JP2546150B2 - Three-dimensional cavity surface emitting laser - Google Patents
Three-dimensional cavity surface emitting laserInfo
- Publication number
- JP2546150B2 JP2546150B2 JP5165378A JP16537893A JP2546150B2 JP 2546150 B2 JP2546150 B2 JP 2546150B2 JP 5165378 A JP5165378 A JP 5165378A JP 16537893 A JP16537893 A JP 16537893A JP 2546150 B2 JP2546150 B2 JP 2546150B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gaas
- reflecting mirror
- multilayer
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18305—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18322—Position of the structure
- H01S5/18327—Structure being part of a DBR
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
- H01S5/2224—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
Landscapes
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高並列な光伝送や光情
報処理に用いられる光集積素子、特に立体共振器型面発
光レーザに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical integrated device used for highly parallel optical transmission and optical information processing, and more particularly to a three-dimensional cavity surface emitting laser.
【0002】[0002]
【従来の技術】従来の半導体レーザは、半導体ウェハー
を壁開することにより端面方向にレーザ発振する立体共
振器型端面レーザと、ウェハー面に垂直方向に多層膜反
射鏡を形成し、垂直方向にレーザ発振する垂直共振器型
面発光レーザ(VCSEL)とがある。VCSELはウ
ェハーに垂直方向にレーザ出力が得られるため、高並列
な光伝送等の実現のためには、その2次元アレイ化の利
点が生かせる。2. Description of the Related Art A conventional semiconductor laser includes a three-dimensional resonator type end face laser which oscillates in the end face direction by wall-opening a semiconductor wafer, and a multi-layered film reflecting mirror formed in the vertical direction on the wafer face to form a vertical mirror. There is a vertical cavity surface emitting laser (VCSEL) that oscillates a laser. Since the VCSEL can obtain a laser output in the direction perpendicular to the wafer, the advantage of the two-dimensional array can be utilized for realizing highly parallel optical transmission and the like.
【0003】VCSELの従来例としては、例えば図3
に示した特願平4−22038号明細書の面発光半導体
レーザがある。図中、1は上部多層膜反射鏡、2はメサ
ガイド層、3は電極、4はコンタクト層、5はクラッド
層、6は高抵抗領域、7は活性層、8はクラッド層、9
は電極、10は下部多層膜反射鏡、11は基板である。A conventional example of the VCSEL is shown in FIG.
There is a surface emitting semiconductor laser disclosed in Japanese Patent Application No. 4-20238. In the figure, 1 is an upper multilayer film reflector, 2 is a mesa guide layer, 3 is an electrode, 4 is a contact layer, 5 is a clad layer, 6 is a high resistance region, 7 is an active layer, 8 is a clad layer, 9
Is an electrode, 10 is a lower multilayer reflecting mirror, and 11 is a substrate.
【0004】この構造で、上部多層膜反射鏡1だけをエ
ッチングにより微細化していくと、図4に示すようにエ
ッチングしない上部多層膜反射鏡1の層数を6,3,0
対と減少させても横方向の光閉じ込めは劣化し、その結
果図5に示すように残り層数0対の時でもサイズ5μm
以下では閾値利得が急激に上昇してしまうという問題が
ある。なお図5においては、電極3に金を用いた場合
に、金の吸収損失大の影響で、閾値利得が上がることを
示している。In this structure, when only the upper multilayer film reflecting mirror 1 is miniaturized by etching, the number of layers of the upper multilayer film reflecting mirror 1 not etched is 6, 3, 0 as shown in FIG.
Even if the number of pairs is decreased, the lateral optical confinement deteriorates. As a result, as shown in FIG. 5, even when the number of remaining layers is 0, the size is 5 μm.
In the following, there is a problem that the threshold gain rapidly increases. Note that FIG. 5 shows that when gold is used for the electrode 3, the threshold gain increases due to the large absorption loss of gold.
【0005】上記特許出願明細書では、上部多層膜反射
鏡1のみならずメサガイド層2にまでエッチングを深め
ることによって光を閉じ込める効果を大きくすることを
提案しているが、その深さ制御は困難で、高抵抗領域6
の形成に用いているイオン注入の深さ制御や、イオン通
過後の電流注入域の高抵抗化等の問題もある。The above-mentioned patent application proposes to increase the effect of confining light by deepening the etching not only in the upper multilayer film reflecting mirror 1 but also in the mesa guide layer 2, but it is difficult to control the depth. In the high resistance region 6
There are also problems such as the control of the depth of the ion implantation used to form the ions and the increase in the resistance of the current injection region after passing the ions.
【0006】[0006]
【発明が解決しようとする課題】以上のように、現状の
面発光レーザでは、光の閉じ込めは面に垂直な方向で強
く、面に水平な方向では弱くなっている。これでは、素
子を波長程度まで微細化したとき、横方向への光の漏れ
が大きくなり、発振閾値の上昇や発光効率の上昇が生じ
る。As described above, in the current surface emitting laser, the light confinement is strong in the direction vertical to the surface and weak in the direction horizontal to the surface. In this case, when the device is miniaturized to a wavelength, the leakage of light in the lateral direction becomes large, and the oscillation threshold value and the luminous efficiency increase.
【0007】本発明の目的は、上記の理由で不可能であ
った5μm以下の微小サイズの面発光レーザにおいても
充分な光閉じ込めを達成し、また高精度の制御を必要と
するイオン注入工程を使用しないで、微小なサイズの素
子に充分な電流狭窄を施すことにある。The object of the present invention is to achieve an ion implantation process which achieves sufficient optical confinement even in a surface emitting laser having a minute size of 5 μm or less, which is impossible for the above reasons, and which requires highly accurate control. The purpose is to provide sufficient current confinement to a minute size element without using it.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、GaAsからなる基板と、GaAsから
なる基板の上面に設けn−AlAs層とn−GaAs層
を交互に積層した下部多層膜反射鏡と、下部多層膜反射
鏡の上面中央部に錐状に積層したn−Al 0.4 Ga 0.6
As層、In 0.2 Ga 0.8 As層、及び、p−Al 0.4
Ga 0.6 As層と、下部多層膜反射鏡の上面中央部以外
の上面に設けた第1電極及びi−GaAs層からなる高
抵抗領域と、高抵抗領域及び錐状に積層したn−Al
0.4 Ga 0.6 As層、In 0.2 Ga 0.8 As層、及び、
p−Al 0.4 Ga 0.6 As層の上面に設けp−AlAs
層とp−GaAs層を交互に積層した上部多層膜反射鏡
と、上部多層膜反射鏡の上面に設けたp−GaAs層か
らなる位相補正層と、位相補正層の上面に設けた第2電
極とから構成したものである。 また、上記目的を達成す
るために、本発明は、GaAsからなる基板と、GaA
sからなる基板の上面に設けn−AlAs層とn−Ga
As層を交互に積層した下部多層膜反射鏡と、下部多層
膜反射鏡の上面両端部に設けた第1電極と、下部多層膜
反射鏡の上面両端部を除いた部分に設け中央部分を厚く
し端部を薄くしたn−Al 0.4 Ga 0.6 As層からなる
下部クラッド層と、下部クラッド層の上面に設けたIn
0.2 Ga 0.8 As層からなる活性層と、活性層の上面に
設けたp−Al 0.4 Ga 0.6 As層からなる上部クラッ
ド層と、下部クラッド層、活性層、及び、上部クラッド
層の端部に設けたi−GaAs層からなる高抵抗領域
と、上部クラッド層の上面に設けp−AlAs層とp−
GaAs層を交互に積層した上部多層膜反射鏡と、上部
多層膜反射鏡の上面に設けた第2電極とから構成したも
のである。 [Means for Solving the Problems] To achieve the above object
In the present invention, the GaAs substrate and the GaAs substrate
N-AlAs layer and n-GaAs layer provided on the upper surface of the substrate
Lower multi-layered reflective mirror with alternating layers and lower multi-layered reflective
N-Al 0.4 Ga 0.6 laminated in a pyramid shape at the center of the upper surface of the mirror
As layer, In 0.2 Ga 0.8 As layer, and p-Al 0.4
Other than the Ga 0.6 As layer and the central part of the upper surface of the lower multilayer mirror
Of the first electrode and i-GaAs layer provided on the upper surface of the
N-Al layered in a resistance region, a high resistance region and a cone shape
0.4 Ga 0.6 As layer, In 0.2 Ga 0.8 As layer, and
Provided on the upper surface of p-Al 0.4 Ga 0.6 As layer p-AlAs
Upper multilayer reflector with alternating layers and p-GaAs layers
And the p-GaAs layer provided on the upper surface of the upper multilayer mirror.
Composed of a phase correction layer, and a second electrode provided on the top surface of the phase correction layer.
It is composed of poles. It also achieves the above objectives.
Therefore, the present invention provides a substrate made of GaAs and GaA.
provided on the upper surface of the substrate made of s and an n-AlAs layer and an n-Ga layer.
Lower multilayer mirror with alternating As layers and lower multilayer
First electrodes provided on both ends of the upper surface of the film reflecting mirror, and a lower multilayer film
It is provided on the upper part of the reflecting mirror except for both ends, and the central part is thickened.
It consists of n-Al 0.4 Ga 0.6 As layer with thin end
The lower clad layer and the In provided on the upper surface of the lower clad layer
The active layer consisting of 0.2 Ga 0.8 As layer and the upper surface of the active layer
The upper crack made of the p-Al 0.4 Ga 0.6 As layer provided.
Layer, lower clad layer, active layer, and upper clad
High resistance region composed of i-GaAs layer provided at the end of the layer
And a p-AlAs layer and a p-AlAs layer provided on the upper surface of the upper clad layer.
The upper multilayer mirror with alternating GaAs layers and the upper part
It is composed of a second electrode provided on the upper surface of the multilayer film reflecting mirror.
It is.
【0009】[0009]
【実施例】実施例1 図1は本発明を適用した立体共振器型面発光レーザの第
1の実施例の断面図である。この立体共振器型面発光レ
ーザは、基板11上に、n型の多層膜反射鏡10と、n
型のクラッド層8と、活性層7と、p型のクラッド層5
と、p型の多層膜反射鏡1とが順に形成され、多層膜反
射鏡1は垂直方向のみならず斜め方向にも形成されてい
る。EXAMPLE 1 FIG. 1 is a sectional view of a first example of a three-dimensional cavity surface emitting laser to which the present invention is applied. This three-dimensional cavity surface-emitting laser has an n-type multilayer film reflecting mirror 10 and an n-type multilayer film reflecting mirror 10 on a substrate 11.
-Type clad layer 8, active layer 7, and p-type clad layer 5
And the p-type multilayer film reflective mirror 1 are sequentially formed, and the multilayer film reflective mirror 1 is formed not only in the vertical direction but also in an oblique direction.
【0010】この立体共振器型面発光レーザの構造を、
その製造方法と共にさらに詳細に説明する。The structure of this three-dimensional cavity surface emitting laser is
The manufacturing method will be described in more detail.
【0011】まず、セミインシュレータのGaAsから
なる基板11の上に、下部多層膜反射鏡(n−AlAs
/n−GaAs,ドーピング濃度2×1018cm-3)1
0,下部クラッド層(n−Al0.4 Ga0.6 As,ドー
ピング濃度2×1018cm-3)8,活性層(ノンドープ
In0.2 Ga0.8 As)7,上部クラッド層(p−Al
0.4 Ga0.6 As,ドーピング濃度3×1018cm-3)
5を、分子線ビームエピタキシー(MBE)法により形
成する。First, on a substrate 11 made of GaAs which is a semi-insulator, a lower multilayer film reflecting mirror (n-AlAs) is formed.
/ N-GaAs, doping concentration 2 × 10 18 cm −3 ) 1
0, lower clad layer (n-Al 0.4 Ga 0.6 As, doping concentration 2 × 10 18 cm −3 ) 8, active layer (non-doped In 0.2 Ga 0.8 As) 7, upper clad layer (p-Al)
0.4 Ga 0.6 As, doping concentration 3 × 10 18 cm −3 )
5 is formed by a molecular beam epitaxy (MBE) method.
【0012】次に、下部多層膜反射鏡10の上面までウ
エットエッチングによって錐状にエッチングする。Next, the upper surface of the lower multilayer-film reflective mirror 10 is conically etched by wet etching.
【0013】この上に再度MBE法により高抵抗領域
(ノンドープ,GaAs)6および上部多層膜反射鏡
(p−AlAs/p−GaAs,ドーピング濃度3×1
018cm-3)1を成長するが、最初の高抵抗領域6のみ
成長温度725〜750℃の高温で成長することにより
斜面上には堆積しないような成長条件にしておく。その
後の多層膜反射鏡1は再び700℃以下の温度で斜面上
にも成長する条件とし、0.42λ厚の位相補正層12
まで成長する。Then, the high resistance region (non-doped, GaAs) 6 and the upper multilayer film reflecting mirror (p-AlAs / p-GaAs, doping concentration 3 × 1) are again formed by the MBE method.
0 18 cm −3 ) 1 is grown, but growth conditions are set so that only the first high resistance region 6 grows at a high growth temperature of 725 to 750 ° C. so that it is not deposited on the slope. After that, the multilayer film reflecting mirror 1 is again grown under the condition that the temperature is 700 ° C. or lower and grows on the slope, and the phase correction layer 12 having a thickness of 0.42λ is used.
Grow up to.
【0014】さらに発光部を含む数10μmの領域を残
して下部多層膜反射鏡10までエッチングにより除去
し、メサ上には金メッキにより反射補強とヒートシンク
を兼ねたp側電極3を作成し、メサ外部の下部多層膜反
射鏡10上にはn側電極9を作成する。Further, the lower multilayer reflecting mirror 10 is removed by etching, leaving a region of several tens of μm including a light emitting portion, and a p-side electrode 3 serving as a reflection reinforcement and a heat sink is formed on the mesa by gold plating to form the outside of the mesa. The n-side electrode 9 is formed on the lower multilayer reflecting mirror 10.
【0015】実施例2 図2は本発明を適用した立体共振器型面発光レーザの第
2の実施例の断面図である。図1と同一の要素には、同
一の参照番号を付して示してある。Embodiment 2 FIG. 2 is a sectional view of a second embodiment of a three-dimensional cavity surface emitting laser to which the present invention is applied. The same elements as in FIG. 1 are shown with the same reference numerals.
【0016】本実施例の立体共振器型面発光レーザは、
次のようにして製造される。The three-dimensional cavity surface emitting laser of this embodiment is
It is manufactured as follows.
【0017】まず、基板11上に、下部多層膜反射鏡1
0および100nm程度の下部クラッド層8を作成し、
その後、発光部となる部分のみをマスクして他の部分の
下部クラッド層8をエッチングにより除去する。First, on the substrate 11, the lower multilayer film reflecting mirror 1
The lower clad layer 8 having a thickness of 0 and 100 nm is formed,
After that, only the portion to be the light emitting portion is masked and the lower cladding layer 8 in the other portion is removed by etching.
【0018】マスクを除去して全体に残りの下部クラッ
ド層8,活性層7,上部クラッド層5,上部多層膜反射
鏡1を成長する。The mask is removed and the remaining lower clad layer 8, active layer 7, upper clad layer 5, and upper multilayer film reflecting mirror 1 are grown on the entire surface.
【0019】発光部のみ残して活性層7の周囲にイオン
注入を行い、高抵抗領域6を作成する。Ions are implanted around the active layer 7 except for the light emitting portion to form the high resistance region 6.
【0020】さらに発光部を含む数10μmの領域を残
して下部多層膜反射鏡10までエッチングにより除去
し、メサ上には金メッキにより反射補強とヒートシンク
を兼ねたp側電極3を作成し、メサ外部の下部多層膜反
射鏡上にはn側電極9を作成する。Further, the lower multilayer film reflecting mirror 10 is removed by etching, leaving a region of several tens of μm including the light emitting portion, and a p-side electrode 3 also serving as a reflection reinforcement and a heat sink is formed on the mesa by gold plating to form the outside of the mesa. The n-side electrode 9 is formed on the lower multilayer-film reflective mirror.
【0021】以上説明した2つの実施例において、活性
層7のサイズを1μmまで微細化すると、10μA以下
に発振閾値を低減できる。In the two embodiments described above, if the size of the active layer 7 is reduced to 1 μm, the oscillation threshold can be reduced to 10 μA or less.
【0022】また以上の実施例では、GaAs系の材料
を用いたが、本発明はInP系等の他の材料についても
適用できる。In the above embodiments, the GaAs type material is used, but the present invention can be applied to other materials such as InP type.
【0023】[0023]
【発明の効果】従来のエッチングのみによるメサ作成で
は、上部多層膜反射鏡を深く除去しなくてはならなかっ
たため、その微小化は数μm程度が実用上の限界であ
る。ところが本発明の構造では、中間層のみをエッチン
グするため、光の波長程度にまで微小化できる。In the conventional mesa formation only by etching, it is necessary to deeply remove the upper multilayer-film reflective mirror, so that the miniaturization is practically limited to about several μm. However, in the structure of the present invention, since only the intermediate layer is etched, the size can be reduced to about the wavelength of light.
【0024】また、電流ブロックのための高抵抗層をセ
ルフアラインで作成できるため、作成工程が単純化でき
る。Since the high resistance layer for the current block can be formed by self-alignment, the forming process can be simplified.
【0025】さらに、錐状の中間層上部への多層膜反射
鏡成長により、凸面状の多層膜反射鏡が形成され、光の
横方向への閉じ込めが大きくできるため、発振閾値の低
減や発光効率の向上が図れる。Furthermore, by growing the multilayer film reflecting mirror on the upper part of the conical intermediate layer, a convex multilayer film reflecting mirror is formed, and the confinement of light in the lateral direction can be increased, so that the oscillation threshold is reduced and the luminous efficiency is improved. Can be improved.
【図1】本発明の第1の実施例を説明するための立体共
振器型面発光レーザの断面概略図である。FIG. 1 is a schematic sectional view of a three-dimensional cavity surface emitting laser for explaining a first embodiment of the present invention.
【図2】本発明の第2の実施例を説明するための立体共
振器型面発光レーザの断面概略図である。FIG. 2 is a schematic sectional view of a three-dimensional cavity surface emitting laser for explaining a second embodiment of the present invention.
【図3】従来例を説明するための垂直共振器型面発光レ
ーザの断面概略図である。FIG. 3 is a schematic cross-sectional view of a vertical cavity surface emitting laser for explaining a conventional example.
【図4】従来例の垂直共振器型面発光レーザの横サイズ
と横光閉じ込め係数との関係を示すグラフである。FIG. 4 is a graph showing a relationship between a lateral size and a lateral light confinement coefficient of a vertical cavity surface emitting laser of a conventional example.
【図5】従来例の垂直共振器型面発光レーザの横サイズ
と発振閾値利得との関係を示すグラフである。FIG. 5 is a graph showing a relationship between a lateral size and an oscillation threshold gain of a vertical cavity surface emitting laser of a conventional example.
1 上部多層膜反射鏡 2 メサガイド層 3 電極 4 コンタクト層 5 クラッド層 6 高抵抗領域 7 活性層 8 クラッド層 9 電極 10 下部多層膜反射鏡 11 基板 12 位相補正層 1 Upper Multilayer Reflector 2 Mesa Guide Layer 3 Electrode 4 Contact Layer 5 Cladding Layer 6 High Resistance Region 7 Active Layer 8 Cladding Layer 9 Electrode 10 Lower Multilayer Reflector 11 Substrate 12 Phase Correction Layer
Claims (2)
る基板の上面に設けn−AlAs層とn−GaAs層を
交互に積層した下部多層膜反射鏡と、下部多層膜反射鏡
の上面中央部に錐状に積層したn−Al0.4 Ga0.6 A
s層、In0.2 Ga0.8 As層、及び、p−Al0.4 G
a0.6 As層と、下部多層膜反射鏡の上面中央部以外の
上面に設けた第1電極及びi−GaAs層からなる高抵
抗領域と、高抵抗領域及び錐状に積層したn−Al0.4
Ga0.6 As層、In0.2 Ga0.8 As層、及び、p−
Al0.4 Ga0.6 As層の上面に設けp−AlAs層と
p−GaAs層を交互に積層した上部多層膜反射鏡と、
上部多層膜反射鏡の上面に設けたp−GaAs層からな
る位相補正層と、位相補正層の上面に設けた第2電極と
からなることを特徴とする立体共振器型面発光レーザ。1. A substrate made of GaAs, a lower multi-layered film reflecting mirror in which n-AlAs layers and n-GaAs layers are alternately laminated on the upper surface of the substrate made of GaAs, and a central part of the upper surface of the lower multi-layered film reflecting mirror. N-Al 0.4 Ga 0.6 A stacked in a cone shape
s layer, In 0.2 Ga 0.8 As layer, and p-Al 0.4 G
a 0.6 As layer, a high resistance region composed of the first electrode and the i-GaAs layer provided on the upper surface other than the central portion of the upper surface of the lower multilayer-film reflective mirror, and the high resistance region and n-Al 0.4 stacked in a pyramid shape.
Ga 0.6 As layer, In 0.2 Ga 0.8 As layer, and p−
An upper multi-layered film reflecting mirror, which is provided on the upper surface of the Al 0.4 Ga 0.6 As layer and in which p-AlAs layers and p-GaAs layers are alternately laminated,
A three-dimensional cavity surface emitting laser comprising a phase correction layer made of a p-GaAs layer provided on the upper surface of the upper multilayer mirror and a second electrode provided on the upper surface of the phase correction layer.
る基板の上面に設けn−AlAs層とn−GaAs層を
交互に積層した下部多層膜反射鏡と、下部多層膜反射鏡
の上面両端部に設けた第1電極と、下部多層膜反射鏡の
上面両端部を除いた部分に設け中央部分を厚くし端部を
薄くしたn−Al0.4 Ga0.6 As層からなる下部クラ
ッド層と、下部クラッド層の上面に設けたIn0.2 Ga
0.8 As層からなる活性層と、活性層の上面に設けたp
−Al0.4 Ga0.6 As層からなる上部クラッド層と、
下部クラッド層、活性層、及び、上部クラッド層の端部
に設けたi−GaAs層からなる高抵抗領域と、上部ク
ラッド層の上面に設けp−AlAs層とp−GaAs層
を交互に積層した上部多層膜反射鏡と、上部多層膜反射
鏡の上面に設けた第2電極とからなることを特徴とする
立体共振器型面発光レーザ。2. A substrate made of GaAs, a lower multi-layered film reflecting mirror in which n-AlAs layers and n-GaAs layers are alternately laminated on the upper surface of the substrate made of GaAs, and both ends of the upper surface of the lower multi-layered film reflecting mirror. A first clad layer, a lower clad layer composed of an n-Al 0.4 Ga 0.6 As layer having a thicker central part and a thinner end part, excluding both ends of the upper surface of the lower multilayer mirror, and a lower clad layer On the upper surface of In 0.2 Ga
Active layer consisting of 0.8 As layer and p provided on the upper surface of the active layer
And an upper clad layer made -Al 0.4 Ga 0.6 As layer,
A high resistance region composed of a lower clad layer, an active layer, and an i-GaAs layer provided at an end of the upper clad layer, and a p-AlAs layer and a p-GaAs layer provided alternately on the upper surface of the upper clad layer were alternately laminated. A three-dimensional cavity surface emitting laser comprising an upper multilayer-film reflective mirror and a second electrode provided on the upper surface of the upper multilayer-film reflective mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5165378A JP2546150B2 (en) | 1993-07-05 | 1993-07-05 | Three-dimensional cavity surface emitting laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5165378A JP2546150B2 (en) | 1993-07-05 | 1993-07-05 | Three-dimensional cavity surface emitting laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0722699A JPH0722699A (en) | 1995-01-24 |
JP2546150B2 true JP2546150B2 (en) | 1996-10-23 |
Family
ID=15811243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5165378A Expired - Fee Related JP2546150B2 (en) | 1993-07-05 | 1993-07-05 | Three-dimensional cavity surface emitting laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2546150B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227861A (en) * | 2006-02-27 | 2007-09-06 | Sony Corp | Semiconductor light-emitting device |
JP5263290B2 (en) | 2008-06-27 | 2013-08-14 | 株式会社日立プラントテクノロジー | Bacteria collection carrier cartridge, carrier treatment apparatus, and bacteria measurement method |
KR101776245B1 (en) | 2014-11-20 | 2017-09-11 | 울산과학기술원 | Particle filtration device and method of particle filtration |
CN106099641A (en) * | 2016-07-08 | 2016-11-09 | 燕山大学 | A kind of preparation method of semiconductor laser |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01308091A (en) * | 1988-06-07 | 1989-12-12 | Canon Inc | Surface emission type semiconductor laser device |
-
1993
- 1993-07-05 JP JP5165378A patent/JP2546150B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0722699A (en) | 1995-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6222866B1 (en) | Surface emitting semiconductor laser, its producing method and surface emitting semiconductor laser array | |
US5637511A (en) | Vertical-to-surface transmission electro-photonic device and method for fabricating the same | |
JP4184769B2 (en) | Surface emitting semiconductor laser and manufacturing method thereof | |
JPH09107153A (en) | Short-wave vcsel having active region with no aluminum | |
JPH06314854A (en) | Surface light emitting element and its manufacture | |
JP2000196189A (en) | Surface-emission semiconductor laser | |
JP3219823B2 (en) | Semiconductor light emitting device | |
US6846685B2 (en) | Vertical-cavity surface-emitting semiconductor laser | |
JP2000307189A (en) | Surface emission laser array | |
JPS5940592A (en) | Semiconductor laser element | |
JPH04144183A (en) | Surface light emitting type semiconductor laser | |
US6195373B1 (en) | Index optical waveguide semiconductor laser | |
JP2546150B2 (en) | Three-dimensional cavity surface emitting laser | |
JPS63188983A (en) | Semiconductor light emitting device | |
JP2875929B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3470282B2 (en) | Surface emitting semiconductor laser and manufacturing method thereof | |
JP2565909B2 (en) | Semiconductor laser device | |
JPH0156547B2 (en) | ||
JP3132445B2 (en) | Long wavelength band surface emitting semiconductor laser and method of manufacturing the same | |
JPH05145170A (en) | Plane emission laser | |
JP2000294877A (en) | High output semiconductor laser and manufacture of the same | |
JP2546153B2 (en) | Surface emitting device and manufacturing method thereof | |
JP3612900B2 (en) | Surface emitting semiconductor laser and manufacturing method thereof | |
JPH01108789A (en) | Surface emission semiconductor laser element | |
JP2001257424A (en) | Vertical resonator surface light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |