JP3714321B2 - 二次電池の充電率推定装置 - Google Patents
二次電池の充電率推定装置 Download PDFInfo
- Publication number
- JP3714321B2 JP3714321B2 JP2002340803A JP2002340803A JP3714321B2 JP 3714321 B2 JP3714321 B2 JP 3714321B2 JP 2002340803 A JP2002340803 A JP 2002340803A JP 2002340803 A JP2002340803 A JP 2002340803A JP 3714321 B2 JP3714321 B2 JP 3714321B2
- Authority
- JP
- Japan
- Prior art keywords
- equation
- circuit voltage
- open circuit
- estimated
- following
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、二次電池の充電率(SOC)を推定する装置に関する。
【0002】
【従来の技術】
【特許文献1】
特開2000−323183号公報
【特許文献2】
特開2000−268886号公報
【非特許文献1】
「論文“適応デジタルフィルタを用いた鉛電池の開路電圧と残存容量の推定”四国総研、四国電力、湯浅電池 T.IEEE Japan Vol.112-C,No.4 1992」
二次電池の充電率SOC(充電状態とも言う)は開路電圧V0(通電遮断時の電池端子電圧であり、起電力、開放電圧とも言う)と相関があるので、開路電圧V0を求めれば充電率を推定することが出来る。しかし、二次電池の端子電圧は、通電を遮断(充放電を終了)した後も安定するまでに時間を要するので、正確な開路電圧V0を求めるには、充放電を終了してから所定の時間が必要である。したがって充放電中や充放電直後では、正確な開路電圧V0を求めることが出来ないので、上記の方法で充電率SOCを求めることが出来ない。そのため、従来は、たとえば上記非特許文献1に記載のような方法を用いて開路電圧V0を推定している。
【発明が解決しようとする課題】
しかし、上記のごとき従来例においては、実際の電池の物理特性とは全く異なる「非回帰型の電池モデル(出力値が入力値の現在値および過去値だけで決るモデル)」に「適応デジタルフィルタ(逐次型のモデルパラメータ同定アルゴリズム)」を用いて開路電圧を算出し、この値から充電率SOCを算出している。そのため、実際の電池特性(入力:電流、出力:電圧)に応用した場合、電池特性によっては推定演算が全く収束しなかったり、真値に収束しないため、正確な充電率SOCを推定することが困難である、という問題があった。
本発明は上記のごとき従来技術の問題を解決するためになされたものであり、充電率SOCおよびその他のパラメータを正確に推定することの出来る二次電池の充電率推定装置を提供することを目的とする。
【0003】
【課題を解決するための手段】
上記の目的を達成するため、本発明においては、前記(数1)式に示した連続時間系の電池モデルを用いて、適応デジタルフィルタ演算を行い、(数1)式中のオフセット項であるV0および過渡項であるA(s)、B(s)、C(s)の係数に対応するパラメータを一括推定するパラメータ推定手段を備え、それによって推定した開路電圧V0を用いて、予め求めた開路電圧V0と充電率SOCの関係から充電率を推定するように構成している。なお、電池の種類によってはA(s)とC(s)の時定数が異なるものがあるので、本発明ではA(s)とC(s)を別個に推定するように構成している。
【0004】
【発明の効果】
二次電池の電流Iと端子電圧Vと開路電圧V0の関係を、(数1)式のような伝達関数で近似する構成であるため、最小二乗法等の適応デジタルフィルタ(公知の推定アルゴリズム)を適用することが可能になる。その結果、式中のパラメータ(オフセット項である開路電圧V0および多項式A(s)、B(s)、C(s)の係数)を一括推定することが可能になる。これらのパラメータは充電率や温度や劣化度などに影響され、時々刻々と変化するものであるが、適応デジタルフィルタにより精度良く逐次推定することが可能である。そして開路電圧V0と充電率の一意的な相関を記憶しておけば、推定した開路電圧から充電率に換算できる。そのため、充電率についても式中のパラメータ同様に、精度良く逐次推定することが可能である。
【0005】
【発明の実施の形態】
(実施例1)
図1は、本発明の実施例1を機能ブロックで表した図である。図1において、1はパラメータ推定手段であり、開路電圧V0(k)をオフセット項とする電池モデルに基づいたものである。また、2は開路電圧V0(k)演算手段、3は開路電圧から充電率を演算する充電率推定手段である。また、4は電池から充放電される電流を検出する電流I(k)計測手段、5は電池の端子電圧を検出する端子電圧V(k)計測手段である。
【0006】
図2は、実施例1の具体的な構成を示すブロック図である。この実施例は、二次電池でモータ等の負荷を駆動したり、モータの回生電力で二次電池を充電するシステムに、二次電池の充電率推定装置を設けた例を示す。
図2において、10は二次電池(単に電池とも言う)、20はモータ等の負荷、30は電池の充電状態を推定するバッテリーコントローラ(電子制御ユニット)で、プログラムを演算するCPUやプログラムを記憶したROMや演算結果を記憶するRAMから成るマイクロコンピュータと電子回路等で構成される。40は電池から充放電される電流を検出する電流計、50は電池の端子電圧を検出する電圧計、60は電池の温度を検出する温度計であり、それぞれバッテリーコントローラ30に接続される。上記のバッテリーコントローラ30は前記図1のパラメータ推定手段1、開路電圧V0(k)演算手段2および充電率推定手段3の部分に相当する。また、電流計40は電流I(k)計測手段4に、電圧計50は端子電圧V(k)計測手段5に、それぞれ相当する。
【0007】
まず、本実施例で用いる「電池モデル」を説明する。図3は、二次電池の等価回路モデルを示す図であり、下記(数7)式(=前記数6式)で表わすことが出来る。
【0008】
【数7】
ただし、モデル入力は電流I[A](正値は充電、負値は放電)、モデル出力は端子電圧V[V]、V0[V]は開路電圧、Kは内部抵抗、T1〜T3は時定数、sはラプラス演算子である。
本モデルは、正極、負極を特に分離していないリダクションモデル(一次)であるが、実際の電池の充放電特性を比較的正確に示すことが可能である。(数7)式は前記(数1)式において、A(s)=T1・s+1、B(s)=K・(T2・s+1、C(s)=T3・s+1と置いたものである。
【0009】
以下、前記(数7)式の電池モデルから適応デジタルフィルタまでの導出を、最初に説明する。
開路電圧V0は、電流Iに可変な効率Aを乗じた値を、或る初期状態から積分したものと考えれば、(数8)式で書ける。
【0010】
【数8】
なお、(数8)式は前記(数2)式におけるhを上記Aに置き換えたものに相当する。
(数8)式を(数7)式に代入すれば(数9)式になる。
【0011】
【数9】
なお、(数9)式は前記(数3)式に相当するものであり、(数3)式中のA(s)、B(s)、C(s)について前記(数7)式と同様に下記の式を代入したものである。
A(s)=T1・s+1
B(s)=K・(T2・s+1)
C(s)=T3・s+1
つまり、(数3)式が一般式であり、それを一次モデルに適用したものが(数9)式である。
上記の(数9)式を整理すれば(数10)式になる。
【0012】
【数10】
なお、(数10)式の最後の式においては、パラメータを下記(数11)式に示すように書き直している。
【0013】
【数11】
安定なローパスフィルタG1(s)を(数10)式の両辺に導入して、整理すれば(数12)式になる。
【0014】
【数12】
つまり、(数10)式において、前記(数7)式と逆に
T1・s+1=A(s)
K・(T2・s+1)=B(s)
T3・s+1=C(s)
を代入すると、
s・A(s)・C(s)・V=B(s)・C(s)・s・I+A・A(s)・I
となり、これを変形すると、
s・A(s)・C(s)・V=〔B(s)・C(s)・s+A・A(s)〕・I
となる。上式の両辺にローパスフィルタG1(s)を導入すると前記(数4)式となる。つまり、(数4)式が一般式であり、それを一次モデルに適用したものが(数12)式である。
【0015】
実際に計測可能な電流Iや端子電圧Vを、ローパスフィルタやバンドパスフィルタで処理した値を下記(数13)式のように定義する。ただし、p1は、G1(s)の応答性を決める定数である。
【0016】
【数13】
上記(数13)式に示した変数を用いて(数12)式を書き直せば(数14)式になり、変形すれば、(数15)式になる。
【0017】
【数14】
【0018】
【数15】
(数15)式は、計測可能な値と未知パラメータの積和式になっているので、一般的な適応デジタルフィルタの標準形(数16)式と一致する。
なお、ωTは、ベクトルωの行と列を入れ替えた転置ベクトルを意味する。
【0019】
【数16】
ただし、(数16)式において、y、ωT、θはそれぞれ下記(数17)式で示される。
【0020】
【数17】
したがって、電流Iと端子電圧Vにフィルタ処理を施した信号を、適応デジタルフィルタ演算に用いることで、未知パラメータベクトルθを推定することが出来る。
本実施例では、単純な「最小二乗法による適応フィルタ」の論理的な欠点(一度推定値が収束すると、その後パラメータが変化しても再度正確な推定ができないこと)を改善した「両限トレースゲイン方式」を用いる。前記(数16)式を前提にした未知パラメータベクトルθを推定するためのパラメータ推定アルゴリズムは(数18)式に示すようになる。ただし、k時点のパラメータ推定値をθ(k)とする。
【0021】
【数18】
ただし、λ1、λ3(k)、γU、γLは初期設定値で、b<λ1<1、0<λ3(k)<∞とする。P(0)は十分大きな値、θ(0)は非ゼロの十分小さな値を初期値とする。trace{P}は行列Pのトレースを意味する。
以上が、電池モデルから適応デジタルフィルタまでの導出である。
【0022】
図5は、バッテリーコントローラ30のマイクロコンピュータが行う処理のフローチャートであり、同図のルーチンは一定周期T0毎に実施される。例えば、I(k)は今回の値、I(k−1)は1回前の値を意味する。
ステップS10では、電流I(k)、端子電圧V(k)を計測する。
ステップS20では、二次電池の遮断リレーのオン・オフ判断を行う。つまりバッテリーコントローラ30は二次電池の遮断リレーの制御も行っており、リレー遮断時(電流I=0)はステップS30へ進む。リレー締結時はステップS40へ進む。
ステップS30では、端子電圧V(k)を端子電圧初期値V_iniとして記憶する。
ステップS40では、端子電圧差分値△V(k)を算出する。
ただし、△V(k)=V(k)−V_ini
これは、適応デジタルフィルタ内の推定パラメータの初期値を約0としているので、推定演算開始時に推定パラメータが発散しないように、入力を全て0とするためである。リレー遮断時はステップS30を通るので、I=0かつ△V(k)=0のため、推定パラメータは初期状態のままである。
【0023】
ステップS50では、電流I(k)と端子電圧差分値△V(k)に、(数13)式に基づきローパスフィルタ、バンドパスフィルタのフィルタ処理を施し、I0(k)〜I3(k)およびV1(k)〜V3(k)を(数19)式から算出する。 この際、(数18)式のパラメータ推定アルゴリズムの推定精度を良くするために、観測ノイズを低減するようローパスフィルタG1(s)の応答性を遅く設定する。ただし、電池の応答特性(時定数T1の概略値は既知である)よりも速い特性でないと、電池モデルの各パラメータを精度良く推定できない。(数19)式のp1は、G1(s)の応答性を決める定数である。
【0024】
【数19】
ステップS60では、ステップS50で算出したI0(k)〜I3(k)およびV1(k)〜V3(k)を(数18)式に代入する。そして適応フィルタでのパラメータ推定アルゴリズムである(数18)式を実行し、パラメータ推定値θ(k)を算出する。y(k)、ωT(k)、θ(k)は下記(数20)式で示される。
【0025】
【数20】
ステップS70では、ステップS60で算出したパラメータ推定値θ(k)の中からa〜eを、電池モデルである前記(数7)式を変形した下記(数22)式に代入して、開路電圧V0の代用としてV0’を算出する。開路電圧V0は変化が緩やかなので、V0’で代用できる。ただし、ここで求まるのは推定演算開始時からの開路電圧推定値の変化分△V0(k)である。
ここで、下記(数21)式中の〔1/G2(s)]I等を下記(数24)式に示すように置き換えたものが(数22)式に相当する。また、(数22)式の導出において、(数21)式のKと(数22)式のeは厳密には異なるけれども、物理的にK》A・T1であるため、e≒Kと近似している。また、(数22)式中の各係数a〜eは下記(数23)式に示す内容である。
【0026】
【数21】
【0027】
【数22】
【0028】
【数23】
【0029】
【数24】
(数24)式のp2はG2(s)の応答性を決める定数である。電池パラメータのT1は概略値が数秒と判っているため、(数24)式中のT1’はT1に近い値に設定する。それにより(数22)式中の分子に残る「T1・s+1」を相殺できるため、開路電圧V0の推定精度を向上できるからである。
なお、(数21)式は前記(数5)式に相当する。つまり、(数21)式は、
(T1・s+1)・V0=
(T1・s+1)(T3・s+1)・V−K・(T2・s+1)(T3・s+1)・I
から導出されており、この式に前記(数10)式と同様に、
T1・s+1=A(s)
K・(T2・s+1)=B(s)
T3・s+1=C(s)
を代入すると、
A(s)・V0=A(s)・C(s)・V−B(s)・C(s)・I
となる。これを変形すると、
V0=C(s)・V−B(s)・C(s)・I/A(s)
V0=C(s)・〔V−B(s)・I/A(s)〕
となり、この両辺にローパスフィルタG2(s)を導入すると(数5)式になる。つまり、(数5)式が一般式であり、それを一次モデルに適用したものが(数21)式である。
【0030】
ステップS80では、ステップS70で算出した△V0(k)はパラメータ推定アルゴリズム開始時からの開路電圧の変化分であるから、開路電圧初期値すなわち端子電圧初期値V_iniを加算して開路電圧推定値V0(k)を下記(数25)式から算出する。
V0(k)=△V0(k)十V_ini …(数25)
ステップS90では、図4に示す開路電圧と充電率の相関マップを用いて、ステップS80で算出したV0(k)から充電率SOC(k)を算出する。
なお、図4において、VLはSOC=0%に、VHはSOC=100%に相当する開路電圧である。
ステップS100では、次回演算に必要な数値を保存して、今回演算を終了する。以上を、実施例1の動作の説明とする。
【0031】
(1)上記のように、二次電池の電流Iと端子電圧Vと開路電圧V0の関係を、一般式では(数1)式、実施例では(数7)式(=数6式)のような伝達関数で近似する構成であるため、最小二乗法等の適応デジタルフィルタ(公知の推定アルゴリズム)を適用することが可能になる効果がある。その結果、式中のパラメータ(オフセット項である開路電圧V0および多項式A(s)、B(s)、C(s)の係数)を一括推定することが可能になる。これらのパラメータは充電率や温度や劣化度などに影響され、時々刻々と変化するものであるが、適応デジタルフィルタにより精度良く逐次推定することが可能である。そして図4に示したような開路電圧V0と充電率の一意的な相関を記憶しておけば、推定した開路電圧から充電率に換算できる。そのため、充電率についても式中のパラメータ同様に、精度良く逐次推定することが可能である。
【0032】
(2)また、二次電池の電流Iと端子電圧Vの関係式である(数1)式を、(数4)式のように近似した場合には、開路電圧V0(オフセット項)を含まない構成になるため、計測可能な電流Iと端子電圧Vを各々フィルタ処理した値と、未知パラメータ(多項式A(s)、B(s)、C(s)の係数パラメータおよびh)との積和式が得られるので、通常の適応デジタルフィルタ(最小二乗法などで、公知のパラメータ推定アルゴリズム)を連続時間系のまま適用することが可能になるという効果がある。
その結果、未知パラメータを一括推定することができ、推定したパラメータhを(数2)式に代入することで、開路電圧V0の推定値を容易に算出できる。これら未知パラメータは、SOCや温度や劣化度などに影響され時々刻々と変化することが分かっているけれども、適応デジタルフィルタにより精度良く逐次推定できる。そして、開路電圧V0と充電率SOCの関係(図4)は一定の関係があるため、これを予め記憶しておけば開路電圧V0の推定値から充電率SOCを推定できる。
図6は、電流Iと端子電圧Vを適応フィルタに入力して、各パラメータを推定したシミュレーション結果を示す図である。(数6)式の1次遅れの時定数に関しては、T1<T0に設定している。全てのパラメータa〜f(前記(数11)式を参照)が良好に推定できているため、開路電圧V0の推定値は真値と良く一致する。この開路電圧が図4のマップからSOCに換算されるため、SOCの推定値も真値と良く一致すると言える。
なお、図6において、開路電圧の欄に(数6)式の右辺第2項を併記しているのは、適応フィルタに入力される端子電圧上には、時定数T3の遅い項を計測しているにも係わらず、開路電圧推定値は殆ど遅れなく真値に一致していることを示すためである。つまり、(数6)式の電池モデルを定式化した適応デジタルフィルタでパラメータ推定する構成であるため、全てのパラメータa〜fを良好に推定でき、開路電圧V0の推定値は真値と良く一致するという効果がある。
【0033】
(3)また、上記(2)のように(数2)式から開路電圧V0を算出する構成では、推定値hが真値に収束する前の値も積分してしまうので、その誤差を解消できないが、積分を含まない(数5)式を用いる構成においては、パラメータ推定値が真値に収束する前の誤差は、収束後には影響を及ぼさないという効果がある。
図6中▲1▼部分では、推定値fが真値に収束する前に、一瞬だけ誤推定しているのが分かる。前記(2)では、この値も積分しているため誤差は解消されない。しかし、(数5)式を用いる構成においては、積分を含まない式から開路電圧V0を算出するため、パラメータ推定値が真値に収束した後は、この誤推定部分は解消される。
【0034】
(4)また、(数1)式の代わりに(数6)式を用いる場合には、上記と同様の効果を持ちながら、演算時間やプログラム容量を必要最小限に抑えることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例1を機能ブロックで表した図。
【図2】実施例1の具体的な構成を示すブロック図。
【図3】二次電池の等価回路モデルを示す図。
【図4】開路電圧と充電率の相関マップ。
【図5】バッテリーコントローラ30のマイクロコンピュータが行う処理のフローチャート。
【図6】電流Iと端子電圧Vを適応フィルタに入力して、各パラメータを推定したシミュレーション結果を示す図。
【符号の説明】
1…パラメータ推定手段 2…開路電圧V0(k)演算手段
3…充電率推定手段 4…電流I(k)計測手段
5…端子電圧V(k)計測手段 10…二次電池
20…負荷 30…バッテリーコントローラ
40…電流計 50…電圧計
60…温度計
【発明の属する技術分野】
本発明は、二次電池の充電率(SOC)を推定する装置に関する。
【0002】
【従来の技術】
【特許文献1】
特開2000−323183号公報
【特許文献2】
特開2000−268886号公報
【非特許文献1】
「論文“適応デジタルフィルタを用いた鉛電池の開路電圧と残存容量の推定”四国総研、四国電力、湯浅電池 T.IEEE Japan Vol.112-C,No.4 1992」
二次電池の充電率SOC(充電状態とも言う)は開路電圧V0(通電遮断時の電池端子電圧であり、起電力、開放電圧とも言う)と相関があるので、開路電圧V0を求めれば充電率を推定することが出来る。しかし、二次電池の端子電圧は、通電を遮断(充放電を終了)した後も安定するまでに時間を要するので、正確な開路電圧V0を求めるには、充放電を終了してから所定の時間が必要である。したがって充放電中や充放電直後では、正確な開路電圧V0を求めることが出来ないので、上記の方法で充電率SOCを求めることが出来ない。そのため、従来は、たとえば上記非特許文献1に記載のような方法を用いて開路電圧V0を推定している。
【発明が解決しようとする課題】
しかし、上記のごとき従来例においては、実際の電池の物理特性とは全く異なる「非回帰型の電池モデル(出力値が入力値の現在値および過去値だけで決るモデル)」に「適応デジタルフィルタ(逐次型のモデルパラメータ同定アルゴリズム)」を用いて開路電圧を算出し、この値から充電率SOCを算出している。そのため、実際の電池特性(入力:電流、出力:電圧)に応用した場合、電池特性によっては推定演算が全く収束しなかったり、真値に収束しないため、正確な充電率SOCを推定することが困難である、という問題があった。
本発明は上記のごとき従来技術の問題を解決するためになされたものであり、充電率SOCおよびその他のパラメータを正確に推定することの出来る二次電池の充電率推定装置を提供することを目的とする。
【0003】
【課題を解決するための手段】
上記の目的を達成するため、本発明においては、前記(数1)式に示した連続時間系の電池モデルを用いて、適応デジタルフィルタ演算を行い、(数1)式中のオフセット項であるV0および過渡項であるA(s)、B(s)、C(s)の係数に対応するパラメータを一括推定するパラメータ推定手段を備え、それによって推定した開路電圧V0を用いて、予め求めた開路電圧V0と充電率SOCの関係から充電率を推定するように構成している。なお、電池の種類によってはA(s)とC(s)の時定数が異なるものがあるので、本発明ではA(s)とC(s)を別個に推定するように構成している。
【0004】
【発明の効果】
二次電池の電流Iと端子電圧Vと開路電圧V0の関係を、(数1)式のような伝達関数で近似する構成であるため、最小二乗法等の適応デジタルフィルタ(公知の推定アルゴリズム)を適用することが可能になる。その結果、式中のパラメータ(オフセット項である開路電圧V0および多項式A(s)、B(s)、C(s)の係数)を一括推定することが可能になる。これらのパラメータは充電率や温度や劣化度などに影響され、時々刻々と変化するものであるが、適応デジタルフィルタにより精度良く逐次推定することが可能である。そして開路電圧V0と充電率の一意的な相関を記憶しておけば、推定した開路電圧から充電率に換算できる。そのため、充電率についても式中のパラメータ同様に、精度良く逐次推定することが可能である。
【0005】
【発明の実施の形態】
(実施例1)
図1は、本発明の実施例1を機能ブロックで表した図である。図1において、1はパラメータ推定手段であり、開路電圧V0(k)をオフセット項とする電池モデルに基づいたものである。また、2は開路電圧V0(k)演算手段、3は開路電圧から充電率を演算する充電率推定手段である。また、4は電池から充放電される電流を検出する電流I(k)計測手段、5は電池の端子電圧を検出する端子電圧V(k)計測手段である。
【0006】
図2は、実施例1の具体的な構成を示すブロック図である。この実施例は、二次電池でモータ等の負荷を駆動したり、モータの回生電力で二次電池を充電するシステムに、二次電池の充電率推定装置を設けた例を示す。
図2において、10は二次電池(単に電池とも言う)、20はモータ等の負荷、30は電池の充電状態を推定するバッテリーコントローラ(電子制御ユニット)で、プログラムを演算するCPUやプログラムを記憶したROMや演算結果を記憶するRAMから成るマイクロコンピュータと電子回路等で構成される。40は電池から充放電される電流を検出する電流計、50は電池の端子電圧を検出する電圧計、60は電池の温度を検出する温度計であり、それぞれバッテリーコントローラ30に接続される。上記のバッテリーコントローラ30は前記図1のパラメータ推定手段1、開路電圧V0(k)演算手段2および充電率推定手段3の部分に相当する。また、電流計40は電流I(k)計測手段4に、電圧計50は端子電圧V(k)計測手段5に、それぞれ相当する。
【0007】
まず、本実施例で用いる「電池モデル」を説明する。図3は、二次電池の等価回路モデルを示す図であり、下記(数7)式(=前記数6式)で表わすことが出来る。
【0008】
【数7】
ただし、モデル入力は電流I[A](正値は充電、負値は放電)、モデル出力は端子電圧V[V]、V0[V]は開路電圧、Kは内部抵抗、T1〜T3は時定数、sはラプラス演算子である。
本モデルは、正極、負極を特に分離していないリダクションモデル(一次)であるが、実際の電池の充放電特性を比較的正確に示すことが可能である。(数7)式は前記(数1)式において、A(s)=T1・s+1、B(s)=K・(T2・s+1、C(s)=T3・s+1と置いたものである。
【0009】
以下、前記(数7)式の電池モデルから適応デジタルフィルタまでの導出を、最初に説明する。
開路電圧V0は、電流Iに可変な効率Aを乗じた値を、或る初期状態から積分したものと考えれば、(数8)式で書ける。
【0010】
【数8】
なお、(数8)式は前記(数2)式におけるhを上記Aに置き換えたものに相当する。
(数8)式を(数7)式に代入すれば(数9)式になる。
【0011】
【数9】
なお、(数9)式は前記(数3)式に相当するものであり、(数3)式中のA(s)、B(s)、C(s)について前記(数7)式と同様に下記の式を代入したものである。
A(s)=T1・s+1
B(s)=K・(T2・s+1)
C(s)=T3・s+1
つまり、(数3)式が一般式であり、それを一次モデルに適用したものが(数9)式である。
上記の(数9)式を整理すれば(数10)式になる。
【0012】
【数10】
なお、(数10)式の最後の式においては、パラメータを下記(数11)式に示すように書き直している。
【0013】
【数11】
安定なローパスフィルタG1(s)を(数10)式の両辺に導入して、整理すれば(数12)式になる。
【0014】
【数12】
つまり、(数10)式において、前記(数7)式と逆に
T1・s+1=A(s)
K・(T2・s+1)=B(s)
T3・s+1=C(s)
を代入すると、
s・A(s)・C(s)・V=B(s)・C(s)・s・I+A・A(s)・I
となり、これを変形すると、
s・A(s)・C(s)・V=〔B(s)・C(s)・s+A・A(s)〕・I
となる。上式の両辺にローパスフィルタG1(s)を導入すると前記(数4)式となる。つまり、(数4)式が一般式であり、それを一次モデルに適用したものが(数12)式である。
【0015】
実際に計測可能な電流Iや端子電圧Vを、ローパスフィルタやバンドパスフィルタで処理した値を下記(数13)式のように定義する。ただし、p1は、G1(s)の応答性を決める定数である。
【0016】
【数13】
上記(数13)式に示した変数を用いて(数12)式を書き直せば(数14)式になり、変形すれば、(数15)式になる。
【0017】
【数14】
【0018】
【数15】
(数15)式は、計測可能な値と未知パラメータの積和式になっているので、一般的な適応デジタルフィルタの標準形(数16)式と一致する。
なお、ωTは、ベクトルωの行と列を入れ替えた転置ベクトルを意味する。
【0019】
【数16】
ただし、(数16)式において、y、ωT、θはそれぞれ下記(数17)式で示される。
【0020】
【数17】
したがって、電流Iと端子電圧Vにフィルタ処理を施した信号を、適応デジタルフィルタ演算に用いることで、未知パラメータベクトルθを推定することが出来る。
本実施例では、単純な「最小二乗法による適応フィルタ」の論理的な欠点(一度推定値が収束すると、その後パラメータが変化しても再度正確な推定ができないこと)を改善した「両限トレースゲイン方式」を用いる。前記(数16)式を前提にした未知パラメータベクトルθを推定するためのパラメータ推定アルゴリズムは(数18)式に示すようになる。ただし、k時点のパラメータ推定値をθ(k)とする。
【0021】
【数18】
ただし、λ1、λ3(k)、γU、γLは初期設定値で、b<λ1<1、0<λ3(k)<∞とする。P(0)は十分大きな値、θ(0)は非ゼロの十分小さな値を初期値とする。trace{P}は行列Pのトレースを意味する。
以上が、電池モデルから適応デジタルフィルタまでの導出である。
【0022】
図5は、バッテリーコントローラ30のマイクロコンピュータが行う処理のフローチャートであり、同図のルーチンは一定周期T0毎に実施される。例えば、I(k)は今回の値、I(k−1)は1回前の値を意味する。
ステップS10では、電流I(k)、端子電圧V(k)を計測する。
ステップS20では、二次電池の遮断リレーのオン・オフ判断を行う。つまりバッテリーコントローラ30は二次電池の遮断リレーの制御も行っており、リレー遮断時(電流I=0)はステップS30へ進む。リレー締結時はステップS40へ進む。
ステップS30では、端子電圧V(k)を端子電圧初期値V_iniとして記憶する。
ステップS40では、端子電圧差分値△V(k)を算出する。
ただし、△V(k)=V(k)−V_ini
これは、適応デジタルフィルタ内の推定パラメータの初期値を約0としているので、推定演算開始時に推定パラメータが発散しないように、入力を全て0とするためである。リレー遮断時はステップS30を通るので、I=0かつ△V(k)=0のため、推定パラメータは初期状態のままである。
【0023】
ステップS50では、電流I(k)と端子電圧差分値△V(k)に、(数13)式に基づきローパスフィルタ、バンドパスフィルタのフィルタ処理を施し、I0(k)〜I3(k)およびV1(k)〜V3(k)を(数19)式から算出する。 この際、(数18)式のパラメータ推定アルゴリズムの推定精度を良くするために、観測ノイズを低減するようローパスフィルタG1(s)の応答性を遅く設定する。ただし、電池の応答特性(時定数T1の概略値は既知である)よりも速い特性でないと、電池モデルの各パラメータを精度良く推定できない。(数19)式のp1は、G1(s)の応答性を決める定数である。
【0024】
【数19】
ステップS60では、ステップS50で算出したI0(k)〜I3(k)およびV1(k)〜V3(k)を(数18)式に代入する。そして適応フィルタでのパラメータ推定アルゴリズムである(数18)式を実行し、パラメータ推定値θ(k)を算出する。y(k)、ωT(k)、θ(k)は下記(数20)式で示される。
【0025】
【数20】
ステップS70では、ステップS60で算出したパラメータ推定値θ(k)の中からa〜eを、電池モデルである前記(数7)式を変形した下記(数22)式に代入して、開路電圧V0の代用としてV0’を算出する。開路電圧V0は変化が緩やかなので、V0’で代用できる。ただし、ここで求まるのは推定演算開始時からの開路電圧推定値の変化分△V0(k)である。
ここで、下記(数21)式中の〔1/G2(s)]I等を下記(数24)式に示すように置き換えたものが(数22)式に相当する。また、(数22)式の導出において、(数21)式のKと(数22)式のeは厳密には異なるけれども、物理的にK》A・T1であるため、e≒Kと近似している。また、(数22)式中の各係数a〜eは下記(数23)式に示す内容である。
【0026】
【数21】
【0027】
【数22】
【0028】
【数23】
【0029】
【数24】
(数24)式のp2はG2(s)の応答性を決める定数である。電池パラメータのT1は概略値が数秒と判っているため、(数24)式中のT1’はT1に近い値に設定する。それにより(数22)式中の分子に残る「T1・s+1」を相殺できるため、開路電圧V0の推定精度を向上できるからである。
なお、(数21)式は前記(数5)式に相当する。つまり、(数21)式は、
(T1・s+1)・V0=
(T1・s+1)(T3・s+1)・V−K・(T2・s+1)(T3・s+1)・I
から導出されており、この式に前記(数10)式と同様に、
T1・s+1=A(s)
K・(T2・s+1)=B(s)
T3・s+1=C(s)
を代入すると、
A(s)・V0=A(s)・C(s)・V−B(s)・C(s)・I
となる。これを変形すると、
V0=C(s)・V−B(s)・C(s)・I/A(s)
V0=C(s)・〔V−B(s)・I/A(s)〕
となり、この両辺にローパスフィルタG2(s)を導入すると(数5)式になる。つまり、(数5)式が一般式であり、それを一次モデルに適用したものが(数21)式である。
【0030】
ステップS80では、ステップS70で算出した△V0(k)はパラメータ推定アルゴリズム開始時からの開路電圧の変化分であるから、開路電圧初期値すなわち端子電圧初期値V_iniを加算して開路電圧推定値V0(k)を下記(数25)式から算出する。
V0(k)=△V0(k)十V_ini …(数25)
ステップS90では、図4に示す開路電圧と充電率の相関マップを用いて、ステップS80で算出したV0(k)から充電率SOC(k)を算出する。
なお、図4において、VLはSOC=0%に、VHはSOC=100%に相当する開路電圧である。
ステップS100では、次回演算に必要な数値を保存して、今回演算を終了する。以上を、実施例1の動作の説明とする。
【0031】
(1)上記のように、二次電池の電流Iと端子電圧Vと開路電圧V0の関係を、一般式では(数1)式、実施例では(数7)式(=数6式)のような伝達関数で近似する構成であるため、最小二乗法等の適応デジタルフィルタ(公知の推定アルゴリズム)を適用することが可能になる効果がある。その結果、式中のパラメータ(オフセット項である開路電圧V0および多項式A(s)、B(s)、C(s)の係数)を一括推定することが可能になる。これらのパラメータは充電率や温度や劣化度などに影響され、時々刻々と変化するものであるが、適応デジタルフィルタにより精度良く逐次推定することが可能である。そして図4に示したような開路電圧V0と充電率の一意的な相関を記憶しておけば、推定した開路電圧から充電率に換算できる。そのため、充電率についても式中のパラメータ同様に、精度良く逐次推定することが可能である。
【0032】
(2)また、二次電池の電流Iと端子電圧Vの関係式である(数1)式を、(数4)式のように近似した場合には、開路電圧V0(オフセット項)を含まない構成になるため、計測可能な電流Iと端子電圧Vを各々フィルタ処理した値と、未知パラメータ(多項式A(s)、B(s)、C(s)の係数パラメータおよびh)との積和式が得られるので、通常の適応デジタルフィルタ(最小二乗法などで、公知のパラメータ推定アルゴリズム)を連続時間系のまま適用することが可能になるという効果がある。
その結果、未知パラメータを一括推定することができ、推定したパラメータhを(数2)式に代入することで、開路電圧V0の推定値を容易に算出できる。これら未知パラメータは、SOCや温度や劣化度などに影響され時々刻々と変化することが分かっているけれども、適応デジタルフィルタにより精度良く逐次推定できる。そして、開路電圧V0と充電率SOCの関係(図4)は一定の関係があるため、これを予め記憶しておけば開路電圧V0の推定値から充電率SOCを推定できる。
図6は、電流Iと端子電圧Vを適応フィルタに入力して、各パラメータを推定したシミュレーション結果を示す図である。(数6)式の1次遅れの時定数に関しては、T1<T0に設定している。全てのパラメータa〜f(前記(数11)式を参照)が良好に推定できているため、開路電圧V0の推定値は真値と良く一致する。この開路電圧が図4のマップからSOCに換算されるため、SOCの推定値も真値と良く一致すると言える。
なお、図6において、開路電圧の欄に(数6)式の右辺第2項を併記しているのは、適応フィルタに入力される端子電圧上には、時定数T3の遅い項を計測しているにも係わらず、開路電圧推定値は殆ど遅れなく真値に一致していることを示すためである。つまり、(数6)式の電池モデルを定式化した適応デジタルフィルタでパラメータ推定する構成であるため、全てのパラメータa〜fを良好に推定でき、開路電圧V0の推定値は真値と良く一致するという効果がある。
【0033】
(3)また、上記(2)のように(数2)式から開路電圧V0を算出する構成では、推定値hが真値に収束する前の値も積分してしまうので、その誤差を解消できないが、積分を含まない(数5)式を用いる構成においては、パラメータ推定値が真値に収束する前の誤差は、収束後には影響を及ぼさないという効果がある。
図6中▲1▼部分では、推定値fが真値に収束する前に、一瞬だけ誤推定しているのが分かる。前記(2)では、この値も積分しているため誤差は解消されない。しかし、(数5)式を用いる構成においては、積分を含まない式から開路電圧V0を算出するため、パラメータ推定値が真値に収束した後は、この誤推定部分は解消される。
【0034】
(4)また、(数1)式の代わりに(数6)式を用いる場合には、上記と同様の効果を持ちながら、演算時間やプログラム容量を必要最小限に抑えることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例1を機能ブロックで表した図。
【図2】実施例1の具体的な構成を示すブロック図。
【図3】二次電池の等価回路モデルを示す図。
【図4】開路電圧と充電率の相関マップ。
【図5】バッテリーコントローラ30のマイクロコンピュータが行う処理のフローチャート。
【図6】電流Iと端子電圧Vを適応フィルタに入力して、各パラメータを推定したシミュレーション結果を示す図。
【符号の説明】
1…パラメータ推定手段 2…開路電圧V0(k)演算手段
3…充電率推定手段 4…電流I(k)計測手段
5…端子電圧V(k)計測手段 10…二次電池
20…負荷 30…バッテリーコントローラ
40…電流計 50…電圧計
60…温度計
Claims (4)
- 二次電池の電流Iと端子電圧Vとを計測し、適応デジタルフィルタを用いて、前記電流Iと端子電圧Vの計測値から開路電圧V0を推定し、予め求めた開路電圧V0と充電率SOCとの関係に基づいて充電率を推定する充電率推定装置において、
下記(数1)式に示す連続時間系の電池モデルを用いて、適応デジタルフィルタ演算を行い、(数1)式中のオフセット項であるV0および過渡項であるA(s)、B(s)、C(s)の係数に対応するパラメータを一括推定するパラメータ推定手段と、
上記の推定した開路電圧V0を用いて、予め求めた開路電圧V0と充電率SOCの関係から充電率を推定する充電率推定手段と、
を備えたことを特徴とする二次電池の充電率推定装置。
- 前記(数1)式に示した連続時間系の電池モデルの開路電圧V0を、下記(数2)式で近似することで下記(数3)式とし、(数3)式と等価な下記(数4)式を用いて適応デジタルフィルタ演算を行い、(数4)式からA(s)、B(s)、C(s)を推定し、その推定したA(s)、B(s)、C(s)を下記(数5)式に代入することによってV0/G2(s)を求め、求めたV0/G2(s)を開路電圧V0の代わりに用いて、予め求めた開路電圧V0と充電率SOCの関係から充電率を推定することを特徴とする請求項1に記載の二次電池の充電率推定装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002340803A JP3714321B2 (ja) | 2002-11-25 | 2002-11-25 | 二次電池の充電率推定装置 |
US10/695,800 US7098625B2 (en) | 2002-11-25 | 2003-10-30 | Apparatus and method for estimating charge rate of secondary cell |
EP03026573A EP1422804B1 (en) | 2002-11-25 | 2003-11-18 | State of charge estimating apparatus and method for a secondary cell |
DE60316526T DE60316526T2 (de) | 2002-11-25 | 2003-11-18 | Einrichtung und Verfahren zur Schätzung des Ladungszustands einer Sekundärbatterie |
CN200320116788XU CN2724218Y (zh) | 2002-11-25 | 2003-11-25 | 用于估计蓄电池充电率的装置 |
CNB2003101183590A CN1322627C (zh) | 2002-11-25 | 2003-11-25 | 用于推算蓄电池充电率的装置和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002340803A JP3714321B2 (ja) | 2002-11-25 | 2002-11-25 | 二次電池の充電率推定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004178848A JP2004178848A (ja) | 2004-06-24 |
JP3714321B2 true JP3714321B2 (ja) | 2005-11-09 |
Family
ID=32212157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002340803A Expired - Fee Related JP3714321B2 (ja) | 2002-11-25 | 2002-11-25 | 二次電池の充電率推定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7098625B2 (ja) |
EP (1) | EP1422804B1 (ja) |
JP (1) | JP3714321B2 (ja) |
CN (2) | CN2724218Y (ja) |
DE (1) | DE60316526T2 (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4547908B2 (ja) | 2003-12-25 | 2010-09-22 | 日産自動車株式会社 | 二次電池の入出力可能電力推定装置 |
US7554295B2 (en) * | 2004-04-06 | 2009-06-30 | Cobasys, Llc | Determination of IR-free voltage in hybrid vehicle applications |
US7382110B2 (en) * | 2004-04-23 | 2008-06-03 | Sony Corporation | Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack |
JP4830382B2 (ja) | 2005-07-19 | 2011-12-07 | 日産自動車株式会社 | 二次電池の充電率推定装置 |
JP4720364B2 (ja) * | 2005-08-22 | 2011-07-13 | 日産自動車株式会社 | 二次電池の内部抵抗推定装置 |
JP4692246B2 (ja) | 2005-11-29 | 2011-06-01 | 日産自動車株式会社 | 二次電池の入出力可能電力推定装置 |
KR100805116B1 (ko) | 2006-09-08 | 2008-02-21 | 삼성에스디아이 주식회사 | 배터리 관리 시스템 및 그 구동방법 |
JP4872743B2 (ja) * | 2007-03-23 | 2012-02-08 | トヨタ自動車株式会社 | 二次電池の状態推定装置 |
US7899631B2 (en) * | 2007-03-29 | 2011-03-01 | The Furukawa Electric Co., Ltd. | Method and device for estimating battery residual capacity, and battery power supply system |
JP2009072020A (ja) | 2007-09-14 | 2009-04-02 | Calsonic Kansei Corp | 二次電池の内部状態推定装置 |
KR101189150B1 (ko) * | 2008-01-11 | 2012-10-10 | 에스케이이노베이션 주식회사 | 배터리 관리 시스템에서 배터리의 soc 측정 방법 및 장치 |
JP5262179B2 (ja) * | 2008-02-26 | 2013-08-14 | 日産自動車株式会社 | 二次電池の充電率推定装置および充電率推定方法 |
JP5028315B2 (ja) * | 2008-03-31 | 2012-09-19 | 川崎重工業株式会社 | 二次電池の充電状態推定方法及び装置 |
KR101187766B1 (ko) * | 2008-08-08 | 2012-10-05 | 주식회사 엘지화학 | 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법 |
US8321164B2 (en) * | 2008-09-25 | 2012-11-27 | GM Global Technology Operations LLC | Method and system for determining a state of charge of a battery based on a transient response |
DE102009000782A1 (de) * | 2008-12-04 | 2010-06-10 | Robert Bosch Gmbh | Verfahren zur Bestimmung des Ladezustands einer sekundären Interkalationszelle einer wiedereaufladbaren Batterie |
RU2491566C1 (ru) * | 2010-02-18 | 2013-08-27 | Ниссан Мотор Ко., Лтд. | Устройство оценки состояния батареи и способ оценки состояния батареи |
JP5691592B2 (ja) * | 2010-02-18 | 2015-04-01 | 日産自動車株式会社 | 電池状態推定装置 |
JP5520657B2 (ja) * | 2010-03-30 | 2014-06-11 | 古河電気工業株式会社 | 充電率推定方法、充電率推定装置及び二次電池電源システム |
JP5327151B2 (ja) * | 2010-07-01 | 2013-10-30 | 株式会社デンソー | 緊急通報システム |
JP5400732B2 (ja) * | 2010-09-09 | 2014-01-29 | カルソニックカンセイ株式会社 | パラメータ推定装置 |
JP5318128B2 (ja) * | 2011-01-18 | 2013-10-16 | カルソニックカンセイ株式会社 | バッテリの充電率推定装置 |
US20140340045A1 (en) * | 2012-01-26 | 2014-11-20 | Calsonic Kansei Corporation | Apparatus for battery state estimation |
US20150051853A1 (en) * | 2012-02-22 | 2015-02-19 | Keio University | Apparatus for parameter estimation |
JP5803767B2 (ja) * | 2012-03-22 | 2015-11-04 | 株式会社デンソー | 2次電池の充電相当量算出装置 |
JP5944291B2 (ja) * | 2012-10-05 | 2016-07-05 | カルソニックカンセイ株式会社 | バッテリのパラメータ等推定装置およびその推定方法 |
CN103018680B (zh) * | 2012-12-11 | 2014-07-16 | 矽力杰半导体技术(杭州)有限公司 | 一种电池电量计量方法、计量装置以及电池供电设备 |
CN103077291B (zh) * | 2013-01-25 | 2016-05-18 | 华北电力大学 | 可设置初始荷电状态的电池充放电过程数字仿真方法 |
CN103078334A (zh) * | 2013-02-04 | 2013-05-01 | 中冶南方工程技术有限公司 | 一种tcr型无功补偿装置连续时间模型直接辨识方法 |
US9377512B2 (en) * | 2013-05-08 | 2016-06-28 | GM Global Technology Operations LLC | Battery state estimator combining electrochemical solid-state concentration model with empirical equivalent-circuit model |
KR101653967B1 (ko) * | 2014-09-23 | 2016-09-07 | 주식회사 실리콘마이터스 | 배터리잔량 측정 장치 및 방법 |
FR3029296B1 (fr) * | 2014-11-28 | 2016-12-30 | Renault Sa | Procede automatique d'estimation de l'etat de charge d'une cellule d'une batterie |
CN113092902A (zh) * | 2021-03-29 | 2021-07-09 | 一汽奔腾轿车有限公司 | 一种汽车无线充电电磁兼容测试系统及其控制方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3811371A1 (de) * | 1988-04-05 | 1989-10-19 | Habra Elektronik | Verfahren zum laden und gleichzeitigen pruefen des zustandes eines nickelcadmium-akkumulators |
US5321627A (en) * | 1992-03-11 | 1994-06-14 | Globe-Union, Inc. | Battery monitor and method for providing operating parameters |
US6331762B1 (en) * | 1997-11-03 | 2001-12-18 | Midtronics, Inc. | Energy management system for automotive vehicle |
AUPP110497A0 (en) * | 1997-12-23 | 1998-01-22 | Telstra Corporation Limited | Electrical parameter monitoring system |
KR100317598B1 (ko) | 1999-03-13 | 2001-12-22 | 박찬구 | 라플라스 변환 임피던스 측정방법 및 측정장치 |
JP3752879B2 (ja) | 1999-03-18 | 2006-03-08 | 株式会社豊田中央研究所 | 二次電池の残存容量推定方法 |
JP3752888B2 (ja) | 1999-05-11 | 2006-03-08 | トヨタ自動車株式会社 | 電池状態検出装置 |
DE10126891A1 (de) * | 2001-06-01 | 2002-12-05 | Vb Autobatterie Gmbh | Verfahren zur Vorhersage der Belastbarkeit eines elektrochemischen Elementes |
JP3747826B2 (ja) | 2001-09-05 | 2006-02-22 | 日産自動車株式会社 | 二次電池の充電率推定装置 |
DE10321720A1 (de) * | 2002-05-14 | 2003-12-04 | Yazaki Corp | Verfahren zum Abschätzen des Ladezustandes und der Leerlaufspannung einer Batterie, sowie Verfahren und Vorrichtung zum Berechnen des Degradationsgrades einer Batterie |
US6927554B2 (en) * | 2003-08-28 | 2005-08-09 | General Motors Corporation | Simple optimal estimator for PbA state of charge |
-
2002
- 2002-11-25 JP JP2002340803A patent/JP3714321B2/ja not_active Expired - Fee Related
-
2003
- 2003-10-30 US US10/695,800 patent/US7098625B2/en not_active Expired - Fee Related
- 2003-11-18 DE DE60316526T patent/DE60316526T2/de not_active Expired - Fee Related
- 2003-11-18 EP EP03026573A patent/EP1422804B1/en not_active Expired - Lifetime
- 2003-11-25 CN CN200320116788XU patent/CN2724218Y/zh not_active Expired - Fee Related
- 2003-11-25 CN CNB2003101183590A patent/CN1322627C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP1422804A3 (en) | 2005-07-27 |
US7098625B2 (en) | 2006-08-29 |
CN1322627C (zh) | 2007-06-20 |
DE60316526D1 (de) | 2007-11-08 |
EP1422804A2 (en) | 2004-05-26 |
CN2724218Y (zh) | 2005-09-07 |
EP1422804B1 (en) | 2007-09-26 |
DE60316526T2 (de) | 2008-01-31 |
CN1503399A (zh) | 2004-06-09 |
JP2004178848A (ja) | 2004-06-24 |
US20040100227A1 (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3714321B2 (ja) | 二次電池の充電率推定装置 | |
JP3714333B2 (ja) | 二次電池の入出力可能電力推定装置 | |
JP4830382B2 (ja) | 二次電池の充電率推定装置 | |
JP4692246B2 (ja) | 二次電池の入出力可能電力推定装置 | |
JP3747826B2 (ja) | 二次電池の充電率推定装置 | |
JP4547908B2 (ja) | 二次電池の入出力可能電力推定装置 | |
JP7211420B2 (ja) | パラメータ推定装置、パラメータ推定方法及びコンピュータプログラム | |
WO2008053410A2 (en) | Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium | |
JP3714314B2 (ja) | 二次電池の充電率推定装置 | |
JP2006284431A (ja) | 二次電池の充電率推定装置 | |
JP3714246B2 (ja) | 二次電池の充電率推定装置 | |
JP3714330B2 (ja) | 二次電池の充電率推定装置 | |
JP4910300B2 (ja) | 二次電池の満充電容量推定装置 | |
JP4788307B2 (ja) | 二次電池の入出力可能電力推定装置 | |
JP3714214B2 (ja) | 二次電池の充電率推定装置 | |
JP4103569B2 (ja) | 二次電池の充電率推定装置 | |
JP3852372B2 (ja) | 二次電池の充電率推定装置 | |
JP5412891B2 (ja) | 二次電池の制御装置 | |
JP4923462B2 (ja) | 二次電池の充電率推定装置 | |
JP3714284B2 (ja) | 二次電池の充電率推定装置 | |
JP3852371B2 (ja) | 二次電池の充電率推定装置 | |
JP4720364B2 (ja) | 二次電池の内部抵抗推定装置 | |
JP4666149B2 (ja) | 二次電池の入出力可能電力推定装置 | |
JP2007024740A (ja) | 二次電池の充電率推定装置 | |
JP2007003438A (ja) | 二次電池の充電率推定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050815 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |