Nothing Special   »   [go: up one dir, main page]

JP2000239061A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP2000239061A
JP2000239061A JP11041476A JP4147699A JP2000239061A JP 2000239061 A JP2000239061 A JP 2000239061A JP 11041476 A JP11041476 A JP 11041476A JP 4147699 A JP4147699 A JP 4147699A JP 2000239061 A JP2000239061 A JP 2000239061A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric porcelain
temperature
component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041476A
Other languages
Japanese (ja)
Inventor
Yoshio Tsukiyama
良男 築山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11041476A priority Critical patent/JP2000239061A/en
Publication of JP2000239061A publication Critical patent/JP2000239061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a relatively inexpensive porcelain composition which can be baked at a lower temperature than the melting point of Ag, does not diffuse Ag during baking, can simultaneously be baked together with the Ag, and exhibits electric characteristics comprising a suitably high dielectric constant of about 20-40, a high Q value and a small resonance frequency temperature coefficient which are desirable for dielectric porcelains for high frequency of several GHz or higher. SOLUTION: This dielectric porcelain composition comprises 100 pts.wt. of a main component of formula: BaO.(a-x-y)TiO2.xGeO2+ySiO2 4.0<=(a)<=4.6; 0.15<=(x)+(y)<=0.8; 0.2<=(x)/[(x)+(y)]}, and 0.5-2 pts.wt. (converted into CuO) of Cu, 0.5-4 pts.wt (converted into ZnO) of Zn and 0.3-2 pts.wt. (converted into B2O3) of B as sub-components, wherein the conversion amount of ZnO is not lower than the conversion amount of CuO.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘電体磁器組成物に
関し、より詳細には、銀等の低抵抗金属と同時焼成可能
な、高周波対応の誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition, and more particularly, to a high frequency dielectric ceramic composition which can be co-fired with a low-resistance metal such as silver.

【0002】[0002]

【従来の技術】近年、無線通信機器や送受信機器の小型
化のため、誘電体磁器を用いた高周波部品が多用されて
いる。例えば、0.8 〜2GHz 帯の携帯電話等のデュプレ
クサやフィルタ、最近ではアンテナ等にも、適度の誘電
率と比較的高いQ値を持つ誘電体磁器が用いられてい
る。この分野に使用される誘電体磁器は、マイクロ波用
誘電体磁器と呼ばれることもある。
2. Description of the Related Art In recent years, high-frequency components using dielectric porcelain have been frequently used in order to reduce the size of wireless communication devices and transmission / reception devices. For example, dielectric ceramics having an appropriate dielectric constant and a relatively high Q value are used for duplexers and filters for mobile phones in the 0.8 to 2 GHz band, and recently for antennas and the like. The dielectric porcelain used in this field is sometimes called a microwave dielectric porcelain.

【0003】誘電体内部における電磁波の波長は、真空
中での波長のεr -1/2倍 (εr :誘電体の比誘電率) に
短縮される。従って、デュプレクサやフィルタといった
分布定数回路型部品に誘電体磁器を用いると、上記のよ
うに波長が小さくなるため、回路部品を小型化すること
ができる。
The wavelength of an electromagnetic wave in a dielectric is reduced to ε r -1/2 times the wavelength in a vacuum (ε r : relative permittivity of the dielectric). Therefore, when a dielectric ceramic is used for a distributed constant circuit type component such as a duplexer or a filter, the wavelength is reduced as described above, and the circuit component can be downsized.

【0004】高周波の分布定数回路型部品に用いられる
誘電体磁器に求められる特性は、 比誘電率εr が使用周波数に応じて適度に高いこと、 Q値 (誘電損失の逆数) が高いこと (即ち、材料の誘
電損失<tanδ> が低いこと) 、 共振周波数の温度係数τf が小さいこと、 である。このような特性をある程度満たすことができる
誘電体磁器として、BaO-TiO2系材料が知られている。
[0004] Characteristics required for the dielectric ceramic used in the high frequency distributed constant circuit type component has a specific dielectric constant epsilon r be moderately high depending on the used frequency, it Q value (reciprocal of dielectric loss) is high ( That is, the dielectric loss <tanδ> of the material is low) and the temperature coefficient τ f of the resonance frequency is small. BaO-TiO 2 materials are known as dielectric ceramics that can satisfy such characteristics to some extent.

【0005】一方、上記の部品をさらに小型化するに
は、誘電体共振器を金属ケースに収容した従来型の部品
より、誘電体磁器中に内部電極を形成した表面実装可能
な積層部品を利用した方が有利である。
On the other hand, in order to further reduce the size of the above components, a surface mountable multilayer component having internal electrodes formed in a dielectric ceramic is used instead of a conventional component in which a dielectric resonator is housed in a metal case. It is more advantageous to do so.

【0006】このような部品は、積層コンデンサや多層
回路基板で実用化されているグリーンシート積層法を利
用して効率よく製造することができる。すなわち、誘電
体グリーンシートの一部に内部電極用の導体ペーストを
所定の電極パターンに印刷した後、シートを積層し、積
層体を焼成して内部導体を同時に焼結させる。外部電極
は、この焼結体上に形成するか、または焼結前の積層体
に導体ペーストを印刷して、誘電体や内部導体と同時に
焼成することができる。それにより、一度の焼成で、多
様な形状に設計された内部電極を持つ誘電体磁器部品を
効率よく製造することができ、誘電体磁器部品の大きさ
を共振波長より大幅に小さくすることができるので、部
品の一層の小型化が可能となる。
[0006] Such a component can be efficiently manufactured by using a green sheet laminating method which is put to practical use in a multilayer capacitor or a multilayer circuit board. That is, after a conductor paste for an internal electrode is printed on a part of the dielectric green sheet in a predetermined electrode pattern, the sheets are laminated, and the laminated body is fired to simultaneously sinter the internal conductor. The external electrode can be formed on the sintered body, or printed with a conductor paste on the laminate before sintering, and fired simultaneously with the dielectric and the internal conductor. As a result, dielectric ceramic parts having internal electrodes designed in various shapes can be efficiently manufactured by a single firing, and the size of the dielectric ceramic parts can be made significantly smaller than the resonance wavelength. Therefore, the size of the component can be further reduced.

【0007】一般にマイクロ波帯等で使用される部品や
回路の伝送線路においては、導体損の影響を小さくする
目的で、電極材料としてはAu、Ag、Cuや、Ag−Pd (Pd:
数%以下) 等の低抵抗金属が使用されている。これらの
金属の融点は、Auが1063℃、Agが961 ℃、Cuが1083℃と
いずれも低い。従って、グリーンシート積層法により内
部導体との同時焼成により積層部品を製造する場合、導
体金属の融点より低温で焼結可能な誘電体磁器が必要と
なる。従来のBaO-TiO2系材料は焼結温度が高いため、14
00℃以上の温度で長時間焼成する必要があり、このよう
な低温焼成による製造には使用できなかった。
In a transmission line of a part or a circuit generally used in a microwave band or the like, Au, Ag, Cu, Ag-Pd (Pd:
(Less than several%). The melting points of these metals are as low as 1063 ° C for Au, 961 ° C for Ag, and 1083 ° C for Cu. Therefore, when manufacturing a laminated component by simultaneous firing with an internal conductor by a green sheet laminating method, a dielectric porcelain that can be sintered at a temperature lower than the melting point of the conductive metal is required. Conventional BaO-TiO 2 materials have a high sintering temperature.
It must be fired at a temperature of 00 ° C. or more for a long time, and cannot be used for production by such low-temperature firing.

【0008】さらに、近年および近い将来、高速無線LA
N や、ITS (Intelligent TransportSystem 、高度道路
交通システム) 関連の移動体通信に、2.5 GHz 帯や、5
GHz帯、さらにはそれ以上といった、今までより高い周
波数帯の利用が検討されている。その場合、高周波化に
伴って分布定数回路型部品を小さくすることが可能であ
るので、従来の携帯電話等に使用する回路部品用材料の
ように、必ずしも材料の誘電率をあまり大きくする必要
はなく、適度の誘電率 (例えば、20〜40程度)であれば
よい。一方、上記のような高周波帯では、部品内の電気
エネルギー損失が大きくなるので、この損失を可及的に
抑制するように、部品のQ値、即ち、使用する誘電体材
料のQ値をより高くし、かつ使用する電極材料の抵抗を
より低くすることが求められる。
Further, in recent years and in the near future, high-speed wireless LA
N, ITS (Intelligent Transport System) related mobile communications, 2.5 GHz band, 5
The use of higher frequency bands, such as the GHz band and beyond, is being considered. In such a case, the distributed constant circuit-type component can be reduced in accordance with the increase in frequency. Therefore, it is not always necessary to increase the dielectric constant of the material too much, as in the case of a circuit component material used in a conventional mobile phone or the like. Instead, it may be an appropriate dielectric constant (for example, about 20 to 40). On the other hand, in the high-frequency band as described above, the electric energy loss in the component becomes large, so that the Q value of the component, that is, the Q value of the dielectric material to be used is increased so as to suppress this loss as much as possible. It is required to increase the resistance and to lower the resistance of the electrode material used.

【0009】前述した電極材料として使用される低抵抗
の金属のうち、Cuは易酸化性であるため、非酸化性雰囲
気 (例、窒素雰囲気または窒素+水素雰囲気) 中で焼成
する必要があり、焼成装置や運転コストが高くなる。一
方、貴金属であるAuやAgは、化学的に安定であり、大気
焼成できる。しかし、Auは高価であるので、大気焼成の
場合にはAgまたは上記のAg−Pdが電極材料として有利で
ある。中でも、最も低抵抗の金属であるAgが、部品の電
気エネルギー損失を抑制する観点から特に有利である。
但し、Agは上記の低抵抗金属の中でも最も低融点であ
る。従って、誘電体磁器材料としては、最も低抵抗のAg
と同時焼成できるように、Agの融点より低温で焼成可能
な材料が望ましい。
[0009] Among the low-resistance metals used as the electrode materials described above, Cu is easily oxidizable and must be fired in a non-oxidizing atmosphere (eg, a nitrogen atmosphere or a nitrogen + hydrogen atmosphere). Baking equipment and operating costs increase. On the other hand, noble metals such as Au and Ag are chemically stable and can be fired in air. However, since Au is expensive, Ag or the above-mentioned Ag-Pd is advantageous as an electrode material in the case of baking in air. Among them, Ag, which is the metal having the lowest resistance, is particularly advantageous from the viewpoint of suppressing electric energy loss of components.
However, Ag has the lowest melting point among the above low resistance metals. Therefore, as the dielectric porcelain material, the lowest resistance Ag
It is desirable to use a material that can be fired at a temperature lower than the melting point of Ag so that it can be fired simultaneously.

【0010】例えば、特開平6−279109号公報には、Ba
O-TiO-GeO2系材料にB化合物を含有させた、Q値が高
く、低温焼成可能な誘電体磁器組成物が記載されてい
る。しかし、焼成温度は 960〜1400℃であるので、Auや
Ag−Pdとの同時焼成は可能であっても、融点961 ℃のAg
との同時焼成には実際には使用できない。また、この材
料は、Ge成分が高価であるので、価格的にやや不利であ
る。
For example, Japanese Patent Application Laid-Open No. 6-279109 discloses Ba
And the O-TiO-GeO 2 material is contained B compound, Q value is high, the low temperature sinterable dielectric ceramic composition is described. However, since the firing temperature is 960-1400 ° C, Au and
Ag with a melting point of 961 ° C, although simultaneous firing with Ag-Pd is possible
Can not be used for simultaneous firing with. Further, this material is disadvantageous in terms of price because the Ge component is expensive.

【0011】特開平8−59344 号公報には、BaO-TiO-Nd
O3/2にBi2O3 とPbO を含有させた材料に、ガラス組成物
と CuO、SrTiO3等を添加した誘電体磁器組成物が開示さ
れている。この誘電体磁器組成物は焼結温度が非常に低
く、Agとの同時焼成も可能であるものの、Q値が十分高
いとは言えない。
Japanese Patent Application Laid-Open No. Hei 8-59344 discloses BaO-TiO-Nd
A dielectric porcelain composition in which a glass composition and CuO, SrTiO 3 and the like are added to a material containing Bi 2 O 3 and PbO in O 3/2 is disclosed. This dielectric ceramic composition has a very low sintering temperature and can be co-fired with Ag, but cannot be said to have a sufficiently high Q value.

【0012】[0012]

【発明が解決しようとする課題】このように、数GHz 以
上の高周波用の分布定数回路型部品用の誘電体磁器材料
としては、誘電率が20〜40程度と適度に高く、Q値が十
分に高く、共振周波数の温度係数が小さいことが求めら
れ、当然ながら、高価な成分の含有量がなるべく少ない
ことがコスト面から有利である。
As described above, as a dielectric ceramic material for a distributed constant circuit type component for high frequencies of several GHz or more, the dielectric constant is appropriately high at about 20 to 40 and the Q value is sufficiently high. It is required that the temperature coefficient of the resonance frequency be low and the content of expensive components be as small as possible.

【0013】また、前述したグリーンシート多層積層法
で積層部品を製造するために、低抵抗の導体金属、好ま
しくはAgの融点より低温で焼成できなけければならな
い。さらに、焼成中に導体金属が誘電体磁器中に拡散す
ると、精密な電極パターンの形成が困難となるので、こ
の拡散が抑えられる材料が望ましい。
Further, in order to manufacture a laminated component by the above-described green sheet multilayer laminating method, it must be possible to fire at a temperature lower than the melting point of a low-resistance conductive metal, preferably Ag. Furthermore, if the conductive metal diffuses into the dielectric porcelain during firing, it becomes difficult to form a precise electrode pattern. Therefore, a material that suppresses this diffusion is desirable.

【0014】本発明は、数GHz 以上の高周波帯で用いら
れる誘電体磁器に望まれる前述した高周波特性を有し、
かつAgの融点より低温で焼成可能であって、焼成中にAg
が誘電体磁器中に拡散しない、比較的低価格の誘電体磁
器組成物を提供するものである。
The present invention has the above-described high-frequency characteristics desired for a dielectric ceramic used in a high-frequency band of several GHz or more,
And it can be fired at a temperature lower than the melting point of Ag,
Does not diffuse into the dielectric porcelain, thereby providing a relatively inexpensive dielectric porcelain composition.

【0015】[0015]

【課題を解決するための手段】誘電体磁器を内層導体の
Agと同時焼成する場合、Agの融点 961℃より数10℃低い
温度 (例、930 ℃以下) で焼成を行うのが普通であるの
で、従来はそのような温度で焼結する誘電体磁器材料が
必要であると考えられてきた。焼成温度をこのように低
くするのは、焼成中にAgが誘電体磁器中に拡散するのを
防止するためである。従って、Agの拡散が防止できるな
ら、Agの融点の直下の温度で焼成しても問題はない筈で
ある。
Means for Solving the Problems A dielectric porcelain is used as an inner conductor.
When co-firing with Ag, it is common to fire at a temperature several tens of degrees lower than the melting point of 961 ° C of Ag (eg, 930 ° C or less). Have been considered necessary. The firing temperature is lowered in this way to prevent Ag from diffusing into the dielectric ceramic during firing. Therefore, if diffusion of Ag can be prevented, there should be no problem even if firing is performed at a temperature immediately below the melting point of Ag.

【0016】本発明者らはこの観点から誘電体磁器組成
物について検討を進めた結果、前述した望ましい高周波
特性を示し、960 ℃より低い焼成温度で焼結可能で、焼
成中にAgの拡散が起こりにくい、比較的安価な誘電体磁
器組成物を見出した。
The present inventors have studied the dielectric porcelain composition from this viewpoint, and as a result, have shown the desirable high-frequency characteristics described above, can be sintered at a firing temperature lower than 960 ° C., and the diffusion of Ag during firing is suppressed. A relatively inexpensive dielectric porcelain composition that is unlikely to occur has been found.

【0017】ここに、本発明は、下記組成式 BaO・(a-x-y)TiO2・xGeO2+ySiO2 [ただし、 4.0≦a≦4.6 0.15 ≦x+y≦0.8 0.2≦x/(x+y)] で示される主成分100 重量部に対し、副成分として、 CuをCuO 換算で 0.5〜2重量部 ZnをZnO 換算で 0.5〜4重量部 BをB2O3換算で 0.3〜2重量部 の割合で含有し、かつZnO 換算量≧CuO 換算量である、
ことを特徴とする誘電体磁器組成物である。
In the present invention, the following composition formula BaO. (Axy) TiO 2 .xGeO 2 + ySiO 2 [where 4.0 ≦ a ≦ 4.6 0.15 ≦ x + y ≦ 0.8 0.2 ≦ x / (x + y)] With respect to 100 parts by weight of the component, 0.5 to 2 parts by weight of Cu in terms of CuO, 0.5 to 4 parts by weight of Zn in terms of ZnO, and 0.3 to 2 parts by weight of B in terms of B 2 O 3 as subcomponents, And ZnO conversion amount ≥ CuO conversion amount,
A dielectric porcelain composition characterized in that:

【0018】本発明の組成物から形成される誘電体磁器
は、数GHz 以上の高周波用誘電体磁器に望まれる下記の
高周波特性を備えている: 比誘電率 (εr ) が30〜36と適度に高く、 Q値が、f・Q(f=5〜6GHz)値で示して、8000 GHz
以上と高く、 共振周波数の温度係数 (τf ) が±30 ppm/℃以下と
小さい。
The dielectric porcelain formed from the composition of the present invention has the following high-frequency characteristics desired for a high-frequency dielectric porcelain of several GHz or more: a relative dielectric constant (ε r ) of 30 to 36; Moderately high, Q value is expressed as fQ (f = 5 to 6 GHz) value, 8000 GHz
The temperature coefficient of resonance frequency (τ f ) is as low as ± 30 ppm / ° C or less.

【0019】本発明の誘電体磁器組成物は、960 ℃より
低い焼成温度で焼結し、Agと同時焼成した場合にはAgの
拡散を防止できる。焼成温度がAgの融点961 ℃の直下、
例えば、960 ℃となる場合もあるが、そのようなAgの融
点に近い焼成温度でも、焼成中にAgを拡散させることが
ないので、誘電体磁器をAgと同時焼成することが可能と
なる。
The dielectric porcelain composition of the present invention is sintered at a firing temperature lower than 960 ° C., and when sintered together with Ag, diffusion of Ag can be prevented. The sintering temperature is just below the melting point of Ag 961 ° C,
For example, the temperature may be 960 ° C., but even at a sintering temperature close to the melting point of Ag, Ag is not diffused during sintering, so that the dielectric ceramic can be co-sintered with Ag.

【0020】[0020]

【発明の実施の形態】本発明の誘電体磁器組成物の化学
組成は次の通りである: BaO・(a-x-y) TiO2・xGeO2+ySiO2 4.0≦a≦4.6 ・・・ 0.15≦x+y≦0.8 ・・・ x/(x+y) ≧0.2 ・・・ で表せる主成分100 重量部に対し、副成分として、 CuをCuO 換算で 0.5〜2重量部・・・ ZnをZnO 換算で 0.5〜4重量部・・・ BをB2O3換算で 0.3〜2重量部・・・ の割合で含有し、かつ ZnO 換算量≧CuO 換算量である・・・ なお、a、x、yはモル比である。
DETAILED DESCRIPTION OF THE INVENTION The chemical composition of the dielectric porcelain composition of the present invention is as follows: BaO. (Axy) TiO 2 .xGeO 2 + ySiO 2 4.0 ≦ a ≦ 4.6... 0.15 ≦ x + y ≦ 0.8 ... x / (x + y) ≥0.2 With respect to 100 parts by weight of the main component represented by: ... 0.5 to 2 parts by weight of Cu as CuO as an auxiliary component ... 0.5 to 4 parts by weight of Zn as ZnO the ... B in a proportion of 0.3 to 2 parts by weight.. in terms of B 2 O 3, and ... still a ZnO equivalent amount ≧ CuO equivalent amount, a, x, y is the molar ratio .

【0021】本発明の誘電体磁器組成物において、主成
分としては、比誘電率、Q値、温度係数τf が良好な誘
電体磁器を与えることが知られているBaO-TiO2系を選択
し、焼結温度を低下させるため、これにGeO2またはGeO2
+SiO2を配合する。この配合成分は全量がGeO2でもよい
が、ゲルマニウム化合物は高価であるので、その80モル
%までをずっと安価なSiO2で代替することができる。Si
O2の量がこの範囲内であれば、高周波特性の劣化はほと
んどなく、材料コストを低減できる。副成分として添加
するCu、ZnおよびBは、焼結温度のさらなる低下と、焼
成中のAg拡散の抑制、および/または誘電体磁器の性能
向上に有効な元素である。
In the dielectric porcelain composition of the present invention, as a main component, a BaO—TiO 2 system known to provide a dielectric porcelain having a good relative dielectric constant, a Q value and a good temperature coefficient τ f is selected. GeO 2 or GeO 2 to reduce the sintering temperature
+ SiO 2 is blended. The total amount of this compounding component may be GeO 2 , but the germanium compound is expensive, so that up to 80 mol% thereof can be replaced by much cheaper SiO 2 . Si
When the amount of O 2 is within this range, the high-frequency characteristics are hardly deteriorated, and the material cost can be reduced. Cu, Zn and B added as subcomponents are effective elements for further lowering the sintering temperature, suppressing Ag diffusion during firing, and / or improving the performance of the dielectric ceramic.

【0022】本発明の誘電体磁器組成物の組成を上記の
ように限定した理由は次の通りである。 a<4では、f・Q値が著しく低下する;a>4.6 で
は、τf が大きくなる。
The reasons for limiting the composition of the dielectric ceramic composition of the present invention as described above are as follows. For a <4, the fQ value drops significantly; for a> 4.6, τ f increases.

【0023】x+y<0.15では、焼結温度が十分低く
ならない;x+y>0.8 では、τf が負側に大きくな
る。 x/(x+y) <0.2 では、f・Q値が著しく低下す
る。
When x + y <0.15, the sintering temperature is not sufficiently low; when x + y> 0.8, τ f increases to the negative side. When x / (x + y) <0.2, the f · Q value is significantly reduced.

【0024】(CuO量) <0.5 重量部では、焼結温度が
十分低くならない;(CuO量) >2重量部では、f・Q値
が低下し、τf が負側に著しく劣化すると共に、Agの拡
散量が増加する。
At (CuO content) <0.5 parts by weight, the sintering temperature is not sufficiently low; at (CuO content)> 2 parts by weight, the f · Q value is reduced, and τ f is significantly degraded to the negative side. Ag diffusion increases.

【0025】(ZnO量) <0.5 重量部では、f・Q値が
著しく低下すると共に、Ag拡散量が増加する;(ZnO量)
>4重量部では、f・Q値が低下し、かつτf が負側に
著しく劣化する。
When (ZnO amount) <0.5 part by weight, f · Q value is remarkably reduced and Ag diffusion amount is increased; (ZnO amount)
At> 4 parts by weight, the fQ value decreases and τ f remarkably deteriorates to the negative side.

【0026】(B2O3 量) <0.3 重量部では、焼結温度
が十分低くならない;(B2O3 量) >2重量部では、f・
Q値が低下し、Agの拡散量が増加する。 (CuO量) >(ZnO量) では、Agの拡散量が増加する。
At (B 2 O 3 amount) <0.3 parts by weight, the sintering temperature is not sufficiently low; and at (B 2 O 3 amount)> 2 parts by weight, f ·
The Q value decreases, and the amount of Ag diffusion increases. When (CuO content)> (ZnO content), the diffusion amount of Ag increases.

【0027】本発明の誘電体磁器組成物の好ましい組成
は、τf ≦±20 ppm/℃以下となるように、次の組成で
ある: 4.1≦a≦4.6 0.15≦x+y≦0.6 0.2 ≦x/(x+y) 、 CuをCuO 換算で 0.5〜2重量部、ZnをZnO 換算で 0.5〜
2重量部、BをB2O3換算で 0.3〜1.5 重量部。
The preferred composition of the dielectric porcelain composition of the present invention has the following composition so that τ f ≦ ± 20 ppm / ° C. or less: 4.1 ≦ a ≦ 4.6 0.15 ≦ x + y ≦ 0.6 0.2 ≦ x / (x + y), Cu is 0.5 to 2 parts by weight in CuO conversion, Zn is 0.5 to 2 parts by weight in ZnO conversion
2 parts by weight, 0.3 to 1.5 parts by weight of B in terms of B 2 O 3.

【0028】本発明に係る組成を持つ誘電体磁器は、常
法により製造することができる。即ち、各成分金属の酸
化物、2種以上の成分金属の複合酸化物 (例、BaTiO3)
、および/または焼成中に成分金属の酸化物に変化す
る適当な前駆化合物 (例えば、炭酸塩やカルボン酸塩
等) を、所定の組成を生ずるような割合で混合し、仮焼
し、成形した後、焼成すればよい。この場合、仮焼温度
は1000〜1100℃、焼成温度は 900〜960 ℃の範囲とする
ことが好ましい。
The dielectric ceramic having the composition according to the present invention can be manufactured by a conventional method. That is, an oxide of each component metal, a composite oxide of two or more component metals (eg, BaTiO 3 )
And / or suitable precursor compounds (eg, carbonates and carboxylate salts) that convert to oxides of the component metals during firing, are mixed in proportions to produce a predetermined composition, calcined, and shaped. After that, firing may be performed. In this case, the calcination temperature is preferably in the range of 1000 to 1100 ° C, and the calcination temperature is preferably in the range of 900 to 960 ° C.

【0029】また、本発明の主成分の材料系 BaO−(4〜
4.6)TiO2において、Geは上記範囲の量ではTiサイトにあ
ると考えられるので、BaO とTiO2 (またはBaTiO3のよう
なBa−Ti化合物とTiO2) とGeO2だけを、まず 950〜1150
℃の温度で仮焼してから、残りの成分 (SiO2と副成分材
料、または副成分材料だけ) を混合し、成形して、焼成
してもよい。こうすると、主成分の BaO−(4〜4.6)(Ti,
Ge)O2 系誘電体磁器の優れた高周波特性が、上記残りの
成分の添加により劣化するのを最小限に抑えることが可
能となり、全ての原料を一度に混合、仮焼する場合に比
べて、一層優れた特性を得ることができる。
In addition, the material BaO- (4 to
In 4.6) TiO 2, since Ge is in an amount within the above range is considered to be Ti site, BaO and TiO 2 (or Ba-Ti compound and TiO 2, such as BaTiO 3) only GeO 2, first 950 to 1150
After calcination at a temperature of ° C., the remaining components (SiO 2 and the sub-component material or only the sub-component material) may be mixed, molded and fired. In this case, the main component BaO- (4-4.6) (Ti,
Ge) excellent high-frequency characteristics of the O 2 based dielectric ceramic, the remaining it is possible to minimize the deterioration by the addition of ingredients, mixing all the ingredients at once, compared with the case of calcining And more excellent characteristics can be obtained.

【0030】ただし、仮焼時にBaO とTiO2とGeO2が存在
する限り、B2O3以外の残りの1種または2種以上の材料
がさらに存在していても、上記の方法の場合とほとんど
特性が違わない誘電体磁器を得ることができる。即ち、
B2O3またはその前駆化合物以外の材料は、仮焼前に混合
しておくことができる。B2O3原料だけは、仮焼後に後か
ら加える方が好ましい。仮焼時にB2O3が存在すると、Ge
がTiサイトに入らず、誘電体磁器のQ値が劣化するため
である。
However, as long as BaO, TiO 2 and GeO 2 are present at the time of calcination, even if one or more other materials other than B 2 O 3 are further present, the case of the above-mentioned method is not considered. A dielectric porcelain having almost no difference in characteristics can be obtained. That is,
Materials other than B 2 O 3 or its precursor compound can be mixed before calcination. It is preferable to add only the B 2 O 3 raw material after calcination. If B 2 O 3 is present during calcination, Ge
Does not enter the Ti site, and the Q value of the dielectric ceramic deteriorates.

【0031】本発明に係る誘電体磁器は、前述したグリ
ーンシート積層法により、Ag等の低抵抗内層導体と一緒
に焼成して積層型の誘電体磁器部品を製造するのに適し
ている。グリーンシートは、通常の方法に従って、全混
合原料の仮焼粉、または一部原料の仮焼粉とその残りの
原料の混合粉末、に適量のバインダ、可塑剤、溶剤等を
加えてスラリー化し、ドクターブレード法等により成形
することによって作製できる。
The dielectric porcelain according to the present invention is suitable for producing a laminated dielectric porcelain component by firing together with a low-resistance inner layer conductor such as Ag by the above-described green sheet laminating method. The green sheet is made into a slurry by adding an appropriate amount of a binder, a plasticizer, a solvent, etc. to the calcined powder of the whole mixed raw material, or the calcined powder of the partial raw material and the mixed powder of the remaining raw materials, It can be produced by molding by a doctor blade method or the like.

【0032】適当な寸法に切断したグリーンシートに、
内部電極形成用の低抵抗金属を主成分とする導体ペース
トを所定形状にスクリーン印刷してから、スクリーン印
刷したグリーンシートと、していないグリーンシートと
を適当に組合わせて積層し、熱圧着させ、積層体を必要
であれば切断してから同時焼成し、外部電極を形成して
積層部品を得る。外部電極形成用の導体ペーストは、焼
成前に塗布し、同時焼成させてもよい。
On a green sheet cut to an appropriate size,
A conductor paste mainly composed of a low-resistance metal for forming an internal electrode is screen-printed in a predetermined shape, and then a screen-printed green sheet and a non-screened green sheet are appropriately combined and laminated, and thermocompression-bonded. If necessary, the laminate is cut and fired at the same time to form an external electrode to obtain a laminated component. The conductor paste for forming the external electrodes may be applied before firing and fired simultaneously.

【0033】内部電極用の好ましい導体材料は、比較的
安価で、最も低抵抗、かつ大気中で焼成できるAgであ
る。本発明に係る誘電体磁器を使用すると、内部電極の
形成にAgペーストを使用しても、960 ℃以下の温度で焼
結可能で、しかも焼成中に誘電体磁器へのAgの拡散が抑
えられるため、Ag混入による誘電体磁器の温度特性およ
びQ値の劣化や電極形状の変形を起こさずにAg導体と同
時焼成でき、配線パターンの微細化にも十分に対応可能
である。
The preferred conductor material for the internal electrodes is Ag, which is relatively inexpensive, has the lowest resistance, and can be fired in air. When the dielectric porcelain according to the present invention is used, even if an Ag paste is used for forming the internal electrodes, sintering can be performed at a temperature of 960 ° C. or less, and diffusion of Ag into the dielectric porcelain during firing is suppressed. Therefore, it is possible to co-fire with the Ag conductor without deteriorating the temperature characteristics and Q value of the dielectric ceramic due to the inclusion of Ag, and without deforming the electrode shape, and it is possible to sufficiently cope with miniaturization of the wiring pattern.

【0034】そのため、例えば、誘電体磁器をフィルタ
ーに利用する場合には、温度特性の劣化が防止され、予
め通過帯域の幅を広めに設計する必要がなくなり、また
挿入損失を小さくできる。
Therefore, for example, when a dielectric porcelain is used for a filter, deterioration of temperature characteristics is prevented, and it is not necessary to design a wider pass band in advance, and insertion loss can be reduced.

【0035】[0035]

【実施例】以下に、本発明に係る誘電体磁器組成物を利
用した誘電体磁器の製造例を比較例と共に説明する。但
し、以下の実施例は例示であって、本発明を制限するも
のではない。また、実施例中の%は特に指定しない限り
重量%である。
EXAMPLES Examples of manufacturing dielectric ceramics using the dielectric ceramic composition according to the present invention will be described below along with comparative examples. However, the following examples are illustrative and do not limit the present invention. Further,% in Examples is% by weight unless otherwise specified.

【0036】[高周波特性評価用試料の作製]純度99%以
上のBaTiO3、TiO2、GeO2、SiO2、CuO 、ZnO の各粉末を
表1の組成になるように配合し、ボールミルで湿式混合
し、溶媒を蒸発させて粉末混合物を得た。この粉末混合
物を大気中1000℃で2時間仮焼し、仮焼生成物に表1の
組成になるようにB2O3を添加し、ボールミルで湿式粉砕
した。粉砕スラリーを蒸発乾燥させて得た乾燥粉末に、
1%の有機バインダ (ポリビニルアルコール) を加え、
整粒した後、1.5 ton/cm2 の圧力で、直径16 mm ×高さ
8mmの円柱状に成形した。得られた成形体を大気中、表
2に示す温度(900〜1060℃の範囲) で2時間焼成して円
柱状焼結体を得た。
[Preparation of High Frequency Characteristic Evaluation Sample] BaTiO 3 , TiO 2 , GeO 2 , SiO 2 , CuO, and ZnO powders having a purity of 99% or more were blended so as to have the composition shown in Table 1, and were wet-processed by a ball mill. Mix and evaporate the solvent to obtain a powder mixture. This powder mixture was calcined in the atmosphere at 1000 ° C. for 2 hours, B 2 O 3 was added to the calcined product so as to have the composition shown in Table 1, and the mixture was wet-pulverized with a ball mill. Dry powder obtained by evaporating and drying the ground slurry,
Add 1% organic binder (polyvinyl alcohol)
After sizing, the mixture was formed into a column having a diameter of 16 mm and a height of 8 mm at a pressure of 1.5 ton / cm 2 . The obtained molded body was fired in the atmosphere at a temperature shown in Table 2 (range of 900 to 1060 ° C.) for 2 hours to obtain a cylindrical sintered body.

【0037】[高周波特性の評価] (1) 上記方法で得られた円柱形焼結体を用いて、両端短
絡型円柱共振器法により比誘電率 (εr ) とf・Q値
(f=5〜6GHz)を測定した。Q値は測定共振周波数に
より変化するので、周波数により影響を受けずにほぼ一
定となるf・Q値により表した。
[Evaluation of High-Frequency Characteristics] (1) Using the cylindrical sintered body obtained by the above method, the relative dielectric constant (ε r ) and f · Q value by the short-circuited cylindrical resonator method at both ends.
(f = 5 to 6 GHz) was measured. Since the Q value changes according to the measured resonance frequency, it is represented by an fQ value which is substantially unaffected by the frequency.

【0038】(2) −25〜85℃の温度範囲でTE01δモード
の共振周波数を測定し、25℃における共振周波数を基準
とした変化率に基づいて共振周波数の温度係数 (τf )
を算出した。
(2) The resonance frequency of the TE01δ mode is measured in the temperature range of −25 to 85 ° C., and the temperature coefficient (τ f ) of the resonance frequency is determined based on the rate of change based on the resonance frequency at 25 ° C.
Was calculated.

【0039】[内部Ag電極を持つAg拡散評価用試料の作
製]高周波特性評価用試料の作製の場合と同様にして、B
2O3以外の原料の混合、仮焼、B2O3の添加・混合を行っ
て得た乾燥粉末に、その約70%の量のキシレンを主成分
とする有機溶剤、約3%の可塑剤、および約7.5 %のバ
インダ (ポリビニルブチラール) を加え、スラリー化し
た。このスラリーを用いて、ドクターブレード法により
100 μm厚さにシート成形し、乾燥して得られたグリー
ンシートを30mm ×30 mm に切断した。
[Preparation of Ag Diffusion Evaluation Sample Having Internal Ag Electrode]
A dry powder obtained by mixing raw materials other than 2 O 3 , calcining, and adding and mixing B 2 O 3 was added to an organic solvent containing xylene as a main component in an amount of about 70% and a plasticizer of about 3%. And about 7.5% of a binder (polyvinyl butyral), and slurried. Using this slurry, the doctor blade method
A green sheet obtained by forming a sheet to a thickness of 100 μm and drying was cut into a piece of 30 mm × 30 mm.

【0040】切断したグリーンシートの一部に、内部電
極形成用のAgペーストをスクリーン印刷した。Agペース
トは、1シートに2mm×1mmの長方形電極が、縦横の間
それぞれに2mmの間隔を設けて、縦横5列づつ形成され
るように印刷した。Agペーストの印刷厚みは20±2μm
であった。Agペーストを印刷したグリーンシートの上下
に、印刷していないグリーンシートをそれぞれ4枚づつ
積層して、90℃、100kgf/cm2 の条件で熱圧着させ、こ
の積層体を高周波特性評価用試料の時と同じ温度で大気
中で2時間焼成した。
An Ag paste for forming an internal electrode was screen-printed on a part of the cut green sheet. The Ag paste was printed so that a rectangular electrode of 2 mm × 1 mm was formed on one sheet, with a vertical and horizontal space of 2 mm each, and formed in 5 rows and 5 columns. Printing thickness of Ag paste is 20 ± 2μm
Met. Four unprinted green sheets are laminated on the upper and lower sides of the green sheet on which the Ag paste is printed, respectively, and thermocompression-bonded at 90 ° C. and 100 kgf / cm 2 . It was calcined in the air at the same temperature for 2 hours.

【0041】焼成により得られた、Agの内部電極を有す
る誘電体磁器試料を、内部電極の断面が観察できる位置
で切断し、切断面を研磨した後、SEM でAgの拡散状況を
観察した。具体的には、電極のAgが周囲の誘電体磁器中
に拡散すると、拡散したAgの跡が空隙となり、電極の周
囲に空洞が生ずる。この空洞が生じた場合にAgの拡散が
起こったと判定した。以上の試験結果を焼成温度と一緒
に表2に示す。
A dielectric ceramic sample having an internal electrode of Ag obtained by firing was cut at a position where the cross section of the internal electrode could be observed, the cut surface was polished, and the state of Ag diffusion was observed by SEM. Specifically, when the Ag of the electrode diffuses into the surrounding dielectric porcelain, the trace of the diffused Ag becomes a gap, and a cavity is formed around the electrode. When this cavity was formed, it was determined that Ag diffusion occurred. Table 2 shows the test results together with the firing temperature.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】表2からわかるように、本発明によれば、
Agとの同時焼成が可能な960 ℃以下の低温焼成によっ
て、比誘電率が約30〜36と適度に高く、f・Q値が8000
GHz以上と高く、共振周波数の温度係数 (τf ) が±30
ppm/℃以下と小さい、数GHz 以上の高周波帯で十分優れ
た電気特性を有する誘電体磁器が得られ、しかも焼成中
のAgの拡散が抑えられた。
As can be seen from Table 2, according to the present invention,
By firing at a low temperature of 960 ° C or less, which can be fired simultaneously with Ag, the relative dielectric constant is moderately high, about 30 to 36, and the f · Q value is 8000.
GHz or higher, temperature coefficient of resonance frequency (τ f ) ± 30
Dielectric porcelain having sufficiently excellent electrical characteristics in a high frequency band of several GHz or more, which is as low as ppm / ° C. or less, was obtained, and furthermore, diffusion of Ag during firing was suppressed.

【0045】[0045]

【発明の効果】本発明に係る誘電体磁器組成物は、比誘
電率が適度に高く、Qが大きく (即ち、材料の誘電損失
tanδが低く) 、かつ共振周波数の温度係数が小さいと
いう、数GHz 以上の高周波帯で用いられる誘電体磁器に
求められる特性を備えた誘電体磁器を与える。
The dielectric porcelain composition according to the present invention has an appropriately high relative dielectric constant and a large Q (that is, the dielectric loss of the material).
A dielectric porcelain having characteristics required for a dielectric porcelain used in a high frequency band of several GHz or more such that the tan δ is low and the temperature coefficient of the resonance frequency is small.

【0046】さらに、この誘電体磁器組成物は、低抵抗
の金属、特に最も良導体であるが低融点のAgの融点以下
の温度(900〜960 ℃) で焼結する低温焼結性を有し、こ
の焼成中に誘電体磁器中へのAgの拡散が抑えられる。従
って、場合によっては焼成温度はAgの融点の直下となる
が、それでもAgの内部導体と同時焼成可能である。その
結果、導体損の少ないAg内部電極を利用して、高周波帯
での電気特性に優れた誘電体積層部品を提供することが
でき、分布定数回路型誘電体磁器部品の小型化と高性能
化に寄与する。
Further, the dielectric ceramic composition has a low-temperature sintering property that sinters at a temperature (900 to 960 ° C.) lower than the melting point of low-resistance metal, particularly the best conductor but low-melting point Ag. During the firing, the diffusion of Ag into the dielectric porcelain is suppressed. Therefore, in some cases, the firing temperature is just below the melting point of Ag, but it is still possible to fire simultaneously with the Ag internal conductor. As a result, it is possible to provide a dielectric laminated component having excellent electrical characteristics in a high frequency band by using the Ag internal electrode with a small conductor loss, and to reduce the size and performance of the distributed constant circuit type dielectric ceramic component. To contribute.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA06 AA11 AA25 AA26 AA27 AA28 AA30 AA39 BA09 CA03 GA01 GA11 5G303 AA02 AA10 AB06 AB08 AB11 AB15 BA12 CA01 CB02 CB03 CB11 CB30 CB35 CB38 CB42 DA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G031 AA06 AA11 AA25 AA26 AA27 AA28 AA30 AA39 BA09 CA03 GA01 GA11 5G303 AA02 AA10 AB06 AB08 AB11 AB15 BA12 CA01 CB02 CB03 CB11 CB30 CB35 CB38 CB42 DA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記組成式 BaO・(a-x-y)TiO2・xGeO2+ySiO2 [ただし、 4.0≦a≦4.6 0.15 ≦x+y≦0.8 0.2≦x/(x+y)] で示される主成分100 重量部に対し、副成分として、 CuをCuO 換算で 0.5〜2重量部 ZnをZnO 換算で 0.5〜4重量部 BをB2O3換算で 0.3〜2重量部 の割合で含有し、かつZnO 換算量≧CuO 換算量である、
ことを特徴とする誘電体磁器組成物。
The present invention relates to 100 parts by weight of a main component represented by the following composition formula: BaO. (Axy) TiO 2 .xGeO 2 + ySiO 2 [where 4.0 ≦ a ≦ 4.6 0.15 ≦ x + y ≦ 0.8 0.2 ≦ x / (x + y)] against, as an auxiliary component, 0.5 to 2 parts by weight of Zn and Cu in terms of CuO in a proportion of 0.3 to 2 parts by weight of 0.5 to 4 parts by weight B in terms of B 2 O 3 in terms of ZnO, and ZnO equivalent amount ≧ CuO equivalent
A dielectric porcelain composition comprising:
【請求項2】 請求項1記載の誘電体磁器組成物からな
り、これと同時焼成されたAgの内部電極を備えた、積層
型誘電体磁器部品。
2. A laminated dielectric porcelain component comprising the dielectric porcelain composition according to claim 1 and having an Ag internal electrode co-fired therewith.
【請求項3】 少なくともBa、Ti、およびGeの酸化物、
複合酸化物、および/またはその前駆化合物を含有し、
B化合物を含有しない原料粉末混合物を 950〜1150℃の
温度で仮焼する工程、残りの成分の酸化物、複合酸化
物、および/またはその前駆化合物を添加して成形する
工程、および成形体を960 ℃以下の温度で焼成する工
程、を含むことを特徴とする、請求項1記載の組成物か
らなる誘電体磁器の製造方法。
3. An oxide of at least Ba, Ti and Ge,
Containing a composite oxide and / or a precursor compound thereof,
Calcining the raw material powder mixture containing no B compound at a temperature of 950 to 1150 ° C., adding the remaining component oxides, composite oxides, and / or precursor compounds thereof, and molding; A method for producing a dielectric porcelain comprising the composition according to claim 1, comprising a step of firing at a temperature of 960 ° C or lower.
JP11041476A 1999-02-19 1999-02-19 Dielectric porcelain composition Pending JP2000239061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041476A JP2000239061A (en) 1999-02-19 1999-02-19 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041476A JP2000239061A (en) 1999-02-19 1999-02-19 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JP2000239061A true JP2000239061A (en) 2000-09-05

Family

ID=12609421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041476A Pending JP2000239061A (en) 1999-02-19 1999-02-19 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2000239061A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102712A1 (en) * 2001-06-13 2002-12-27 Seiko Epson Corporation Ceramic and method for preparation thereof, and dielectric capacitor, semiconductor and element
KR100609383B1 (en) * 2004-05-03 2006-08-09 주식회사 아모텍 Dielectric ceramics composition with high dielectric coefficient microwave for low temperature sintering and preparing method thereof
JP2006273617A (en) * 2005-03-28 2006-10-12 Tdk Corp Dielectric ceramic composition
JP2006273616A (en) * 2005-03-28 2006-10-12 Tdk Corp Dielectric ceramic composition
JP2012025592A (en) * 2010-07-20 2012-02-09 Murata Mfg Co Ltd Dielectric ceramic, and multilayer ceramic capacitor using the same
CN112408980A (en) * 2020-10-31 2021-02-26 桂林理工大学 Low-dielectric-constant microwave dielectric ceramic with adjustable resonant frequency temperature coefficient and preparation method thereof
CN115626822A (en) * 2022-09-09 2023-01-20 西京学院 Low-temperature sintered microwave dielectric ceramic material and preparation method and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102712A1 (en) * 2001-06-13 2002-12-27 Seiko Epson Corporation Ceramic and method for preparation thereof, and dielectric capacitor, semiconductor and element
US7008669B2 (en) 2001-06-13 2006-03-07 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7323257B2 (en) 2001-06-13 2008-01-29 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7825569B2 (en) 2001-06-13 2010-11-02 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
US7956519B2 (en) 2001-06-13 2011-06-07 Seiko Epson Corporation Piezoelectric device having a ferroelectric film including a solid solution
US7960901B2 (en) 2001-06-13 2011-06-14 Seiko Epson Corporation Piezoelectric device having a ferroelectric film including a ferroelectric material
KR100609383B1 (en) * 2004-05-03 2006-08-09 주식회사 아모텍 Dielectric ceramics composition with high dielectric coefficient microwave for low temperature sintering and preparing method thereof
JP2006273617A (en) * 2005-03-28 2006-10-12 Tdk Corp Dielectric ceramic composition
JP2006273616A (en) * 2005-03-28 2006-10-12 Tdk Corp Dielectric ceramic composition
JP2012025592A (en) * 2010-07-20 2012-02-09 Murata Mfg Co Ltd Dielectric ceramic, and multilayer ceramic capacitor using the same
CN112408980A (en) * 2020-10-31 2021-02-26 桂林理工大学 Low-dielectric-constant microwave dielectric ceramic with adjustable resonant frequency temperature coefficient and preparation method thereof
CN115626822A (en) * 2022-09-09 2023-01-20 西京学院 Low-temperature sintered microwave dielectric ceramic material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2002104870A (en) Dielectric porcelain and laminate
JP4967388B2 (en) Method for manufacturing ceramic multilayer device and ceramic multilayer device
JP3860687B2 (en) Dielectric porcelain and laminate
JP4613952B2 (en) Dielectric ceramic composition and high frequency device using the same
KR100337651B1 (en) Dielectric Ceramic Composition, Electric Device and Production Method thereof
JP2000239061A (en) Dielectric porcelain composition
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP4837204B2 (en) Dielectric porcelain composition, porcelain capacitor using the same, and manufacturing method thereof
KR100359721B1 (en) Dielectric Ceramic Compositions able to be cofired with metal
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
KR100444221B1 (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP3870015B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4146152B2 (en) Dielectric ceramic composition and ceramic electronic component
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP3375450B2 (en) Dielectric porcelain composition
JP4618856B2 (en) Low temperature fired porcelain
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3793550B2 (en) Dielectric porcelain and laminate
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111