Nothing Special   »   [go: up one dir, main page]

JP2679974B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2679974B2
JP2679974B2 JP61092093A JP9209386A JP2679974B2 JP 2679974 B2 JP2679974 B2 JP 2679974B2 JP 61092093 A JP61092093 A JP 61092093A JP 9209386 A JP9209386 A JP 9209386A JP 2679974 B2 JP2679974 B2 JP 2679974B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
laser device
type
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61092093A
Other languages
Japanese (ja)
Other versions
JPS62249496A (en
Inventor
和久 魚見
直樹 茅根
創 大歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61092093A priority Critical patent/JP2679974B2/en
Priority to US07/041,410 priority patent/US4881235A/en
Publication of JPS62249496A publication Critical patent/JPS62249496A/en
Application granted granted Critical
Publication of JP2679974B2 publication Critical patent/JP2679974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、従来にない低しきい電流で発振する量子井
戸型半導体レーザに係り、特に光電気集積回路用あるい
は光集積回路の半導体レーザに関するものである。 〔従来の技術〕 将来の電気光集積回路(OEIC)あるいは光集積回路
(OIC)用の光源として、低しきい電流で発振する半導
体レーザ、つまり低消費電力の半導体レーザが待望され
ている。これまでに、活性層を量子井戸型にして、その
量子サイズ効果を利用して低しきい電流化する方法が杉
本他により電子通信学会の信学技報等OQE85−78巻,第8
5頁に発表されている。しかし、この方法では、そのし
きい電流は約8mAであり、従来のダブルヘテロ構造半導
体レーザの20mAに比べて約半分程度にしか改善されな
い。 〔発明が解決しようとする問題点〕 上記従来技術については、その粒子井戸活性層のデバ
イス構造はほぼ最適化されており、従来の量子井戸活性
層では、上記のしきい電流(約8mA)以下の低しきい化
は困難である。しかし、この程度のしきい電流値では今
後、OEICの光源とて未だ不適当であり、さらにOEICの多
機能化,高集積化のためには、なお一層の低しきい電流
化が必要であつた。 本発明の目的は、従来にない低しきい電流の半導体レ
ーザ(<3mA)を提供することにあり、さらには、高機
能・高集積のOEIC用の光源を提供することにある。 〔問題点を解決するための手段〕 本発明者は、従来にないし低しきい電流で発振する半
導体レーザを得るために、キヤリア注入型半導体レーザ
の活性層を量子井戸構造とする半導体レーザ基本に考
え、電子のドウ・ブローイ波長以下の厚さを有するウエ
ル層とウエル層よりも禁制帯幅の大きいバリア層からな
る量子井戸活性層の全部あるいはその一部(例えば、ウ
エル層だけ、バリア層だけ、又はウエル層とバリア層の
両方)に高濃度(>1018cm-3)の不純物をドーピングし
て、人為的に電子密度と正孔密度を操作することによ
り、キヤリアの無注入時(無バイアス時)においてその
量子井戸活性層に電子あるいは正孔(あるいはその両
方)を存在させ、その結果、低しきい電流化できること
を見い出した。この量子井戸活性層としては、ウエル層
とバリア層を交互に重ね合わせた多重量子井戸構造、あ
るいは、バリア層のAlのモル比が徐々に変化しているGR
IN−SCH型(Graded−Index−Separate−Confinement−H
eterostructure)構造を用いるとその効果は顕著であ
る。本発明者は、不純物をドーピングした量子井戸活性
層の利得スペクトル解析モデルを作成し、それを多重量
子井戸構造に適用した計算結果を第2図に示す。この計
算ではウエル層のAlモル比(XW)は0、バリア層のAlモ
ル比(XB)は0.2、ウエル層厚さは5nmとした。Pドーピ
ング,nドーピング両者共、ドーピング濃度を増すと、発
振に必要なしきいキヤリア密度は低下し、しき電流が下
がることが判明した。特にnドーピングでは2×1018cm
-3以上、pドーピングでは4×1018cm-3以上のドーピン
グを行うとしきいキヤリア密度はアンドープの多重量子
井戸構造に比べ、約半分に低下し、従来のダブルヘテロ
構造の1/4以下になることが判明した。ただし、ドーピ
ング濃度を1×1019cm-3以上にすると急激にその結晶性
が低下するため、ドーピング濃度としては1×1019cm-3
が限度であることもわかつた。この時、しきいキヤリア
密度は従来のダブルヘテロ構造に比べてnドーピングで
は約1/20、pドーピング1/6に低下する。また、不純物
としては、固相内拡散の小さいMg,Be,Si,Se等が有効で
あることも見出した。 〔作用〕 上記の如く、量子井戸活性層に不純物を高濃度にドー
ピングするとしきい電流が低下することは以下のように
説明できる。不純物を高濃度にドーピングすると無バイ
アス、つまりキヤリア無注入時においても、ウエル層内
に量子化した多数キヤリアが存在する。Pドーピングの
場合を考えると価電子帯内の量子準位は、アクセプタか
ら放出した正孔により占められている。レーザ発振に寄
与する利得は、正味の光吸収を差しひいたものであるの
で、上記のように価電子帯に量子化した正孔が存在する
とその正味の光吸収が減少する。この結果、低い注入電
子密度で発振することになる。また、nドーピングでも
同様に説明できる。 〔実施例〕 つぎに本発明の実施例を図面とともに説明する。第1
図は本発明による半導体レーザ装置の一実施例を示す断
面図で(a)は全断面図、(b)は○部拡大断面図であ
る。 第1図において、n型GaAs基板結晶1の上にn型Ga1
−xAlxAsクラツド層2(x=0.45)と、厚さ8nmの4×1
018cm-3のSeドープを行つたnドープGaASウエル層31、
アンドープあるいは4×1018cm-3のSeドープを行つたn
ドープの厚さ3nmのGa0.8Al0.2Asバリア層32を交互に5
層ずつ積み重ねた多重量子井戸活性層3と、P型Ga1−x
AlxAsクラツド層4(x=0.45)と、n型GaAs電流狭窄
層5とをMOCVD法により順次形成する。ホトエツチング
工程により、n型GaAs層5を完全に除去してp型Ga1−x
AlAsクラツド層4の表面を露出する幅1〜15μmの薄ス
トライプを形成する。つぎにMOCVD法によりp型Ga1−xA
lxAsクラツド層6(x=0.45)、p型GaAsキヤツプ層7
を形成する。その後、p型電極8、n側電極9を形成し
たのち、へき開法により共振器長約300μmの半導体レ
ーザ装置を得た。このとき光導波路を屈折率導波型とし
て、レーザ光の横モードを安定に保つためには、P型ク
ラツド層4の厚さd4の条件として0.1<d4<0.7μmが得
られた。 上記実施例は発振波長830nmにおいてしきい電流値1
〜2mAで室温連続発振し、発振スペクトルは縦単一モー
ドを示し、光出力20mWまで横モードの安定性を確認し
た。90℃において、光出力20mW定光出力動作時の寿命も
5000時間経過後顕著な劣化は見られず、信頼性も高いこ
とが明らかになつた。これは上記したように、ウエル層
31に高濃度Nドーピングした多重量子井戸によつてしき
い電流密度が顕著に低下したことによるものである。 実施例2 本発明による別の実施例を第3図を用いて説明する。 n型GaAs基板1上にn型GaAlAsクラツド層2、Alのモ
ル比が0.45から0.2まで徐々に変化する厚さ0.1μmにn
−GaAlAsバリア層103、厚さ6nmの6×1018cm-3のMgドー
プを行つたGaAsウエル層101、およびAlのモル比が0.2か
ら0.45まで徐々に変化する厚さ0.1μmのp−GaAlAsバ
リア層102からなるGRIN−SCH活性層10を形成し、さらに
その上にp型GaAlAsクラツド層4を成長後、ホトエツチ
ングにより、幅1〜5μmのストライプ状に残るように
n型GaAs基板1まで達するエツチングを行い、その後p
形GaAlAs層12、n形GaAlAs層13を成長し、Zn拡散領域11
を設ける。この後p側電極8、n側電極9を形成した
後、へき開法により、共振器長約300μmのレーザ素子
を得た。 本実施例においては、半導体レーザの構造はBH(Buri
ed Heterostructure)タイプになつているので、発振に
寄与しない無効電流が存在しないので、なお一層の低し
きい電流化ができ、しきい電流0.5〜1.5mAで室温連続発
振し、波長は800nmにて縦単一モードを示した。また、1
00℃において光出力10mW定光出力動作時の寿命も6000時
間経過後も顕著な劣化は見られず、高信頼の素子を得
た。 実施例3 本発明による別の実施例を第4図を用いて説明する。
半絶縁性GaAs基板14上にn+−GaAs層15をMOCVD法により
成長した後、実施例1と同様の半導体層を成長する。こ
の後、部分的にn+−GaAS層15の表面を露出するエツチン
グを行ない、p電極8、n電極9を形成する。この後、
へき開法により、共振器長約300μmのレーザ素子を得
た。本実施例においても、実施例1,実施例2とほぼ同様
の特性を示した。さらに本実施例においては、半絶縁性
基板上に超低しきい値電流の半導体レーザが形成された
ことになり、OEIC等への発振が期待できる。 また、以上の実施例においては、不純物としてMg,Se
の場合を示したが、Si,Beを用いてもほぼ同様の効果が
得られた。さらに、ウエル層の幅として3〜10nm、p型
不純物の濃度として(4〜10)×1018cm-3、n型不純物
の濃度として(2〜10)×1018cm-3のいずれの組み合わ
せにおいてもほぼ同様の効果が得られた。また、以上の
実施例においては、p型あるいはn型の一方の不純物ド
ーピングを行つたが、両方の型のドーピングを行つても
よい。 なお本発明は実施例に示した波長0.80μm前後に限ら
ず、波長0.86〜0.89μmのGaAlAs系半導体レーザ装置
で、室温連続発振できる全範囲にわたり同様の結果が得
られた。本発明による半導体レーザ装置はGaAlAs系以外
のレーザ材料、例えばInGaAsP系やInGaP系の材料に対し
ても同様に適用できる。またレーザの構造としては上記
各実施例で示した3層導波路を基本にするものに限ら
ず、活性層の片側に隣接して光ガイド層を設けるLOC構
造や、活性層の両側にそれぞれ隣接して光ガイド層を設
けるSCH構造に対しても同様に適用することができる。 また上記各実施例において導電形を全て反対にした構
造(pをnに、nをpに置換えた構造)においても同様
の効果が得られた。 〔発明の効果〕 上記のように本発明による半導体レーザ素子は量子井
戸活性層の全部あるいはその一部に高濃度の不純物を導
入することにより、従来の半導体レーザのしきい電流よ
りはるかに低いしきい電流の半導体レーザ素子ができる
ので、高い信頼性のレーザ素子が得られ、これは、特に
光電気集積回路あるいは光集積回路用の光源として有効
である。
Description: TECHNICAL FIELD The present invention relates to a quantum well semiconductor laser that oscillates at an unprecedented low threshold current, and more particularly to a semiconductor laser for an optoelectronic integrated circuit or for an optical integrated circuit. It is a thing. [Prior Art] As a light source for a future electro-optical integrated circuit (OEIC) or an optical integrated circuit (OIC), a semiconductor laser that oscillates with a low threshold current, that is, a semiconductor laser with low power consumption is desired. To date, a method of making the active layer into a quantum well type and using the quantum size effect to reduce the threshold current has been proposed by Sugimoto et al., IEICE Technical Report, OQE85-78, Vol.
Published on page 5. However, with this method, the threshold current is about 8 mA, which is improved to only about half of 20 mA of the conventional double hetero structure semiconductor laser. [Problems to be Solved by the Invention] Regarding the above-mentioned conventional technique, the device structure of the particle well active layer is almost optimized, and in the conventional quantum well active layer, the above threshold current (about 8 mA) or less It is difficult to lower the threshold of. However, such a threshold current value is still unsuitable as a light source for OEICs in the future, and further lower threshold currents are required for multi-functionalization and high integration of OEICs. It was An object of the present invention is to provide an unprecedented low threshold current semiconductor laser (<3 mA), and further to provide a highly functional and highly integrated light source for OEIC. [Means for Solving the Problems] In order to obtain a semiconductor laser that oscillates at a low threshold current, the present inventor has basically adopted a semiconductor laser having a quantum well structure as an active layer of a carrier injection type semiconductor laser. Considering that, all or part of the quantum well active layer consisting of a well layer having a thickness equal to or less than the Dow-Broe wavelength of electrons and a barrier layer having a band gap larger than that of the well layer (for example, only the well layer or only the barrier layer). , Or both the well layer and the barrier layer) are doped with a high concentration (> 10 18 cm −3 ) of impurities to artificially control the electron density and the hole density. It was found that electrons and / or holes (or both) exist in the quantum well active layer at the time of bias, and as a result, a low threshold current can be obtained. The quantum well active layer has a multiple quantum well structure in which well layers and barrier layers are alternately stacked, or the molar ratio of Al in the barrier layer is gradually changing.
IN-SCH type (Graded-Index-Separate-Confinement-H
The effect is remarkable when an eterostructure) structure is used. The present inventor creates a gain spectrum analysis model of an impurity-doped quantum well active layer and applies it to a multiple quantum well structure. The calculation results are shown in FIG. In this calculation, the Al molar ratio (X W ) of the well layer was 0, the Al molar ratio (X B ) of the barrier layer was 0.2, and the well layer thickness was 5 nm. It has been found that increasing the doping concentration in both P-doping and n-doping lowers the threshold carrier density required for oscillation and lowers the threshold current. 2 × 10 18 cm, especially for n-doping
-3 or more, and with p-doping of 4 × 10 18 cm -3 or more, the threshold carrier density is reduced to about half that of the undoped multiple quantum well structure, which is 1/4 or less of the conventional double hetero structure. It turned out to be. However, since the rapidly its crystallinity when the doping concentration of 1 × 10 19 cm -3 or more is reduced, as the doping concentration of 1 × 10 19 cm -3
I knew that was the limit. At this time, the threshold carrier density is reduced to about 1/20 in n-doping and 1/6 in p-doping as compared with the conventional double hetero structure. It was also found that Mg, Be, Si, Se, etc., which have small diffusion in the solid phase, are effective as impurities. [Operation] As described above, it can be explained as follows that the threshold current is lowered when the quantum well active layer is heavily doped with impurities. When impurities are doped at a high concentration, there are a large number of quantized carriers in the well layer even without bias, that is, even when carriers are not implanted. Considering the case of P doping, the quantum levels in the valence band are occupied by holes emitted from the acceptor. The gain that contributes to the laser oscillation is obtained by subtracting the net optical absorption. Therefore, when the quantized holes are present in the valence band as described above, the net optical absorption is reduced. As a result, oscillation occurs at a low injection electron density. The same can be explained with n-doping. [Example] Next, an example of the present invention will be described with reference to the drawings. First
1A and 1B are sectional views showing an embodiment of a semiconductor laser device according to the present invention. FIG. In FIG. 1, n-type Ga 1 is formed on the n-type GaAs substrate crystal 1.
-XAlxAs cladding layer 2 (x = 0.45) and 4 × 1 with a thickness of 8 nm
N-doped GaAS well layer 31 doped with 18 cm −3 Se,
N-doped or undoped or 4 × 10 18 cm -3 Se-doped
Alternating 5 Ga 0.8 Al 0.2 As barrier layers 32 with a doping thickness of 3 nm
Multi-quantum well active layer 3 stacked layer by layer and P-type Ga 1 -x
An AlxAs cladding layer 4 (x = 0.45) and an n-type GaAs current constriction layer 5 are sequentially formed by MOCVD. By the photo-etching process, the n-type GaAs layer 5 is completely removed and the p-type Ga 1 -x
A thin stripe having a width of 1 to 15 μm exposing the surface of the AlAs cladding layer 4 is formed. Next, p-type Ga 1 −xA was formed by MOCVD.
lxAs cladding layer 6 (x = 0.45), p-type GaAs cap layer 7
To form Then, after forming the p-type electrode 8 and the n-side electrode 9, a semiconductor laser device having a cavity length of about 300 μm was obtained by the cleavage method. At this time, in order to keep the transverse mode of the laser light stable by making the optical waveguide a refractive index waveguide type, the condition of the thickness d 4 of the P-type cladding layer 4 was 0.1 <d 4 <0.7 μm. In the above embodiment, the threshold current value is 1 at the oscillation wavelength of 830 nm.
It oscillated continuously at room temperature at ~ 2mA, the oscillation spectrum showed a longitudinal single mode, and the stability of transverse mode was confirmed up to an optical output of 20mW. At 90 ° C, the optical output is 20 mW, and the service life at constant light output is also
No significant deterioration was observed after 5000 hours, and it was revealed that the reliability was high. This is the well layer as described above.
This is because the threshold current density was remarkably lowered by the multiple quantum well in which 31 was heavily N-doped. Second Embodiment Another embodiment according to the present invention will be described with reference to FIG. On the n-type GaAs substrate 1, the n-type GaAlAs cladding layer 2, the molar ratio of Al gradually changes from 0.45 to 0.2.
A GaAlAs barrier layer 103, a 6 nm thick 6 × 10 18 cm −3 Mg-doped GaAs well layer 101, and a 0.1 μm thick p-GaAlAs layer in which the Al molar ratio gradually changes from 0.2 to 0.45. A GRIN-SCH active layer 10 made of a barrier layer 102 is formed, and a p-type GaAlAs cladding layer 4 is further grown on the GRIN-SCH active layer 10 and then photoetching is performed to reach the n-type GaAs substrate 1 so as to remain in a stripe shape having a width of 1 to 5 μm. Etching, then p
-Type GaAlAs layer 12 and n-type GaAlAs layer 13 are grown, and Zn diffusion region 11 is formed.
Is provided. After that, a p-side electrode 8 and an n-side electrode 9 were formed, and then a cleavage method was used to obtain a laser element having a cavity length of about 300 μm. In this embodiment, the structure of the semiconductor laser is BH (Buri
ed Heterostructure) type, so there is no reactive current that does not contribute to oscillation, so the threshold current can be made even lower, continuous oscillation at room temperature is achieved with a threshold current of 0.5 to 1.5 mA, and a wavelength of 800 nm. Vertical single mode is shown. Also, 1
At 00 ° C, a light output of 10 mW at constant light output was not observed, and no remarkable deterioration was observed even after 6000 hours, and a highly reliable device was obtained. Third Embodiment Another embodiment according to the present invention will be described with reference to FIG.
After the n + -GaAs layer 15 is grown on the semi-insulating GaAs substrate 14 by the MOCVD method, a semiconductor layer similar to that of the first embodiment is grown. After that, etching is performed to partially expose the surface of the n + -GaAS layer 15 to form the p-electrode 8 and the n-electrode 9. After this,
A laser element having a cavity length of about 300 μm was obtained by the cleavage method. Also in this embodiment, the characteristics substantially similar to those of the first and second embodiments are shown. Furthermore, in this embodiment, a semiconductor laser having an ultra-low threshold current is formed on the semi-insulating substrate, and oscillation to the OEIC or the like can be expected. Further, in the above examples, Mg, Se as impurities
Although the case was shown, almost the same effect was obtained by using Si and Be. Further, the width of the well layer is 3 to 10 nm, the p-type impurity concentration is (4 to 10) × 10 18 cm −3 , and the n-type impurity concentration is (2 to 10) × 10 18 cm −3. In the case of, almost the same effect was obtained. Further, in the above embodiments, one of p-type and n-type impurity doping was performed, but both types of doping may be performed. The present invention is not limited to the wavelength of about 0.80 μm shown in the embodiment, and the same result is obtained over the entire range where the continuous oscillation at room temperature can be achieved with a GaAlAs semiconductor laser device having a wavelength of 0.86 to 0.89 μm. The semiconductor laser device according to the present invention can be similarly applied to laser materials other than GaAlAs-based materials, such as InGaAsP-based and InGaP-based materials. Further, the structure of the laser is not limited to the one based on the three-layer waveguide shown in each of the above-described embodiments, but may be a LOC structure in which an optical guide layer is provided adjacent to one side of the active layer, or adjacent to both sides of the active layer. The same can be applied to the SCH structure in which the light guide layer is provided. Similar effects were obtained also in the structures in which the conductivity types were all reversed in the above-mentioned respective examples (structures in which p was replaced by n and n was replaced by p). [Effect of the Invention] As described above, the semiconductor laser device according to the present invention has a threshold current much lower than that of a conventional semiconductor laser by introducing a high concentration impurity into all or part of the quantum well active layer. Since a semiconductor laser device having a threshold current can be formed, a highly reliable laser device can be obtained, which is particularly effective as a light source for an optoelectronic integrated circuit or an optical integrated circuit.

【図面の簡単な説明】 第1図,第3図,第4図は本発明による実施例の断面図
であり、各図(b)は同図(a)の円内拡大図、第2図
はドーピング濃度に対するしきいキヤリア密度の計算値
で、本願発明の原理を示す図である。 1……n−GaAs基板、2……n−GaAlAsクラツド層、3
……多重量子井戸活性層、4……p−GaAlAsクラツド
層、5……n+−GaAs 電流狭窄層、6……GaAlAsクラツ
ド層、7……p−GaAsキヤツプ層、8……p電極、9…
…n電極、10……GRIN−SCH活性層、11……Zn拡散領
域、12……p−GaAlAs埋めこみクラツド層、13……n−
GaAlAs埋めこみクラツド層、14……半絶縁性GaAs基板、
15……n+−GaAs層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 3, and FIG. 4 are cross-sectional views of an embodiment according to the present invention, in which each figure (b) is an enlarged view in a circle of FIG. FIG. 4 is a calculated value of the threshold carrier density with respect to the doping concentration, and is a diagram showing the principle of the present invention. 1 ... n-GaAs substrate, 2 ... n-GaAlAs cladding layer, 3
... Multiple quantum well active layer, 4 ... p-GaAlAs cladding layer, 5 ... n + -GaAs current confinement layer, 6 ... GaAlAs cladding layer, 7 ... p-GaAs cap layer, 8 ... p electrode, 9 ...
... n electrode, 10 ... GRIN-SCH active layer, 11 ... Zn diffusion region, 12 ... p-GaAlAs embedded cladding layer, 13 ... n-
GaAlAs embedded cladding layer, 14 ... Semi-insulating GaAs substrate,
15 …… n + −GaAs layer.

Claims (1)

(57)【特許請求の範囲】 1.第1導電型クラッド層と、該第1導電型クラッド層
上に電子のドウ・プローイ波長以下の厚さのウエル層と
該ウエル層よりも禁制帯幅の大きいバリア層とを交互に
重ね合せて形成された多重量子井戸活性層と、該多重量
子井戸活性層上に形成された上記第1導電型に対し逆の
第2導電型のクラッド層とを有し、上記多重量子井戸活
性層のウエル層及びバリア層の少なくとも一方には濃度
が4×1018cm-3以上且つ1×1019cm-3未満のp型不純物
又は2×1018cm-3以上且つ1×1019cm-3未満のn型不純
物が導入されていることを特徴とする半導体レーザ装
置。 2.上記ウエル層の厚さは、3nm〜10nmであることを特
徴とする特許請求の範囲第1項に記載の半導体レーザ装
置。 3.上記p型不純物は、Mg又はBeであることを特徴とす
る特許請求の範囲第1項又は第2項に記載の半導体レー
ザ装置。 4.上記n型不純物は、Se又はSiであることを特徴とす
る特許請求の範囲第1項又は第2項に記載の半導体レー
ザ装置。
(57) [Claims] A first conductivity type clad layer, a well layer having a thickness equal to or less than the Dow-Ploy wavelength of electrons, and a barrier layer having a forbidden band width larger than that of the well layer are alternately laminated on the first conductivity type clad layer. A well of the multiple quantum well active layer, which has a formed multiple quantum well active layer and a clad layer of a second conductivity type opposite to the first conductivity type formed on the multiple quantum well active layer. At least one of the layer and the barrier layer has a concentration of 4 × 10 18 cm -3 or more and less than 1 × 10 19 cm -3 or a p-type impurity or 2 × 10 18 cm -3 or more and less than 1 × 10 19 cm -3. 2. A semiconductor laser device having the n-type impurity introduced therein. 2. The semiconductor laser device according to claim 1, wherein the well layer has a thickness of 3 nm to 10 nm. 3. The semiconductor laser device according to claim 1 or 2, wherein the p-type impurity is Mg or Be. 4. The semiconductor laser device according to claim 1, wherein the n-type impurity is Se or Si.
JP61092093A 1985-07-26 1986-04-23 Semiconductor laser device Expired - Lifetime JP2679974B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61092093A JP2679974B2 (en) 1986-04-23 1986-04-23 Semiconductor laser device
US07/041,410 US4881235A (en) 1985-07-26 1987-04-23 Semiconductor laser having a multiple quantum well structure doped with impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61092093A JP2679974B2 (en) 1986-04-23 1986-04-23 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS62249496A JPS62249496A (en) 1987-10-30
JP2679974B2 true JP2679974B2 (en) 1997-11-19

Family

ID=14044830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61092093A Expired - Lifetime JP2679974B2 (en) 1985-07-26 1986-04-23 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2679974B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073892A (en) * 1989-06-12 1991-12-17 Hitachi, Ltd. Semiconductor laser device
JP2877107B2 (en) * 1996-12-02 1999-03-31 日本電気株式会社 Multiple quantum well semiconductor laser
JPH09232667A (en) * 1996-02-21 1997-09-05 Sony Corp Compound semiconductor device and manufacture thereof
US6542526B1 (en) 1996-10-30 2003-04-01 Hitachi, Ltd. Optical information processor and semiconductor light emitting device suitable for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929484A (en) * 1982-08-12 1984-02-16 Fujitsu Ltd Semiconductor light emitting device
JPH0712101B2 (en) * 1985-03-29 1995-02-08 富士通株式会社 Semiconductor light emitting device

Also Published As

Publication number Publication date
JPS62249496A (en) 1987-10-30

Similar Documents

Publication Publication Date Title
US4635268A (en) Semiconductor laser device having a double heterojunction structure
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
JPH11274635A (en) Semiconductor light emitting device
US4881235A (en) Semiconductor laser having a multiple quantum well structure doped with impurities
US5556804A (en) Method of manufacturing semiconductor laser
JPH07263798A (en) Semiconductor laser and its manufacture
US6567444B2 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
JPH06302908A (en) Semiconductor laser
US4602371A (en) High output semiconductor laser device utilizing a mesa-stripe optical confinement region
JP2686306B2 (en) Semiconductor laser device and manufacturing method thereof
JP2679974B2 (en) Semiconductor laser device
US4752933A (en) Semiconductor laser
KR100417096B1 (en) Semiconductor laser apparatus and manufacturing method thereof
JP2001057459A (en) Semiconductor laser
JPH0936474A (en) Semiconductor laser and fabrication thereof
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JPH05211372A (en) Manufacture of semiconductor laser
JPH0478036B2 (en)
JP2758597B2 (en) Semiconductor laser device
CN117895328A (en) Vertical cavity surface emitting semiconductor laser and method for manufacturing the same
JPH10163561A (en) Semiconductor laser element
JPH104239A (en) Semiconductor light emitting diode
JPS60132381A (en) Semiconductor laser device
JPH0728093B2 (en) Semiconductor laser device
JPH0621576A (en) Semiconductor laser and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term