JP3779401B2 - ダイオードの駆動方法 - Google Patents
ダイオードの駆動方法 Download PDFInfo
- Publication number
- JP3779401B2 JP3779401B2 JP31942396A JP31942396A JP3779401B2 JP 3779401 B2 JP3779401 B2 JP 3779401B2 JP 31942396 A JP31942396 A JP 31942396A JP 31942396 A JP31942396 A JP 31942396A JP 3779401 B2 JP3779401 B2 JP 3779401B2
- Authority
- JP
- Japan
- Prior art keywords
- emitter layer
- diode
- layer
- type
- injection efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000002347 injection Methods 0.000 claims description 48
- 239000007924 injection Substances 0.000 claims description 48
- 238000011084 recovery Methods 0.000 claims description 30
- 238000009792 diffusion process Methods 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 9
- 239000000969 carrier Substances 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000002513 implantation Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 101100460719 Mus musculus Noto gene Proteins 0.000 description 1
- 101100187345 Xenopus laevis noto gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/422—PN diodes having the PN junctions in mesas
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/117—Recessed field plates, e.g. trench field plates or buried field plates
Landscapes
- Bipolar Transistors (AREA)
Description
【発明の属する技術分野】
本発明は、ダイオード、特に電力用ダイオードの駆動方法に関する。
【0002】
【従来の技術】
電力用半導体素子の1つとして、電力用ダイオードが良く知られている。図11に、従来の電力用ダイオードの素子構造およびオン状態のときのキャリアプロファイルを示す。
【0003】
図中、91は高抵抗のN- 型ベース層を示しており、このN- 型ベース層91の表面には、高不純物濃度のP+ 型エミッタ層92が形成されている。一方、N- 型ベース層91の裏面には、高不純物濃度のN+ 型エミッタ層93が形成されている。そして、P+ 型エミッタ層92、N+ 型エミッタ層93には、それぞれ、アノード電極94、カソード電極95が設けられている。
【0004】
この種の電力用ダイオードには、低いオン抵抗、速いスイッチングスピード(短い逆回復時間)、ソフトリカバリなどの素子特性が求められている。
従来から良く知られているように、低いオン抵抗を実現するには、P+ 型エミッタ層92およびN+ 型エミッタ層93のキャリアの注入効率をできるだけ高くして、N- 型ベース層91内の導電変調をできるだけ深く起こした方が良い。
【0005】
一方、速いスイッチングスピードを実現するためには、P+ 型エミッタ層92およびN+ 型エミッタ層93のキャリアの注入効率をできるだけ低くして、逆回復時直前のN- 型ベース層91内の蓄積キャリアの量をできるだけ少なくした方が良い。
【0006】
また、ダイオードを装置に組み込む際に求められるソフトリカバリを実現するには、逆回復時に空乏層が広がり始めるP+ 型エミッタ層92の注入効率をできるだけ低く、かつN+ 型エミッタ層93の注入効率をできるだけ高くする方が良い(M.Kitagawa et al.,Proceeding of ISPSD92,pp60−65,1992)。
【0007】
【発明が解決しようとする課題】
このように低いオン抵抗、速いスイッチングスピードおよびソフトリカバリを実現するのに適したエミッタ層92,93のエミッタ注入効率、言い換えれば、素子オン状態の素子内のキャリアプロファイルはそれぞれ異なっている。
【0008】
しかしながら、従来の電力用ダイオードは、いったん拡散工程で形成されたエミッタ層92,93のエミッタ注入効率を変えることができず、上記素子特性間のトレードオフを改善することは困難であるという問題があった。
【0009】
本発明は、上記事情を考慮してなされたもので、その目的とするところは、素子特性間のトレードオフを改善することができるダイオードの駆動方法を提供することにある。
【0010】
【課題を解決するための手段】
[構成]
上記目的を達成するために、本発明に係るダイオードの駆動方法(請求項1)は、第1主面および第2主面を有する高抵抗の第1導電型のベース層と、このベース層の前記第1主面の表面に形成された第2導電型のエミッタ層と、前記ベース層の第2主面の表面に形成された第1導電型のエミッタ層と、これら2つのエミッタ層の少なくとも一方に形成された、前記ベース層に達する深さの複数の溝内の各々に、ゲート絶縁膜を介して埋め込み形成されたゲート電極とを備えているダイオードの駆動方法であって、逆回復時に空乏層が広がり始める側のエミッタ層に前記溝が形成されたダイオードを導通状態にする場合には、前記ゲート電極に所定の電圧、前記ダイオードに順方向電圧を印加し、前記ダイオードを非導通状態にする場合には、前記所定の電圧の印加を停止し、前記ダイオードに逆方向電圧を印加することを特徴とする。
【0011】
また、本発明に係る他のダイオードの駆動方法(請求項2)は、上記ダイオードの駆動方法(請求項1)において、前記所定の電圧は、前記溝が形成されたエミッタ層の多数キャリアと同極性のキャリアが、前記溝の周囲に誘起される電圧であることを特徴とする。
【0012】
また、本発明に係る他のダイオードの駆動方法(請求項3)は、上記ダイオードの駆動方法(請求項2)において、前記ゲート電極に前記所定の電圧を印加した場合の、前記溝が形成されたエミッタ層の注入効率が、前記ゲート電極に前記所定の電圧を印加しない場合のそれよりも実効的に高くなるように、前記溝が形成されたエミッタ層の本来の注入効率が低く設定されていることを特徴とする。
【0013】
また、本発明に係る他のダイオードの駆動方法(請求項4)は、上記ダイオード(請求項3)において、前記エミッタ層の不純物濃度を低くすることにより、前記エミッタ層の本来の注入効率が低く設定されていることを特徴とする。
【0014】
また、本発明に係る他のダイオードの駆動方法(請求項5)は、上記ダイオード(請求項3)において、前記エミッタ層の表面に、該エミッタ層と逆導電型の拡散層を形成することにより、前記エミッタ層の本来の注入効率が低く設定されていることを特徴とする。
【0015】
また、本発明に係る他のダイオードの駆動方法(請求項6)は、上記ダイオードの駆動方法(請求項1〜請求項5)において、前記溝を介して隣り合う2つの前記エミッタ層の間隔(単位セルサイズ)を2C、隣り合う2つの前記溝の間の領域の幅を2W、前記エミッタ層と前記第1導電型ベース層との界面から前記溝の底までの距離をDとしたときに、W/(D・C)の値が1.0×103 cm-1より小さく設定されていることを特徴とする。
【0017】
本発明に係る他のダイオードの駆動方法(請求項7)は、上記ダイオードの駆動方法(請求項1−6)において、前記ダイオードが他の素子に接続され、この接続された素子と連動して、前記ダイオードのゲート電極に印加される電圧が制御されることを特徴とする。
【0018】
[作用]
本発明では、エミッタ層にいわゆる埋め込み絶縁ゲートを形成しているので、ゲート電極に電圧を印加することにより、エミッタ層の注入効率を制御することが可能となる。
【0019】
オン抵抗、スイッチングスピード(逆回復時間)およびソフトリカバリは、エミッタ層の注入効率を変えることで制御できる。従来のエミッタ層の注入効率は固定されていたので、上記素子特性間には強いトレードオフが存在する。
【0020】
これに対して、本発明によれば、ゲート電極に印加する電圧により、エミッタ層の注入効率を制御できるので、上記素子特性間のトレードオフを改善できるようになる。
【0021】
また、導通状態にする際に、エミッタ層の注入効率を高くすれば、低いオン抵抗を実現でき、また、非導通状態にする際に、逆回復時に空乏層が広がり始める側のエミッタ層の注入効率を低くすれば、ソフトリカバリで小さな逆回復電流を実現できるので、ダイオードに接続された素子の破壊を防止し、装置全体の性能・効率を改善することができるようになる(請求項7)。
【0022】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態(以下、実施形態という)を説明する。
(第1の実施形態)
図1、図2は、本発明の第1の実施形態に係る電力用ダイオードの素子構造およびキャリアプロファイルを示す図である。図1はゲート電圧VG =−15Vの場合の図、図2はゲート電圧VG =0Vの場合の図である。
【0023】
図中、1は高抵抗のN- 型ベース層を示しており、このN- 型ベース層1の表面には、P型エミッタ層2が形成されている。ここで、P型エミッタ層2は、その本来の注入効率が低くなるように形成されている。本実施形態では、P型エミッタ層2のP型不純物濃度を低くするなどの方法で、本来の注入効率を低くしている。
【0024】
また、P型エミッタ層2側(アノード側)には、複数の埋め込み絶縁ゲート電極が形成されている。すなわち、P型エミッタ層2内には、その表面からN- 型ベース層1に達する深さのトレンチ溝が複数形成され、これらトレンチ溝内には、それぞれ、ゲート絶縁膜3を介してゲート電極4が埋め込み形成されている。トレンチ溝で挟まれた領域のP型エミッタ層2には、それぞれ、アノード電極5が設けられている。
【0025】
ここで、本発明の効果(エミッタ層の実効的な注入効率を高くすること)を十分に発揮させるためには、トレンチ溝を介して隣り合う2つのP型エミッタ層2の間隔(単位セルサイズ)を2C、隣り合う2つのトレンチ溝の間の領域の幅を2W、N- 型ベース層1とP型エミッタ層2との界面からトレンチ溝の底までの距離をDとしたときに、W/(D・C)の値が1.0×103 cm-1より小さくなるように、間隔2C、幅2W,距離Dを設定することが好ましい。
【0026】
一方、P型エミッタ層2と反対側のN- 型ベース層1の表面には、高不純物濃度のN+ 型エミッタ層6が形成され、このN+ 型エミッタ層6には、カソード電極7が設けられている。
【0027】
ここで、N+ 型エミッタ層6は、不純物濃度が高いので、P型エミッタ層2とは異なり、その本来の注入効率は高い。
このように構成された電力用ダイオードにおいて、アノード電極5とカソード電極7との間に順方向電圧を印加するとともに、ゲート電極4に−15V(負電圧)を印加すると、トレンチ溝(埋め込み絶縁ゲート)の周囲にプラスキャリア(正孔)hが誘起され、この誘起された正孔hは、トレンチ溝の存在によってP型エミッタ層2側に蓄積される。
【0028】
この結果、P型エミッタ層2の本来の注入効率が低くても、上記の如きにゲート電極4に負電圧を印加することにより、P型エミッタ層2の実効的な注入効率γh =Jh /J(J:全電流,J=Jh +Je ,J:電子電流,Jh :正孔電流)が高くなるので、導通状態(オン状態)でのP型エミッタ層2側のキャリア(電子、正孔)濃度は、図1のキャリアプロファイルに示すようfに、N+ 型エミッタ層6のそれと同程度に高くなる。
【0029】
ここで、P型エミッタ層2の実効的な注入効率の増加は、W/(D・C)の値を1.0×103 cm-1より小さく設定することにより、効果的に高めることができる(M.Kitagawa et al.,Technical Digest of iedm'93 USP 5329142) 。
【0030】
これはW/(D・C)<1.0×103 cm-1となるように、素子寸法を設定することにより、トレンチ溝による誘起された正孔hの蓄積効果が大幅に高くなるからである。
【0031】
したがって、導通状態(オン状態)でのP型エミッタ層2の実効的な注入効率は、N+ 型エミッタ層6のそれと同様に高くなり、つまり、P型エミッタ層2およびN+ 型エミッタ層6の注入効率を同時に高くできるので、オン抵抗を非常に低くできるようになる。
【0032】
また、この状態でゲート電極4に0Vを印加すると、トレンチ溝の周囲に正孔hが誘起されなくなるので、P型エミッタ層2側のキャリア濃度は、P型エミッタ層2の本来の注入効率が低いことから、図2のキャリアプロファイルに示すように低くなる。
【0033】
したがって、この状態で、つまり、P型エミッタ層2側のキャリア濃度が低く、N+ 型エミッタ層6のキャリア濃度が高い導通状態から、アノード電極5とカソード電極7との間に逆方向電圧を印加して、非導通状態(オン状態)に切り替えると、逆回復時のリカバリ特性は、図11に示した従来の電力用ダイオードに比べて、よりソフトリカバリとなり、逆回復時のリカバリ特性は改善される。また、P型エミッタ層2のキャリア濃度が低くいことから、スイッチングスピード(逆回復時間)も改善される。
【0034】
図10に、本実施形態の変形例を示す。これは、図1のアノード電極5間の1つのトレンチゲートを2つの(複数の)トレンチゲートにした例である。
(第2の実施形態)
図3、図4は、本発明の第2の実施形態に係る電力用ダイオードの素子構造およびキャリアプロファイルを示す図である。図3はゲート電圧VG =−15Vの場合の図、図4はゲート電圧VG =0Vの場合の図である。
【0035】
なお、図1、図2の電力用ダイオードと対応する部分には、図1、図2と同一符号を付してあり、詳細な説明は省略する。
本実施形態が第1の実施形態と異なる点は、P型エミッタ層2の表面にトレンチ溝の周囲に沿ってN型拡散層8を形成したことにある。このN型拡散層8により、P型エミッタ層2の実効的な厚さが薄くなる。
【0036】
したがって、本実施形態によれば、P型エミッタ層2の本来の注入効率がさらに低くなるので、逆回復時のリカバリ特性をさらに改善できるようになる。
なお、N型拡散層8は、一見、ソース・ドレイン拡散層に見えるが、その役割はない。言い換えれば、N型拡散層8がソース・ドレイン拡散層として機能しないように、ゲート電圧等のパラメータを設定する。
(第3の実施形態)
図5は、本発明の第3の実施形態に係る電力用ダイオードの素子構造およびキャリアプロファイルを示す図である。キャリアプロファイルはゲート電圧VG =−15Vの場合のものである。
【0037】
なお、図1、図2の電力用ダイオードと対応する部分には、図1、図2と同一符号を付してあり、詳細な説明は省略する。
本実施形態が第1の実施形態と異なる点は、トレンチ溝で挟まれたP型エミッタ層2の表面に、複数のN型拡散層8aが一定の間隔をおいて形成されていることにある。したがって、トレンチ溝で挟まれた領域の平面パターンは、P型エミッタ層2とN型拡散層8aとが交互に現れるパターンとなる。
【0038】
したがって、本実施形態によれば、N型拡散層8aにより、P型エミッタ層2の実効的な厚さが薄くなり、P型エミッタ層2の本来の注入効率がさらに低くなるので、逆回復時のリカバリ特性をさらに改善できるようになる。
【0039】
なお、N型拡散層8aは、一見、ソース・ドレイン拡散層に見えるが、その役割はない。言い換えれば、N型拡散層8がソース・ドレイン拡散層として機能しないように、ゲート電圧等のパラメータを設定する。
(第4の実施形態)
図6、図7は、本発明の第4の実施形態に係る電力用ダイオードの素子構造およびキャリアプロファイルを示す図である。図1はゲート電圧VG =+15Vの場合の図、図2はゲート電圧VG =0Vの場合の図である。
【0040】
なお、図1、図2の電力用ダイオードと対応する部分には、図1、図2と同一符号を付してあり、詳細な説明は省略する。
本実施形態がこれまでの実施形態と主として異なる点は、N型エミッタ層6a側(カソード側)に埋め込み絶縁ゲート電極を設けたことにある。
【0041】
N型エミッタ層6aの表面には、高不純物濃度のP+ 型拡散層9、N+ 型拡散層10が交互に形成されている。N型エミッタ層6aは、N+ 型エミッタ層6よりも不純物濃度が低く、本来の注入効率は低くなっている。さらに、P+ 型拡散層9によっても本来の注入効率は低くなっている。N+ 型拡散層10はコンタクト抵抗を下げるためのコンタクト層である。
【0042】
このように構成された電力用ダイオードにおいて、アノード電極5とカソード電極7との間に順方向電圧を印加するとともに、ゲート電極4に+15V(正電圧)を印加すると、トレンチ溝(埋め込み絶縁ゲート)の周囲にマイナスキャリア(電子)e- が誘起され、この誘起された電子e- は、トレンチ溝の存在によってN型エミッタ層6a側に蓄積される。
【0043】
この結果、N型エミッタ層6aの本来の注入効率が低くても、上記の如きにゲート電極4に正電圧を印加することにより、N型エミッタ層6aの実効的な注入効率γh が高くなる。
【0044】
したがって、導通状態(オン状態)でのN型エミッタ層6aのキャリア(電子、正孔)濃度は、図6のキャリアプロファイルに示すように、第1〜第3の実施形態のN+ 型エミッタ層6のそれらと同程度に高くなる。
【0045】
ここで、N型エミッタ層6aの実効的な注入効率の増加は、W/(D・C)の値を1.0×103 cm-1より小さく設定することにより、効果的に高めることができる。これは上記の如く、素子寸法を設定することにより、トレンチ溝による誘起された電子e- の蓄積効果が大幅に高くなるからである。
【0046】
ただし、P型エミッタ層2の本来の注入効率が低いので、第1〜第3の実施形態とは異なり、オン抵抗が非常に低くなることはない。
また、この状態でゲート電極4に0Vを印加すると、トレンチ溝の周囲に電子e- が誘起されなくなるので、N型エミッタ層6a側のキャリア濃度は、N型エミッタ層6aの本来の注入効率が低いことから、図7のキャリアプロファイルに示すように低くなる。
【0047】
したがって、この状態で、つまり、N型エミッタ層6a側のキャリア濃度が低く、さらにP型エミッタ層2のキャリア濃度も低い導通状態から、アノード電極5とカソード電極7との間に逆方向電圧を印加して、非導通状態(オン状態)に切り替えると、スイッチングスピード(逆回復時間)は、第1〜第3の実施形態に示した電力用ダイオードに比べて、速く(短く)なる。
【0048】
また、逆回復特性は、N型エミッタ層6aおよびP型エミッタ層2のキャリア濃度が低いことから、第1〜第3の実施形態に示した電力用ダイオードに比べて、ハードリカバリとなる。
【0049】
図8に、第2〜第4の実施形態の電力用ダイオードを導通状態(オン状態)から非導通状態(オフ状態)に切り替えた場合の逆回復電流波形を示す。縦軸は逆回復電流の電流密度、横軸は非導通状態に切り替えた後の時間を示している。また、条件は、順方向電流IF =100A/cm2 、順方向電圧VF =2.6V、電流減少率di/dt=−200A/μsである。
【0050】
波形aは、第2、第3の実施形態の電力用ダイオードを、VG =−15Vのまま導通状態から非導通状態に切り替えた場合を示し、波形bは、第2、第3の実施形態の電力用ダイオードをVG =−15Vの導通状態からVG =0Vの非導通状態に切り替えた場合を示し、そして、波形cは、第4の実施形態の電力用ダイオードをVG =+15Vの導通状態からVG =0Vの非導通状態に切り替えた場合を示している。
【0051】
図から、第2、第3の実施形態によれば、十分なソフトリカバリを実現でき、第4の実施形態によれば、短い逆回復時間を実現できることが分かる。また、第4の実施形態では、ダイオード自身の損失を小さくすることができる。
(第5の実施形態)
図9は、本発明の第5の実施形態に係る電力用半導体装置を示す断面斜視図である。
【0052】
この電力用半導体装置は、IEGT(IGBT)と、第3の実施形態の電力用ダイオードとから構成されている。
図中、11、12、13は、それぞれ、IEGT(IGBT)を構成するP型ドレイン層、P型ベース層、N型ソース層を示している。
【0053】
本実施形態の電力用半導体装置は、電力用ダイオードとして、第3の実施形態の電力用ダイオードを用いているので、P型エミッタ層2の本来の注入効率を下げるためのN型拡散層8aと、N型ソース層13とが同じパターンになる。したがって、N型拡散層8aのパターンとN型ソース層13のパターンとの合せずれを考慮する必要がなくなり、製造上有利である。また、合せマージンが不要になるため、微細化や高集積化が容易になる。
【0054】
また、電力用ダイオードをオン電圧の低い導通状態(VG =−15V)から非導通状態に切り替える際に、VG =0Vに設定すれば、P型エミッタ層2の注入効率が本来通りに低くなるので、ソフトリカバリが実現される。したがって、本実施形態によれば、IEGT(IGBT)の破壊を防止できるようになる。
【0055】
なお、本発明は上記実施形態に限定されるものではない。上記実施形態では、P型エミッタ層の本来の注入効率が低く、N型エミッタ層の本来の注入効率が高く、上記P型エミッタ層に埋め込み絶縁ゲートを設けたタイプの電力用ダイオード(第1〜第3、第5の実施形態)、P型エミッタ層およびN型エミッタ層の本来の注入効率が低く、上記N型エミッタ層に埋め込み絶縁ゲートを設けたタイプの電力用ダイオード(第4の実施形態)について説明したが、以下のタイプのものも可能である。
【0056】
すなわち、P型エミッタ層およびN型エミッタ層の本来の注入効率が低く、上記P型エミッタ層に埋め込み絶縁ゲートを設けたタイプ、P型エミッタ層およびN型エミッタ層の本来の注入効率が低く、上記P型エミッタ層およびN型エミッタ層に埋め込み絶縁ゲートを設けたタイプ、P型エミッタ層の本来の注入効率が高く、N型エミッタ層の本来の注入効率が低く、上記N型エミッタ層に埋め込み絶縁ゲートを設けたタイプのものが可能である。
【0057】
1番目、2番目のタイプの場合、P型エミッタ層およびNエミッタ層の本来の注入効率が低いので、スイッチングスピード(逆回復時間)をより速く(短く)でき、3番目のタイプの場合、P型エミッタ層の本来の注入効率が高いので、第4の実施形態とは異なり、オン電圧も十分に低くできる。
【0058】
また、本発明のダイオードに接続した素子の動作のタイミングを考えて、本発明のダイオードのゲート電極に印加する電圧のタイミングを設定することによって、装置全体の効率・性能を向上することが可能である。
その他、本発明の要旨を逸脱しない範囲で、種々変形して実施できる。
【0059】
【発明の効果】
以上詳述したように本発明によれば、埋め込み絶縁ゲートにより、エミッタ層の注入効率を制御できるので、素子特性間のトレードオフを改善できるようになる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る電力用ダイオードの素子構造およびVG =−15Vのときのキャリアプロファイルを示す図
【図2】本発明の第1の実施形態に係る電力用ダイオードの素子構造およびVG =0Vのときのキャリアプロファイルを示す図
【図3】本発明の第2の実施形態に係る電力用ダイオードの素子構造およびVG =−15Vのときのキャリアプロファイルを示す図
【図4】本発明の第2の実施形態に係る電力用ダイオードの素子構造およびVG =0Vのときのキャリアプロファイルを示す図
【図5】本発明の第3の実施形態に係る電力用ダイオードの素子構造およびVG =−15Vのときのキャリアプロファイルを示す図
【図6】本発明の第4の実施形態に係る電力用ダイオードの素子構造およびVG =15Vのときのキャリアプロファイルを示す図
【図7】本発明の第4の実施形態に係る電力用ダイオードの素子構造およびVG =0Vのときのキャリアプロファイルを示す図
【図8】第2〜第4の実施形態の電力用ダイオードを導通状態(オン状態)から非導通状態(オフ状態)に切り替えた場合の逆回復電流波形を示す図
【図9】本発明の第5の実施形態に係る電力用半導体装置を示す断面斜視図
【図10】図1の電力用ダイオードの変形例を示す断面図
【図11】従来の電力用ダイオードの素子構造およびオン状態のときのキャリアプロファイルを示す図
【符号の説明】
1…N- 型ベース層(第1導電型ベース層)
2…P型エミッタ層(第2導電型エミッタ層)
3…ゲート絶縁膜
4…ゲート電極
5…アノード電極
6…N+ 型エミッタ層(第1導電型エミッタ層)
6a…N型エミッタ層(第2導電型エミッタ層)
7…カソード電極
8,8a…N型拡散層
9…P+ 型拡散層
10…N+ 型拡散層
11…P型ドレイン層
12…P型ベース層
13…N型ソース層
Claims (7)
- 第1主面および第2主面を有する高抵抗の第1導電型のベース層と、このベース層の前記第1主面の表面に形成された第2導電型のエミッタ層と、前記ベース層の第2主面の表面に形成された第1導電型のエミッタ層と、これら2つのエミッタ層の少なくとも一方に形成された、前記ベース層に達する深さの複数の溝内の各々に、ゲート絶縁膜を介して埋め込み形成されたゲート電極とを具備してなるダイオードの駆動方法であって、逆回復時に空乏層が広がり始める側のエミッタ層に前記溝が形成されたダイオードを導通状態にする場合には、前記ゲート電極に所定の電圧、前記ダイオードに順方向電圧を印加し、前記ダイオードを非導通状態にする場合には、前記所定の電圧の印加を停止し、前記ダイオードに逆方向電圧を印加することを特徴とするダイオードの駆動方法。
- 前記所定の電圧は、前記溝が形成されたエミッタ層の多数キャリアと同極性のキャリアが、前記溝の周囲に誘起される電圧であることを特徴とする請求項1に記載のダイオードの駆動方法。
- 前記ゲート電極に前記所定の電圧を印加した場合の、前記溝が形成されたエミッタ層の注入効率が、前記ゲート電極に前記所定の電圧を印加しない場合のそれよりも実効的に高くなるように、前記溝が形成されたエミッタ層の本来の注入効率が低く設定されていることを特徴とする請求項2に記載のダイオードの駆動方法。
- 前記エミッタ層の不純物濃度を低くすることにより、前記エミッタ層の本来の注入効率が低く設定されていることを特徴とする請求項3に記載のダイオードの駆動方法。
- 前記エミッタ層の表面に、該エミッタ層と逆導電型の拡散層を形成することにより、前記エミッタ層の本来の注入効率が低く設定されていることを特徴とする請求項3に記載のダイオードの駆動方法。
- 前記溝を介して隣り合う2つの前記エミッタ層の間隔(単位セルサイズ)を2C、隣り合う2つの前記溝の間の領域の幅を2W、前記エミッタ層と前記ベース層との界面から前記溝の底までの距離をDとしたときに、W/(D・C)の値が1.0×103 cm-1より小さく設定されていることを特徴とする請求項1ないし請求項5のいずれかに記載のダイオードの駆動方法。
- 前記ダイオードは他の素子に接続されていることを特徴とする請求項1ないし請求項6のいずれかに記載のダイオードの駆動方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31942396A JP3779401B2 (ja) | 1996-11-29 | 1996-11-29 | ダイオードの駆動方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31942396A JP3779401B2 (ja) | 1996-11-29 | 1996-11-29 | ダイオードの駆動方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10163469A JPH10163469A (ja) | 1998-06-19 |
JP3779401B2 true JP3779401B2 (ja) | 2006-05-31 |
Family
ID=18110035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31942396A Expired - Lifetime JP3779401B2 (ja) | 1996-11-29 | 1996-11-29 | ダイオードの駆動方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3779401B2 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4047153B2 (ja) | 2002-12-03 | 2008-02-13 | 株式会社東芝 | 半導体装置 |
DE10308313B4 (de) * | 2003-02-26 | 2010-08-19 | Siemens Ag | Halbleiterdiode, elektronisches Bauteil, Spannungszwischenkreisumrichter und Steuerverfahren |
JP3744513B2 (ja) * | 2003-05-30 | 2006-02-15 | トヨタ自動車株式会社 | ダイオード |
JP4893609B2 (ja) * | 2007-12-07 | 2012-03-07 | トヨタ自動車株式会社 | 半導体装置とその半導体装置を備えている給電装置の駆動方法 |
JP4840370B2 (ja) * | 2008-01-16 | 2011-12-21 | トヨタ自動車株式会社 | 半導体装置とその半導体装置を備えている給電装置の駆動方法 |
JP5310291B2 (ja) * | 2009-06-18 | 2013-10-09 | 富士電機株式会社 | 半導体装置およびその製造方法 |
JP5333342B2 (ja) | 2009-06-29 | 2013-11-06 | 株式会社デンソー | 半導体装置 |
JP2015039023A (ja) * | 2009-12-15 | 2015-02-26 | 株式会社東芝 | 半導体装置 |
JP5636254B2 (ja) * | 2009-12-15 | 2014-12-03 | 株式会社東芝 | 半導体装置 |
JP5804494B2 (ja) * | 2011-05-18 | 2015-11-04 | 国立大学法人九州工業大学 | 半導体装置及びその駆動方法 |
JP4947230B2 (ja) * | 2011-08-29 | 2012-06-06 | トヨタ自動車株式会社 | 半導体装置 |
JPWO2013111294A1 (ja) * | 2012-01-26 | 2015-05-11 | 株式会社日立製作所 | 半導体装置およびそれを用いた電力変換装置 |
EP2808899A4 (en) * | 2012-01-26 | 2015-12-30 | Hitachi Ltd | SEMICONDUCTOR COMPONENT AND VOLTAGE CONVERSION DEVICE THEREFOR |
WO2014128953A1 (ja) * | 2013-02-25 | 2014-08-28 | 株式会社 日立製作所 | 半導体装置および半導体回路の駆動装置並びに電力変換装置 |
US9590616B2 (en) | 2013-07-10 | 2017-03-07 | Denso Corporation | Drive control device |
EP2966683B1 (en) * | 2013-10-04 | 2020-12-09 | Fuji Electric Co., Ltd. | Semiconductor device |
JP6227677B2 (ja) * | 2014-01-31 | 2017-11-08 | 株式会社日立製作所 | 半導体素子の駆動装置およびそれを用いた電力変換装置 |
DE102014119543B4 (de) | 2014-12-23 | 2018-10-11 | Infineon Technologies Ag | Halbleitervorrichtung mit transistorzellen und anreicherungszellen sowie leistungsmodul |
JP2015181195A (ja) * | 2015-06-16 | 2015-10-15 | 株式会社東芝 | 半導体装置 |
JP6709062B2 (ja) * | 2016-02-05 | 2020-06-10 | 株式会社 日立パワーデバイス | 半導体装置、その製造方法、及びそれを用いた電力変換装置 |
DE102017212673A1 (de) * | 2017-07-24 | 2019-01-24 | Robert Bosch Gmbh | Halbleiteranordnung mit einer PIN-Diode |
-
1996
- 1996-11-29 JP JP31942396A patent/JP3779401B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10163469A (ja) | 1998-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3779401B2 (ja) | ダイオードの駆動方法 | |
CN1967868B (zh) | 半导体装置及其制造方法 | |
US6051850A (en) | Insulated gate bipolar junction transistors having built-in freewheeling diodes therein | |
JP4581179B2 (ja) | 絶縁ゲート型半導体装置 | |
US5554862A (en) | Power semiconductor device | |
JP3356644B2 (ja) | 半導体整流装置の駆動方法 | |
JP2000216409A (ja) | 整流装置およびパルス幅変調モ―タ制御回路 | |
JPH0758332A (ja) | 半導体装置 | |
GB2088631A (en) | Field effect controlled semiconductor rectifier | |
EP2550677A1 (en) | Power semiconductor device | |
JP2001501042A (ja) | 縦形パワーmosfet | |
EP0111804A1 (en) | Bidirectional insulated-gate rectifier structures and method of operation | |
KR100194668B1 (ko) | 전력용 절연 게이트 바이폴라 트랜지스터 | |
US8067797B2 (en) | Variable threshold trench IGBT with offset emitter contacts | |
JPH0783120B2 (ja) | バイポーラ型半導体スイッチング装置 | |
US9306048B2 (en) | Dual depth trench-gated mos-controlled thyristor with well-defined turn-on characteristics | |
JPH098301A (ja) | 電力用半導体装置 | |
US6469344B2 (en) | Semiconductor device having low on resistance high speed turn off and short switching turn off storage time | |
JP3491049B2 (ja) | 整流素子およびその駆動方法 | |
JP4044735B2 (ja) | バイポーラ高電圧電力素子 | |
JP2513665B2 (ja) | 絶縁ゲ−ト型サイリスタ | |
JPH0241182B2 (ja) | ||
JP2004103980A (ja) | 半導体装置 | |
US7741655B2 (en) | Semiconductor device | |
KR20150076716A (ko) | 전력 반도체 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060302 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110310 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120310 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130310 Year of fee payment: 7 |