Nothing Special   »   [go: up one dir, main page]

JP3612900B2 - Surface emitting semiconductor laser and manufacturing method thereof - Google Patents

Surface emitting semiconductor laser and manufacturing method thereof Download PDF

Info

Publication number
JP3612900B2
JP3612900B2 JP30493596A JP30493596A JP3612900B2 JP 3612900 B2 JP3612900 B2 JP 3612900B2 JP 30493596 A JP30493596 A JP 30493596A JP 30493596 A JP30493596 A JP 30493596A JP 3612900 B2 JP3612900 B2 JP 3612900B2
Authority
JP
Japan
Prior art keywords
layer
region
semiconductor
active layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30493596A
Other languages
Japanese (ja)
Other versions
JPH09270562A (en
Inventor
孝二 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30493596A priority Critical patent/JP3612900B2/en
Publication of JPH09270562A publication Critical patent/JPH09270562A/en
Application granted granted Critical
Publication of JP3612900B2 publication Critical patent/JP3612900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は偏光方位が固定された面発光半導体レーザの構造及びその製造方法に関する。
【0002】
面発光半導体レーザは,低消費電力で動作し,光ファイバとの結合が容易で,かつ2次元アレイ構造を実現できるという利点を有することから,光インタコネクションシステムの発光素子としての利用が期待されている。
【0003】
かかる光伝送の用途では,発光素子の偏光方位の安定が,単一発振モードを担保し,コヒーレント特性又は発振の安定性を保証するために不可欠である。
このため,偏光方位を任意方位に固定できる面発光半導体レーザ及びその簡易な製造方法が要望されている。
【0004】
【従来の技術】
図8は従来例構造説明図であり,面発光半導体レーザを表している。なお,図8(a)は外観を表す斜視図,図8(b)は図8(a)のABを含む垂直断面図,図8(c)は図8(a)のCDを含む垂直断面図である。
【0005】
従来の面発光半導体レーザの構造は,図8を参照して,主面を(100)とする半導体基板上に下部の反射層2,クラッド層3に上下を挟まれた活性層4,電流狭窄層5,導電層7,がこの順に堆積される。電流狭窄層5は,面内中央部に発光領域4aを画定する開口5aを有し,この開口5aは導電層7により埋め込まれる。さらに,発光領域4a直上に上部の反射層8が形成され,この上部の反射層8と下部の反射層2との間に光共振器が形成される。また,基板1下面及び上部の反射層8の周囲の導電層7上面にそれぞれ電極10が形成される。
【0006】
かかる構造の面発光半導体レーザでは,発振波長は上部及び下部の反射層8,2とが構成する光共振器により制限され,単一縦モードで発振する。他方,横モードは,電流狭窄層5と導電層7との屈折率の相違を利用して,電流狭窄層5の開口5aに光閉じ込め効果に寄与する作用を持たせることで制御される。
【0007】
しかし,発光領域4aの形状は光ファイバと結合するために円形にすることが望ましく,電流狭窄層5の開口5aは円形又は矩形に形成される。このため図8(a)を参照して,開口5aが矩形の場合は直交する2つの偏光方位11の横モードが発生し,これらのモード間の遷移又は複数モードの発振による発振の不安定性,コヒーレンスの劣化を招来する。また,円形の開口5aでは,偏光方位が定まらず,コヒーレント性を維持できない。
【0008】
かかる横モードの不安定性を解消して,偏光方位を所定の方位に規定するために,電流狭窄層5の開口5a形状を長方形にした面発光半導体レーザの構造が提案された。この構造の半導体レーザでは,長方形の開口5aの長辺方向に偏光方位が規定される。しかし,開口5aを長方形とするため必然的に発光領域4aも長方形となり,その結果出射光のビーム断面形状が楕円形になるという欠点がある。また,開口5aの長径と短径との比率を精密に制御することは製造上難しいという問題がある。
【0009】
他の改良した面発光半導体レーザは,活性層及びクラッド層をストライプメサとし,このメサを活性層及びクラッド層と屈折率が異なる半導体層で埋め込む。この構造では,発光領域にメサの延在方向とこれに直交する方向とで屈折率の異方性が生ずるため,何れかの方向に横モードが規制され,偏光方位が確定する。しかし,この半導体レーザの製造には,メサを形成しこれを埋め込む複雑な工程が必要となる。
【0010】
さらに,(100)から傾いた基板表面,例えば(311)B基板表面に面発光半導体レーザを形成することで,結晶の異方性により偏光方位を規制することも考えられている。しかし,(100)以外の基板表面に良質の半導体を堆積することは困難なため,実用されるに至っていない。
【0011】
【発明が解決しようとする課題】
上述したように,従来の面発光半導体レーザでは,複数の横モードが存在し得るため偏光方位が一義に定まらずコヒーレント性が劣る,また発振の不安定を招くという欠点がある。
【0012】
また,電流狭窄層の開口を長方形にして横モードを一義に規制する半導体レーザでは,開口を精密に製造する必要があることから製造が難しく,加えて出射光ビーム断面が楕円になるという問題がある。活性層をメサストライプとして屈折率の異なる半導体で埋め込む半導体レーザでは,製造工程が複雑になるという欠点がある。
【0013】
本発明は,従来の構造の面発光半導体レーザにおいて,活性層上の半導体層,例えば電流狭窄層の一部領域の屈折率を変化させ,面内の光閉じ込め効果に異方性を与えて横モードを規制することで,製造方法が簡単で,円形の光ビームを出射しかつ偏光方位を所定方位に確定する面発光半導体レーザを提供することを目的とする。
【0014】
【課題を解決するための手段】
図1は本発明の実施の形態例構造説明図であり,面発光半導体レーザの構造を表している。なお,図1(a)は斜視図であり,図1(b)及び(c)は,それそれ図1(a)に示すCDを含む垂直断面及びABを含む垂直断面を表している。図5は本発明の第二実施形態例構造説明図であり,面発光半導体レーザの構造を表している。なお,図5(a)は斜視図であり,図5(b)は,図5(a)に示すCDを含む垂直断面を表している。図7は本発明の第二実施形態例工程図であり,酸化物領域の形成方法を表している。なお,図7(a)及び(b)は製造途中の面発光半導体レーザが形成されたウエーハの一部分の断面を表し,図7(c)は製造途中のウエーハの斜視図を,図7(d)及び(e)はそれぞれ分割基板の斜視図及び断面図を表している。
【0015】
上記課題を解決するための本発明の第一の構成は,図1を参照して,面内の一部領域を発光領域4aとする活性層4と,該活性層4上に設けられた第一の屈折率を有する半導体層12とを備え,該活性層4の垂直方向に光を放射する面発光半導体レーザにおいて,該発光領域4a周辺近傍の該発光領域4aを挟み対向する領域に,該半導体層12を変換して形成された第二の屈折率を有する変換領域9を有し、該活性層は,せん亜鉛鉱格子を有する化合物半導体の(100)面を主面とする層からなり,該変換領域は,<110>又は<1−10>方向に延在するストライプ状領域からなることを特徴として構成し,及び,
第二の構成は,第一の構成の面発光半導体レーザにおいて,該半導体層12は,該発光領域4a上に開口5aを有する電流狭窄層5を含み,該変換領域9は,少なくとも該電流狭窄層5の一部を変換して形成された部分を含むことを特徴として構成し,及び,
第三の構成は,第一の構成の面発光半導体レーザにおいて,該変換領域9は,該半導体層12へのイオン注入領域からなることを特徴として構成し,及び,
第四の構成は,図5を参照して,面内の一部領域を発光領域4aとする活性層4と,該活性層4の上下に設けられた半導体層2,3,7とを有し,該活性層4の垂直方向に光を放射する面発光半導体レーザにおいて,該発光領域周辺近傍の該発光領域4aを挟み対向する領域に,該半導体層2,3,7を酸化して形成された酸化物領域20を有し、該活性層4は,せん亜鉛鉱格子を有する化合物半導体の(100)面を主面とする層からなり,該酸化物領域20は,<110>又は<1−10>方向に延在するストライプ状領域からなることを特徴として構成し,及び,
の構成は,図7を参照して,面内の一部領域を発光領域4aとする活性層4と,該活性層4の上下に設けられた半導体層2,3,7とを有し,該活性層4の垂直方向に光を放射する面発光半導体レーザの製造方法において,基板1の主面上に該活性層4及び該半導体層2,3,7を堆積する工程と,該基板1を該主面に垂直な分割面22に沿って分割して,平行な二つの該分割面22で挟まれた該発光領域4aを有する分割基板23を形成する工程と,該分割面22から該半導体層2,3,7の少なくとも一部の層を酸化して,該半導体層2,3,7の該発光領域4aを挟み対向する領域を酸化物領域20とすることを特徴として構成する。
【0016】
本発明では,活性層4上に設けられた第一の屈折率を有する半導体層12のうち,発光領域4aの周辺領域に発光領域を挟み対向する領域上に位置する半導体層12を変換して,,第二の屈折率を有する変換領域9とする。この変換領域9の存在により,発光領域周辺上の半導体層12の屈折率分布は2回対称の異方性を有することとなり,発光領域の中心を通る垂線を中心軸とする屈折率分布の回転対称性を低下させる。このため,この屈折率分布の異方性は,特定の偏光方位を有する光の光閉じ込め効果を強調し又は逆に弱める作用をなす。その結果,半導体層12の屈折率分布の異方性に従い,特定の偏光方位を有する横モードのみが安定に発振する。この変換領域9は,発光領域の一方の側に設けてもよいが,発光領域の両側に発光領域を挟むように配置することが,屈折率の2回回転対称性を強調し,偏光方位を一方位に規制する上で好ましい。なお,本発明では屈折率分布の非対称性を利用するため,発光領域が円形であっても偏光方位を規定できることは明白である。従って,出射する光ビームを円形断面にすることが容易である。
【0017】
かかる活性層4上に設けられた半導体層12の一部領域の屈折率を変換した構造は,当該半導体層12を含む半導体薄膜からなる積層構造を製造し,その積層構造の表面,即ち半導体層12の上方から一定の深さの屈折率を変化させることで,例えばイオン注入又は不純物拡散を行うことで製造することができる。このため,従来のように,半導体層の加工又は半導体層の埋込み工程を特別に追加する必要がなく,製造工程が簡単である。
【0018】
面発光半導体レーザの多くは,発光領域は電流狭窄層5の開口5aにより画定される。この電流狭窄層5は,開口5aを埋める導電層7と異なる屈折率の半導体から構成することで光閉じ込め効果が付加される。光閉じ込め効果に対する寄与は,通常は活性層4に近い程大きいため,屈折率の異方性により偏光方位を効果的に制限するには変換領域9を活性層4に近接して設けることが好ましい。本発明の第二の構成では,電流狭窄層5の一部領域を変換領域とする。電流狭窄層5は,電流集中を有効になすべく通常は活性層4に接近して設けられるため,本構成により偏光方位の変化が有効に防止される。
【0019】
なお,発振モードを安定にするために,変換領域を光共振器の内部の活性層に近い位置に設けることが好ましい。半導体層12の屈折率異方性により偏光方位を制限する効果は,面発光半導体レーザの光共振器の内部に変換領域を設ける方が,光共振器の外部に設けるよりも大きい。即ち,光共振器内部の光強度は大きいため,僅かな光閉じ込め効果の異方性が発振モードに大きな影響を及ぼすから,複数の発振モードの励起又は発振モード間の遷移は起こり難くなる。
【0020】
本発明の第四の構成では,せん亜鉛鉱格子を有する化合物半導体の(100)面を主面とする活性層4と,その<110>又は<1−10>方向に延在するストライプ状領域からなる変換領域9とを備える。この構成では,せん亜鉛鉱型化合物半導体が通常有する(100)面内方向の屈折率変化を変換領域9により強調するように作用する。このため,偏光方位の固定が確実になされる。
【0021】
本発明の第五の構成では,図5を参照して,発光領域周辺近傍の発光領域4aを挟み対向する領域に,半導体層2,3,7を酸化して形成された酸化物領域20を有する。この酸化物領域20は,半導体層2,3,7と屈折率が異なるため,半導体層2,3,7面内に屈折率分布が生じる。その結果,第一の構成と同様の理由により,特定の偏光方位を有する発振モードのみが安定化される。
【0022】
酸化物領域20に変換される半導体層2,3,7は,活性層4の上下の何れかにのみ設けてもよく,また両方に設けてもよい。また,半導体層2,3,7が複数層からなる場合には,その一部の層を酸化物領域20に変換することもできる。
【0023】
第六の構成では,図5を参照して,発光領域4aを挟み対向する領域の半導体層2,3,7を酸化物領域20に変換する方法に関し,図7(a)を参照して,基板1の主面上に活性層4及び半導体層2,3,7を堆積した後,図7(c)を参照して,基板1を主面に垂直な分割面22に沿って分割して,平行な二つの分割面22で挟まれた該発光領域4aを有する分割基板23を形成し,次いで,図7(e)を参照して,分割面22から半導体層2,3,7を酸化して,半導体層2,3,7の該発光領域4aを挟み対向する領域を酸化物領域20に変換する。
【0024】
本構成では,活性層4及び半導体層2,3,7に垂直な分割面22から半導体層2,3,7を酸化することで酸化物領域20を形成するから,酸化物領域20を基板の深さに関係なく任意の深さの位置に形成することができる。このため,素子設計上の制約が少ない。なお,酸化物領域に変換される半導体層2,3,7は,その他の半導体層より酸化され易い組成とすることで,任意の層を選択的に酸化して酸化物領域とすることができる。分割基板23は,例えば,複数個の面発光レーザ素子が一列に形成された断面矩形の長い棒状の基板とすることができる。この場合,その側面を分割面22として酸化物領域20を形成したのち,各素子に分割して面発光半導体レーザを製造することができる。この方法では,分割基板23の端面に酸化防止膜を形成する必要がなく,工程を簡略にすることができる。また,分割基板23を一個の素子を含む直方体に形成し,その端面に酸化防止膜を形成して側面から半導体層2,3,7を酸化することで酸化物領域20を形成してもよい。
【0025】
【発明の実施の形態】
以下,本発明の実施の形態例を参照して,本発明を説明する。
図1を参照して,GaAs基板1の(100)面に,下側の反射層2,下側のクラッド層3,活性層4,上側のクラッド層3,活性層4の発光領域4aを画定する開口5aを有する電流狭窄層5,その開口5aを埋込み電流狭窄層5上に延在する導電層7を設ける。さらに,発光領域4a直上の導電層7上に上側の反射層8を設ける。なお,エッチストッパ6は,製造上の便宜のため設けられる半導体薄膜であって,動作上必要なものではない。下側及び上側の反射層2,8は,その間の半導体とともに光共振器を構成する。光共振器内の光は,その一部が上側の反射層8の上面に設けられた出射面8aから外部に放射される。
【0026】
電極10は,基板の裏面と,上側の反射層8形成領域を除く導電層7の上面に設けられる。
活性層4及びクラッド層3上に設けられた電流狭窄層5及び導電層7からなる半導体層12は,その一部が当初の電流狭窄層5及び導電層7と異なる屈折率を有する変換領域9に変換される。かかる変換領域9は,n型又はp型の半導体層12へのイオン注入により,イオン注入欠陥を生じさせキャリア濃度を減少させることにより屈折率を大きくした領域として形成できる。また,n型又はp型の半導体層9への不純物導入,例えばドナー又はアクセプタを形成する不純物のイオン注入又は拡散により,キャリア濃度を増加させ屈折率を小さくした領域又はキャリア濃度を減少させて屈折率を大きくした領域として形成することができる。
【0027】
かかる変換領域9は,図1に示すように,発光領域4aの中心を通る帯状の領域の両外側の全領域に設けることができる。勿論,発光領域4aを挟み帯状に設けることもできる。また,帯状ではない他の形状,例えば円形又は方形の変換領域とすることもできる。さらに,これらの形状の変換領域9を,唯一つ設けることもできる。上述の変換領域9は,発光領域4a内に設けることを妨げないが,光吸収損失の増大を回避するために発光領域4aとは重ならないことが好ましい。
【0028】
なお,変換領域9は,変換前の半導体層12と導電率が異なるため半導体レーザの電流経路への影響を回避する点で,クラッド層3に延在しないことが好ましい。加えて,変換領域9がクラッド層3に延在しない構造は,光吸収を少なくし,半導体レーザのしきい値電圧の低下,発光効率の向上を図る点で優れる。さらに,変換領域9は,製造を容易にするため半導体層12の形成後に作製することが好ましく,このとき変換領域9は通常は表面から形成される。しかし,半導体層12の一部を形成した後に変換することで,又は半導体層12の内層部の一部の層のみを変換することで,半導体層12の表面を変換せず内部にのみ変換領域9を形成することもできる。
【0029】
上述した本発明の実施形態として図1に示した面発光半導体レーザは,以下の工程により製造することができる。
図3及び図4は本発明の実施の形態例の断面製造工程図であり,図1に示す面発光半導体レーザの製造工程を表している。図2は本発明の実施の形態例一部断面図であり,図2(a)は上側の反射層の断面を,図2(b)は活性層の断面を,図2(c)は下側の反射層の断面を表している。以下,0.98μm帯波長の面発光半導体レーザを例に説明する。
【0030】
先ず,Siを2×1018atm/cmドープした(100)を主面とするn型GaAs基板1上に,図3(a)を参照して,下側の反射層2,下側のクラッド層3,活性層4及び上側のクラッド層3を,例えばMBE法又はVPE法によりこの順序で堆積する。
【0031】
ここで下側の反射層2は,図2(c)を参照して,屈折率の異なる2種類のn型半導体薄膜からなるλ/4層2a,2bを交互に積層して形成される。かかる反射層2は,例えばSiを2×1018atm/cmドープしたn型GaAs薄膜からなるλ/4層2aと,同じくSiを2×1018atm/cmドープしたn型AlAs薄膜からなるλ/4層2bとを,それぞれ24層及び25層積層した多層膜として形成される。
【0032】
下側のクラッド層3は,厚さ104.75nmの例えばSiを1×1018atm/cmドープしたn型AlGaAs薄膜からなる。上側のクラッド層3は,厚さ104.75nmの例えばZnを5×1017atm/cmドープしたp型AlGaAs薄膜からなる。
【0033】
活性層4は,図2(b)を参照して,厚さ8nmのノンドープInGaAs薄膜からなる井戸層4bと厚さ10nmのノンドープGaAs薄膜からなる障壁層4cとを交互に積層した多重量子井戸構造を形成し,その多重量子井戸の上下にクラッド層3からの不純物拡散を防止するための厚さ30nmのノンドープGaAs薄膜からなる拡散バリア層4dを有する。
【0034】
次いで,図3(a)を参照して,上側のクラッド層3上に下側のエッチストッパ層として厚さ5nmのGaAs薄膜を堆積する。その上に,厚さが269.5nmの例えばSiを1×1018atm/cmドープしたn型InGaP薄膜からなる電流狭窄層5を堆積し,さらに,厚さ5nmのGaAs薄膜からなる上側のエッチストッパ6を堆積する。
【0035】
次いで,上側のエッチストッパ6に発光領域を画定するための例えば直径5μmの窓6aを弗酸系のエッチャントを用いて開口する。
次いで,図3(b)を参照して,上側のエッチストッパ6をマスクとする異方性エッチングにより,窓6aに表出する電流狭窄層5を選択的にエッチングして除去し,窓6aの直下に電流狭窄層5の開口5aを形成する。この開口5aは,(111)A面を斜面とする水平断面が方形を縦断面が台形及び逆台形をなし,底面に下側のエッチストッパ6を表出する窪みとして形成される。なお,電流狭窄層5の異方性エッチングは,塩酸を用い下側のエッチストッパ6をストッパとしてなされる。
【0036】
次いで,図3(c)を参照して,厚さ269.5nmのZnを1×1018atm/cmドープしたp型AlGaAs薄膜を堆積し,開口5aを埋込み電流狭窄層5上に延在する導電層7を形成する。
【0037】
次いで,図3(d)を参照して,導電層7上に,電流狭窄層5の開口5aの底面により画定される発光領域4aを覆い,<110>方位に延在するストライプ状のレジストからなるイオン注入用マスク13を形成する。このイオン注入用マスク13を用いて,Hを加速電圧40kV,注入量1×1015atm /cmでイオン注入する。この結果,発光領域4aの両側にHのイオン注入領域からなる変換領域9が,導電層7の表面から電流狭窄層5の内部にまで形成される。Hのイオン注入領域はキャリア濃度が低く,屈折率がイオン注入されていない領域よりも大きい。なお,この条件で形成されたイオン注入領域は,電流狭窄層5の下面,即ちクラッド層3と下側のエッチストッパ6を挟んで対向する面にまで達しない。
【0038】
次いで,図4(e)を参照して,上側の反射層8を堆積する。この反射層8は,図2(a)を参照して,それぞれ1/4波長の厚さのSi層8bとSiO層8cとを交互に重ねた8層の多層膜からなり,電子ビーム蒸着で形成できる。
【0039】
次いで,反射層8上に,発光領域4a直上に厚さ20nmのTi下層及び厚さ1μmのPt上層からなる円形のエッチング用マスク14をリフトオフにより堆積する。次いで図4(f)を参照して,このエッチング用マスク14を用いて,反射層8をSFを反応ガスとする反応性イオンエッチングによりメサエッチングし,発光領域4a直上に円柱状の反射層8を形成する。
【0040】
次いで,図4(g)を参照して,反射層8上のエッチング用マスク14をArイオンミリングにより除去し,基板1の下側表面にAuGe/Au電極を,導電層7上面にTi/Pt/Au電極を形成し,記述した図1に示す面発光半導体レーザが製造される。
【0041】
上述した製造工程において,Hのイオン注入に代えて,Siのイオン注入又はZnの熱拡散を用いることができる。
Siのイオン注入は,n型の電流狭窄層5のキャリア濃度を増加し,屈折率を減少させる。他方,p型の導電層7のキャリア濃度は減少し屈折率は増加する。この場合,通常は活性層4に近い電流狭窄層5の屈折率の変化が光閉じ込め効果に大きく影響するため,Siイオン注入により付与された電流狭窄層5の光閉じ込め効果の面内異方性に基づき,横発振モードが規制される。
【0042】
Znの熱拡散は,イオン注入用マスク13に代え厚さ200nmのSiOマスクを用いた拡散処理により, Zn濃度1×1020atm/cmの拡散領域からなる変換領域9を形成することで行うことができる。この場合,電流狭窄層5の導電型の変換を防止するために,変換領域9は導電層7に留めるか,又は電流狭窄層5の表面層に留める。
【0043】
本発明の第二実施形態例は,本発明の第五及び第六の構成に関する。以下,本実施形態例に係る面発光半導体レーザの製造工程と構造とを説明する。
図5を参照して,(100)面を主面とするn型GaAs基板1上に,下側の反射層2,下側のクラッド層3,活性層4,上側のクラッド層3,GaAs薄膜からなるエッチストッパ6,電流狭窄層5,及びGaAs薄膜からなるエッチストッパ6を順次堆積する。これらの堆積層は,次に続けて説明するように活性層4を構成する拡散バリア層4dの組成を除く他,第一実施形態例と同一組成及び同一厚さを有する。
【0044】
図6は本発明の第二実施形態例一部断面図であり,第二実施形態例に係る面発光半導体レーザの活性層4及び下側の反射層2の構造を表している。
活性層4は,図6(a)を参照して,第一実施形態例と同様に,厚さ8nmのノンドープInGaAs井戸層4bと厚さ10nmのノンドープGaAs障壁層4cとを交互に積層し,その上下に厚さ30nmの拡散バリア層4dを有する。積層数も第一実施例と同じである。本実施形態例では,この拡散バリア層4dを,第一実施形態例でのGaAsに代えてノンドープAlGaAsとする。
【0045】
下側の反射層2は,図6(b)を参照して,第一実施形態例と同じく,n型GaAs薄膜からなるλ/4層2aとn型AlAs薄膜からなるλ/4層2bとを積層した多層膜からなる。
【0046】
次いで,図7(a)を参照して,第一実施形態例と同様の工程により,電流狭窄層5に発光領域4aを画定する開口5aを開設する。次いで,開口5a及び電流狭窄層5を覆う導電層7,及び導電層7上に厚さ50nmのp型GaAs層26をを堆積する。なお,導電層7の組成及び厚さは第一実施形態例と同様である。
【0047】
次いで,図7(b)を参照して,GaAs層26を選択的にエッチングして,開口5a直上に位置するGaAs層26を除去する。次いで,1/4波長の厚さのSi層8bとSiO層8cとを交互に重ねた8層の多層膜からなる円柱状の上側の反射層8を,開口5a直上に第一実施形態例と同様の方法で形成する。
【0048】
次いで,図7(c)を参照して,上述した上側の反射層8が基板主面上に格子状に配列されたウェーハ21を,基板主面,即ちウェーハ21表面に垂直な劈開面を分割面22として,上側の反射層8の列間の分割面22で平行に分割する。その結果,図8(d)を参照して,一列の上側の反射層8を上面に有し,両側面が上側の反射層8に垂直な分割面からなる棒状の分割基板23が形成される。
【0049】
次いで,図(e)を参照して,分割基板23を,水蒸気を含む窒素雰囲気中で400℃で加熱し,分割基板23の両側面(分割面22)から酸化を進行させる。なお,水蒸気は窒素をキャリアガスとしてバブリングにより供給する。この酸化により,Alを含む半導体層,即ち,反射層2を構成するn型AlAs薄膜からなるλ/4層2b,AlGaAsからなる上側及び下側のクラッド層3,活性層4のうちノンドープAlGaAsからなる拡散バリア層4d,及びAlGaAsからなる導電層7が酸化される。その結果,両側面(分割面22)から等距離の中央部分に位置する発光領域4aの直下及び直上は酸化されずに半導体層が残り,発光領域4aの両外側領域の上下に酸化物領域20が形成される。
【0050】
次いで,図5を参照して,基板1下面及びGaAs層26上に電極10を形成する。これらの電極10の材料及び作成方法は第一実施形態例と同様である。
次いで,図7(d)を参照して,棒状の分割基板23を分割面22に直交する面で切断し,図5を参照して,上面が光の出射面となる反射層8を有する垂直共振器型の面発光半導体レーザを完成する。
【0051】
本実施形態例において,導電層7表面に設けられたGaAs層26は,分割基板23の酸化の際に導電層7が表面から酸化されることを防止する。従って,導電層7の酸化は分割面22からのみ進行するので,導電層7を変換して形成された酸化物領域20が発光領域4a上に大きく張り出すことはない。このGaAs層6aに代えて,酸化を阻止し,かつ導電層7と電極10とのオーミック接続を妨げない他の物質からなる層としてよい。また,本実施形態例では,活性層4のうち発光領域4aを構成する障壁層4c及び井戸層4bは酸化しない。他方,障壁層4cに接する拡散バリア層4dは酸化物領域20に変換される。従って,発光領域4aに近接して,かつ上下に屈折率分布を形成することができるので,偏光方向を確実に固定することができる。
【0052】
【発明の効果】
上述したように本発明の面発光半導体レーザでは,半導体層を堆積した後に屈折率が変換された領域を形成することで所定の偏光方位を有するモードを発振できるので,簡単な製造工程により所定の偏光方位の光を発振する面発光半導体レーザを提供でき,光情報技術の向上に寄与する点が大きい。
【図面の簡単な説明】
【図1】本発明の実施の形態例構造説明図
【図2】本発明の実施の形態例一部断面図
【図3】本発明の実施の形態例断面製造工程図(その1)
【図4】本発明の実施の形態例断面製造工程図(その2)
【図5】本発明の第二実施形態例構造説明図
【図6】本発明の第二実施形態例一部断面図
【図7】本発明の第二実施形態例工程図
【図8】従来例構造説明図
【符号の説明】
1 基板
2,8 反射層
2a,2b λ/4層
8a 出射面
3 クラッド層
4 活性層
4a 発光領域
4b 井戸層
4c 障壁層
4d 拡散バリア層
5 電流狭窄層
5a 開口
6 エッチストッパ
6a 窓
7 導電層
9 変換領域
10 電極
11 偏光方位
12 半導体層
13 イオン注入用マスク
14 エッチング用マスク
20 酸化物領域
21 ウェーハ
22 分割面
23 分割基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a surface emitting semiconductor laser having a fixed polarization direction and a manufacturing method thereof.
[0002]
Surface-emitting semiconductor lasers are expected to be used as light-emitting elements in optical interconnection systems because they have the advantages of operating with low power consumption, easy coupling with optical fibers, and realizing a two-dimensional array structure. ing.
[0003]
In such optical transmission applications, the stability of the polarization direction of the light emitting element is indispensable for ensuring a single oscillation mode and ensuring coherent characteristics or oscillation stability.
Therefore, there is a demand for a surface emitting semiconductor laser capable of fixing the polarization direction to an arbitrary direction and a simple manufacturing method thereof.
[0004]
[Prior art]
FIG. 8 is a diagram illustrating the structure of a conventional example and represents a surface emitting semiconductor laser. 8A is a perspective view showing the appearance, FIG. 8B is a vertical cross-sectional view including AB in FIG. 8A, and FIG. 8C is a vertical cross-section including CD in FIG. 8A. FIG.
[0005]
Referring to FIG. 8, the structure of a conventional surface emitting semiconductor laser is as follows: an active layer 4 sandwiched between a lower reflective layer 2 and a cladding layer 3 on a semiconductor substrate having a main surface of (100) 4, current confinement Layer 5 and conductive layer 7 are deposited in this order. The current confinement layer 5 has an opening 5 a that defines a light emitting region 4 a at the center in the plane, and the opening 5 a is filled with the conductive layer 7. Further, an upper reflective layer 8 is formed immediately above the light emitting region 4a, and an optical resonator is formed between the upper reflective layer 8 and the lower reflective layer 2. Electrodes 10 are respectively formed on the lower surface of the substrate 1 and the upper surface of the conductive layer 7 around the upper reflective layer 8.
[0006]
In the surface emitting semiconductor laser having such a structure, the oscillation wavelength is limited by the optical resonator formed by the upper and lower reflecting layers 8 and 2 and oscillates in a single longitudinal mode. On the other hand, the transverse mode is controlled by using the difference in refractive index between the current confinement layer 5 and the conductive layer 7 so that the opening 5a of the current confinement layer 5 has an action contributing to the light confinement effect.
[0007]
However, the shape of the light emitting region 4a is preferably circular in order to couple with the optical fiber, and the opening 5a of the current confinement layer 5 is formed in a circular shape or a rectangular shape. For this reason, referring to FIG. 8A, when the aperture 5a is rectangular, transverse modes of two orthogonal polarization directions 11 are generated, and oscillation instability due to transition between these modes or oscillation of a plurality of modes, Invites degradation of coherence. In addition, in the circular opening 5a, the polarization direction is not determined and the coherency cannot be maintained.
[0008]
In order to eliminate the instability of the transverse mode and to regulate the polarization direction to a predetermined direction, a structure of a surface emitting semiconductor laser in which the shape of the opening 5a of the current confinement layer 5 is rectangular has been proposed. In the semiconductor laser having this structure, the polarization direction is defined in the long side direction of the rectangular opening 5a. However, since the opening 5a is rectangular, the light emitting region 4a is inevitably rectangular, and as a result, the beam cross-sectional shape of the emitted light is elliptical. Further, there is a problem that it is difficult to manufacture precisely controlling the ratio of the major axis to the minor axis of the opening 5a.
[0009]
In another improved surface emitting semiconductor laser, the active layer and the cladding layer are formed as stripe mesas, and the mesa is embedded with a semiconductor layer having a refractive index different from that of the active layer and the cladding layer. In this structure, since the refractive index anisotropy occurs in the light emitting region between the extending direction of the mesa and the direction orthogonal thereto, the transverse mode is restricted in any direction, and the polarization direction is determined. However, the manufacture of this semiconductor laser requires a complicated process of forming a mesa and embedding it.
[0010]
Furthermore, it is considered that the polarization orientation is regulated by crystal anisotropy by forming a surface emitting semiconductor laser on a substrate surface inclined from (100), for example, (311) B substrate surface. However, since it is difficult to deposit a high-quality semiconductor on the surface of a substrate other than (100), it has not been put into practical use.
[0011]
[Problems to be solved by the invention]
As described above, the conventional surface emitting semiconductor laser has the disadvantages that since a plurality of transverse modes can exist, the polarization direction is not uniquely determined, the coherency is inferior, and the oscillation is unstable.
[0012]
In addition, a semiconductor laser in which the current confinement layer has a rectangular aperture and the transverse mode is uniquely regulated is difficult to manufacture because the aperture needs to be precisely manufactured, and in addition, the cross section of the emitted light beam becomes elliptical. is there. A semiconductor laser in which the active layer is made of a semiconductor having a different refractive index as a mesa stripe has a drawback that the manufacturing process becomes complicated.
[0013]
In the surface emitting semiconductor laser having a conventional structure, the present invention changes the refractive index of a partial region of a semiconductor layer on the active layer, for example, a current confinement layer, to provide anisotropy to the in-plane optical confinement effect and It is an object of the present invention to provide a surface emitting semiconductor laser that has a simple manufacturing method, emits a circular light beam, and determines the polarization direction to a predetermined direction by regulating the mode.
[0014]
[Means for Solving the Problems]
FIG. 1 is an explanatory diagram of the structure of an embodiment of the present invention, and shows the structure of a surface emitting semiconductor laser. 1A is a perspective view, and FIGS. 1B and 1C show a vertical section including CD and a vertical section including AB shown in FIG. 1A, respectively. FIG. 5 is a diagram for explaining the structure of a second embodiment of the present invention, and shows the structure of a surface emitting semiconductor laser. 5A is a perspective view, and FIG. 5B shows a vertical cross section including the CD shown in FIG. 5A. FIG. 7 is a process diagram of a second embodiment of the present invention, showing a method for forming an oxide region. 7A and 7B show a cross section of a part of a wafer on which a surface emitting semiconductor laser being manufactured is formed, FIG. 7C is a perspective view of the wafer being manufactured, and FIG. ) And (e) respectively show a perspective view and a sectional view of the divided substrate.
[0015]
The first configuration of the present invention for solving the above-described problem is that, referring to FIG. 1, an active layer 4 having a light emitting region 4a in a partial region in the plane, and a first layer provided on the active layer 4 are provided. A surface-emitting semiconductor laser that emits light in a direction perpendicular to the active layer 4 and has a light emitting region 4a in the vicinity of the light emitting region 4a, A conversion region 9 having a second refractive index formed by converting the semiconductor layer 12 is provided. The active layer is composed of a layer having a (100) plane of a compound semiconductor having a zincblende lattice as a main surface, and the conversion region has a stripe shape extending in the <110> or <1-10> direction. Consist of regions And is characterized by
In the second configuration, in the surface emitting semiconductor laser of the first configuration, the semiconductor layer 12 includes a current confinement layer 5 having an opening 5a on the light emitting region 4a, and the conversion region 9 includes at least the current confinement. Comprising a part formed by converting a part of the layer 5, and
The third configuration is characterized in that, in the surface emitting semiconductor laser of the first configuration, the conversion region 9 is composed of an ion implantation region into the semiconductor layer 12, and
Fourth Referring to FIG. 5, the configuration includes an active layer 4 having a partial region in the plane as a light emitting region 4a, and semiconductor layers 2, 3, and 7 provided above and below the active layer 4, In a surface-emitting semiconductor laser that emits light in the vertical direction of the active layer 4, the semiconductor layers 2, 3, and 7 are formed by oxidizing the semiconductor layers 2, 3, and 7 in regions facing each other with the light emitting region 4a in the vicinity of the light emitting region. Has oxide region 20 The active layer 4 is composed of a layer having a (100) plane of a compound semiconductor having a zincblende lattice as a main surface, and the oxide region 20 extends in the <110> or <1-10> direction. Consisting of striped regions And is characterized by
First Five Referring to FIG. 7, the configuration includes an active layer 4 having a partial region in the plane as a light emitting region 4a, and semiconductor layers 2, 3, and 7 provided above and below the active layer 4, In a method of manufacturing a surface emitting semiconductor laser that emits light in a direction perpendicular to the active layer 4, the step of depositing the active layer 4 and the semiconductor layers 2, 3, 7 on the main surface of the substrate 1, and the substrate 1 Are divided along a dividing surface 22 perpendicular to the main surface to form a divided substrate 23 having the light emitting region 4a sandwiched between two parallel dividing surfaces 22, and from the dividing surface 22 to the At least a part of the semiconductor layers 2, 3, and 7 is oxidized to form an oxide region 20 in a region facing the light emitting region 4 a of the semiconductor layers 2, 3, and 7.
[0016]
In the present invention, among the semiconductor layers 12 having the first refractive index provided on the active layer 4, the semiconductor layer 12 located on the opposite region with the light emitting region sandwiched between the peripheral regions of the light emitting region 4 a is converted. ,, And a conversion region 9 having a second refractive index. Due to the presence of the conversion region 9, the refractive index distribution of the semiconductor layer 12 on the periphery of the light emitting region has a two-fold symmetry anisotropy, and the rotation of the refractive index distribution with the perpendicular passing through the center of the light emitting region as the central axis. Reduce symmetry. For this reason, the anisotropy of the refractive index distribution acts to emphasize or weaken the light confinement effect of light having a specific polarization orientation. As a result, only the transverse mode having a specific polarization orientation oscillates stably in accordance with the anisotropy of the refractive index distribution of the semiconductor layer 12. The conversion region 9 may be provided on one side of the light emitting region, but disposing the light emitting region on both sides of the light emitting region emphasizes the two-fold rotational symmetry of the refractive index and changes the polarization direction. It is preferable for restricting to one position. In the present invention, since the asymmetry of the refractive index distribution is used, it is obvious that the polarization direction can be defined even if the light emitting region is circular. Therefore, it is easy to make the emitted light beam have a circular cross section.
[0017]
Such a structure in which the refractive index of a partial region of the semiconductor layer 12 provided on the active layer 4 is converted produces a laminated structure composed of a semiconductor thin film including the semiconductor layer 12, and the surface of the laminated structure, that is, the semiconductor layer By changing the refractive index at a certain depth from above 12, it can be manufactured by ion implantation or impurity diffusion, for example. For this reason, unlike the prior art, there is no need to add a special process for processing the semiconductor layer or embedding the semiconductor layer, and the manufacturing process is simple.
[0018]
In many surface emitting semiconductor lasers, the light emitting region is defined by the opening 5 a of the current confinement layer 5. The current confinement layer 5 is made of a semiconductor having a refractive index different from that of the conductive layer 7 filling the opening 5a, thereby adding a light confinement effect. Since the contribution to the optical confinement effect is usually larger as it is closer to the active layer 4, it is preferable to provide the conversion region 9 close to the active layer 4 in order to effectively limit the polarization direction due to the anisotropy of the refractive index. . In the second configuration of the present invention, a partial region of the current confinement layer 5 is used as a conversion region. Since the current confinement layer 5 is normally provided close to the active layer 4 in order to make current concentration effective, this configuration effectively prevents a change in polarization orientation.
[0019]
In order to stabilize the oscillation mode, it is preferable to provide the conversion region at a position close to the active layer inside the optical resonator. The effect of limiting the polarization direction by the refractive index anisotropy of the semiconductor layer 12 is greater when the conversion region is provided inside the optical resonator of the surface emitting semiconductor laser than when it is provided outside the optical resonator. In other words, since the light intensity inside the optical resonator is high, the slight anisotropy of the light confinement effect has a large effect on the oscillation mode, so that excitation of a plurality of oscillation modes or transition between oscillation modes is unlikely to occur.
[0020]
In the fourth configuration of the present invention, the active layer 4 whose main surface is the (100) plane of a compound semiconductor having a zincblende lattice, and a stripe region extending in the <110> or <1-10> direction thereof And a conversion area 9 consisting of In this configuration, the conversion region 9 acts to emphasize the change in the refractive index in the (100) in-plane direction that the zincblende compound semiconductor normally has. This ensures that the polarization direction is fixed.
[0021]
In the fifth configuration of the present invention, referring to FIG. 5, an oxide region 20 formed by oxidizing the semiconductor layers 2, 3, and 7 is formed in a region opposite to the light emitting region 4a in the vicinity of the light emitting region. Have. Since the oxide region 20 has a refractive index different from that of the semiconductor layers 2, 3, and 7, a refractive index distribution is generated in the surfaces of the semiconductor layers 2, 3, and 7. As a result, for the same reason as in the first configuration, only the oscillation mode having a specific polarization orientation is stabilized.
[0022]
The semiconductor layers 2, 3, 7 to be converted into the oxide region 20 may be provided only on either the upper or lower side of the active layer 4, or may be provided on both. In addition, when the semiconductor layers 2, 3, and 7 are composed of a plurality of layers, a part of the layers can be converted into the oxide region 20.
[0023]
In the sixth configuration, referring to FIG. 5, a method for converting the semiconductor layers 2, 3, and 7 in the regions facing each other across the light emitting region 4 a into an oxide region 20, with reference to FIG. After the active layer 4 and the semiconductor layers 2, 3, and 7 are deposited on the main surface of the substrate 1, the substrate 1 is divided along the dividing surface 22 perpendicular to the main surface with reference to FIG. , A divided substrate 23 having the light emitting region 4a sandwiched between two parallel dividing surfaces 22 is formed, and the semiconductor layers 2, 3, and 7 are oxidized from the dividing surface 22 with reference to FIG. Then, the regions of the semiconductor layers 2, 3, 7 facing each other with the light emitting region 4 a interposed therebetween are converted into oxide regions 20.
[0024]
In this configuration, the oxide region 20 is formed by oxidizing the semiconductor layers 2, 3, and 7 from the dividing plane 22 perpendicular to the active layer 4 and the semiconductor layers 2, 3, and 7. It can be formed at an arbitrary depth regardless of the depth. For this reason, there are few restrictions on element design. Note that the semiconductor layers 2, 3, and 7 to be converted into oxide regions can be oxidized to form oxide regions by selectively oxidizing any layer by using a composition that is more easily oxidized than other semiconductor layers. . The divided substrate 23 can be, for example, a long rod-shaped substrate having a rectangular cross section in which a plurality of surface emitting laser elements are formed in a line. In this case, the surface emitting semiconductor laser can be manufactured by forming the oxide region 20 with the side surface as the dividing surface 22 and then dividing it into each element. In this method, it is not necessary to form an antioxidant film on the end face of the divided substrate 23, and the process can be simplified. Alternatively, the oxide substrate 20 may be formed by forming the divided substrate 23 in a rectangular parallelepiped shape including one element, forming an antioxidant film on the end face thereof, and oxidizing the semiconductor layers 2, 3, 7 from the side surfaces. .
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to exemplary embodiments of the present invention.
Referring to FIG. 1, the light emitting region 4a of the lower reflective layer 2, the lower clad layer 3, the active layer 4, the upper clad layer 3, and the active layer 4 is defined on the (100) plane of the GaAs substrate 1. A current confinement layer 5 having an opening 5 a to be formed is provided, and a conductive layer 7 is provided to fill the opening 5 a and extend on the current confinement layer 5. Further, the upper reflective layer 8 is provided on the conductive layer 7 immediately above the light emitting region 4a. The etch stopper 6 is a semiconductor thin film provided for manufacturing convenience and is not necessary for operation. The lower and upper reflecting layers 2 and 8 constitute an optical resonator together with the semiconductor between them. A part of the light in the optical resonator is radiated to the outside from an emission surface 8 a provided on the upper surface of the upper reflection layer 8.
[0026]
The electrode 10 is provided on the back surface of the substrate and the upper surface of the conductive layer 7 excluding the upper reflective layer 8 formation region.
A semiconductor layer 12 formed of a current confinement layer 5 and a conductive layer 7 provided on the active layer 4 and the clad layer 3 has a conversion region 9 having a part of the refractive index different from that of the original current confinement layer 5 and the conductive layer 7. Is converted to The conversion region 9 can be formed as a region having an increased refractive index by causing ion implantation defects and reducing the carrier concentration by ion implantation into the n-type or p-type semiconductor layer 12. Further, by introducing impurities into the n-type or p-type semiconductor layer 9, for example, ion implantation or diffusion of impurities forming donors or acceptors, the refractive index is decreased by decreasing the region or the carrier concentration by increasing the carrier concentration. It can be formed as a region with an increased rate.
[0027]
As shown in FIG. 1, the conversion area 9 can be provided in all areas on both outer sides of the band-shaped area passing through the center of the light emitting area 4a. Of course, the light emitting region 4a can be provided in a band shape. Moreover, it can also be set as the conversion area | region other than a strip | belt shape, for example, circular or square. Furthermore, only one conversion region 9 having these shapes can be provided. The conversion region 9 is not prevented from being provided in the light emitting region 4a, but preferably does not overlap the light emitting region 4a in order to avoid an increase in light absorption loss.
[0028]
Note that the conversion region 9 preferably has no conductivity with the semiconductor layer 12 before conversion, so that it does not extend to the cladding layer 3 in order to avoid the influence on the current path of the semiconductor laser. In addition, the structure in which the conversion region 9 does not extend to the cladding layer 3 is excellent in that light absorption is reduced, the threshold voltage of the semiconductor laser is lowered, and the light emission efficiency is improved. Further, the conversion region 9 is preferably formed after the formation of the semiconductor layer 12 in order to facilitate manufacture. At this time, the conversion region 9 is usually formed from the surface. However, by converting after forming a part of the semiconductor layer 12, or by converting only a part of the inner layer portion of the semiconductor layer 12, the surface of the semiconductor layer 12 is not converted, and the conversion region is only inside. 9 can also be formed.
[0029]
The surface emitting semiconductor laser shown in FIG. 1 as an embodiment of the present invention described above can be manufactured by the following steps.
3 and 4 are cross-sectional manufacturing process diagrams according to the embodiment of the present invention, showing the manufacturing process of the surface emitting semiconductor laser shown in FIG. 2 is a partial sectional view of an embodiment of the present invention. FIG. 2 (a) is a sectional view of the upper reflective layer, FIG. 2 (b) is a sectional view of the active layer, and FIG. The cross section of the reflective layer of the side is represented. Hereinafter, a surface emitting semiconductor laser having a wavelength of 0.98 μm band will be described as an example.
[0030]
First, Si is 2 × 10 18 atm / cm 3 On the n-type GaAs substrate 1 whose main surface is doped (100), referring to FIG. 3A, the lower reflective layer 2, the lower clad layer 3, the active layer 4, and the upper clad layer 3 are deposited in this order, for example by MBE or VPE.
[0031]
Here, referring to FIG. 2C, the lower reflective layer 2 is formed by alternately laminating λ / 4 layers 2a and 2b made of two types of n-type semiconductor thin films having different refractive indexes. For example, the reflective layer 2 is made of 2 × 10 Si. 18 atm / cm 3 A λ / 4 layer 2a made of a doped n-type GaAs thin film, and Si 2 × 10 18 atm / cm 3 A λ / 4 layer 2b made of a doped n-type AlAs thin film is formed as a multilayer film in which 24 layers and 25 layers are laminated.
[0032]
The lower cladding layer 3 is made of, for example, Si having a thickness of 104.75 nm. 18 atm / cm 3 It consists of a doped n-type AlGaAs thin film. The upper cladding layer 3 has a thickness of 104.75 nm, for example, 5 × 10 5 Zn. 17 atm / cm 3 It consists of a doped p-type AlGaAs thin film.
[0033]
Referring to FIG. 2B, the active layer 4 has a multiple quantum well structure in which a well layer 4b made of a non-doped InGaAs thin film having a thickness of 8 nm and a barrier layer 4c made of a non-doped GaAs thin film having a thickness of 10 nm are alternately stacked. And a diffusion barrier layer 4d made of a non-doped GaAs thin film with a thickness of 30 nm for preventing impurity diffusion from the cladding layer 3 above and below the multiple quantum well.
[0034]
Next, referring to FIG. 3A, a GaAs thin film having a thickness of 5 nm is deposited on the upper clad layer 3 as a lower etch stopper layer. On top of that, for example, Si with a thickness of 269.5 nm is 1 × 10 18 atm / cm 3 A current confinement layer 5 made of a doped n-type InGaP thin film is deposited, and an upper etch stopper 6 made of a GaAs thin film having a thickness of 5 nm is further deposited.
[0035]
Next, a window 6a having a diameter of 5 μm, for example, for defining a light emitting region in the upper etch stopper 6 is opened using a hydrofluoric acid-based etchant.
Next, referring to FIG. 3B, the current confinement layer 5 exposed to the window 6a is selectively etched and removed by anisotropic etching using the upper etch stopper 6 as a mask. An opening 5a of the current confinement layer 5 is formed immediately below. The opening 5a is formed as a recess that exposes the lower etch stopper 6 on the bottom surface, with a horizontal section having a (111) A plane as a slope and a vertical section having a trapezoidal shape and a reverse trapezoidal shape. The anisotropic etching of the current confinement layer 5 is performed using hydrochloric acid and the lower etch stopper 6 as a stopper.
[0036]
Next, referring to FIG. 3 (c), Zn of 269.5 nm in thickness is 1 × 10. 18 atm / cm 3 A doped p-type AlGaAs thin film is deposited, and a conductive layer 7 is formed which fills the opening 5 a and extends on the current confinement layer 5.
[0037]
Next, referring to FIG. 3D, a stripe-shaped resist covering the light emitting region 4a defined by the bottom surface of the opening 5a of the current confinement layer 5 on the conductive layer 7 and extending in the <110> direction. An ion implantation mask 13 is formed. Using this ion implantation mask 13, H + Accelerating voltage 40 kV, injection amount 1 × 10 15 atm / cm 2 Ion implantation. As a result, H on both sides of the light emitting region 4a + A conversion region 9 composed of the ion implantation region is formed from the surface of the conductive layer 7 to the inside of the current confinement layer 5. H + The ion-implanted region has a low carrier concentration and a refractive index greater than that of the region where no ion is implanted. The ion-implanted region formed under these conditions does not reach the lower surface of the current confinement layer 5, that is, the surface facing the clad layer 3 and the lower etch stopper 6.
[0038]
Next, referring to FIG. 4E, the upper reflective layer 8 is deposited. As shown in FIG. 2A, the reflective layer 8 includes a Si layer 8b having a thickness of ¼ wavelength and a SiO layer, respectively. 2 It consists of an eight-layer multilayer film in which the layers 8c are alternately stacked, and can be formed by electron beam evaporation.
[0039]
Next, a circular etching mask 14 composed of a Ti lower layer with a thickness of 20 nm and a Pt upper layer with a thickness of 1 μm is deposited on the reflective layer 8 immediately above the light emitting region 4a by lift-off. Next, referring to FIG. 4 (f), the reflective layer 8 is made to SF using this etching mask 14. 6 Mesa etching is performed by reactive ion etching using as a reactive gas to form a cylindrical reflective layer 8 immediately above the light emitting region 4a.
[0040]
Next, referring to FIG. 4G, the etching mask 14 on the reflective layer 8 is removed by Ar ion milling, an AuGe / Au electrode on the lower surface of the substrate 1, and a Ti / Pt on the upper surface of the conductive layer 7. The surface emitting semiconductor laser shown in FIG. 1 is manufactured by forming the / Au electrode.
[0041]
In the manufacturing process described above, H + Instead of ion implantation, Si ion implantation or Zn thermal diffusion can be used.
Si ion implantation increases the carrier concentration of the n-type current confinement layer 5 and decreases the refractive index. On the other hand, the carrier concentration of the p-type conductive layer 7 decreases and the refractive index increases. In this case, since the change in the refractive index of the current confinement layer 5 close to the active layer 4 usually greatly affects the optical confinement effect, the in-plane anisotropy of the optical confinement effect of the current confinement layer 5 imparted by Si ion implantation. Based on this, the transverse oscillation mode is regulated.
[0042]
The thermal diffusion of Zn is performed by replacing the ion implantation mask 13 with a 200 nm thick SiO. 2 Zn concentration 1x10 by diffusion treatment using a mask 20 atm / cm 3 This can be done by forming a conversion region 9 consisting of a diffusion region. In this case, the conversion region 9 is kept on the conductive layer 7 or on the surface layer of the current confinement layer 5 in order to prevent the conductivity type conversion of the current confinement layer 5.
[0043]
The second embodiment of the present invention relates to the fifth and sixth configurations of the present invention. Hereinafter, the manufacturing process and structure of the surface emitting semiconductor laser according to this embodiment will be described.
Referring to FIG. 5, on an n-type GaAs substrate 1 having a (100) plane as a main surface, lower reflective layer 2, lower clad layer 3, active layer 4, upper clad layer 3, GaAs thin film An etch stopper 6 made of, a current confinement layer 5, and an etch stopper 6 made of a GaAs thin film are sequentially deposited. These deposited layers have the same composition and the same thickness as those of the first embodiment except for the composition of the diffusion barrier layer 4d constituting the active layer 4 as will be described next.
[0044]
FIG. 6 is a partial sectional view of the second embodiment of the present invention, and shows the structure of the active layer 4 and the lower reflective layer 2 of the surface emitting semiconductor laser according to the second embodiment.
As shown in FIG. 6A, the active layer 4 is formed by alternately stacking a non-doped InGaAs well layer 4b having a thickness of 8 nm and a non-doped GaAs barrier layer 4c having a thickness of 10 nm, as in the first embodiment. A diffusion barrier layer 4d having a thickness of 30 nm is provided above and below it. The number of layers is the same as in the first embodiment. In this embodiment, this diffusion barrier layer 4d is replaced with non-doped AlGaAs instead of GaAs in the first embodiment.
[0045]
As shown in FIG. 6B, the lower reflective layer 2 includes a λ / 4 layer 2a made of an n-type GaAs thin film and a λ / 4 layer 2b made of an n-type AlAs thin film, as in the first embodiment. It consists of a multilayer film in which
[0046]
Next, referring to FIG. 7A, an opening 5a for defining the light emitting region 4a is formed in the current confinement layer 5 by the same process as in the first embodiment. Next, a conductive layer 7 covering the opening 5 a and the current confinement layer 5, and a p-type GaAs layer 26 having a thickness of 50 nm are deposited on the conductive layer 7. The composition and thickness of the conductive layer 7 are the same as in the first embodiment.
[0047]
Next, referring to FIG. 7B, the GaAs layer 26 is selectively etched to remove the GaAs layer 26 located immediately above the opening 5a. Next, the 1/4 wavelength thick Si layer 8b and SiO 2 A cylindrical upper reflective layer 8 made of an eight-layer multilayer film in which the layers 8c are alternately stacked is formed in the same manner as in the first embodiment just above the opening 5a.
[0048]
Next, referring to FIG. 7C, the wafer 21 in which the above-described upper reflective layer 8 is arranged in a lattice pattern on the substrate main surface is divided into the substrate main surface, that is, the cleavage plane perpendicular to the surface of the wafer 21. The surface 22 is divided in parallel at the dividing surface 22 between the rows of the upper reflective layer 8. As a result, with reference to FIG. 8 (d), a rod-shaped divided substrate 23 is formed which has a row of upper reflective layers 8 on the upper surface, and whose both side surfaces are divided surfaces perpendicular to the upper reflective layer 8. .
[0049]
Next, referring to FIG. 4E, the divided substrate 23 is heated at 400 ° C. in a nitrogen atmosphere containing water vapor, and oxidation proceeds from both side surfaces (divided surfaces 22) of the divided substrate 23. Water vapor is supplied by bubbling using nitrogen as a carrier gas. By this oxidation, the semiconductor layer containing Al, that is, the λ / 4 layer 2b made of the n-type AlAs thin film constituting the reflective layer 2, the upper and lower clad layers 3 made of AlGaAs, and the active layer 4 made of non-doped AlGaAs. The diffusion barrier layer 4d and the conductive layer 7 made of AlGaAs are oxidized. As a result, the semiconductor layer remains without being oxidized immediately below and immediately above the light emitting region 4a located at the center of the equidistant from both side surfaces (dividing surfaces 22), and the oxide regions 20 above and below both outer regions of the light emitting region 4a. Is formed.
[0050]
Next, referring to FIG. 5, the electrode 10 is formed on the lower surface of the substrate 1 and the GaAs layer 26. The material and production method of these electrodes 10 are the same as those in the first embodiment.
Next, referring to FIG. 7 (d), the rod-shaped divided substrate 23 is cut along a plane orthogonal to the divided surface 22, and with reference to FIG. 5, a vertical layer having a reflective layer 8 whose upper surface is a light emitting surface. A cavity type surface emitting semiconductor laser is completed.
[0051]
In the present embodiment, the GaAs layer 26 provided on the surface of the conductive layer 7 prevents the conductive layer 7 from being oxidized from the surface when the divided substrate 23 is oxidized. Accordingly, since the oxidation of the conductive layer 7 proceeds only from the dividing surface 22, the oxide region 20 formed by converting the conductive layer 7 does not protrude greatly on the light emitting region 4a. Instead of the GaAs layer 6a, a layer made of another material that prevents oxidation and does not prevent the ohmic connection between the conductive layer 7 and the electrode 10 may be used. In the present embodiment, the barrier layer 4c and the well layer 4b constituting the light emitting region 4a in the active layer 4 are not oxidized. On the other hand, the diffusion barrier layer 4 d in contact with the barrier layer 4 c is converted into the oxide region 20. Accordingly, the refractive index distribution can be formed in the vicinity of the light emitting region 4a and vertically, so that the polarization direction can be reliably fixed.
[0052]
【The invention's effect】
As described above, in the surface emitting semiconductor laser of the present invention, a mode having a predetermined polarization orientation can be oscillated by forming a region where the refractive index is converted after the semiconductor layer is deposited. A surface-emitting semiconductor laser that oscillates light in the polarization direction can be provided, and it contributes to the improvement of optical information technology.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the structure of an embodiment of the present invention.
FIG. 2 is a partial sectional view of an embodiment of the present invention.
FIG. 3 is a cross-sectional manufacturing process diagram of an embodiment of the present invention (part 1).
FIG. 4 is a cross-sectional manufacturing process diagram of an embodiment of the present invention (part 2).
FIG. 5 is a diagram illustrating the structure of a second embodiment of the present invention.
FIG. 6 is a partial sectional view of a second embodiment of the present invention.
FIG. 7 is a process diagram of a second embodiment of the present invention.
FIG. 8 is a diagram illustrating the structure of a conventional example.
[Explanation of symbols]
1 Substrate
2,8 Reflective layer
2a, 2b λ / 4 layer
8a Output surface
3 Clad layer
4 Active layer
4a Light emitting area
4b well layer
4c barrier layer
4d diffusion barrier layer
5 Current confinement layer
5a opening
6 Etch stopper
6a window
7 Conductive layer
9 Conversion area
10 electrodes
11 Polarization direction
12 Semiconductor layer
13 Mask for ion implantation
14 Etching mask
20 Oxide region
21 wafers
22 Dividing plane
23 Divided substrate

Claims (5)

面内の一部領域を発光領域とする活性層と,該活性層上に設けられた第一の屈折率を有する半導体層とを備え,該活性層の垂直方向に光を放射する面発光半導体レーザにおいて,
該発光領域周辺近傍の該発光領域を挟み対向する領域に,該半導体層を変換して形成された第二の屈折率を有する変換領域を有し、
該活性層は,せん亜鉛鉱格子を有する化合物半導体の(100)面を主面とする層からなり,
該変換領域は,<110>又は<1−10>方向に延在するストライプ状領域からなることを特徴とする面発光半導体レーザ。
A surface emitting semiconductor comprising an active layer having a light emitting region in a partial region in a plane, and a semiconductor layer having a first refractive index provided on the active layer, and emitting light in a direction perpendicular to the active layer In the laser,
A region facing sandwiching the light emitting region near the peripheral light-emitting region, have a conversion region having a second refractive index which is formed by converting the semiconductor layer,
The active layer is composed of a layer having a (100) plane as a main surface of a compound semiconductor having a zincblende lattice,
The conversion region comprises a striped region extending in the <110> or <1-10> direction .
請求項1記載の面発光半導体レーザにおいて,
該半導体層は,該発光領域上に開口を有する電流狭窄層を含み,
該変換領域は,少なくとも該電流狭窄層の一部を変換して形成された部分を含むことを特徴とする面発光半導体レーザ。
The surface emitting semiconductor laser according to claim 1,
The semiconductor layer includes a current confinement layer having an opening on the light emitting region,
The surface emitting semiconductor laser, wherein the conversion region includes at least a portion formed by converting a part of the current confinement layer.
請求項1記載の面発光半導体レーザにおいて,
該変換領域は,該半導体層へのイオン注入領域からなることを特徴とする面発光半導体レーザ。
The surface emitting semiconductor laser according to claim 1,
The surface emitting semiconductor laser according to claim 1, wherein the conversion region comprises an ion implantation region into the semiconductor layer.
面内の一部領域を発光領域とする活性層と,該活性層の上下に設けられた半導体層とを有し,該活性層の垂直方向に光を放射する面発光半導体レーザにおいて,In a surface emitting semiconductor laser having an active layer having a partial region in the plane as a light emitting region, and semiconductor layers provided above and below the active layer and emitting light in a direction perpendicular to the active layer,
該発光領域周辺近傍の該発光領域を挟み対向する領域に,該半導体層を酸化して形成された酸化物領域を有し、An oxide region formed by oxidizing the semiconductor layer in a region facing the light emitting region near the light emitting region;
該活性層は,せん亜鉛鉱格子を有する化合物半導体の(100)面を主面とする層からなり,The active layer is composed of a layer having a (100) plane as a main surface of a compound semiconductor having a zincblende lattice,
該酸化物領域は,<110>又は<1−10>方向に延在するストライプ状領域からなることを特徴とする面発光半導体レーザ。The surface-emitting semiconductor laser characterized in that the oxide region comprises a stripe-like region extending in the <110> or <1-10> direction.
面内の一部領域を発光領域とする活性層と,該活性層の上下に設けられた半導体層とを有し,該活性層の垂直方向に光を放射する面発光半導体レーザの製造方法において,In a method for manufacturing a surface emitting semiconductor laser, comprising: an active layer having a partial region in the plane as a light emitting region; and a semiconductor layer provided above and below the active layer, and emitting light in a direction perpendicular to the active layer ,
基板の主面上に該活性層及び該半導体層を堆積する工程と,Depositing the active layer and the semiconductor layer on a major surface of a substrate;
該基板を該主面に垂直な分割面に沿って分割して,平行な二つの該分割面で挟まれた該発光領域を有する分割基板を形成する工程と,Dividing the substrate along a dividing surface perpendicular to the main surface to form a divided substrate having the light emitting region sandwiched between two parallel dividing surfaces;
該分割面から該半導体層の少なくとも一部の層を酸化して,該半導体層の該発光領域を挟み対向する領域を酸化物領域とすることを特徴とする面発光半導体レーザの製造方法。A method of manufacturing a surface-emitting semiconductor laser, wherein at least a part of the semiconductor layer is oxidized from the divided surface, and an area opposite to the light-emitting area of the semiconductor layer is an oxide area.
JP30493596A 1996-02-01 1996-11-15 Surface emitting semiconductor laser and manufacturing method thereof Expired - Lifetime JP3612900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30493596A JP3612900B2 (en) 1996-02-01 1996-11-15 Surface emitting semiconductor laser and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1641496 1996-02-01
JP8-16414 1996-02-01
JP30493596A JP3612900B2 (en) 1996-02-01 1996-11-15 Surface emitting semiconductor laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09270562A JPH09270562A (en) 1997-10-14
JP3612900B2 true JP3612900B2 (en) 2005-01-19

Family

ID=26352758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30493596A Expired - Lifetime JP3612900B2 (en) 1996-02-01 1996-11-15 Surface emitting semiconductor laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3612900B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067890A1 (en) * 2021-10-19 2023-04-27 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser and method for manufacturing surface emitting laser

Also Published As

Publication number Publication date
JPH09270562A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
US6320893B1 (en) Surface emitting semiconductor laser
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
JP3897186B2 (en) Compound semiconductor laser
US5126804A (en) Light interactive heterojunction semiconductor device
US5311534A (en) Semiconductor laser devices
JP3219823B2 (en) Semiconductor light emitting device
JPH09139550A (en) Manufacture of semiconductor laser device, and semiconductor laser device
US6846685B2 (en) Vertical-cavity surface-emitting semiconductor laser
JPS5940592A (en) Semiconductor laser element
JP2622143B2 (en) Distributed feedback semiconductor laser and method of manufacturing distributed feedback semiconductor laser
JP4381017B2 (en) Surface emitting semiconductor laser device
JP2003142774A (en) Semiconductor laser and its manufacturing method
US4759025A (en) Window structure semiconductor laser
JP3612900B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JPS61168981A (en) Semiconductor laser device
JP2001015864A (en) Semiconductor laser device and its manufacture
JP3685541B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0828554B2 (en) Semiconductor laser and manufacturing method thereof
JP2002198613A (en) Semiconductor device having salient structure, and method of manufacturing the semiconductor device
JP2679974B2 (en) Semiconductor laser device
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JP4497606B2 (en) Semiconductor laser device
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP3358197B2 (en) Semiconductor laser
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term