すると、このデータドライバは、電源VAと電源VB間に接続された抵抗ストリング200と、デコーダ300と、出力端子群400と、バッファ回路100と、を備えて構成される。抵抗ストリング200の各端子(タップ)から生成した複数の階調電圧の中から、各出力ごとに映像デジタル信号に応じてデコーダ300で階調電圧を選択し、バッファ回路100で電流増幅して出力端子400に接続されたデータ線を駆動する。また電圧V1及びV2はバイアス発生回路500で生成され、各出力のバッファ回路100に供給される。図14ではバイアス発生回路500は、電源VCと電源VD間に接続された抵抗ストリングの端子(タップ)から生成する構成を示す。なお、抵抗ストリングの代用として、電源VCと電源VD間に複数のトランジスタを直列形態で接続し、それぞれのトランジスタのオン抵抗を利用して、トランジスタ間の接続端子から電圧V1、V2を取り出す構成としても良い。また各出力のデコーダ300に入力される映像デジタル信号は、その一部がバッファ回路100にも入力される。
【0119】
バッファ回路100として、図1、図4、図7〜図10、図12、図13を参照して説明した各回路を適用することができる。制御信号S1は、バッファ回路100の各スイッチのオン・オフを制御する。
【0120】
バッファ回路100に入力されるデジタル信号の一部は、バッファ回路100として図1、図7、図9、図10及び図12の駆動回路が適用された場合に、デコーダ300で選択された階調電圧と基準電圧Vmとの大小の判別に用いることができる。より具体的には、例えば8階調の映像デジタル信号(D2、D1、D0)が階調電圧V0〜V7(V0<V1<…<V7)に対応し、V0=(0、0、0)、V1=(0、0、1)、…、V7=(1、1、1)である場合、基準電圧Vmを、V4=(1、0、0)に割り当てるとする。そしてデジタル信号D2をバッファ回路100に入力すれば、バッファ回路100へ入力される階調電圧は、D2=1のとき、V4〜V7のVm以上の階調電圧であり、D2=0のとき、V0〜V3のVm未満の階調電圧であることが判別できる。
【0121】
なお、バッファ回路100に入力される階調電圧と基準電圧Vmとの関係に依存しない図4、図8の駆動回路の場合は、デジタル信号の一部をバッファ回路100に入力しなくてもよい。図13に示した駆動回路において、図9の増幅回路20’、30’を用いる場合には、デジタル信号の一部をバッファ回路100に入力する。
【0122】
また、バッファ回路100に図12、図13を適用した場合には、トランスファーゲートスイッチ40がオンとなるとき、抵抗ストリング200から直接電荷を供給してデータ線を駆動する構成となる。
【0123】
本発明の駆動回路を、図14のバッファ回路100に用いることにより、簡単に低消費電力で省面積のデータドライバを構成することができる。
【0124】
なお図14に示すデータドライバは、図15に示す液晶表示装置のデータ線駆動回路803に適用できることは勿論である。
【0125】
また、上記実施例で説明した駆動回路は、MOSトランジスタで構成されており、表示装置の駆動回路では、例えば多結晶シリコンからなるMOSトランジスタ(TFT)で構成してもよい。また、上記実施例で説明した増幅回路は、バイポーラトランジスタにも適用できることは勿論である。この場合、カレントミラー回路、差動対等のPチャネルトランジスタは、pnpトランジスタよりなり、nチャネルトランジスタはnpnトランジスタよりなる。上記実施例では、集積回路に適用した例を示したが、ディスクリート素子構成にも適用できることは勿論である。
【0126】
以上本発明を上記実施例に即して説明したが、本発明は、上記実施例にのみ限定されるものではなく、本願特許請求の範囲の各請求項の発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
【0127】
【発明の効果】
以上説明したように、本発明によれば、第1の動作範囲を有し出力端子を充電駆動する第1の増幅回路と、第2の動作範囲を有し前記出力端子を放電駆動する第2の増幅回路と、第1及び第2の動作範囲の共有範囲の上限側電圧(V2)及び下限側電圧(V1)、及び所望の電圧(Vin)のいずれかを選択し、第1の増幅回路又は第2の増幅回路の入力端に供給する入力制御回路とから、駆動回路を構成し、出力端子を所望の電圧に駆動する1データ駆動期間において、第1の期間(T1)と第2の期間(T2)を設けて、第1の期間(T1)では、入力制御回路が上限側電圧(V2)又は下限側電圧(V1)を第1の増幅回路及び第2の増幅回路の入力端に与え、第2の期間(T2)では、入力制御回路が所望の電圧を、第1の増幅回路及び第2の増幅回路の入力端に与える。これにより、1データ駆動期間開始時の出力端子の電位状態に関係なく、電源電圧範囲内の任意の所望の電圧に出力端子を駆動することができ、高精度な出力も可能となる、という効果を奏する。
【0128】
また、本発明によれば、第1の増幅回路及び第2の増幅回路を、非反転入力端子と反転入力端子からの入力信号電圧を差動入力する差動対と、その出力を、制御端に入力した増幅トランジスタからなる簡素な増幅回路で構成することにより、省面積及び低消費電力も実現できる、という効果を奏する。
【0129】
本発明の表示装置によれば、データ線駆動回路は、素子数の増大を抑止しながら、電源電圧範囲の全領域における、任意の電圧を任意の順番で出力端子に駆動させることができ、低い電源電圧の表示装置等に適用した場合にも、高い精度で高速に表示することができ、携帯端末等の液晶表示装置としても好適である、という効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す図であり、(A)は回路構成、(B)は実施の形態に含まれる増幅回路の動作範囲を示す図である。
【図2】本発明の第1の実施の形態の入力制御回路に含まれるスイッチの制御を示す図である。
【図3】本発明の第1の実施の形態の動作を説明するための電圧波形例である。
【図4】本発明の第2の実施の形態の構成を示す図で、(A)は回路構成、(B)は実施の形態に含まれる増幅回路の動作範囲を示す図である。
【図5】本発明の第2の実施の形態の入力制御回路に含まれるスイッチの制御を示す図である。
【図6】本発明の第2の実施の形態の動作を説明するための電圧波形例である。
【図7】本発明の第1の実施例の構成を示す図で、図1の増幅回路の具体例を示す図である。
【図8】本発明の第1の実施例の構成を示す図で、図4の増幅回路の具体例を示す図である。
【図9】本発明の第2の実施例の構成を示す図で、図7の変更例を示す図である。
【図10】本発明の第2の実施例の構成を示す図で、図8の変更例を示す図である。
【図11】本発明の第2の実施例の増幅回路に含まれるスイッチの制御を示す図である。
【図12】本発明の第3の実施例の構成を示す図で、図1の増幅回路の別の具体例を示す図である。
【図13】本発明の第3の実施例の構成を示す図で、図4の増幅回路の別の具体例を示す図である。
【図14】表示装置のデータドライバの構成を示す図である。
【図15】液晶表示装置の構成を示す図である。
【図16】従来の増幅回路の構成を示す図である。
【図17】従来の別の増幅回路の構成を示す図である。
【図18】従来の増幅回路の動作を説明するための電圧波形例である。
【符号の説明】
1 入力端子
2 出力端子
3、4 端子
5 容量性負荷
10 入力制御回路
20、30、62、63 増幅回路
40 トランスファーゲートスイッチ
100 バッファ回路
201、202、206、303、304、206 pチャネルトランジスタ
301、302、306、203、204、306 nチャネルトランジスタ
205、207、305、307 定電流源
11、13、14、253、353 スイッチ
200 抵抗ストリング
209 負荷
300 デコーダ
309 負荷
400 出力端子群
500 バイアス電圧発生回路
801 液晶表示パネル
802 ゲートドライバ
803 データドライバ
811 ゲート線
812 データ線
814 TFT
815 画素電極
816 液晶容量
817 対向基板電極

Claims (17)

  1. 第1の動作範囲を有し出力端子を充電駆動する第1の増幅回路と、
    第2の動作範囲を有し前記出力端子を放電駆動する第2の増幅回路と、
    を備え、前記第1及び第2の増幅回路の出力端同士が共通接続され前記出力端子に接続されており、
    前記第1の動作範囲と前記第2の動作範囲とが重なる範囲の下限側の第1の電圧と、前記第1の電圧とは異なる電圧であって前記範囲の上限側の第2の電圧と、所望の電圧とを入力し、これらの電圧のうちの少なくとも1つを選択して、前記第1の増幅回路の入力端、及び、前記第2の増幅回路の入力端に供給する制御を行う入力制御回路を備え、
    前記出力端子を所望の電圧に駆動する駆動期間が、前記駆動期間のはじめに位置し前記第1及び第2の増幅回路が共に動作可能状態とされ前記出力端子を駆動する第1の期間と前記第1の期間の後に続く第2の期間とを少なくとも含み、
    前記入力制御回路は、前記第1の期間において、前記第1の電圧と前記第2の電圧のいずれか一方を、前記第1の増幅回路の入力端と前記第2の増幅回路の入力端とに対して、共通に供給し、
    前記第2の期間において、前記所望の電圧を、前記第1の増幅回路の入力端及び前記第2の増幅回路の入力端に共通に供給する、ように制御する、ことを特徴とする駆動回路。
  2. 第1の動作範囲を有し出力端子を充電駆動する第1の増幅回路と、
    第2の動作範囲を有し前記出力端子を放電駆動する第2の増幅回路と、
    を備え、前記第1及び第2の増幅回路の出力端同士が共通接続され前記出力端子に接続されており、
    前記第1の動作範囲と前記第2の動作範囲とが重なる範囲の下限側の第1の電圧と、前記第1の電圧とは異なる電圧であって前記範囲の上限側の第2の電圧と、所望の電圧とを入力し、これらの電圧のうちの少なくとも1つを選択して、前記第1の増幅回路の入力端、及び、前記第2の増幅回路の入力端に供給する制御を行う入力制御回路を備え、
    前記出力端子を所望の電圧に駆動する駆動期間が、前記駆動期間のはじめに位置し前記第1及び第2の増幅回路が共に動作可能状態とされ前記出力端子を駆動する第1の期間と前記第1の期間の後に続く第2の期間とを少なくとも含み、
    前記入力制御回路は、前記第1の期間において、前記第1の電圧を前記第1の増幅回路の入力端に供給し、前記第2の電圧を前記第2の増幅回路の入力端に供給し、
    前記第2の期間において、前記所望の電圧を、前記第1の増幅回路の入力端及び前記第2の増幅回路の入力端に共通に供給する、ように制御する、ことを特徴とする駆動回路。
  3. 前記第1の増幅回路と前記第2の増幅回路がともにボルテージフォロワ構成とされ、
    前記入力制御回路は、前記第1の期間において、前記所望の電圧が、前記第1の動作範囲と前記第2の動作範囲とが重なる範囲内の予め定められた基準電圧以上である場合、前記第2の電圧を、前記第1の増幅回路の入力端と前記第2の増幅回路の入力端とに対して共通に供給し、
    前記所望の電圧が、前記基準電圧未満である場合には、前記第1の電圧を、前記第1の増幅回路の入力端と前記第2の増幅回路の入力端とに対して共通に供給する、ことを特徴とする請求項1記載の駆動回路。
  4. 所望の電圧が入力される前記入力制御回路の入力端子と、前記出力端子との間に接続されているスイッチを備えている、ことを特徴とする請求項1又は2に記載の駆動回路。
  5. 前記第1の増幅回路が、
    第1及び第2の入力端を有し、該第1及び第2の入力端からの入力信号電圧を差動入力する、第1極性の第1の差動対と、
    第1の電源と、前記出力端子との間に接続され、前記第1の差動対の出力に制御端が接続されている第1のトランジスタと、
    を含み、
    前記第2の増幅回路が、
    第1及び第2の入力端を有し、該第1及び第2の入力端からの入力信号電圧を差動入力する、第2極性の第2の差動対と、
    第2の電源と、前記出力端子との間に接続され、前記第2の差動対の出力に制御端が接続されている第2のトランジスタと、
    を含み、
    前記第1及び第2の差動対の前記第1の入力端同士は共通接続され、
    前記入力制御回路が、
    前記第1の電圧と、前記第2の電圧と、前記所望の電圧とをそれぞれ一端に入力する第1乃至第3のスイッチを備え、
    前記第1乃至第3のスイッチの他端同士は、共通接続されて、前記第1及び第2の差動対の共通接続されている前記第1の入力端に接続されている、ことを特徴とする請求項1記載の駆動回路。
  6. 前記第1の増幅回路が、
    第1及び第2の入力端を有し、該第1及び第2の入力端からの入力信号電圧を差動入力する、第1極性の第1の差動対と、
    第1の電源と、前記出力端子との間に接続され、前記第1の差動対の出力に制御端が接続されている第1のトランジスタと、
    を含み、
    前記第2の増幅回路が、
    第1及び第2の入力端を有し、該第1及び第2の入力端からの入力信号電圧を差動入力する、第2極性の第2の差動対と、
    第2の電源と、前記出力端子との間に接続され、前記第2の差動対の出力に制御端が接続されている第2のトランジスタと、
    を含み、
    前記入力制御回路が、
    前記第1の電圧と、前記第2の電圧とを一端にそれぞれ入力する第1及び第2のスイッチと、
    前記所望の電圧を一端に共通に入力する第3及び第4のスイッチと、
    を備え、
    前記第1のスイッチの他端と前記第3のスイッチの他端同士は共通接続されて、前記第1の差動対の前記第1の入力端に接続され、
    前記第2のスイッチの他端と前記第4のスイッチの他端同士は共通接続されて、前記第2の差動対の前記第1の入力端に接続されている、ことを特徴とする請求項2記載の駆動回路。
  7. 前記第1及び第2の増幅回路のそれぞれにおいて、
    前記第1及び第2の差動対の前記第1の入力端は非反転入力端子をなし、
    前記第1及び第2の差動対の前記第2の入力端は反転入力端子をなし、前記出力端子に接続されている、ことを特徴とする請求項5又は6に記載の駆動回路。
  8. 前記第1乃至第3のスイッチは、制御信号によってそれぞれオン・オフ制御され
    前記第1期間では、前記第1又は第2のスイッチがオン状態とされ、前記第3のスイッチはオフ状態され、
    前記第2の期間では、前記第3のスイッチがオン状態とされ、前記第1及び第2のスイッチはオフ状態とされる、ことを特徴とする請求項5記載の駆動回路。
  9. 前記第1乃至第4のスイッチは、制御信号によってそれぞれオン・オフ制御され、
    前記第1期間では、前記第1及び第2のスイッチがオン状態とされ、前記第3及び第4のスイッチはオフ状態され、
    前記第2の期間では、前記第3及び第4のスイッチがオン状態とされ、前記第1及び第2のスイッチはオフ状態とされる、ことを特徴とする請求項6記載の駆動回路。
  10. 前記第1の増幅回路が、
    第2の電源に接続される第1の電流源と、
    前記第1の電流源で駆動され、非反転入力端子と反転入力端子を有し前記非反転入力端子と前記反転入力端子からの入力信号電圧を差動入力する、第1極性の第1の差動対と、
    前記第1の差動対の出力対と第1の電源との間に接続されている第1の負荷回路と、
    前記第1の電源と前記出力端子との間に接続され、前記第1の差動対の出力に制御端が接続されている第1のトランジスタと、
    を含み、
    前記第2の増幅回路が、
    前記第1の電源に接続される第2の電流源と、
    前記第2の電流源で駆動され、非反転入力端子と反転入力端子を有し前記非反転入力端子と前記反転入力端子からの入力信号電圧を差動入力する、第2極性の第2の差動対と、
    前記第2の差動対の出力対と前記第2の電源との間に接続されている第2の負荷回路と、
    前記第2の電源と前記出力端子との間に接続され、前記第2の差動対の出力に制御端が接続されている第2のトランジスタと、
    を含み、
    前記第1及び第2の差動回路においてそれぞれの前記反転入力端子は前記出力端子に接続され、
    前記入力制御回路が、前記第1の電圧と、前記第2の電圧と、前記所望の電圧をそれぞれ一端に入力する第1乃至第3のスイッチを備え、
    前記第1乃至第3のスイッチの他端同士は、共通接続されて、前記第1及び第2の増幅回路の共通接続された前記非反転入力端子に接続され、
    前記第1の増幅回路が、
    前記第2の電源と前記出力端子との間に直列形態に接続されている、第3の電流源と第4のスイッチをさらに含み、
    前記第2の増幅回路が、
    前記第1の電源と前記出力端子との間に直列形態に接続されている、第4の電流源と第5のスイッチをさらに含む、ことを特徴とする請求項1記載の駆動回路。
  11. 前記第1の増幅回路が、
    第2の電源に接続される第1の電流源と、
    前記第1の電流源で駆動され、非反転入力端子と反転入力端子を有し前記非反転入力端子と前記反転入力端子からの入力信号電圧を差動入力する、第1極性の第1の差動対と、
    前記第1の差動対の出力対と第1の電源との間に接続される第1の負荷回路と、
    前記第1の電源と前記出力端子との間に接続され、前記第1の差動対の出力に制御端が接続されている第1のトランジスタと、
    を含み、
    前記第2の増幅回路が、
    前記第1の電源に接続される第2の電流源と、
    前記第2の電流源で駆動され、非反転入力端子と反転入力端子を有し前記非反転入力端子と前記反転入力端子からの入力信号電圧を差動入力する、第2極性の第2の差動対と、
    前記第2の差動対の出力対と前記第2の電源との間に接続される第2の負荷回路と、
    前記第2の電源と前記出力端子との間に接続され、前記第2の差動対の出力に制御端が接続されている第2のトランジスタと、
    を含み、
    前記第1及び第2の差動回路においてそれぞれの前記反転入力端子は前記出力端子に接続され、
    前記入力制御回路が、前記第1の電圧と、前記第2の電圧とを一端に入力する第1及び第2のスイッチを備え、
    前記所望の電圧を一端に共通に入力する第3及び第4のスイッチを備え、
    前記第1のスイッチの他端と前記第3のスイッチの他端同士は共通接続されて、前記第1の増幅回路の前記非反転入力端子に接続され、
    前記第2のスイッチの他端と前記第4のスイッチの他端同士は共通接続されて、前記第2の増幅回路の前記非反転入力端子に接続され
    前記第1の増幅回路が、
    前記第2の電源と前記出力端子との間に直列形態に接続されている、第3の電流源及び第5のスイッチをさらに含み、
    前記第2の増幅回路が、
    前記第1の電源と前記出力端子との間に直列形態に接続されている、第4の電流源及び第6のスイッチをさらに含む、ことを特徴とする請求項2記載の駆動回路。
  12. 前記第1乃至第5のスイッチは、制御信号によってそれぞれオン・オフ制御され
    前記第1期間では、前記第1又は第2のスイッチがオン状態とされ、前記第3のスイッチはオフ状態され、前記第4及び第5のスイッチはオフ状態とされ、
    前記第2の期間では、前記第3のスイッチがオン状態とされ、前記第1及び第2のスイッチはオフ状態とされ、前記第4及び第5のスイッチの一方がオン状態とされる、ことを特徴とする請求項10記載の駆動回路。
  13. 前記第1乃至第6のスイッチは、制御信号によってそれぞれオン・オフ制御され、
    前記第1期間では、前記第1及び第2のスイッチがオン状態とされ、前記第3及び第4のスイッチはオフ状態され、前記第5及び第6のスイッチはオフ状態とされ、
    前記第2の期間では、前記第3及び第4のスイッチがオン状態とされ、前記第1及び第2のスイッチはオフ状態とされ、前記第5及び第6のスイッチの一方がオン状態とされる、ことを特徴とする請求項11記載の駆動回路。
  14. 前記第1及び第2の増幅回路が、ボルテージフォロワ構成とされている、ことを特徴とする請求項1又は2に記載の駆動回路。
  15. 所望の電圧が入力される前記入力制御回路の入力端子と前記出力端子の間に接続されているスイッチを備え、
    前記出力端子を所望の電圧に駆動する駆動期間が、前記第1の期間と前記第2の期間のあとに第3の期間を備え、
    前記第3の期間において、前記入力端子と前記出力端子の間に接続されている前記スイッチはオン状態とされる、ことを特徴とする請求項1又は2に記載の駆動回路。
  16. 前記第1の動作範囲の下限と上限は、前記第1の増幅回路の動作範囲の下限を規定する第1の閾値電圧と、高位側の電源電圧とで、それぞれ規定され、
    前記第2の動作範囲の上限と下限は、前記第2の増幅回路の動作範囲の上限を規定する第2の閾値電圧と、低位側の電源電圧とで、それぞれ規定され、
    前記第1の電圧は、前記第1の閾値電圧以上の値とされ、
    前記第2の電圧は、前記第1の電圧よりも高電圧であり、且つ、前記高電位側の電源電圧から前記第2の閾値電圧を差し引いた電圧以下の値とされる、ことを特徴とする請求項1又は2に記載の駆動回路。
  17. 表示部の画素に映像信号を供給する複数のデータ線を備え、
    請求項1乃至16のいずれか一に記載の駆動回路を、前記データ線を駆動する回路として備えている表示装置。
JP2003034131A 2003-02-12 2003-02-12 表示装置の駆動回路 Expired - Fee Related JP4025657B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003034131A JP4025657B2 (ja) 2003-02-12 2003-02-12 表示装置の駆動回路
US10/775,194 US7078941B2 (en) 2003-02-12 2004-02-11 Driving circuit for display device
CNB2004100048952A CN100454362C (zh) 2003-02-12 2004-02-12 显示装置的驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034131A JP4025657B2 (ja) 2003-02-12 2003-02-12 表示装置の駆動回路

Publications (2)

Publication Number Publication Date
JP2004247870A JP2004247870A (ja) 2004-09-02
JP4025657B2 true JP4025657B2 (ja) 2007-12-26

Family

ID=32844369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034131A Expired - Fee Related JP4025657B2 (ja) 2003-02-12 2003-02-12 表示装置の駆動回路

Country Status (3)

Country Link
US (1) US7078941B2 (ja)
JP (1) JP4025657B2 (ja)
CN (1) CN100454362C (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619412B1 (ko) * 2004-05-04 2006-09-08 매그나칩 반도체 유한회사 평판표시장치용 드라이버
JP2006310959A (ja) * 2005-04-26 2006-11-09 Nec Corp 差動増幅器及び表示装置のデータドライバ並びに差動増幅器の駆動方法
JP5041393B2 (ja) * 2005-08-16 2012-10-03 株式会社ジャパンディスプレイウェスト 表示装置
TWI343556B (en) * 2006-08-15 2011-06-11 Novatek Microelectronics Corp Voltage buffer and source driver thereof
JP4621235B2 (ja) * 2006-12-13 2011-01-26 パナソニック株式会社 駆動電圧制御装置、駆動電圧切替方法および駆動電圧切替装置
US8035401B2 (en) * 2007-04-18 2011-10-11 Cypress Semiconductor Corporation Self-calibrating driver for charging a capacitive load to a desired voltage
KR101581723B1 (ko) * 2008-12-26 2015-12-31 주식회사 동부하이텍 액정 패널 소스 드라이버를 위한 앰프 출력 보호회로 및 이의 동작 방법
JP5172748B2 (ja) * 2009-03-11 2013-03-27 ルネサスエレクトロニクス株式会社 表示パネルドライバ及びそれを用いた表示装置
EP2341616B1 (en) * 2009-12-23 2013-04-24 STMicroelectronics Design and Application S.R.O. Capacitive load driving amplifier
US8476971B2 (en) * 2010-05-14 2013-07-02 Taiwan Semiconductor Manufacturing Co., Ltd. Buffer operational amplifier with self-offset compensator and embedded segmented DAC for improved linearity LCD driver
WO2012157545A1 (ja) * 2011-05-18 2012-11-22 シャープ株式会社 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
TWI563485B (en) * 2015-09-30 2016-12-21 Raydium Semiconductor Corp Pre-emphasis circuit
JP7000968B2 (ja) * 2018-04-05 2022-01-19 株式会社デンソー スイッチの駆動回路
TWI681629B (zh) * 2018-08-27 2020-01-01 奕力科技股份有限公司 緩衝電路
CN114495790B (zh) * 2022-01-24 2023-11-21 北京奕斯伟计算技术股份有限公司 放大器及控制方法、缓冲器、源极驱动器、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563464A (ja) 1991-09-05 1993-03-12 Hitachi Ltd 演算増幅器回路
JP3392271B2 (ja) 1995-11-02 2003-03-31 シャープ株式会社 演算増幅回路
JP3514111B2 (ja) * 1997-07-09 2004-03-31 株式会社デンソー オフセット電圧補正回路
JP3460519B2 (ja) * 1997-07-18 2003-10-27 株式会社デンソー バッファ回路
JP3425577B2 (ja) 1998-12-28 2003-07-14 Necエレクトロニクス株式会社 演算増幅器
JP3700558B2 (ja) * 2000-08-10 2005-09-28 日本電気株式会社 駆動回路
JP2002318566A (ja) * 2001-04-23 2002-10-31 Hitachi Ltd 液晶駆動回路及び液晶表示装置
JP3791354B2 (ja) * 2001-06-04 2006-06-28 セイコーエプソン株式会社 演算増幅回路、駆動回路、及び駆動方法

Also Published As

Publication number Publication date
JP2004247870A (ja) 2004-09-02
US7078941B2 (en) 2006-07-18
CN100454362C (zh) 2009-01-21
US20040160269A1 (en) 2004-08-19
CN1521715A (zh) 2004-08-18

Similar Documents

Publication Publication Date Title
JP3776890B2 (ja) 表示装置の駆動回路
JP3700558B2 (ja) 駆動回路
US8466909B2 (en) Output buffer having high slew rate, method of controlling output buffer, and display driving device including output buffer
US9147361B2 (en) Output circuit, data driver and display device
JP2993461B2 (ja) 液晶表示装置の駆動回路
US8653893B2 (en) Output circuit, data driver circuit and display device
JP5623883B2 (ja) 差動増幅器及びデータドライバ
KR100717278B1 (ko) 슬루 레이트 조절이 가능한 소스 드라이버
US8363045B2 (en) Class AB amplifier circuit and display apparatus
JP3520418B2 (ja) 演算増幅回路、駆動回路及び演算増幅回路の制御方法
JP4025657B2 (ja) 表示装置の駆動回路
JP3482908B2 (ja) 駆動回路、駆動回路システム、バイアス回路及び駆動回路装置
JP2009296643A (ja) 半導体装置、表示装置、及び電子機器
JP2006050296A (ja) 差動増幅器、及びそれを用いた表示装置のデータドライバ
JP4412027B2 (ja) 増幅回路及び表示装置
JP3228411B2 (ja) 液晶表示装置の駆動回路
JP2007171225A (ja) 増幅回路、液晶表示装置用駆動回路及び液晶表示装置
JP2002353792A (ja) 駆動回路および表示装置
KR100608743B1 (ko) 액정 디스플레이의 구동 장치
KR100597312B1 (ko) 액정표시장치용 저전력 소스 드라이버
JP3988163B2 (ja) 液晶表示装置におけるソース駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Ref document number: 4025657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees