JP3909366B2 - Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition - Google Patents
Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition Download PDFInfo
- Publication number
- JP3909366B2 JP3909366B2 JP2001254877A JP2001254877A JP3909366B2 JP 3909366 B2 JP3909366 B2 JP 3909366B2 JP 2001254877 A JP2001254877 A JP 2001254877A JP 2001254877 A JP2001254877 A JP 2001254877A JP 3909366 B2 JP3909366 B2 JP 3909366B2
- Authority
- JP
- Japan
- Prior art keywords
- porcelain composition
- dielectric constant
- composition
- low
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、数GHzから数十GHzの高周波領域で使用する電子部品やモジュールに好適な誘電体の磁器組成物およびその磁器組成物を用いた電子回路用基板の製造方法に関する。
【0002】
【従来の技術】
近年、情報の高速大量伝達通信および移動体通信の発達にともない、基板上の集積回路においては、小型化、高密度化ばかりでなく、取り扱われる信号に数GHzさらにはそれ以上の帯域の周波数の利用が検討されており、基板に用いられる誘電体の磁器組成物に対しても、このような高周波帯域に適合した材料が要望されている。この磁器組成物に要求される性能は、高周波帯域において比誘電率が低いこと、誘電損失tanδが小さいことすなわちQ値が高いことである。
【0003】
一般に、比誘電率が低いほど誘電体中の信号伝搬速度は速くなるので、高周波帯域の用途には比誘電率εrは低いことが望ましい。そして信号伝達の上で損失は少なければ少ないほどよく、Q値はできるだけ高くする必要がある。また、誘電体としての機能は例えばフィルタや共振器などに利用されるが、その際に温度変化に対して安定な作動をさせるためには、共振周波数の温度係数τfの絶対値はできるだけ小さいこと、すなわち温度依存性の少ないことが重要になる。
【0004】
実装基板に内部導体や内部電極として利用される導電材料は、小型化、高密度化から細線化が要求されることもあって、比抵抗値が高ければそれだけ損失が増し、さらには発熱の原因となるので、できるだけ低抵抗であることが望ましい。このような低抵抗材料は、Ag、CuまたはAuなどであるが、これらの金属はいずれも融点が1000℃前後と低い。
【0005】
磁器組成物を基板とする集積回路は、グリーンシートにペースト状の導電体素材を用いて回路パターンを印刷し、これらのシートを積層して一体化焼成により、導電材料と磁器組成物とが同時に焼結され形成される。しかし、焼成温度が導体金属の融点近くさらには融点以上になると拡散や流動化が生じ、とくにAgの場合、導体が細くなったり消失してしまうおそれがある。このため、磁器組成物としては1000℃以下の焼成温度で焼結できるものでなければならない。
【0006】
このような低温での焼成が可能な磁器組成物として、いわゆるガラスセラミックスがある。これは、ガラスにセラミックスの骨材を混在させたもので、ガラスの軟化により低温での焼結を可能にしており、骨材とガラスとの組み合わせで様々な改良が行われている。たとえば特開平10-297960号公報に開示された発明は、骨材としてオルト珪酸亜鉛(Zn2SiO4)およびクリストバライト(SiO2)、ガラスとしてSiO2−Li2O−ZnOを用い、焼成温度は800〜1000℃で損失が小さく誘電率の低いセラミックスが得られるとしている。
【0007】
しかしながらガラスセラミックスはガラス組成が多いので、一般に比誘電率は低いがQ値も低く、したがって高周波帯域における損失が大きく、その上共振周波数の温度係数τfが大きいため、周波数帯域が高くなるとこれらによる性能低下が問題化してくる。また多くの場合、ガラス組成とセラミックス組成とを別々に作製し、これらを混合してグリ−ンシートとするので製造工程が繁雑である。
【0008】
【発明が解決しようとする課題】
本発明の目的は、低温焼結が可能で、比誘電率が低く高周波帯域での損失が小さく、かつ温度依存性の小さい低誘電率磁器組成物とその磁器組成物を用いた電子回路用基板の製造方法の提供にある。
【0009】
【課題を解決するための手段】
本発明者らは、2GHzまたはそれ以上の高周波帯域で電子回路用基板として使用される磁器組成物の性能を改善すべく種々検討をおこなった。ここで比誘電率εr、誘電損失tanδおよび温度係数τfは、いずれも両端短絡形誘電体共振器法(ハッキ・コールマン法)を用いて測定した。その際に目標とした性能は、比誘電率εrが10以下と低く、Q(誘電正接tanδの逆数)と周波数f(GHzで表示)との積が3500以上で、共振周波数の温度係数が−30〜+30ppm/℃であり、そして、基板作製のための焼成温度すなわち焼結可能温度は、Ag導体の適用可能限界である950℃またはそれ以下であることとした。
【0010】
Q値には周波数依存性があり周波数が高くなると低下の傾向を示すので、材料によりほぼ一定の値を示すとされるfQ値(fとQとの積の値)の大小で、損失の優劣を比較することにした。種々の磁器組成物にてその性能を比較検討した結果、在来材よりすぐれていると判断されたのは、上記のようにfQ値が3500以上の材料である。共振周波数の温度依存性は、両端短絡形誘電体共振器法にて共振周波数の温度係数τfとして計測されるが、このτfが−30〜+30ppm/℃、すなわちその絶対値が30ppm/℃より小さければ、在来材より改善できていると考えられる。
【0011】
室温近傍における比抵抗の最も低い材料であるAgを導体として用いるには、磁器組成物の焼成温度はAgの融点960.5℃以下にすべきであり、拡散や磁器組成物との反応を配慮すれば、950℃以下で、十分緻密な強度のある焼結体にする必要がある。
【0012】
ガラスまたはガラスセラミックスはこのような低温での焼結が可能であるが、前述のようにQ値が小さいため損失が大きく、温度依存性も大きいので、セラミックスの磁器組成物で、上記の目標性能を実現する可能性について検討した。まずセラミックスを構成する成分としてのSiO2とZnOとは、比誘電率が低く高いQ値の高周波用の磁器組成物を得るためには必須であると考えられた。そこで、これら2成分を主要組成とし、種々の成分含有による焼結温度の低下を検討した。
【0013】
その結果、Bi2O3、K2O、CuOおよびLi2Oの4成分の複合添加が、焼結温度の低下にきわめて有効であることが見出された。これらの各成分は、焼結温度の低下に効果があるが、単独では多くの含有を必要とし、そうするとQ値が大きく低下してくる。これに対し複合して添加すると、それぞれの成分個々の効果は必ずしも明らかではないが、Q値の低下を少なくして、大きく焼結温度を低下させることができたのである。
【0014】
このようにして得られた組成物に、さらにTiO2とMgOとを併せて含有させると、Q値の低下や比誘電率の増大を少なくして共振周波数の温度係数τfを小さくすることができた。TiO2を含有させるとτfが小さくなる。ところが、それとともに比誘電率が高くなり、加えてQ値が大幅に低下する。これに対し、MgOを併せて含有させると、Q値の大幅低下なしにτfを小さくできることがわかったのである。MgOのみの添加ではτfを小さくする効果はなく、Q値が多少改善されるだけであった。TiO2に併せて添加することによりこのような効果が得られるが、その理由は明らかでない。
【0015】
以上のような検討結果から、さらにそれぞれの成分含有の効果を有効に発揮できる限界を確認して本発明を完成させた。本発明の要旨は次のとおりである。
(1)酸化物組成比として質量%で、SiO2:18.0〜40.0%、ZnO:30.0〜54.0%、Bi2O3:1.0〜6.0%、MgO:1.0〜6.0%、TiO2:4.0〜12.4%、Li2O:0.2〜1.1%、K2O:3.0〜7.4%およびCuO:0.5〜3.7%を含有することを特徴とする低誘電率磁器組成物。
(2)各酸化物の粉末原料を所要量配合しボールミルにて湿式混合して、乾燥後700〜900℃にて仮焼後粉砕整粒した後、バインダを添加して混練し成形して、導電体の印刷および積層をおこなってから、800〜950℃にて焼結することを特徴とする、酸化物組成比として質量%で、SiO 2 : 18.0 〜 40.0 %、ZnO: 30.0 〜 54.0 %、Bi 2 O 3 : 1.0 〜 6.0 %、MgO: 1.0 〜 6.0 %、TiO 2 : 4.0 〜 12.4 %、Li 2 O: 0.2 〜 1.1 %、K 2 O: 3.0 〜 7.4 %およびCuO: 0.5 〜 3.7 %を含有する磁器組成物を用いた電子回路用基板の製造方法。
【0016】
【発明の実施の形態】
本発明の低誘電率磁器組成物の成分組成範囲を以下のとおりに限定する。ここで含有組成は酸化物の形で表した質量%である。
【0017】
SiO2の含有範囲は18.0〜40.0%とする。これは含有量が18.0%未満であっても40.0%を超えても、高周波域におけるQ値が低下するからである。望ましいのは19.4〜39.7%である。
【0018】
ZnOは30.0〜54.0%とする。SiO2と共に含有させることにより強度、密度、絶縁性、熱伝導度など、磁器組成物の基本的特性を具現させる。30.0%未満の場合、950℃以下の焼成温度では焼結が不十分となって緻密な磁器組成物にならず機械的強度が不足し、54.0%を超えて含有するとQ値が低下する。望ましいのは32.1〜50.8%である。
【0019】
Bi2O3は1.0〜6.0%、K2Oは3.0〜7.4%、Li2Oは0.2〜1.1%、そしてCuOは0.5〜3.7%をそれぞれ含有させる。これらの成分を同時に含有させた組成とすることにより、焼成温度が950℃以下で緻密な強度の十分大きい磁器組成物に焼結することができる。それぞれの成分はいずれも上記の下限量を下回ると焼結温度低下の効果が十分でなくなり、緻密な磁器組成物が得られない。しかしいずれも上記の上限値を超えて含有させると、Q値が低下し損失が増加する。より好ましい含有範囲は、それぞれBi2O3は1.2〜5.0%、K2Oは3.0〜7.0%、Li2Oは0.2〜1.0%、そしてCuOは1.0〜3.3%である。
【0020】
TiO2は4.0〜12.4%、MgOは1.0〜6.0%を併せて含有させる。TiO2は共振周波数の温度係数を小さくするために含有させるが、この効果を得るには4.0%以上の含有が必要である。しかし比誘電率が高くなり、Q値が低下してくるのでTiO2の含有量は12.4%以下にしなければならない。MgOはこのTiO2含有による比誘電率の増大およびQ値の低下を抑止する作用があり、その効果を得るために少なくとも1.0%以上含有させる。しかしMgOは焼結性を悪くするので、多くても6.0%までとする。好ましい含有範囲はTiO2が4.4〜11.8%、MgOが1.1〜5.5%である。
【0021】
上記以外の成分としては、原料に混入してくる種々の不純物があるが、磁器組成物の特性に悪影響をおよぼさないものであれば、とくには限定しない。
【0022】
磁器組成物の製造は、通常のセラミックを焼結する方法に準じておこなえばよいが、原料となる各成分のそれぞれの酸化物粉末を所要量用意し、ボールミルにて十分に混合する。酸化物粉末はK2Oのように吸湿性のある不安定な材料の場合、炭酸塩など他の形のものを用いてもよく、その場合は焼結後の酸化物量に相当するモル分量の粉末を配合する。混合後仮焼して、セラミックの形成反応がおこなわれていることを確認してから粉砕整粒する。仮焼は最終焼成にて十分に焼結させるためには低い温度でおこなうことが望ましいが、低すぎるとセラミックの形成反応が生じないので、700〜900℃とするのがよい。
【0023】
整粒粉にバインダ等を添加して混練し成形して、必要により導電回路の印刷、積層、最終形状への加工等をおこなって、800〜950℃で焼成し磁器組成物とする。焼成温度は800℃未満では焼結が十分おこなわれず、緻密性に欠け機械的強度が得られないことがある。また内部導体にAgを用いるときは導体の流失や拡散消失を引き起こすことがあるので、焼成温度を950℃までとするのがよい。なお、内部導体にCuを用いる場合、950℃を超えて焼成をおこなってもよいが、Cuの酸化を抑止するため、酸素を含まない例えば窒素雰囲気など不活性雰囲気とする必要がある。その場合、保持台などとの焼き付きを生じる恐れがあるので、1000℃までとすることが好ましい。
【0024】
【実施例】
95%以上の高純度のSiO2、ZnO、Bi2O3、MgO、TiO2、K2O(K2CO3として)およびCuOの粉末原料にて表1の組成の配合とし、磁器組成物を作製した。
【0025】
所定の組成に配合した原料粉末をジルコニア製ボールのボールミルを用い、純水を加えて24時間湿式混合し、乾燥後ライカイ機にて攪拌した後、約750℃で2時間仮焼した。仮焼後X線回折により、焼結反応がおこなわれたことを確認し、さらにジルコニア製ボールのボールミルにて純水を加えて24時間粉砕して、粒径1〜4μmの粉末とした。乾燥後10%PVA水溶液のバインダーを加えて造粒し、金型を用い1t/cm2の圧力にて直径15mm、高さ8mmの円柱状に成形後、大気中で焼成をおこなって試片を作製した。
【0026】
その場合、各試料は一部の試片を用いてあらかじめ840〜980℃温度で試験的に焼成して、十分な緻密化に必要な温度を見出し、その温度を焼成温度として該当試料の全試片の焼成をおこなった。焼成時間はいずれも2時間である。
【0027】
焼成後の焼結体は、底面を研磨し平滑にしてから両端短絡形誘電体共振器法により比誘電率εrおよび誘電損失tanδ(またはQ=1/tanδ)を求めた。誘電損失は測定共振周波数fにより変化するので、周波数に影響されず被測定材で一定の値になるとされるfとQとの積のfQ値で損失の大小を評価した。共振周波数の温度係数τfは、−25℃から85℃までの温度範囲で共振周波数を測定し、25℃における共振周波数f0を基準としてその変化率から求めた。これらの測定結果を併せて表2に示す。
【0028】
【表1】
【0029】
【表2】
【0030】
表2の結果からわかるように、各酸化物成分の含有量が本発明にて定める範囲内である試番1〜20では、焼成温度すなわち焼結可能温度が、Ag導体の適用可能限界である950℃またはそれ以下であり、当初目標とした比誘電率εrが10以下で、Qf値が3500以上、共振周波数の温度係数τfが−30〜+30ppm/℃のものが得られている。
【0031】
これに対し、組成が本発明で規定した範囲を外れると、上述の特性のすべてを満足する磁器組成物が得られない。例えば、Li2Oが規定範囲より低い試番36ではfQ値が高くτfが小さいすぐれたものが得られるが、その特性を得るための必要焼成温度は980℃と高く、Agの導体使用には不適当である。Bi2O3を規定範囲より多く含む試番29では860℃で焼結でき、比誘電率εrが低く温度係数τfは小さいが、fQ値が低く損失が大きい。また、試番38では低い比誘電率で高いfQ値が低い焼成温度で得られているが、TiO2の量が規定範囲を下回っており、温度係数τfが大きな値を示している。
【0032】
なお、試番32および34は、Q値が低すぎ、両端短絡形誘電体共振器法では、これらの特性が測定できなかった。
【0033】
このように、本発明の低誘電率磁器組成物は、比誘電率が低く高周波帯域における損失が低く、温度依存性が小さいものであり、しかも低い焼成温度でその特性を得ることができる。
【0034】
【発明の効果】
本発明の低誘電率磁器組成物は、比誘電率が低く高周波帯域における損失が低く、温度依存性が小さいものであり、しかも低い焼成温度でその特性を得ることができる。したがって、内部導体や電極として比抵抗の低いAgを使用することができ、すぐれた高周波性能と相俟って、電子回路の高周波化、小型化、高密度化のための基板用等の用途に好適である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a dielectric porcelain composition suitable for an electronic component or module used in a high frequency region of several GHz to several tens of GHz, and a method for manufacturing an electronic circuit board using the porcelain composition .
[0002]
[Prior art]
In recent years, with the development of high-speed mass communication and mobile communication of information, in the integrated circuit on the substrate, not only miniaturization and high density, but also the signal to be handled has a frequency of several GHz or more. Utilization has been studied, and a material suitable for such a high frequency band is also demanded for a dielectric ceramic composition used for a substrate. The performance required for this porcelain composition is that the relative permittivity is low in the high frequency band, the dielectric loss tan δ is small, that is, the Q value is high.
[0003]
In general, the lower the relative permittivity, the faster the signal propagation speed in the dielectric, so it is desirable that the relative permittivity ε r be low for high frequency band applications. The smaller the loss in signal transmission, the better. The Q value should be as high as possible. In addition, the function as a dielectric is used for, for example, a filter or a resonator. In this case, the absolute value of the temperature coefficient τ f of the resonance frequency is as small as possible in order to perform a stable operation against a temperature change. That is, it is important that the temperature dependency is small.
[0004]
Conductive materials used as internal conductors and internal electrodes on the mounting substrate may be required to be thinned due to miniaturization and high density, so the higher the specific resistance value, the more the loss increases and the cause of heat generation Therefore, it is desirable that the resistance is as low as possible. Such a low resistance material is Ag, Cu, Au, or the like, but these metals all have a melting point as low as about 1000 ° C.
[0005]
An integrated circuit using a porcelain composition as a substrate prints a circuit pattern using a paste-like conductor material on a green sheet, and laminates these sheets and fires them together so that the conductive material and the porcelain composition are simultaneously formed. Sintered and formed. However, when the firing temperature is close to the melting point of the conductor metal or higher than the melting point, diffusion and fluidization occur, and in particular, in the case of Ag, the conductor may become thin or disappear. For this reason, the porcelain composition must be capable of being sintered at a firing temperature of 1000 ° C. or less.
[0006]
As such a porcelain composition that can be fired at a low temperature, there is a so-called glass ceramic. This is a mixture of ceramic aggregates in glass, which makes it possible to sinter at low temperatures by softening the glass, and various improvements have been made by combining aggregates and glass. For example, in the invention disclosed in Japanese Patent Laid-Open No. 10-297960, zinc orthosilicate (Zn 2 SiO 4 ) and cristobalite (SiO 2 ) are used as aggregates, and SiO 2 —Li 2 O—ZnO is used as glass. It is said that ceramics with low loss and low dielectric constant can be obtained at 800-1000 ° C.
[0007]
However, since glass ceramics have a large glass composition, the dielectric constant is generally low but the Q value is also low. Therefore, the loss in the high frequency band is large, and the temperature coefficient τ f of the resonance frequency is large. Performance degradation becomes a problem. In many cases, the glass composition and the ceramic composition are prepared separately and mixed to obtain a green sheet, which makes the manufacturing process complicated.
[0008]
[Problems to be solved by the invention]
An object of the present invention is a low dielectric constant ceramic composition that can be sintered at low temperature, has a low relative dielectric constant, has a low loss in a high frequency band, and has a low temperature dependency, and a substrate for an electronic circuit using the ceramic composition To provide a manufacturing method.
[0009]
[Means for Solving the Problems]
The present inventors have made various studies to improve the performance of a porcelain composition used as an electronic circuit substrate in a high frequency band of 2 GHz or higher. Here, the relative permittivity ε r , the dielectric loss tan δ, and the temperature coefficient τ f were all measured by using a both-end short-circuited dielectric resonator method (Hack-Coleman method). The target performance at that time is that the relative dielectric constant ε r is as low as 10 or less, the product of Q (reciprocal of dielectric loss tangent tan δ) and frequency f ( expressed in GHz) is 3500 or more, and the temperature coefficient of the resonance frequency is The firing temperature for substrate production, that is, the sinterable temperature, was 950 ° C. or lower, which is the applicable limit of Ag conductors.
[0010]
Since the Q value has frequency dependency and tends to decrease as the frequency increases, the fQ value (the value of the product of f and Q), which is assumed to show a substantially constant value depending on the material, is superior or inferior in loss. Decided to compare. As a result of comparing and examining the performance of various porcelain compositions, it was determined that the material having an fQ value of 3500 or more was determined to be superior to conventional materials. The temperature dependence of the resonance frequency is measured as a temperature coefficient τ f of the resonance frequency by the double-end short-circuited dielectric resonator method. This τ f is −30 to +30 ppm / ° C., that is, its absolute value is 30 ppm / ° C. If it is smaller, it is considered that it is improved over conventional materials.
[0011]
In order to use Ag, which is the material having the lowest specific resistance near room temperature, as the conductor, the firing temperature of the porcelain composition should be below the melting point of Ag of 960.5 ° C., considering diffusion and reaction with the porcelain composition. It is necessary to make the sintered body sufficiently strong at 950 ° C. or less.
[0012]
Glass or glass-ceramics can be sintered at such a low temperature. However, as described above, since the Q value is small, the loss is large and the temperature dependence is large. We examined the possibility of realizing this. First, it was considered that SiO 2 and ZnO as components constituting ceramics are indispensable for obtaining a high-frequency porcelain composition having a low relative dielectric constant and a high Q value. Therefore, these two components were used as main compositions, and the reduction of the sintering temperature due to the inclusion of various components was examined.
[0013]
As a result, it has been found that the combined addition of four components of Bi 2 O 3 , K 2 O, CuO and Li 2 O is extremely effective for lowering the sintering temperature. Each of these components is effective in lowering the sintering temperature, but it alone needs to be contained in a large amount, so that the Q value is greatly lowered. On the other hand, when added in combination, the effect of each component is not necessarily clear, but the decrease in the Q value can be reduced and the sintering temperature can be greatly reduced.
[0014]
When TiO 2 and MgO are further contained in the composition thus obtained, the temperature coefficient τ f of the resonance frequency can be reduced by reducing the decrease in the Q value and the increase in the relative dielectric constant. did it. When TiO 2 is contained, τ f becomes small. However, the relative dielectric constant increases with this, and in addition, the Q value significantly decreases. On the other hand, it has been found that when MgO is contained together, τ f can be reduced without a significant decrease in the Q value. No effect of reducing the tau f in the addition of MgO only, Q value was only slightly improved. Such an effect can be obtained by adding it together with TiO 2 , but the reason is not clear.
[0015]
Based on the above examination results, the present invention was completed by confirming the limit of effectively exhibiting the effect of each component. The gist of the present invention is as follows.
(1) in mass% as the oxide composition ratio, SiO 2: 18.0~40.0%, ZnO : 30.0~54.0%, Bi 2 O 3: 1.0~6.0%, MgO: 1.0~6.0%, TiO 2: 4.0~12.4 %, Li 2 O: 0.2 to 1.1%, K 2 O: 3.0 to 7.4%, and CuO: 0.5 to 3.7%.
(2) Each oxide powder raw material is blended in a required amount and wet-mixed in a ball mill, dried, calcined at 700 to 900 ° C., pulverized and sized, then added with a binder, kneaded and molded, After conducting printing and laminating of the conductor, it is sintered at 800 to 950 ° C. , and the oxide composition ratio is mass%, SiO 2 : 18.0 to 40.0 %, ZnO: 30.0 to 54.0 %, Bi 2 O 3: 1.0 ~ 6.0 %, MgO: 1.0 ~ 6.0%, TiO 2: 4.0 ~ 12.4%, Li 2 O: 0.2 ~ 1.1%, K 2 O: 3.0 ~ 7.4% and CuO: the 0.5 to 3.7% The manufacturing method of the board | substrate for electronic circuits using the porcelain composition containing .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The component composition range of the low dielectric constant ceramic composition of the present invention is limited as follows. Here, the content composition is mass% expressed in the form of an oxide.
[0017]
The content range of SiO 2 is 18.0 to 40.0%. This is because the Q value in the high-frequency region decreases even if the content is less than 18.0% or exceeds 40.0%. Desirable is 19.4 to 39.7%.
[0018]
ZnO is 30.0 to 54.0%. By incorporating it together with SiO 2 , the basic characteristics of the porcelain composition such as strength, density, insulation and thermal conductivity are realized. When the content is less than 30.0%, sintering is insufficient at a firing temperature of 950 ° C. or lower, resulting in a dense porcelain composition and insufficient mechanical strength. When the content exceeds 54.0%, the Q value decreases. Desirable is 32.1 to 50.8%.
[0019]
Bi 2 O 3 contains 1.0 to 6.0%, K 2 O contains 3.0 to 7.4%, Li 2 O contains 0.2 to 1.1%, and CuO contains 0.5 to 3.7%. By using a composition containing these components at the same time, it can be sintered into a ceramic composition having a dense and sufficiently strong firing temperature of 950 ° C. or lower. If each component is less than the above lower limit, the effect of lowering the sintering temperature is not sufficient, and a dense porcelain composition cannot be obtained. However, if both are included exceeding the above upper limit value, the Q value decreases and the loss increases. More preferable content range is, Bi 2 O 3 is 1.2 to 5.0%, respectively, K 2 O is 3.0 to 7.0% Li 2 O 0.2 to 1.0%, and CuO is from 1.0 to 3.3%.
[0020]
TiO 2 is contained in an amount of 4.0 to 12.4%, and MgO is contained in an amount of 1.0 to 6.0%. TiO 2 is contained in order to reduce the temperature coefficient of the resonance frequency, but 4.0% or more is necessary to obtain this effect. However, since the relative permittivity increases and the Q value decreases, the content of TiO 2 must be 12.4% or less. MgO has an action of suppressing the increase of the relative dielectric constant and the decrease of the Q value due to the inclusion of TiO 2, and is contained at least 1.0% in order to obtain the effect. However, MgO deteriorates the sinterability, so it is at most 6.0%. Preferred range of content TiO 2 is 4.4 to 11.8%, MgO is 1.1 to 5.5%.
[0021]
The components other than the above are various impurities mixed into the raw material, but are not particularly limited as long as they do not adversely affect the characteristics of the porcelain composition.
[0022]
The production of the porcelain composition may be carried out in accordance with a method for sintering ordinary ceramics, but a required amount of each oxide powder of each component as a raw material is prepared and sufficiently mixed in a ball mill. When the oxide powder is a hygroscopic unstable material such as K 2 O, other forms such as carbonate may be used, and in that case, the oxide powder has a molar amount corresponding to the oxide amount after sintering. Blend powder. After mixing, the mixture is calcined, and after confirming that the ceramic formation reaction has been performed, pulverization and sizing. The calcination is desirably performed at a low temperature in order to be sufficiently sintered in the final calcination, but if it is too low, a ceramic formation reaction does not occur.
[0023]
A binder or the like is added to the sized powder, kneaded and molded, and if necessary, the conductive circuit is printed, laminated, processed into a final shape, etc., and fired at 800 to 950 ° C. to obtain a porcelain composition. When the firing temperature is less than 800 ° C., sintering is not sufficiently performed, and the mechanical strength may not be obtained due to lack of denseness. When Ag is used for the inner conductor, the conductor may be lost or diffused, so the firing temperature should be up to 950 ° C. In addition, when using Cu for an internal conductor, you may bake over 950 degreeC, However, In order to suppress the oxidation of Cu, it is necessary to set it as inert atmospheres, such as nitrogen atmosphere which does not contain oxygen. In that case, it is preferable to set the temperature up to 1000 ° C. because there is a possibility that seizure with a holding table or the like may occur.
[0024]
【Example】
A porcelain composition having a composition of Table 1 composed of powder materials of high purity SiO 2 , ZnO, Bi 2 O 3 , MgO, TiO 2 , K 2 O (as K 2 CO 3 ) and CuO having a purity of 95% or more Was made.
[0025]
The raw material powder blended in a predetermined composition was added with pure water using a ball mill made of zirconia balls, wet-mixed for 24 hours, dried and stirred with a laika machine, and calcined at about 750 ° C. for 2 hours. After calcination, it was confirmed by X-ray diffraction that a sintering reaction was performed, and further, pure water was added in a ball mill made of zirconia balls and pulverized for 24 hours to obtain powder having a particle diameter of 1 to 4 μm. After drying, add a binder of 10% PVA aqueous solution, granulate it, mold it into a cylindrical shape with a diameter of 15mm and a height of 8mm at a pressure of 1t / cm 2 using a mold, and then fire it in the air to make a specimen. Produced.
[0026]
In that case, each sample is preliminarily baked experimentally at a temperature of 840 to 980 ° C. using a part of the sample, and a temperature necessary for sufficient densification is found. The piece was fired. Both firing times are 2 hours.
[0027]
The sintered body after firing was smoothed by polishing the bottom surface, and then the relative permittivity ε r and the dielectric loss tan δ (or Q = 1 / tan δ) were determined by a double-end short-circuited dielectric resonator method. Since the dielectric loss varies depending on the measurement resonance frequency f, the magnitude of the loss was evaluated by the fQ value of the product of f and Q, which is assumed to be a constant value in the measured material without being influenced by the frequency. The temperature coefficient τ f of the resonance frequency was obtained from the rate of change with the resonance frequency f 0 at 25 ° C. as a reference by measuring the resonance frequency in the temperature range from −25 ° C. to 85 ° C. These measurement results are shown together in Table 2.
[0028]
[Table 1]
[0029]
[Table 2]
[0030]
As can be seen from the results in Table 2, in trial numbers 1 to 20 in which the content of each oxide component is within the range defined in the present invention, the firing temperature, that is, the sinterable temperature is the applicable limit of the Ag conductor. 950 ° C. or lower, an initial target dielectric constant ε r of 10 or less, a Qf value of 3500 or more, and a resonance frequency temperature coefficient τ f of −30 to +30 ppm / ° C. are obtained.
[0031]
On the other hand, if the composition is out of the range defined in the present invention, a porcelain composition satisfying all of the above characteristics cannot be obtained. For example, sample No. 36 with a Li 2 O lower than the specified range can provide an excellent one with a high fQ value and a small τ f, but the necessary firing temperature for obtaining the characteristics is as high as 980 ° C. Is inappropriate. Sample 29 containing more Bi 2 O 3 than the specified range can be sintered at 860 ° C., has a low dielectric constant ε r and a small temperature coefficient τ f , but has a low fQ value and a large loss. Further, in the trial number 38, a high fQ value with a low relative dielectric constant is obtained at a low firing temperature, but the amount of TiO 2 is below the specified range, and the temperature coefficient τ f shows a large value.
[0032]
In the trial numbers 32 and 34, the Q value was too low, and these characteristics could not be measured by the both-end short-circuited dielectric resonator method.
[0033]
As described above, the low dielectric constant ceramic composition of the present invention has a low relative dielectric constant, a low loss in a high frequency band, a small temperature dependency, and can obtain the characteristics at a low firing temperature.
[0034]
【The invention's effect】
The low dielectric constant ceramic composition of the present invention has a low relative dielectric constant, a low loss in a high frequency band, a small temperature dependency, and its characteristics can be obtained at a low firing temperature. Therefore, Ag having a low specific resistance can be used as an internal conductor or electrode, and combined with excellent high frequency performance, it can be used for applications such as substrates for higher frequency, smaller size, and higher density of electronic circuits. Is preferred.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001254877A JP3909366B2 (en) | 2001-08-24 | 2001-08-24 | Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001254877A JP3909366B2 (en) | 2001-08-24 | 2001-08-24 | Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003063857A JP2003063857A (en) | 2003-03-05 |
JP3909366B2 true JP3909366B2 (en) | 2007-04-25 |
Family
ID=19082963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001254877A Expired - Lifetime JP3909366B2 (en) | 2001-08-24 | 2001-08-24 | Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3909366B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7300897B2 (en) | 2003-04-15 | 2007-11-27 | Nikko Company | Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component |
KR100727227B1 (en) * | 2006-03-29 | 2007-06-13 | 신일산 | Carbon solid heat exchanger for ventilating system |
JP4748799B2 (en) * | 2006-09-05 | 2011-08-17 | ニッコー株式会社 | Low-frequency fired porcelain composition for high frequency and its manufacturing method |
CN112823144B (en) * | 2018-07-11 | 2023-01-24 | 福禄公司 | High Q LTCC dielectric compositions and devices |
-
2001
- 2001-08-24 JP JP2001254877A patent/JP3909366B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003063857A (en) | 2003-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3687443B2 (en) | Low temperature fired ceramic composition and ceramic multilayer substrate | |
WO1997002221A1 (en) | Dielectric porcelain, process for production thereof, and electronic parts produced therefrom | |
JP4632534B2 (en) | Dielectric porcelain and manufacturing method thereof | |
US20090105063A1 (en) | Dielectric Ceramic Composition | |
JP3737774B2 (en) | Dielectric ceramic composition | |
JP4775583B2 (en) | Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same | |
JP3909366B2 (en) | Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition | |
JPWO2006109465A1 (en) | Dielectric ceramic composition and high frequency device using the same | |
JP2000239061A (en) | Dielectric porcelain composition | |
KR100586951B1 (en) | Method for manufacturing non-reducible dielectric composition | |
JP3870015B2 (en) | Dielectric ceramic composition and manufacturing method thereof | |
JP3909367B2 (en) | Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition | |
JP4337818B2 (en) | Porcelain composition | |
WO2004103929A1 (en) | Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component | |
JP4442077B2 (en) | Porcelain composition for high frequency components | |
JP4534413B2 (en) | Method for producing low dielectric constant porcelain composition for high frequency component | |
JP4618856B2 (en) | Low temperature fired porcelain | |
JP3839868B2 (en) | Dielectric ceramic composition and electronic component | |
JP4097018B2 (en) | Dielectric porcelain composition | |
JP3754827B2 (en) | High frequency dielectric ceramic composition and laminate | |
JP3631589B2 (en) | Dielectric porcelain composition and laminate | |
JP4097019B2 (en) | Dielectric porcelain composition | |
JP3631607B2 (en) | High frequency dielectric ceramics and laminates | |
JPH11100262A (en) | Dielectric ceramic composition and layered product | |
JP2008254950A (en) | Dielectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040127 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040312 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040312 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3909366 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140202 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |