Nothing Special   »   [go: up one dir, main page]

JP3870015B2 - Dielectric ceramic composition and manufacturing method thereof - Google Patents

Dielectric ceramic composition and manufacturing method thereof Download PDF

Info

Publication number
JP3870015B2
JP3870015B2 JP2000235991A JP2000235991A JP3870015B2 JP 3870015 B2 JP3870015 B2 JP 3870015B2 JP 2000235991 A JP2000235991 A JP 2000235991A JP 2000235991 A JP2000235991 A JP 2000235991A JP 3870015 B2 JP3870015 B2 JP 3870015B2
Authority
JP
Japan
Prior art keywords
terms
ceramic composition
dielectric ceramic
dielectric
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000235991A
Other languages
Japanese (ja)
Other versions
JP2002053370A (en
Inventor
直樹 松井
良男 築山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Murata Manufacturing Co Ltd
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc, Murata Manufacturing Co Ltd filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2000235991A priority Critical patent/JP3870015B2/en
Publication of JP2002053370A publication Critical patent/JP2002053370A/en
Application granted granted Critical
Publication of JP3870015B2 publication Critical patent/JP3870015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は数GHZ 〜数十GHZ の高周波帯域で使用される電子部品を形成するために用いられ、低抵抗金属と低温同時焼成が可能な誘電体磁器組成物及びその製造方法に関する。
【0002】
【従来の技術】
近年の高速無線や移動体通信等の発達に伴い、数GHz (2〜6GHz )帯、更にはそれ以上の周波数帯の利用の検討が進められており、高周波対応の誘電体磁器組成物の開発が進められている。この誘電体磁器組成物で形成される誘電体基板には、材料である誘電体磁器組成物の誘電損失tanδを小さくし、すなわちQ値を高め、使用する電極材料の抵抗をより小さくして高周波帯での損失を抑えることが必要である。また、特に誘電体にフィルタ機能を有するものに関しては、共振周波数の温度係数(τf)を小さくして温度安定性をよくする必要がある。使用する電極材料の抵抗をより小さくするために、電極材料としてはAu、Ag、Cu、Ag−Pd等の低抵抗金属が使用されており、これら融点の低い金属(Auが1063℃、Agが961℃、Cuが1083℃)と同時焼成するために焼成温度の低い誘電体磁器組成物が用いられている。
【0003】
一方、電子部品の小型化に伴い、誘電体基板自体も小型化の要求が強く、このような基板は、誘電体グリーンシートに多層積層法を利用して形成される。すなわち、基板は、誘電体グリーンシートに低抵抗金属からなる電極用の導体ペーストで電極パターンを印刷した後、各誘電体グリーンシートを積層し、低抵抗金属と同時焼成して形成している。誘電体基板の表層の外部電極は、誘電体グリーンシートと内部電極用の導体ペーストを同時焼成した後に、表層に外部電極用の導体ペーストの後付けを行って、再度焼成して形成することもある。
このような誘電体基板を形成するための誘電体磁器組成物としては、ガラスとセラミック原料をそれぞれ準備し、混合して形成され、低温(1000℃以下)で焼成できるガラスセラミックが誘電率が低いことから高周波用として用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述したような従来の誘電体磁器組成物(ガラスセラミック)及びその製造方法においては、次のような課題がある。
(1)従来のガラスセラミックは誘電率は低いものの、Q値が小さく(材料のtanδが高い)高周波帯での損失が大きい。数GHz (2〜6GHz )帯、更にはそれ以上の周波数帯の利用においては、誘電体基板の伝送線路や部品内の損失を小さくする必要により、Q値はf・Q値で示した時に4000GHz 以上が求められている。
(2)また、従来のガラスセラミックは共振周波数の温度係数(τf)が大きく(±30ppm/℃を超えている)、特にフィルタ機能を有するものにおいては、小さい共振周波数の温度係数を必要とするが、満足なものが得られていない。円柱状の共振器を作成して得られる共振周波数の温度係数として、±30ppm/℃の範囲内が求められている。
(3)電極材料として低抵抗のAgを用いる場合、ガラスセラミックと同時焼成するのに焼成温度が950℃を超えるとAgの融点(961℃)に近くなり、Agの拡散が発生する。Agと同時焼成するのに、焼成温度は950℃以下が必要である。
(4)従来のガラスセラミックの多くは、ガラスとセラミックを別々に作製し、混合して形成しているので製造プロセスが煩雑になっている。通常のセラミックの作製におけるような固相法だけのプロセスでの組成物の形成が求められている。
本発明は、かかる事情に鑑みてなされたものであって、Q値が大きく(すなわち材料のtanδが低く)、共振周波数の温度係数の絶対値を小さくして高周波帯で用いる高周波材料に求められる特性を具備し、低抵抗で大気雰囲気中で容易に焼成でき、しかも安価なAgと同時に焼成可能な低温焼結性を有する誘電体磁器組成物及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る誘電体磁器組成物は、Si、Zn、Li、Sn、Ti及びMgを含み、950℃以下で焼成が可能な誘電体磁器組成物において、SiがSiO2 換算で13.4〜46.3wt%、ZnがZnO換算で22.5〜61.4wt%、LiがLi2 O換算で1.3〜10.2wt%、SnがSnO2 換算で9.1〜52.1wt%、TiがTiO2 換算で4.4〜14.6wt%及びMgがMgO換算で0を超え〜7.3wt%からなる主成分の100重量部に対し、BがB23 換算で0.5〜4.5wt%含まれる。これにより、Q値が大きく(すなわち材料のtanδが低く)、共振周波数の温度係数の絶対値を小さく、大気雰囲気中で容易に焼成でき、しかも低抵抗で安価なAgと同時に焼成可能な950℃以下の低温焼結性を有している。更に、ガラスとセラミックを混合する必要がなく、通常のセラミックの合成における固相法で誘電体磁器組成物が得られる。
【0006】
前記目的に沿う本発明に係る誘電体磁器組成物の製造方法は、Si、Zn、Li、Sn、Ti及びMgを含み、950℃以下で焼成が可能な誘電体磁器組成物の製造方法において、SiがSiO2 換算で13.4〜46.3wt%、ZnがZnO換算で22.5〜61.4wt%、LiがLi2 O換算で1.3〜10.2wt%、SnがSnO2 換算で9.1〜52.1wt%、TiがTiO2 換算で4.4〜14.6wt%及びMgがMgO換算で0を超え〜7.3wt%からなる主成分を800〜1000℃で仮焼し、主成分の100重量部に対して、BをB23 換算で0.5〜4.5wt%添加し、主成分とB23 の混合物を粉砕して粉末を形成する。これにより、B23 を除いて主成分を仮焼し、粉砕時にB23 を添加するので、焼成温度の一層の低温化や、Q値の向上を図ることができる。また、共振周波数の温度係数の絶対値を小さく、低抵抗で大気雰囲気中で容易に焼成でき、しかも安価なAgと同時に焼成可能な低温焼結性を有する誘電体磁器組成物の製造方法が得られる。なお、主成分を800℃未満で仮焼すると仮焼が不完全で緻密な焼結体が得られず、1000℃を超えて仮焼すると一部が焼結し、粉砕が困難になると共に、B23 の低温焼成効果が十分に得られず、950℃以下で緻密な焼結体が得られない。
【0007】
【発明の実施の形態】
本発明の一実施の形態に係る誘電体磁器組成物は、SiがSiO2 換算で13.4〜46.3wt%、ZnがZnO換算で22.5〜61.4wt%、LiがLi2 O換算で1.3〜10.2wt%、SnがSnO2 換算で9.1〜52.1wt%、TiがTiO2 換算で4.4〜14.6wt%及びMgがMgO換算で0を超え〜7.3wt%からなる主成分の100重量部に対し、BがB23 換算で0.5〜4.5wt%とからなるものである。この誘電体磁器組成物においては、予めガラスを形成するプロセスは必要とせず、ガラスとセラミックを混合するようなプロセスをとらずに、固相法だけのプロセスで誘電体磁器組成物が得ることができる。
【0008】
次いで、各元素のそれぞれの効果を説明する。
SiO2 とZnOは、高周波用の誘電体基板として重要な誘電率を小さくするのに有効であり、高いQ値が得られる主結晶相を形成する。更に、SiO2 とZnOは、Li2 O、B23 と共に低温焼成化を促進する。しかしながら、Li2 O、B23 をそれぞれ単独で添加すると、Q値は低下すると共に、低温焼成化をするのに多くの量を必要とする。これに反し、双方を同時に添加することにより、各々の添加量が少量でも低温焼成効果が引き出され、Q値の低下を抑制できる。SnO2 はTiO2 と同時に適当量添加することにより、負の大きな共振周波数の温度係数(τf)を有するSiO2 、ZnO系主結晶相のτfを正方向に作用させる。MgOは、Q値を高めるのに寄与する。
【0009】
次に、各成分組成を前述の範囲に限定した理由を説明する。
SiO2 は、13.4wt%未満あるいは46.3wt%より多いと、焼成温度が950℃以下の温度では焼結性が劣化して磁器が緻密化をしない。ZnOは、22.5wt%未満あるいは61.4wt%より多いと、950℃以下の温度では焼結性が劣化して磁器が緻密化しない。Li2 Oは、1.3wt%未満では950℃以下の温度では焼結性が劣化して磁器が緻密化しなくなり、10.2wt%より多いと、Q値が低下する。SnO2 は、9.1wt%未満ではTiO2 によるτfの制御効果が引き出せなくなり、52.1wt%より多いと、950℃以下の温度では焼結性が劣化して磁器が緻密化しない。TiO2 は、4.4wt%未満ではτfが−30ppm/℃より負側に大きくなり、14.6wt%より多いと、τfが+30ppm/℃を超え、τfを±30ppm/℃の範囲に制御することができなくなって、温度安定性が低下する。MgOは、7.3wt%より多いと、Q値が低下する。B23 は、0.5wt%未満では、950℃以下の温度では焼結性が劣化して磁器が緻密化せず、4.0wt%より多いと、Q値が低下する。
【0010】
なお、各成分組成のより好ましい組成範囲は、SiO2 が20.0〜40.0wt%、ZnOが30.0〜50.0wt%、Li2 Oが1.5〜4.0wt%、SnO2 が10.0〜20.0wt%、TiO2 が6.0〜12.0wt%、MgOが3.0〜6.0wt%からなる主成分の100重量部に対して、B23 を1.0〜2.0wt%添加することである。
【0011】
本発明の一実施の形態に係る誘電体磁器組成物の製造方法においては、SiO2 、ZnO、Li2 O、SnO2 、TiO2 及びMgOの各成分を通常の方法、すなわち、各成分の金属酸化物、又は、焼成中に金属酸化物に変化する適当な前駆化合物、例えば炭酸塩やカルボン酸塩等を所定の組成を生ずるような割合でボールミル等で湿式混合し、主成分を形成する。次いで、この主成分を大気中で800〜1000℃で1〜3時間仮焼きする。焼成後、更に、この主成分をボールミル等に投入すると同時に、主成分を100重量部に対して適当量のB23 を投入し、混合物を形成し、湿式粉砕し、乾燥して誘電体磁器組成物の粉末を形成する。このように、B23 を除いて仮焼した後の粉砕時にB23 を添加すると、誘電体基板焼成時の焼成温度の一層の低温化や、高周波特性のQ値の向上が可能になる。
【0012】
本発明に係る誘電体磁器組成物による誘電体基板の製造方法は、誘電体グリーンシートの多層積層法により、積層型に形成するのが適している。誘電体グリーンシートは、誘電体磁器組成物の粉末にバインダ、可塑剤、溶剤等を加えてスラリーを形成し、ドクターブレード法等により形成することができる。次いで、適当な寸法に切断した複数枚の誘電体グリーンシートに、低抵抗金属からなる内、外部電極用の導体ペーストをスクリーン印刷して内、外部電極を形成した後、複数枚の誘電体グリーンシートを積層して積層体を形成し、大気中の950℃以下の温度で焼成することで誘電体基板が得られる。なお、積層体の表層の外部電極は焼成後に低抵抗金属からなる外部電極用の導体ペーストを後付けし、再度焼成することで電極を形成してもよい。
【0013】
誘電体基板の内部に使用される電極の好ましい導体材料は、低抵抗で且つ大気中で焼成でき、比較的安価であるAgである。Agを本発明に係る誘電体磁器組成物に使用すると、内部電極の形成において、焼成中に誘電体基板へのAgの拡散が抑えられ、誘電体基板の特性劣化や電極形状の変形が起こらないので、配線パターンの微細化にも対応できる。
【0014】
【実施例】
本発明者は、本発明に係る誘電体磁器組成物により高周波特性評価用の試料を作成し、比較例として作成した試料と併せて高周波特性の評価を行った。
評価用の試料(焼結体)は、次の手順で作成した。
(1)99%以上のSiO2 、ZnO、Li2 O、SnO2 、TiO2 、MgO及びB23 を表1、表2の組成になるに配合し、ボールミルで湿式混合する。
(2)800〜1000℃、1〜3時間仮焼し、ボールミルで湿式粉砕する。B23 を湿式粉砕時に添加する場合は、(1)において、B23 を配合しない。
(3)湿式粉砕した粉砕スラリーを蒸発乾燥する。
(4)乾燥した粉末に1wt%の有機バインダー(ポリビニルアルコール)を加え、造粒し、1.5ton/cm2 の圧力で、直径15mm×高さ8mmの円柱状に成形する。
(5)円柱状の成形物を850〜1000℃で、2時間焼成し、焼結体を作製する。
特性の評価では、次の項目を行った。
(1)両端短絡型円柱共振器法により、焼結体の比誘電率(εr)、f・Q値(f=8〜15GHz )を測定した。なお、Q値は測定共振周波数により変化するので、周波数により影響を受けずに略一定になるf・Q値で表した。
(2)−25〜85℃の温度範囲で、共振周波数を測定し、25℃における共振周波数を基準とした変化率から共振周波数の温度係数(τf)を算出した。
なお、表1、表2は、仮焼前にB23 を配合したものであり、表3は、仮焼後にB23 を配合したものである。
【0015】
【表1】

Figure 0003870015
【0016】
【表2】
Figure 0003870015
【0017】
【表3】
Figure 0003870015
【0018】
表1〜表3に示すように、本発明に係る誘電体磁器組成物による試料の比誘電率は7.8〜12.9と低く、f・Q値は4500GHz 以上と高く、共振周波数の温度係数(τf)は±30ppm/℃の範囲内に含まれるので、数GHz 以上の高周波帯で十分優れた電気特性を有すると共に、Agの拡散が抑えられた誘電体基板が得られる。
一方、比較例で示す試料においては、焼成温度が950℃を超えるもの、特性値の測定ができないもの、f・Q値が4000GHz未満であるもの、τfが±30ppm/℃の範囲を外れるものがあり、決められた電気特性を満足できなかった。
【0019】
【発明の効果】
請求項1記載の誘電体磁器組成物においては、SiがSiO2 換算で13.4〜46.3wt%、ZnがZnO換算で22.5〜61.4wt%、LiがLi2 O換算で1.3〜10.2wt%、SnがSnO2 換算で9.1〜52.1wt%、TiがTiO2 換算で4.4〜14.6wt%及びMgがMgO換算で0を超え〜7.3wt%からなる主成分の100重量部に対し、BがB23 換算で0.5〜4.5wt%含まれるので、Q値が大きく(すなわち材料のtanδが低く)、共振周波数の温度係数の絶対値が小さく、低抵抗で大気雰囲気中で容易に焼成でき、しかも安価なAgと同時に焼成可能な低温焼結性を有している。また、ガラスとセラミックスを混合する必要がなく、通常のセラミックスの合成における固相法で誘電体磁器組成物を得ることができる。
【0020】
請求項2記載の誘電体磁器組成物の製造方法においては、SiがSiO2 換算で13.4〜46.3wt%、ZnがZnO換算で22.5〜61.4wt%、LiがLi2 O換算で1.3〜10.2wt%、SnがSnO2 換算で9.1〜52.1wt%、TiがTiO2 換算で4.4〜14.6wt%及びMgがMgO換算で0を超え〜7.3wt%からなる主成分を800〜1000℃で仮焼し、主成分の100重量部に対して、BをB23 換算で0.5〜4.5wt%添加し、主成分とB23 の混合物を粉砕して粉末を形成するので、B23 を除いて仮焼し、粉砕時にB23 を添加することで、焼成温度の一層の低温化や、Q値の向上を図ることができる。また、共振周波数の温度係数の絶対値を小さく、低抵抗で大気雰囲気中で容易に焼成でき、しかも安価なAgと同時に焼成可能な低温焼結性を有する誘電体組成物の製造方法が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is used to form an electronic component used in a high frequency band of several GH Z ~ tens GH Z, low resistance metal and low temperature co-fired capable dielectric ceramic composition and a method for producing the same.
[0002]
[Prior art]
With the development of high-speed radio and mobile communications in recent years, the use of several GHz (2 to 6 GHz) band and further frequency bands has been studied, and the development of dielectric ceramic compositions for high frequency is being developed. Is underway. In the dielectric substrate formed of this dielectric ceramic composition, the dielectric loss tan δ of the dielectric ceramic composition as a material is reduced, that is, the Q value is increased, and the resistance of the electrode material to be used is further reduced to increase the frequency. It is necessary to suppress the loss in the belt. In particular, in the case where the dielectric has a filter function, it is necessary to improve the temperature stability by reducing the temperature coefficient (τf) of the resonance frequency. In order to reduce the resistance of the electrode material to be used, low resistance metals such as Au, Ag, Cu, and Ag—Pd are used as the electrode material, and these low melting point metals (Au is 1063 ° C., Ag is 961 ° C., Cu is 1083 ° C.), and a dielectric ceramic composition having a low firing temperature is used.
[0003]
On the other hand, with the miniaturization of electronic components, there is a strong demand for miniaturization of the dielectric substrate itself, and such a substrate is formed on a dielectric green sheet using a multilayer lamination method. That is, the substrate is formed by printing an electrode pattern on a dielectric green sheet with a conductive paste for an electrode made of a low resistance metal, laminating each dielectric green sheet, and simultaneously firing the low resistance metal. The external electrode on the surface layer of the dielectric substrate may be formed by firing the dielectric green sheet and the internal electrode conductor paste at the same time, then adding the external electrode conductor paste to the surface layer and firing again. .
As a dielectric ceramic composition for forming such a dielectric substrate, glass and ceramic raw materials are prepared and mixed, and a glass ceramic that can be fired at a low temperature (1000 ° C. or lower) has a low dielectric constant. Therefore, it is used for high frequency.
[0004]
[Problems to be solved by the invention]
However, the conventional dielectric ceramic composition (glass ceramic) and the manufacturing method thereof as described above have the following problems.
(1) Although the conventional glass ceramic has a low dielectric constant, the Q value is small (the material tan δ is high), and the loss in the high frequency band is large. When using a frequency band of several GHz (2 to 6 GHz) or higher, it is necessary to reduce the loss in the transmission lines and parts of the dielectric substrate, so that the Q value is 4000 GHz when expressed as f · Q value. The above is required.
(2) Further, the conventional glass ceramic has a large temperature coefficient (τf) of the resonance frequency (exceeds ± 30 ppm / ° C.), and particularly has a filter function and requires a temperature coefficient of a small resonance frequency. However, a satisfactory one has not been obtained. A temperature coefficient of resonance frequency obtained by creating a cylindrical resonator is required to be within a range of ± 30 ppm / ° C.
(3) In the case of using low resistance Ag as an electrode material, if the firing temperature exceeds 950 ° C. for co-firing with glass ceramic, it becomes close to the melting point of Ag (961 ° C.) and Ag diffusion occurs. In order to co-fire with Ag, the firing temperature needs to be 950 ° C. or lower.
(4) Since many of the conventional glass ceramics are produced by separately producing glass and ceramic, the manufacturing process is complicated. There is a need for the formation of a composition by a solid phase process alone, such as in conventional ceramic fabrication.
The present invention has been made in view of such circumstances, and is required for a high-frequency material used in a high-frequency band with a large Q value (that is, a low tan δ of the material) and a small absolute value of the temperature coefficient of the resonance frequency. An object of the present invention is to provide a dielectric ceramic composition having a low temperature sintering property that has characteristics, can be easily fired in an air atmosphere with low resistance, and can be fired simultaneously with inexpensive Ag, and a method for producing the same.
[0005]
[Means for Solving the Problems]
The dielectric ceramic composition according to the present invention along the object, Si, Zn, Li, Sn , includes Ti and Mg, in the dielectric ceramic composition capable of firing at 950 ° C. or less, Si is in terms of SiO 2 13.4 to 46.3 wt%, Zn is 22.5 to 61.4 wt% in terms of ZnO, Li is 1.3 to 10.2 wt% in terms of Li 2 O, and Sn is 9.1 to 52 in terms of SnO 2 .1wt%, Ti is relative to 100 parts by weight of the principal component 4.4~14.6Wt% and Mg in terms of TiO 2 consists ~7.3Wt% greater than 0 in terms of MgO, B is terms of B 2 O 3 0.5 to 4.5 wt%. As a result, the Q value is large (that is, the tan δ of the material is low), the absolute value of the temperature coefficient of the resonance frequency is small, and can be easily fired in the air atmosphere. It has the following low-temperature sinterability. Furthermore, it is not necessary to mix glass and ceramic, and a dielectric ceramic composition can be obtained by a solid phase method in ordinary ceramic synthesis.
[0006]
A method for manufacturing a dielectric ceramic composition according to the present invention that meets the above-described object includes a method for manufacturing a dielectric ceramic composition that includes Si, Zn, Li, Sn, Ti, and Mg and can be fired at 950 ° C. or less. Si is 13.4~46.3Wt% in terms of SiO 2, Zn is 22.5~61.4Wt% in terms of ZnO, 1.3~10.2wt% of Li is Li 2 O conversion, Sn is calculated as SnO 2 The main component consisting of 9.1 to 52.1 wt%, Ti of 4.4 to 14.6 wt% in terms of TiO 2 , and Mg exceeding 0 to 7.3 wt% in terms of MgO is calcined at 800 to 1000 ° C. Then, B is added in an amount of 0.5 to 4.5 wt% in terms of B 2 O 3 with respect to 100 parts by weight of the main component, and the mixture of the main component and B 2 O 3 is pulverized to form a powder. Thus, the main component and calcining, except the B 2 O 3, because the addition of B 2 O 3 at the time of grinding, can be improved further cold reduction and, Q value of the firing temperature. In addition, a method for producing a dielectric ceramic composition having a low temperature sinterability that has a low absolute value of the temperature coefficient of the resonance frequency, can be easily fired in the air atmosphere with low resistance, and can be fired simultaneously with inexpensive Ag is obtained. It is done. In addition, if the main component is calcined at less than 800 ° C., a calcined incomplete and dense sintered body cannot be obtained, and if calcined at a temperature exceeding 1000 ° C., a part of the calcined material becomes difficult to grind, The low-temperature firing effect of B 2 O 3 cannot be sufficiently obtained, and a dense sintered body cannot be obtained at 950 ° C. or lower.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the dielectric ceramic composition according to one embodiment of the present invention, Si is 13.4 to 46.3 wt% in terms of SiO 2 , Zn is 22.5 to 61.4 wt% in terms of ZnO, and Li is Li 2 O. 1.3~10.2Wt% in terms of, Sn is 9.1~52.1Wt% in terms of SnO 2, Ti is ~ greater than 0 in 4.4~14.6Wt% and Mg in terms of MgO in terms of TiO 2 B consists of 0.5 to 4.5 wt% in terms of B 2 O 3 with respect to 100 parts by weight of the main component consisting of 7.3 wt%. In this dielectric ceramic composition, a process for forming glass in advance is not required, and a dielectric ceramic composition can be obtained only by a solid phase process without taking a process of mixing glass and ceramic. it can.
[0008]
Next, the effect of each element will be described.
SiO 2 and ZnO are effective in reducing the dielectric constant that is important as a dielectric substrate for high frequency, and form a main crystal phase that provides a high Q value. Furthermore, SiO 2 and ZnO promote low temperature firing together with Li 2 O and B 2 O 3 . However, when Li 2 O and B 2 O 3 are added alone, the Q value is lowered and a large amount is required for low-temperature firing. On the other hand, by adding both at the same time, even if the amount of each added is small, the low-temperature firing effect is brought out, and the decrease in the Q value can be suppressed. By adding an appropriate amount of SnO 2 at the same time as TiO 2 , SiO 2 having a large negative resonance frequency temperature coefficient (τf) and τf of the ZnO-based main crystal phase act in the positive direction. MgO contributes to increasing the Q value.
[0009]
Next, the reason why each component composition is limited to the above range will be described.
When SiO 2 is less than 13.4 wt% or more than 46.3 wt%, the sinterability deteriorates at a firing temperature of 950 ° C. or lower, and the porcelain is not densified. If ZnO is less than 22.5 wt% or more than 61.4 wt%, the sinterability deteriorates at a temperature of 950 ° C. or lower and the porcelain does not become dense. When Li 2 O is less than 1.3 wt%, the sinterability deteriorates at a temperature of 950 ° C. or less and the porcelain is not densified, and when it is more than 10.2 wt%, the Q value decreases. If SnO 2 is less than 9.1 wt%, the effect of controlling τf by TiO 2 cannot be brought out, and if it exceeds 52.1 wt%, the sinterability deteriorates at a temperature of 950 ° C. or lower and the porcelain is not densified. When TiO 2 is less than 4.4 wt%, τf is larger than −30 ppm / ° C., and when it is more than 14.6 wt%, τf exceeds +30 ppm / ° C., and τf is controlled within a range of ± 30 ppm / ° C. Temperature stability is reduced. When MgO is more than 7.3 wt%, the Q value decreases. If B 2 O 3 is less than 0.5 wt%, the sinterability deteriorates at a temperature of 950 ° C. or lower, and the porcelain is not densified. If it exceeds 4.0 wt%, the Q value decreases.
[0010]
A more preferred composition range of each component composition, SiO 2 is 20.0~40.0wt%, ZnO is 30.0~50.0wt%, Li 2 O is 1.5~4.0wt%, SnO 2 1 to 20.0 wt%, TiO 2 6.0 to 12.0 wt%, MgO 3.0 to 6.0 wt% of 100 parts by weight of the main component, B 2 O 3 1 0.0 to 2.0 wt% is added.
[0011]
In the method for producing a dielectric ceramic composition according to one embodiment of the present invention, each component of SiO 2 , ZnO, Li 2 O, SnO 2 , TiO 2, and MgO is converted into an ordinary method, that is, a metal of each component. An oxide or an appropriate precursor compound that changes to a metal oxide during firing, such as carbonate or carboxylate, is wet-mixed with a ball mill or the like at a ratio that produces a predetermined composition to form a main component. Next, this main component is calcined at 800 to 1000 ° C. for 1 to 3 hours in the air. After firing, the main component is added to a ball mill or the like, and at the same time, an appropriate amount of B 2 O 3 is added to 100 parts by weight of the main component to form a mixture, wet pulverized, and dried. Form a porcelain composition powder. Thus, B when 2 O 3 adding B 2 O 3 at the time of pulverization after calcination, except for further cold reduction and the baking temperature at the time of dielectric substrate firing, can be improved Q value of the high-frequency characteristics become.
[0012]
The method for producing a dielectric substrate using the dielectric ceramic composition according to the present invention is suitably formed into a multilayer type by a multilayer lamination method of dielectric green sheets. The dielectric green sheet can be formed by adding a binder, a plasticizer, a solvent or the like to the powder of the dielectric ceramic composition to form a slurry, and using a doctor blade method or the like. Next, a plurality of dielectric green sheets made of a low resistance metal are screen-printed on a plurality of dielectric green sheets cut to an appropriate size to form an external electrode, and then a plurality of dielectric green sheets are formed. A dielectric substrate is obtained by laminating sheets to form a laminate and firing at a temperature of 950 ° C. or lower in the atmosphere. The external electrode on the surface layer of the laminate may be formed by post-attaching a conductor paste for external electrodes made of a low-resistance metal after firing and firing again.
[0013]
The preferred conductor material for the electrodes used inside the dielectric substrate is Ag, which has a low resistance, can be fired in the atmosphere, and is relatively inexpensive. When Ag is used in the dielectric ceramic composition according to the present invention, the diffusion of Ag to the dielectric substrate during firing is suppressed during the formation of the internal electrode, and the characteristics of the dielectric substrate are not deteriorated and the electrode shape is not deformed. Therefore, it can cope with the miniaturization of the wiring pattern.
[0014]
【Example】
The inventor made a sample for high frequency characteristic evaluation using the dielectric ceramic composition according to the present invention, and evaluated the high frequency characteristic together with the sample prepared as a comparative example.
A sample for evaluation (sintered body) was prepared by the following procedure.
(1) 99% or more of SiO 2 , ZnO, Li 2 O, SnO 2 , TiO 2 , MgO and B 2 O 3 are blended in the compositions shown in Tables 1 and 2 and wet mixed by a ball mill.
(2) Calcination is performed at 800 to 1000 ° C. for 1 to 3 hours and wet pulverized by a ball mill. When B 2 O 3 is added during wet pulverization, B 2 O 3 is not blended in (1).
(3) The wet pulverized slurry is evaporated to dryness.
(4) 1 wt% organic binder (polyvinyl alcohol) is added to the dried powder, granulated, and molded into a cylinder having a diameter of 15 mm and a height of 8 mm at a pressure of 1.5 ton / cm 2 .
(5) A cylindrical shaped product is fired at 850 to 1000 ° C. for 2 hours to produce a sintered body.
In the evaluation of characteristics, the following items were performed.
(1) The relative permittivity (εr) and f · Q value (f = 8 to 15 GHz) of the sintered body were measured by the both-end short-circuited cylindrical resonator method. Since the Q value varies depending on the measured resonance frequency, it is expressed as an f · Q value that is substantially constant without being influenced by the frequency.
(2) The resonance frequency was measured in the temperature range of −25 to 85 ° C., and the temperature coefficient (τf) of the resonance frequency was calculated from the rate of change based on the resonance frequency at 25 ° C.
Tables 1 and 2 contain B 2 O 3 before calcining, and Table 3 contains B 2 O 3 after calcining.
[0015]
[Table 1]
Figure 0003870015
[0016]
[Table 2]
Figure 0003870015
[0017]
[Table 3]
Figure 0003870015
[0018]
As shown in Tables 1 to 3, the relative dielectric constant of the sample using the dielectric ceramic composition according to the present invention is as low as 7.8 to 12.9, the fQ value is as high as 4500 GHz or more, and the temperature of the resonance frequency Since the coefficient (τf) is included in the range of ± 30 ppm / ° C., a dielectric substrate having sufficiently excellent electrical characteristics in a high frequency band of several GHz or more and suppressed Ag diffusion is obtained.
On the other hand, in the samples shown in the comparative examples, those whose firing temperature exceeds 950 ° C., those whose characteristic values cannot be measured, those whose f · Q value is less than 4000 GHz, and those whose τf falls outside the range of ± 30 ppm / ° C. Yes, we could not satisfy the determined electrical characteristics.
[0019]
【The invention's effect】
In claim 1 the dielectric ceramic composition as set forth, Si is 13.4~46.3Wt% in terms of SiO 2, Zn is 22.5~61.4Wt% in terms of ZnO, of Li is Li 2 O in terms of 1 3 to 10.2 wt%, Sn is 9.1 to 52.1 wt% in terms of SnO 2 , Ti is 4.4 to 14.6 wt% in terms of TiO 2 , and Mg is over 0 to 7.3 wt in terms of MgO Since B is contained in an amount of 0.5 to 4.5 wt% in terms of B 2 O 3 with respect to 100 parts by weight of the main component consisting of%, the Q value is large (that is, the tan δ of the material is low), and the temperature coefficient of the resonance frequency Is low in resistance, can be easily fired in the air atmosphere, and has low-temperature sinterability that can be fired simultaneously with inexpensive Ag. Further, it is not necessary to mix glass and ceramics, and a dielectric ceramic composition can be obtained by a solid phase method in the synthesis of ordinary ceramics.
[0020]
3. The method for producing a dielectric ceramic composition according to claim 2, wherein Si is 13.4 to 46.3 wt% in terms of SiO 2 , Zn is 22.5 to 61.4 wt% in terms of ZnO, and Li is Li 2 O. 1.3~10.2Wt% in terms of, Sn is 9.1~52.1Wt% in terms of SnO 2, Ti is ~ greater than 0 in 4.4~14.6Wt% and Mg in terms of MgO in terms of TiO 2 A main component composed of 7.3 wt% is calcined at 800 to 1000 ° C., B is added in an amount of 0.5 to 4.5 wt% in terms of B 2 O 3 with respect to 100 parts by weight of the main component, since forming a powder by pulverizing a mixture of B 2 O 3, B 2 O 3 calcined except, the addition of B 2 O 3 at the time of pulverization, further cold reduction and, Q value of the firing temperature Can be improved. Also, a method for producing a dielectric composition having a low temperature sinterability that can be fired at the same time as Ag, which has a low absolute value of the temperature coefficient of the resonance frequency, can be easily fired in the air atmosphere with low resistance, and is inexpensive. .

Claims (2)

Si、Zn、Li、Sn、Ti及びMgを含み、950℃以下で焼成が可能な誘電体磁器組成物において、
前記SiがSiO2 換算で13.4〜46.3wt%、前記ZnがZnO換算で22.5〜61.4wt%、前記LiがLi2 O換算で1.3〜10.2wt%、前記SnがSnO2 換算で9.1〜52.1wt%、前記TiがTiO2 換算で4.4〜14.6wt%及び前記MgがMgO換算で0を超え〜7.3wt%からなる主成分の100重量部に対し、BがB23 換算で0.5〜4.5wt%含まれることを特徴とする誘電体磁器組成物。
In a dielectric ceramic composition containing Si, Zn, Li, Sn, Ti and Mg and capable of firing at 950 ° C. or lower,
Wherein Si is 13.4~46.3Wt% in terms of SiO 2, 22.5~61.4Wt% the Zn is in terms of ZnO, 1.3~10.2Wt% said Li is at Li 2 O in terms of the Sn 100 of the main component consisting of 9.1 to 52.1 wt% in terms of SnO 2 , Ti to 4.4 to 14.6 wt% in terms of TiO 2 , and Mg exceeding 0 to 7.3 wt% in terms of MgO. relative parts by weight, the dielectric ceramic composition, characterized in that B is contained 0.5~4.5Wt% in terms of B 2 O 3.
Si、Zn、Li、Sn、Ti及びMgを含み、950℃以下で焼成が可能な誘電体磁器組成物の製造方法において、
前記SiがSiO2 換算で13.4〜46.3wt%、前記ZnがZnO換算で22.5〜61.4wt%、前記LiがLi2 O換算で1.3〜10.2wt%、前記SnがSnO2 換算で9.1〜52.1wt%、前記TiがTiO2 換算で4.4〜14.6wt%及び前記MgがMgO換算で0を超え〜7.3wt%からなる主成分を800〜1000℃で仮焼し、
前記主成分の100重量部に対して、BをB23 換算で0.5〜4.5wt%添加し、
前記主成分と前記B23 の混合物を粉砕して粉末を形成することを特徴とする誘電体磁器組成物の製造方法。
In the method for producing a dielectric ceramic composition containing Si, Zn, Li, Sn, Ti, and Mg and capable of firing at 950 ° C. or lower,
Wherein Si is 13.4~46.3Wt% in terms of SiO 2, 22.5~61.4Wt% the Zn is in terms of ZnO, 1.3~10.2Wt% said Li is at Li 2 O in terms of the Sn Is a main component composed of 9.1 to 52.1 wt% in terms of SnO 2 , the Ti is 4.4 to 14.6 wt% in terms of TiO 2 , and the Mg is more than 0 to 7.3 wt% in terms of MgO. Calcination at ~ 1000 ° C,
B is added in an amount of 0.5 to 4.5 wt% in terms of B 2 O 3 with respect to 100 parts by weight of the main component,
A method for producing a dielectric ceramic composition, comprising: pulverizing a mixture of the main component and the B 2 O 3 to form a powder.
JP2000235991A 2000-08-03 2000-08-03 Dielectric ceramic composition and manufacturing method thereof Expired - Lifetime JP3870015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235991A JP3870015B2 (en) 2000-08-03 2000-08-03 Dielectric ceramic composition and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235991A JP3870015B2 (en) 2000-08-03 2000-08-03 Dielectric ceramic composition and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002053370A JP2002053370A (en) 2002-02-19
JP3870015B2 true JP3870015B2 (en) 2007-01-17

Family

ID=18728111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235991A Expired - Lifetime JP3870015B2 (en) 2000-08-03 2000-08-03 Dielectric ceramic composition and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3870015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738857B1 (en) * 2016-03-04 2017-05-23 주식회사 씨엠티 Microwave sensitized composition and method for manufacturing sensitized material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164311A (en) * 2007-12-28 2009-07-23 Sumitomo Metal Electronics Devices Inc Substrate for mounting light emitting element and manufacturing method thereof, and light emitting device using same
CN104230329A (en) * 2014-09-15 2014-12-24 电子科技大学 Low-temperature sintered microwave ceramic material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738857B1 (en) * 2016-03-04 2017-05-23 주식회사 씨엠티 Microwave sensitized composition and method for manufacturing sensitized material

Also Published As

Publication number Publication date
JP2002053370A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
WO2007119494A1 (en) Dielectric ceramic composition
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP3870015B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4412266B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP2001130952A (en) Dielectric porcelain and laminated body
WO2006109465A1 (en) Dielectric porcelain composition and high frequency device using the same
JP4203176B2 (en) Dielectric porcelain composition
JP2000239061A (en) Dielectric porcelain composition
JP3940419B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3375450B2 (en) Dielectric porcelain composition
JP4765367B2 (en) Dielectric porcelain composition
JP2004026543A (en) Dielectric porcelain composition and laminated ceramic component using the same
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP4618856B2 (en) Low temperature fired porcelain
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP2003306377A (en) Dielectric porcelain composition and ceramic electronic component
JP3909367B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3411190B2 (en) Dielectric porcelain composition
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
JP3314714B2 (en) Base for antenna
JP4006655B2 (en) Dielectric porcelain composition for microwave

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3870015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term