JP3677812B2 - Silicon nitride sintered body and method for producing the same - Google Patents
Silicon nitride sintered body and method for producing the same Download PDFInfo
- Publication number
- JP3677812B2 JP3677812B2 JP11594995A JP11594995A JP3677812B2 JP 3677812 B2 JP3677812 B2 JP 3677812B2 JP 11594995 A JP11594995 A JP 11594995A JP 11594995 A JP11594995 A JP 11594995A JP 3677812 B2 JP3677812 B2 JP 3677812B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- powder
- silicon nitride
- nitride sintered
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Ceramic Products (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、反応焼結により製造される窒化ケイ素(Si3N4)焼結体、及びその製造方法に関する。
【0002】
【従来の技術】
窒化ケイ素焼結体の製造方法の一つに、シリコン(Si)粉末の成形体を窒素雰囲気中で窒化すると同時に焼結する反応焼結法がある。しかし、純粋なSi粉末からなる成形体を窒素と反応させて窒化ケイ素焼結体を得るには、例えばJ.Mater.Sci.22(1987)P.3041〜3086、特にそのP.3074〜3075に記載されるように、100時間以上にもおよぶ長時間の窒化時間を必要とするため、生産性に劣るという大きな欠点があった。これは、図1に示すように、Si粉末の表面に生成しているアモルファスSiO2層10が窒素のSi層3への拡散を阻害しているためと考えられる。
【0003】
これに対して、特公昭61−38149号公報、特開平5−330921号公報、特許出願公表平5−508612号公報には、Si粉末にNi、Co、Ti、Zr等の窒化促進剤を添加して、窒化を速める方法が提案されている。これらの方法によれば、Si粉末表面のアモルファスSiO2層が窒化促進剤と反応して液相化し、窒素の拡散速度が大きくなるため、窒化が促進されるものと考えられる。特に特開平5−330921号公報によれば、窒化時間を約8時間にまで短縮できるとしている。窒化が促進される理由は、Si粉末表面のアモルファスSiO2層と窒化剤が反応し、図10に示すように、表面のアモルファスSiO2層が液相5となるため、窒素のSi層3への拡散速度が大きくなるためと考えられる。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの窒化促進剤を用いる方法においても、図11に示すように、Si粉末表面の液相5の内側に生成したSi3N4層6内での窒素の拡散係数は小さく、更に内側への窒素の拡散とSi3N4の生成が阻害されるため、これ以上の窒化時間の短縮は達成できない。又、特開平5−330921号公報に記載のごとく、1200〜1450℃の高温において50℃刻みで何段階にも窒化処理を行う複雑な温度制御を必要とするなど、生産性において優れているとはいえなかった。
【0005】
更に、これらの窒化促進剤を用いる反応焼結法で得られたSi3N4焼結体は、気孔率が4〜11体積%と緻密化しておらず、3点曲げ強度も460MPaと低強度であるため、構造用材料として使用するには不適切であった。又、添加された窒化促進剤はSi3N4結晶粒子を粗大化させ、これが破壊の起点となる可能性もあるため、必ずしも好ましい方法とは言えなかった。
【0006】
本発明は、かかる従来の事情に鑑み、窒化ケイ素焼結体の反応焼結における窒化時間の短縮を図り、生産性を向上させると共に、反応焼結により得られる緻密で高強度の窒化ケイ素焼結体を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する窒化ケイ素焼結体は、Si粉末の反応焼結により得られた不対電子濃度が10 15 /cm 3 〜10 21 /cm 3 の窒化ケイ素焼結体であって、価数+1〜+3価の元素で、その共有結合半径RMとSiの共有結合半径RSiとが0.5≦(RM−RSi)/RSi<0.8の関係にある元素を含むことを特徴とする。
【0008】
本発明の窒化ケイ素焼結体を製造するためには、不対電子濃度が1015/cm3〜1020/cm3のSi粉末を用いて反応焼結する。不対電子濃度がこの範囲にあるSi粉末は、本発明方法においては、市販のSi粉末をpH4〜11の水で洗浄した後、窒素以外の雰囲気中において300〜800℃の温度で3〜5時間焼鈍する方法等により得られる。
【0009】
更に具体的には、本発明の窒化ケイ素焼結体の製造方法では、前記方法により得られた不対電子濃度のSi粉末に、価数+1〜+3価の元素で、その共有結合半径RMとSiの共有結合半径RSiとが0.5≦(RM−RSi)/RSi<0.8の関係にある元素を含む少なくとも1種の化合物粉末を混合し、 成形して、反応焼結する。
【0010】
Si粉末に添加混合する化合物粉末に含まれる元素は希土類元素又は周期律表の2A族元素が好ましく、更に希土類元素の中ではLa、Sm、又はYbが、及び2A族元素の中ではCa又はSrが好ましい。又、混合する化合物粉末の形態としては酸化物、窒化物、又は酸窒化物とするのが好ましく、その混合量は当該化合物に含まれる前記希土類又は2A族元素に換算して1〜10モル%とするのが好ましい。
【0011】
【作用】
従来の窒化珪素の反応焼結において、窒化処理が長時間化するのは、前述のようにSi粉末表面に形成されているアモルファスSiO2層と、窒化によりSi粉末表面近くに生成したSi3N4層の、2つの窒素拡散阻害要因が存在するからである。
【0012】
本発明では、上記2つの窒素拡散阻害要因を克服するため、主に2つの特徴ある工程を取り入れることにより、窒素の拡散速度を向上させ、窒化時間を大幅に短縮化することに成功した。この2つの特徴ある工程とは、後述するように、原料粉末として使用するSi粉末にシリコン空孔を導入する工程と、Si3N4層内で窒素空孔を生成させる工程である。
【0013】
市販のSi粉末は、図1に示すように3層構造になっていると考えられる。即ち、表面層はSiが自然酸化されることで生成したアモルファスSiO2層10、その内側にあるSiに酸素が固溶したSi(O)層20、そして最も内側のSi層3である。表面のアモルファスSiO2層10は前記のごとく窒素の内部への拡散を抑制し、中間層であるSi(O)層20では固溶した酸素は格子間に存在しており、格子間酸素はSiの格子定数を増加させる。
【0014】
従って、本発明では、Si(O)層20の格子定数の増加を抑制するため、シリコン空孔を生成させるのである。具体的には、市販のSi粉末に適切な熱処理等を行い、図2に示すように、表面のアモルファスSiO2層11の酸素を内部へ拡散させ、アモルファスSiO2層11の厚さを低減すると共にシリコン空孔が多数存在するSi(O)層21を増加させる。このシリコン空孔はSi中に固溶した元素の拡散速度を増加させると考えられる。
【0015】
次に、窒化により生成したSi3N4内での窒素の拡散速度を大きくするため、Si3N4格子内に生成させる窒素空孔について説明する。Si3N4格子はSiの+4価とNの−3価が電気的中性を保つように構成されている。そのSi3N4格子内に+1〜+3価の元素が固溶するとプラスの電荷を持った元素はSiの格子点を占有し、且つ電気的中性を保つため窒素の空孔が生成する。
【0016】
例えば、+3価のMイオンがxだけSi3N4結晶中に固溶した場合、以下の反応式で示すことができる:
【数1】
Si3N4+xM→Si(3-x)N(4-x/3)MxVN(x/3)
ここで、VNは窒素空孔を表す。
【0017】
このような窒素空孔を多数持つSi3N4は、空孔を介しての窒素の拡散が促進されるため、Si3N4層の内側のSi層への窒素の供給量が多くなる、即ち窒化速度が劇的に増大するものと考えられる。しかしながら、+4価以上のイオンが固溶した場合はプラスの電荷が過剰となるため、窒素空孔ではなくシリコン空孔が生成され、窒化速度が劇的に増大することはなくなる。
【0018】
本発明では、窒化により生成したSi3N4に+1〜+3価の元素を固溶させるため、先に述べたSi(O)層2を利用する。即ち、Si(O)層2に多数存在するシリコン空孔に上記元素を固溶させるのである。かかる元素Mをzだけシリコン空孔に固溶させたときの反応式は以下の通りである:
【数2】
Si(O)(1-y)Vsi(y)+zM→Si(O)(1-y)MzVsi(y-z)
ここでVsiはシリコン空孔を表す。
【0019】
従って、本発明のこの状態におけるSi粉末は、図3に示すように、主にSi(O)(1-y)MzVsi(y-z)層(以下SiM層と略記する)22と、内部のSi層3とからなる。更に拡散が進行すると、SiM層22からSi層3にMがuだけ拡散され、Si(1-u)Mu層が生成される。この時、元素Mの共有結合半径がSiのそれよりも大きいと、図4に示すように、Siの格子定数が大きくなるのを抑制するためシリコン空孔の生成が促進され、Si(1-u-w)MuVsiw層(以下SiMV層と略記する)4が形成される。
【0020】
そして、この粉末のSiM層22とSiMV層4は、窒化処理によってそれぞれ下記の反応式のごとく反応する:
【数3】
3Si(1-y)(O)MzVsi(y-z)+2N2→Si3(1-y)(O)N(4-3y+9z/4)M3zVsi3(y-z)VN(4y-3z)
【数4】
3Si(1-u-w)MuVsiw+2N2→Si3(1-u-w)N(4-u-4w)M3uVsi3wVN(u+4w)
ここでVNは窒素空孔を表す。尚、Mは+3価とした。
【0021】
上記の反応式から分かるように、いずれのSi3N4においても窒素空孔が生成しており、価数+1〜+3を持ち得る元素を窒素空孔生成剤として使用することにより、Si3N4層内での窒素の拡散速度が大きくなることが期待できる。
【0022】
以上の説明から分かるように、特公昭61−38149号公報、特開平5−330921号公報、特許出願公表平5−508612号公報に記載されている、Si粉末に単に窒化促進剤を添加する従来の方法では、Si(O)層が薄いために窒化促進剤の固溶量が少なく、Si粉末内にSiM層並びにSiMV層が生成しない。その結果、窒化により生成したSi3N4内で窒素空孔が生成しないので、窒素の拡散速度が小さく、窒化時間が長期化するのである。
【0023】
一方、市販のSi粉末の表面には、フッ素(F)、炭素(C)、硫黄(S)等のSiよりも共有結合半径の小さい成分が存在する。これらの成分は共有結合半径が小さいため、前記した市販Si粉末の焼鈍過程によってSi粉末のSi結晶中に固溶し、その結果格子間Siを生成させ、Si以外の共存元素(添加物や不純物)の拡散を抑えるという窒化にはマイナス効果となる現象が生じやすい。
【0024】
即ち、Si結晶格子中に例えばF原子が入ると、Si結晶格子は図5に示すように収縮して歪む。この歪を緩和するために、図6に示すように格子間Siを生成させるのである。この格子間Siは、他の元素の固溶や拡散を防止する働きがあり、特に大きな共有結合半径を有する元素に対してその傾向が強い。
【0025】
従って、例えばF、C、S等のSiよりも共有結合半径の小さい元素成分を除去しないままSi粉末を焼鈍した場合には、窒素空孔生成剤として添加する前記した価数+1〜+3の元素の共有結合半径RMは、Siの共有結合半径RSiとの間に(RM−RSi)/RSi<0.5の関係を有することが必要となる。
【0026】
このため本発明方法では、前記したSi粉末の焼鈍に先立ち、Si粉末をpH4〜11の水で洗浄することにより、Si粉末表面に存在するF、C、S等のSiよりも共有結合半径の小さい元素成分を予め除去する工程を備えている。その結果、本発明では、窒素空孔生成剤として添加する元素として、0.5≦(RM−RSi)/RSi<0.8の関係を満足する共有結合半径RMの大きな元素を活用できるという特徴がある。
【0027】
次に、本発明の反応焼結によるSi3N4焼結体の製造を具体的に説明する。まず、市販のSi粉末をpH4〜11の水で洗浄する。ここで水のpHを4〜11としたのは、pHがこの範囲外ではSi粉末表面の酸化物層の厚みが大きくなり、いずれの場合も不対電子濃度が1020/cm3より大きくなってしまうからである。
【0028】
次に、上記の洗浄したSi粉末を、300〜800℃で3〜5時間焼鈍する。これによって、粉末表面に生成しているアモルファスSiO2層の酸素をSi中に拡散させ、Si空孔が多数存在するSi(O)層を形成させる。ただし、処理雰囲気は酸素、水素、アルゴン、10Torr以下の真空など、窒素雰囲気以外でなければならない。窒素雰囲気で処理すると、Si粉末表面にSi3N4膜が形成され、窒素空孔生成剤が固溶し難くなるためである。
【0029】
尚、窒素空孔Si(O)層の形成方法は上記の焼鈍だけでなく、他にもSi粉末に酸素イオンをイオン注入する方法、バルクSiを作製する際に酸素を強制的に混入させる方法等を用いることもできる。
【0030】
かくして得られたSi粉末中のSi(O)層中のSi空孔量の定量的な計測は、Si(O)層内のSi空孔内にトラップされた不対電子数として、電子スピン共鳴法(ESR法)を用いて測定することができる。その結果、市販のSi粉末の不対電子濃度が1012〜1013/cm3であるのに対し、上記方法によりSi粉末の不対電子濃度を1015〜1020/cm3の範囲に制御したとき、特に窒化反応が促進されることが判明した。
【0031】
即ち、不対電子数、即ちSi空孔量が1015/cm3より少ないと、Si空孔量が不足して窒素空孔生成剤の固溶が促進されないからである。又、逆に不対電子数が1020/cm3を越えると、窒化は促進されるが、Si結晶中の酸素量が多いためSi3N4結晶中に残存した酸素あるいは空孔が強度低下の原因となり、3点曲げ強度で800MPa以下の低強度のSi3N4焼結体しか得られない。
【0032】
次に、上記方法で作製したSi(O)層を有し不対電子濃度の高いSi粉末を、1種以上の窒素空孔生成剤と共に混合し、成形する。ここで、本発明の窒素空孔生成剤とは、+1〜+3価の価数を持ち得る元素を含む化合物であり、その元素の共有結合半径RMとSiの共有結合半径RSiとが0.5≦(RM−RSi)/RSi<0.8の関係にある元素の化合物である。上記範囲の元素は窒素空孔を生成させやすい。これらの元素のうち、窒素空孔生成剤として作用すると同時に、焼結剤としても有効であるCa、Sr、La、Sm、Ybの化合物を用いることが好ましい。
【0033】
窒素空孔生成剤は粉末で添加しても良いが、特に大型のSi3N4焼結体を作製する場合にはSi粉末表面に均一に分散させるため、これら元素のアルコキシド、ステアリン酸塩、ラウリン酸塩の形で添加することもできる。窒素空孔生成剤の添加量は、各元素とも焼結体において元素換算で1〜10モル%の範囲に制御することが好ましい。即ち、窒素空孔生成剤が1モル%未満では、Si或はSi3N4中に固溶する量が少ないため窒素空孔生成剤としての効果を果さず、10モル%を越えると粒界に析出して破壊の起点となるため、3点曲げ強度で800MPa以上の高強度の焼結体を得ることができないからである。
【0034】
最後に、上記成形体を窒化及び焼結する。窒化及び焼結の温度パターンは、例えば1100〜1400℃で2〜4時間保持した後、1500〜1900℃で1〜3時間保持するという、極めて簡単な制御で良い。この処理により、相対密度が96%以上のSi3N4焼結体を得ることができる。特に、得られたSi3N4焼結体の不対電子濃度が1015〜1021/cm3の範囲にある場合、3点曲げ強度で800MPa以上の高い強度が達成される。
【0035】
このSi3N4焼結体中の不対電子はSi3N4に含まれる酸素に起因するものと考えられ、Siに熱処理を加えることで酸素を固溶させた本発明のSi3N4では1015/cm3以上1021/cm3以下となる。一方、Siに熱処理を加えず焼結体を作製した場合には、酸素固溶量が少ないために、不対電子が1015/cm3未満のSi3N4焼結体しか得ることができない。
【0036】
【実施例】
実施例1
出発原料として2種類のSi粉末(A)と(B)を用意した。これらのSi粉末の不対電子濃度はSi粉末(A)が7×1012/cm3、Si粉末(B)が2×1013/cm3であった。これらの市販のSi粉末(A)及び(B)をpH1〜14の水で洗浄し、乾燥した後、不対電子濃度をそれぞれ測定した結果を図7に示した。
【0037】
図7から明らかなように、pHが1〜3及び12〜14の水で洗浄したSi粉末は不対電子濃度が1020/cm3を越え、前述のように本発明の原料粉末としては適していないことが分かる。
【0038】
実施例2
出発原料として実施例1と同じ、不対電子濃度7×1012/cm3の市販Si粉末(A)と、不対電子濃度2×1013/cm3の市販Si粉末(B)とを使用し、Si粉末(A)はpH7及びSi粉末(B)はpH8の水中で洗浄し、それぞれSi粉末(A1)及び(B1)を得た。次いで、これらの粉末の加熱処理条件と不対電子濃度との関係を調べた。
【0039】
即ち、上記Si粉末(A1)とSi粉末(B1)を、それぞれ酸素雰囲気中(a)、水素雰囲気中(b)、アルゴン雰囲気中(c)、及び10Torrの真空中(d)において、100℃から900℃まで100℃間隔で、Si粉末(A1)についてはそれぞれ5時間及びSi粉末(B1)についてはそれぞれ2時間保持した後、ESR法により不対電子濃度を測定した。
【0040】
比較例として、同じSi粉末(A1)とSi粉末(B1)を、それぞれ窒素雰囲気中(e)及び100Torrの真空中(f)において、100℃から900℃まで100℃間隔で共にそれぞれ5時間保持した後、ESR法により不対電子濃度を測定した。
【0041】
その結果を、Si粉末(A1)については図8に、及びSi粉末(B1)については図9に示した。尚、各Si粉末(A1)及び(B1)中のF、C及びSの量は痕跡程度の50ppm以下であった。これらの結果から、市販Si粉末を前記pH4〜11の水で洗浄し、更に酸素、水素、アルゴン、10Torr以下の真空等の窒素以外の雰囲気中300〜800℃で2〜5時間熱処理することで、Si粉末の不対電子濃度を1015〜1020/cm3の範囲に制御でき、且つSiよりも共有結合半径の小さいF、C、Sの除去が可能であることが分かる。
【0042】
ちなみに、実施例1でpH4未満及びpH11を越える水で洗浄したSi粉末については、本実施例で確認した範囲の条件で熱処理を行っても、不対電子濃度を1020/cm3以下にすることはできなかった(下記参考例)。又、pH4〜11の水で洗浄したSi粉末であっても、本実施例で確認した範囲以外の例えば100℃、200℃、900℃で熱処理を行った場合は、下記実施例3の比較例の試料に示すように不対電子濃度を1015〜1020/cm3の間に制御できなかった。
【0043】
実施例3
上記実施例2の洗浄により得られたSi粉末(A1)と(B1)について、その後の熱処理条件及び熱処理後のSi原料粉末の不対電子濃度と、各Si原料粉末から得られるSi3N4焼結体の密度、強度及び不対電子濃度との相関関係を調べるため以下の試験を行った。
【0044】
上記各Si粉末(A1)又は(B1)を下記表1に示す窒素以外の各雰囲気中において300〜800℃×2〜5時間の条件で熱処理した。得られた各Si原料粉末の不対電子濃度を表1に併せて示した。比較例として、熱処理を行わないもの、及び上記条件以外の条件で熱処理したものについても、不対電子濃度を測定して表1に示した。
【0045】
【表1】
【0046】
得られた各Si原料粉末に、窒素空孔生成剤としてSm2O3粉末を8モル%添加し、更に熱可塑性樹脂バインダーを4モル%加えて混合した後、乾式プレスにより成形した。各成形体は600℃の窒素気流中において2時間脱バインダー処理を行った。尚、Smは価数+3であり、その共有結合半径RMとSiの共有結合半径RSiとの関係は(RM−RSi)/RSi=0.5である。
【0047】
次に、上記の各成形体を窒素気流中において表2に示すように1350℃で2時間の窒化処理を行った後、同じく窒素気流中にて下記表2に示す1750〜1800℃で3時間の焼結を行った。かくして得られた各Si3N4焼結体の不対電子濃度、相対密度、及び3点曲げ強度を表2に示した。
【0048】
【表2】
【0049】
上記のごとく、市販Si粉末を予めpH4〜11の水で洗浄した後、窒素以外の雰囲気中にて300〜800℃で2〜5時間保持することにより、Si粉末中の不対電子濃度を1015〜1020/cm3の範囲に制御することができ、且つこのSi原料粉末に共有結合半径RMがSiの共有結合半径RSiとの間で0.5≦(RM−RSi)/RSi<0.8の関係を満たすSmのような価数+1〜+3の元素を含む窒素空孔生成剤と混合して、反応焼結することにより、相対密度96%以上で3点曲げ強度800MPa以上のSi3N4焼結体を得ることができる。
【0050】
参考例
上記実施例1と同じ市販のSi粉末(A)をpH3の水で洗浄した。得られたSi粉末(A1)の不対電子濃度は6×1020/cm3であった。又、同じく市販のSi粉末(B)をpH12の水で洗浄し、得られたSi粉末(B1)の不対電子濃度は9×1020/cm3であった。
【0051】
上記各Si粉末(A1)及び(B1)を、実施例3の試料1と同様にアルゴン雰囲気中にて300℃で5時間熱処理した。得られた各Si原料粉末の不対電子濃度を表3に示した。この各Si原料粉末に、実施例3の試料1と同様に窒素空孔生成剤としてSm2O3を8モル%添加して混合、成形、脱バインダー処理し、更に実施例3の試料1と同様に窒素雰囲気中で1350℃×2時間の窒化処理と、同雰囲気中で1800℃×3時間の焼結を行い、それぞれSi3N4焼結体を製造した。得られた各焼結体の特性を表3に併せて示した。
【0052】
【表3】
実施例4
窒素空孔生成剤の種類がSi3N4焼結体の特性に及ぼす影響を調べるため、下記の試験を行った。
【0053】
前記実施例2で得られた洗浄後のSi粉末(A1)を、酸素雰囲気中にて500℃で2時間の熱処理を行った。得られたSi原料粉末の不対電子濃度は8×1015/cm3であった。比較のために、熱処理を行わないSi原料粉末も用意した。これらの各Si原料粉末に、下記表4に示す窒素空孔生成剤をそれぞれ添加し、実施例3と同様に混合、成形、及び脱バインダー処理を行った。
【0054】
【表4】
【0055】
上記の窒素空孔生成剤を添加し、混合た各Si原料粉末を、成形、及び脱バインダー処理を行った後、実施例3と同様に窒素気流中において下記表4に示す条件での窒化処理をと、それに続けての焼結を行った。得られた各Si3N4焼結体の不対電子濃度、相対密度、及び3点曲げ強度を表5に示した。
【0056】
【表5】
【0057】
上記のごとく、不対電子濃度が1015〜1020/cm3の範囲にあるSi原料粉末を使用し、+1〜+3価の価数を有し且つその共有結合半径RMとSiの共有結合半径RSiとが0.5≦(RM−RSi)/RSi≦0.8の関係にある元素を添加して焼結することにより、生成するSi3N4焼結体の不対電子濃度を1015〜1021/cm3の範囲に制御でき、緻密且つ高強度のSi3N4焼結体を得ることができる。
【0058】
実施例5
この実施例では、特に窒素空孔生成剤の添加量が及ぼす影響について調べるため以下の試験を行った。まず、前記実施例2で得たSi粉末(A1)及び(B1)を下記表6に示す条件で熱処理した。得られた各Si原料粉末の不対電子濃度を表6に併せて示した。
【0059】
【表6】
【0060】
得られた各Si原料粉末に、下記表7に示す窒素空孔生成剤を添加し、実施例3と同様の方法で混合、成形、脱バインダー処理を行った。次に、各成形体を窒素気流中において下記表8に示す条件で窒化処理、及び焼結を行った。得られた各Si3N4焼結体の不対電子濃度、相対密度、及び3点曲げ強度を表8に併せて示した。
【0061】
【表7】
【0062】
【表8】
【0063】
上記の結果から、窒素空孔生成剤が合計で1〜10モル%の範囲にあれば、緻密且つ高強度のSi3N4焼結体が得られることが分かる。
【0064】
【発明の効果】
本発明によれば、原料粉末として高価なSi3N4粉末の代わりに約1/10の価格のシリコン粉末を使用して、従来よりも遥かに短時間の反応焼結により、低価格でしかも緻密且つ高強度の窒化ケイ素焼結体を提供することができる。
【図面の簡単な説明】
【図1】市販のSi粉末の模式図である。
【図2】熱処理によりSi(O)層を増大させたSi粉末の模式図である。
【図3】Si(O)層に不純物元素Mが固溶した状態のSiM層を有するSi粉末の模式図である。
【図4】Si層に不純物元素Mが拡散した状態のSiMV層を有するSi粉末の模式図である。
【図5】Siよりも共有結合半径の小さいF原子が介在し歪を生じたSi格子を示す模式図である。
【図6】図5のF原子による歪を緩和するため格子間Siを生じた状態を示す模式図である。
【図7】不対電子濃度7×1012/cm3の市販Si粉末(A)と同濃度2×1013/cm3の市販Si粉末(B)を洗浄する水のpHと、洗浄後の各Si粉末の不対電子濃度との関係を示すグラフである。
【図8】市販Si粉末(A)をpH7の水で洗浄した後の熱処理温度と、得られるSi原料粉末の不対電子濃度の関係を示すグラフである。
【図9】市販Si粉末(B)をpH8の水で洗浄した後の熱処理温度と、得られるSi原料粉末の不対電子濃度の関係を示すグラフである。
【図10】窒化促進剤とアモルファスSiO2層との反応により表面に液相が生成されたSi粉末の模式図である。
【図11】図10の液相の内部に窒化によりSi3N4層が生成された状態を示す模式図である。
【符号の説明】
10 アモルファスSiO2層
11 厚さの減少したSiO2層
20 Si(O)層
21 熱処理によりSi空孔を形成したSi(O)層
22 SiM層
3 Si層
4 SiMV層
5 液相
6 Si3N4層[0001]
[Industrial application fields]
The present invention relates to a silicon nitride (Si 3 N 4 ) sintered body produced by reactive sintering and a method for producing the same.
[0002]
[Prior art]
One method for producing a silicon nitride sintered body is a reactive sintering method in which a silicon (Si) powder compact is nitrided and sintered in a nitrogen atmosphere. However, in order to obtain a silicon nitride sintered body by reacting a molded body made of pure Si powder with nitrogen, for example, J. Org. Mater. Sci. 22 (1987) P.A. 3041-3086, especially its P.P. As described in 3074-3075, since a long nitriding time of 100 hours or more is required, there is a great disadvantage that productivity is inferior. This is because, as shown in FIG. 1, presumably because the amorphous SiO 2 layer 1 0 that is generating the surface of the Si powder is inhibited from diffusing into the
[0003]
On the other hand, in Japanese Patent Publication No. 61-38149, Japanese Patent Laid-Open No. 5-330921, and Japanese Patent Application Publication No. 5-508612, a nitriding accelerator such as Ni, Co, Ti, Zr or the like is added to Si powder. Thus, a method for accelerating nitriding has been proposed. According to these methods, the amorphous SiO 2 layer on the surface of the Si powder reacts with the nitriding accelerator to form a liquid phase, and the diffusion rate of nitrogen increases, so that nitriding is promoted. In particular, according to Japanese Patent Laid-Open No. 5-330921, the nitriding time can be reduced to about 8 hours. Why nitride is promoted, amorphous SiO 2 layer and the nitriding agent is reacted in Si powder surface, as shown in FIG. 10, since the amorphous SiO 2 layer surface becomes a liquid phase 5, Nitrogen into
[0004]
[Problems to be solved by the invention]
However, even in the method using these nitriding accelerators, as shown in FIG. 11, the diffusion coefficient of nitrogen in the Si 3 N 4 layer 6 formed inside the liquid phase 5 on the surface of the Si powder is small, and further inside Nitrogen diffusion into silicon and generation of Si 3 N 4 are hindered, so that further reduction in nitriding time cannot be achieved. Moreover, as described in JP-A-5-330921, it is excellent in productivity, such as requiring complicated temperature control in which nitriding is performed in steps of 50 ° C. at a high temperature of 1200 to 1450 ° C. I could not say.
[0005]
Furthermore, the Si 3 N 4 sintered body obtained by the reactive sintering method using these nitriding accelerators is not densified with a porosity of 4 to 11% by volume, and the three-point bending strength is also low at 460 MPa. Therefore, it was inappropriate for use as a structural material. In addition, the added nitriding accelerator coarsens the Si 3 N 4 crystal particles, which may be a starting point of destruction, and thus is not necessarily a preferable method.
[0006]
In view of such conventional circumstances, the present invention aims at shortening the nitriding time in the reactive sintering of the silicon nitride sintered body, improving productivity, and dense and high-strength silicon nitride sintering obtained by reactive sintering. The purpose is to provide a body.
[0007]
[Means for Solving the Problems]
To achieve the above object, silicon nitride sintered body provided by the present invention, concentration of unpaired electrons obtained by the reaction sintering of Si powder 10 15 / cm 3 ~10 21 / cm 3 of silicon nitride sintered a body, in valence +1 to +3 valence element, covalent radii covalent radius R Si and the 0.5 ≦ a R M and Si (R M -R Si) / R Si <0.8 for the It is characterized by containing related elements.
[0008]
In order to produce the silicon nitride sintered body of the present invention, reaction sintering is performed using Si powder having an unpaired electron concentration of 10 15 / cm 3 to 10 20 / cm 3 . In the method of the present invention, the Si powder having an unpaired electron concentration within this range is obtained by washing a commercially available Si powder with water having a pH of 4 to 11, and then 3 to 5 at a temperature of 300 to 800 ° C. in an atmosphere other than nitrogen. It is obtained by a method of time annealing.
[0009]
More specifically, in the method for producing a silicon nitride sintered body of the present invention, an unpaired electron concentration Si powder obtained by the above method is composed of an element having a valence of +1 to +3 and its covalent bond radius R M. And at least one compound powder containing elements in which the covalent bond radius R Si of Si is 0.5 ≦ (R M −R Si ) / R Si <0.8 is mixed, molded, and reacted Sinter.
[0010]
The element contained in the compound powder added to and mixed with the Si powder is preferably a rare earth element or a Group 2A element of the periodic table, and among the rare earth elements, La, Sm, or Yb, and within the Group 2A element, Ca or Sr. Is preferred. The form of the compound powder to be mixed is preferably an oxide, nitride, or oxynitride, and the mixing amount is 1 to 10 mol% in terms of the rare earth or 2A group element contained in the compound. Is preferable.
[0011]
[Action]
In the conventional reactive sintering of silicon nitride, the nitriding treatment takes a long time because the amorphous SiO 2 layer formed on the surface of the Si powder as described above and the Si 3 N formed near the surface of the Si powder by nitriding. This is because there are two layers of two nitrogen diffusion inhibiting factors.
[0012]
In the present invention, in order to overcome the above two factors for inhibiting nitrogen diffusion, the present inventors succeeded in improving the nitrogen diffusion rate and greatly shortening the nitriding time by mainly incorporating two characteristic steps. As will be described later, these two characteristic steps are a step of introducing silicon vacancies into Si powder used as a raw material powder and a step of generating nitrogen vacancies in the Si 3 N 4 layer.
[0013]
Commercially available Si powder is considered to have a three-layer structure as shown in FIG. That is, the surface layer is an amorphous SiO 2 layer 1 0 generated by natural oxidation of Si, an Si (O) layer 2 0 in which oxygen is dissolved in Si inside, and an
[0014]
Accordingly, in the present invention, in order to suppress an increase in the lattice constant of Si (O) layer 2 0, it is to produce an silicon vacancies. Specifically, performs the appropriate heat treatment or the like in commercial Si powder, as shown in FIG. 2, by diffusing the oxygen of the amorphous SiO 2 layer 1 1 of the surface to the inside, the thickness of the amorphous SiO 2 layer 1 1 silicon vacancies increases the Si (O) layer 2 1 present a number while reducing. These silicon vacancies are thought to increase the diffusion rate of elements dissolved in Si.
[0015]
Next, nitrogen vacancies generated in the Si 3 N 4 lattice in order to increase the diffusion rate of nitrogen in the Si 3 N 4 generated by nitriding will be described. The Si 3 N 4 lattice is configured such that +4 valence of Si and -3 valence of N are kept electrically neutral. When +1 to +3 valent elements are dissolved in the Si 3 N 4 lattice, the positively charged elements occupy the lattice points of Si, and nitrogen vacancies are generated to maintain electrical neutrality.
[0016]
For example, when only x trivalent M ions are solid-solved in the Si 3 N 4 crystal by x, it can be represented by the following reaction formula:
[Expression 1]
Si 3 N 4 + xM → Si (3-x) N (4-x / 3) M x VN (x / 3)
Here, VN represents a nitrogen vacancy.
[0017]
Si 3 N 4 having a large number of such nitrogen vacancies promotes the diffusion of nitrogen through the vacancies, so that the amount of nitrogen supplied to the Si layer inside the Si 3 N 4 layer increases. That is, the nitriding rate is considered to increase dramatically. However, when ions having a valence of +4 or more are dissolved, positive charges are excessive, so that silicon vacancies are generated instead of nitrogen vacancies, and the nitriding rate does not increase dramatically.
[0018]
In the present invention, the Si (O) layer 2 described above is used in order to solidify +1 to +3 elements into Si 3 N 4 produced by nitriding. That is, the element is dissolved in a large number of silicon vacancies existing in the Si (O) layer 2. The reaction formula when this element M is dissolved in silicon vacancies by z is as follows:
[Expression 2]
Si (O) (1-y) Vsi (y) + zM → Si (O) (1-y) Mz Vsi (yz)
Here, Vsi represents a silicon hole.
[0019]
Therefore, as shown in FIG. 3, the Si powder in this state of the present invention mainly includes Si (O) (1-y) M z Vsi (yz) layer (hereinafter abbreviated as SiM layer) 2 2 , Of the
[0020]
Then, SiM layer 2 2 and
[Equation 3]
3Si (1-y) (O) M z Vsi (yz) + 2N 2 → Si 3 (1-y) (O) N (4-3y + 9z / 4) M 3z Vsi 3 (yz) VN (4y-3z )
[Expression 4]
3Si (1-uw) M u Vsi w + 2N 2 → Si 3 (1-uw) N (4-u-4w) M 3u Vsi 3w VN (u + 4w)
Here, VN represents a nitrogen vacancy. Note that M was +3.
[0021]
As can be seen from the above reaction formula, nitrogen vacancies are generated in any Si 3 N 4 , and by using an element that can have a valence of +1 to +3 as a nitrogen vacancy generator, Si 3 N It can be expected that the diffusion rate of nitrogen in the four layers will increase.
[0022]
As can be seen from the above description, the conventional nitriding accelerator is simply added to the Si powder described in Japanese Patent Publication No. 61-38149, Japanese Patent Laid-Open No. 5-330921, and Japanese Patent Application Publication No. 5-508612. In this method, since the Si (O) layer is thin, the amount of solid solution of the nitriding accelerator is small, and the SiM layer and the SiMV layer are not generated in the Si powder. As a result, nitrogen vacancies are not generated in Si 3 N 4 generated by nitriding, so that the diffusion rate of nitrogen is small and the nitriding time is prolonged.
[0023]
On the other hand, components having a smaller covalent bond radius than Si, such as fluorine (F), carbon (C), and sulfur (S), are present on the surface of commercially available Si powder. Since these components have a small covalent bond radius, they are dissolved in the Si crystal of the Si powder by the annealing process of the commercial Si powder described above, and as a result, interstitial Si is generated, and coexisting elements other than Si (additives and impurities) The phenomenon of negative effects is likely to occur in nitriding to suppress the diffusion of).
[0024]
That is, when, for example, F atoms enter the Si crystal lattice, the Si crystal lattice contracts and is distorted as shown in FIG. In order to alleviate this distortion, interstitial Si is generated as shown in FIG. This interstitial Si has a function of preventing solid solution and diffusion of other elements, and this tendency is strong particularly for an element having a large covalent bond radius.
[0025]
Therefore, for example, when the Si powder is annealed without removing elemental components having a smaller covalent bond radius than Si, such as F, C, S, etc., the elements of the valences +1 to +3 added as a nitrogen vacancy generator covalent radius R M of the have a relation of (R M -R Si) / R Si <0.5 between the covalent bond radius R Si of Si is required.
[0026]
For this reason, in the method of the present invention, prior to the annealing of the Si powder, the Si powder is washed with water having a pH of 4 to 11, so that the covalent bond radius is larger than that of Si such as F, C, and S existing on the surface of the Si powder. A step of removing small elemental components in advance; As a result, in the present invention, an element having a large covalent bond radius R M that satisfies the relationship of 0.5 ≦ (R M −R Si ) / R Si <0.8 is added as an element added as a nitrogen vacancy generator. It can be used.
[0027]
Next, the production of the Si 3 N 4 sintered body by the reactive sintering of the present invention will be specifically described. First, commercially available Si powder is washed with water having a pH of 4 to 11. Here, the pH of water is set to 4 to 11 when the pH is outside this range, the thickness of the oxide layer on the surface of the Si powder becomes large, and in any case, the unpaired electron concentration becomes larger than 10 20 / cm 3. Because it will end up.
[0028]
Next, the cleaned Si powder is annealed at 300 to 800 ° C. for 3 to 5 hours. As a result, the oxygen in the amorphous SiO 2 layer generated on the powder surface is diffused into Si to form a Si (O) layer in which many Si vacancies exist. However, the processing atmosphere must be other than a nitrogen atmosphere, such as oxygen, hydrogen, argon, or a vacuum of 10 Torr or less. This is because when the treatment is performed in a nitrogen atmosphere, a Si 3 N 4 film is formed on the surface of the Si powder, and the nitrogen vacancy generating agent is hardly dissolved.
[0029]
In addition, the formation method of the nitrogen vacancy Si (O) layer is not only the above-mentioned annealing, but also a method of ion-implanting oxygen ions into the Si powder, a method of forcibly mixing oxygen when producing bulk Si Etc. can also be used.
[0030]
The quantitative measurement of the amount of Si vacancies in the Si (O) layer in the Si powder thus obtained is based on the electron spin resonance as the number of unpaired electrons trapped in the Si vacancies in the Si (O) layer. It can be measured using the method (ESR method). As a result, while the unpaired electron concentration of the commercially available Si powder is 10 12 to 10 13 / cm 3 , the unpaired electron concentration of the Si powder is controlled in the range of 10 15 to 10 20 / cm 3 by the above method. In particular, it was found that the nitriding reaction was promoted.
[0031]
That is, if the number of unpaired electrons, that is, the amount of Si vacancies is less than 10 15 / cm 3 , the amount of Si vacancies is insufficient and solid solution of the nitrogen vacancy generating agent is not promoted. On the other hand, if the number of unpaired electrons exceeds 10 20 / cm 3 , nitriding is promoted, but oxygen or vacancies remaining in the Si 3 N 4 crystal decrease in strength due to the large amount of oxygen in the Si crystal. As a result, only a low-strength Si 3 N 4 sintered body having a three-point bending strength of 800 MPa or less can be obtained.
[0032]
Next, Si powder having a Si (O) layer produced by the above method and having a high concentration of unpaired electrons is mixed with one or more nitrogen vacancy generating agents and molded. Here, the nitrogen vacancy generating agent of the present invention is a compound containing an element having a valence of +1 to +3, and the covalent bond radius R M of the element and the covalent bond radius R Si of the element are 0. It is a compound of an element having a relationship of 0.5 ≦ (R M −R Si ) / R Si <0.8. Elements in the above range tend to generate nitrogen vacancies. Of these elements, it is preferable to use Ca, Sr, La, Sm, and Yb compounds that act as nitrogen vacancy generating agents and are also effective as sintering agents.
[0033]
The nitrogen vacancy generating agent may be added in powder form, but in particular when producing a large Si 3 N 4 sintered body, in order to disperse uniformly on the Si powder surface, alkoxides of these elements, stearates, It can also be added in the form of laurate. The addition amount of the nitrogen vacancy generating agent is preferably controlled in the range of 1 to 10 mol% in terms of elements in each sintered body. That is, when the nitrogen vacancy generating agent is less than 1 mol%, the amount of solid solution in Si or Si 3 N 4 is small, so the effect as a nitrogen vacancy generating agent is not achieved. This is because it precipitates at the boundary and becomes the starting point of fracture, and a high strength sintered body having a three-point bending strength of 800 MPa or more cannot be obtained.
[0034]
Finally, the molded body is nitrided and sintered. The temperature pattern of nitriding and sintering may be very simple control, for example, holding at 1100 to 1400 ° C. for 2 to 4 hours and then holding at 1500 to 1900 ° C. for 1 to 3 hours. By this treatment, a Si 3 N 4 sintered body having a relative density of 96% or more can be obtained. In particular, when the unpaired electron concentration of the obtained Si 3 N 4 sintered body is in the range of 10 15 to 10 21 / cm 3 , a high strength of 800 MPa or more is achieved with a three-point bending strength.
[0035]
Unpaired electrons of the Si 3 N 4 sintered body is considered to be due to oxygen contained in the Si 3 N 4, Si 3 N 4 of the present invention in which a solid solution of oxygen by heat treatment to the Si Then, it is 10 15 / cm 3 or more and 10 21 / cm 3 or less. On the other hand, when a sintered body is produced without applying heat treatment to Si, only an Si 3 N 4 sintered body having an unpaired electron of less than 10 15 / cm 3 can be obtained due to a small amount of oxygen solid solution. .
[0036]
【Example】
Example 1
Two types of Si powders (A) and (B) were prepared as starting materials. The unpaired electron concentration of these Si powders was 7 × 10 12 / cm 3 for Si powder (A) and 2 × 10 13 / cm 3 for Si powder (B). These commercially available Si powders (A) and (B) were washed with water having a pH of 1 to 14 and dried, and the results of measuring the unpaired electron concentration were shown in FIG.
[0037]
As is clear from FIG. 7, the Si powder washed with water having a pH of 1 to 3 and 12 to 14 has an unpaired electron concentration exceeding 10 20 / cm 3 and is suitable as the raw material powder of the present invention as described above. I understand that it is not.
[0038]
Example 2
The same raw Si powder (A) with an unpaired electron concentration of 7 × 10 12 / cm 3 and a commercially available Si powder (B) with an unpaired electron concentration of 2 × 10 13 / cm 3 were used as starting materials. The Si powder (A) was washed with water at pH 7 and the Si powder (B) at pH 8 to obtain Si powders (A 1 ) and (B 1 ), respectively. Next, the relationship between the heat treatment conditions of these powders and the unpaired electron concentration was examined.
[0039]
That is, the Si powder (A 1 ) and the Si powder (B 1 ) were respectively placed in an oxygen atmosphere (a), a hydrogen atmosphere (b), an argon atmosphere (c), and a vacuum of 10 Torr (d). At 100 ° C. intervals from 100 ° C. to 900 ° C., the Si powder (A 1 ) was held for 5 hours and the Si powder (B 1 ) was held for 2 hours, respectively, and then the unpaired electron concentration was measured by the ESR method.
[0040]
As a comparative example, the same Si powder (A 1 ) and Si powder (B 1 ) were each 5% from 100 ° C. to 900 ° C. at 100 ° C. intervals in a nitrogen atmosphere (e) and 100 Torr vacuum (f), respectively. After holding for a time, the unpaired electron concentration was measured by the ESR method.
[0041]
The results are shown in FIG. 8 for the Si powder (A 1 ) and in FIG. 9 for the Si powder (B 1 ). In addition, the amount of F, C, and S in each Si powder (A 1 ) and (B 1 ) was 50 ppm or less, which was about a trace. From these results, the commercially available Si powder was washed with water having a pH of 4 to 11, and further heat-treated at 300 to 800 ° C. for 2 to 5 hours in an atmosphere other than nitrogen such as oxygen, hydrogen, argon, vacuum of 10 Torr or less. It can be seen that the unpaired electron concentration of the Si powder can be controlled in the range of 10 15 to 10 20 / cm 3 and that F, C, and S having a smaller covalent bond radius than Si can be removed.
[0042]
Incidentally, the Si powder washed with water of less than
[0043]
Example 3
For the Si powders (A 1 ) and (B 1 ) obtained by cleaning in Example 2 above, the subsequent heat treatment conditions, the unpaired electron concentration of the Si raw material powder after the heat treatment, and the Si 3 obtained from each Si raw material powder The following tests were conducted to investigate the correlation between the density, strength, and unpaired electron concentration of the N 4 sintered body.
[0044]
Were heat-treated under the conditions of the above Si powder (A 1) or 300 to 800 ° C. × 2 to 5 hours at (B 1) the in each atmosphere other than nitrogen shown in the following Table 1. The unpaired electron concentration of each obtained Si raw material powder is shown together in Table 1. As comparative examples, the unpaired electron concentration was measured and shown in Table 1 for those not heat-treated and those heat-treated under conditions other than the above conditions.
[0045]
[Table 1]
[0046]
8 mol% of Sm 2 O 3 powder as a nitrogen vacancy generator was added to each obtained Si raw material powder, and 4 mol% of a thermoplastic resin binder was further added and mixed, and then molded by a dry press. Each molded body was debindered in a nitrogen stream at 600 ° C. for 2 hours. Sm has a valence of +3, and the relationship between the covalent bond radius R M and the covalent bond radius R Si of Si is (R M −R Si ) / R Si = 0.5.
[0047]
Next, after performing nitriding treatment at 1350 ° C. for 2 hours as shown in Table 2 in the nitrogen stream, each of the above molded bodies was also subjected to 3 hours at 1750 to 1800 ° C. shown in Table 2 below in the same nitrogen stream. Was sintered. Table 2 shows the unpaired electron concentration, the relative density, and the three-point bending strength of each Si 3 N 4 sintered body thus obtained.
[0048]
[Table 2]
[0049]
As described above, after the commercially available Si powder is previously washed with water having a pH of 4 to 11, the unpaired electron concentration in the Si powder is set to 10 by holding at 300 to 800 ° C. in an atmosphere other than nitrogen for 2 to 5 hours. 15 ~10 20 / cm 3 of can be controlled within the range, and 0.5 ≦ between covalent radius R M in the Si raw material powder and the covalent radius R Si of Si (R M -R Si) / R Si <0.8 satisfying the relationship of valence +1 to +3 such as Sm satisfying the relationship, and by reactive sintering, three-point bending at a relative density of 96% or more A Si 3 N 4 sintered body having a strength of 800 MPa or more can be obtained.
[0050]
Reference Example The same commercially available Si powder (A) as in Example 1 was washed with water at
[0051]
Each of the Si powders (A 1 ) and (B 1 ) was heat-treated at 300 ° C. for 5 hours in an argon atmosphere in the same manner as Sample 1 of Example 3. Table 3 shows unpaired electron concentrations of the obtained Si raw material powders. To each of these Si raw material powders, 8 mol% of Sm 2 O 3 as a nitrogen vacancy generating agent was added, mixed, molded, and debindered in the same manner as in Sample 1 of Example 3, and further processed with Sample 1 of Example 3. Similarly, nitriding treatment at 1350 ° C. × 2 hours in a nitrogen atmosphere and sintering at 1800 ° C. × 3 hours in the same atmosphere were performed to produce Si 3 N 4 sintered bodies, respectively. Table 3 shows the characteristics of the obtained sintered bodies.
[0052]
[Table 3]
Example 4
In order to investigate the influence of the type of nitrogen vacancy generating agent on the characteristics of the Si 3 N 4 sintered body, the following test was performed.
[0053]
The cleaned Si powder (A 1 ) obtained in Example 2 was heat-treated at 500 ° C. for 2 hours in an oxygen atmosphere. The unpaired electron concentration of the obtained Si raw material powder was 8 × 10 15 / cm 3 . For comparison, a Si raw material powder not subjected to heat treatment was also prepared. To each of these Si raw material powders, a nitrogen vacancy generating agent shown in Table 4 below was added, and mixing, molding, and debinding were performed in the same manner as in Example 3.
[0054]
[Table 4]
[0055]
After adding said nitrogen void | hole production | generation agent and performing each mixing Si raw material powder and performing a binder removal process, it nitrided on the conditions shown in following Table 4 in nitrogen stream like Example 3. Then, the subsequent sintering was performed. Table 5 shows the unpaired electron concentration, relative density, and three-point bending strength of each obtained Si 3 N 4 sintered body.
[0056]
[Table 5]
[0057]
As described above, Si raw material powder having an unpaired electron concentration in the range of 10 15 to 10 20 / cm 3 is used, has a valence of +1 to +3 and has a covalent bond radius R M and a covalent bond of Si. An unpaired Si 3 N 4 sintered body formed by adding an element having a radius R Si of 0.5 ≦ (R M −R Si ) / R Si ≦ 0.8 and sintering. The electron concentration can be controlled in the range of 10 15 to 10 21 / cm 3 , and a dense and high-strength Si 3 N 4 sintered body can be obtained.
[0058]
Example 5
In this example, the following test was conducted in order to examine the influence of the addition amount of the nitrogen vacancy generating agent. First, the Si powders (A 1 ) and (B 1 ) obtained in Example 2 were heat-treated under the conditions shown in Table 6 below. Table 6 shows the unpaired electron concentration of each obtained Si raw material powder.
[0059]
[Table 6]
[0060]
Nitrogen vacancy generators shown in Table 7 below were added to the obtained Si raw material powders, and mixing, molding, and debinding were performed in the same manner as in Example 3. Next, each molded body was subjected to nitriding treatment and sintering under the conditions shown in Table 8 below in a nitrogen stream. Table 8 shows the unpaired electron concentration, relative density, and three-point bending strength of each obtained Si 3 N 4 sintered body.
[0061]
[Table 7]
[0062]
[Table 8]
[0063]
From the above results, it can be seen that a dense and high-strength Si 3 N 4 sintered body can be obtained if the total amount of nitrogen vacancy generators is in the range of 1 to 10 mol%.
[0064]
【The invention's effect】
According to the present invention, instead of expensive Si 3 N 4 powder as raw material powder, silicon powder having a price of about 1/10 is used, and by reaction sintering in a much shorter time than in the past, the cost is low. A dense and high-strength silicon nitride sintered body can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of a commercially available Si powder.
FIG. 2 is a schematic view of Si powder having an increased Si (O) layer by heat treatment.
FIG. 3 is a schematic view of a Si powder having a SiM layer in which an impurity element M is dissolved in a Si (O) layer.
FIG. 4 is a schematic view of a Si powder having a SiMV layer in which an impurity element M is diffused in the Si layer.
FIG. 5 is a schematic diagram showing a Si lattice in which F atoms having a covalent bond radius smaller than Si are present and strain is generated.
6 is a schematic diagram showing a state in which interstitial Si is generated in order to relax strain caused by F atoms in FIG. 5. FIG.
FIG. 7 shows the pH of water for washing a commercially available Si powder (A) having an unpaired electron concentration of 7 × 10 12 / cm 3 and a commercially available Si powder (B) having the same concentration of 2 × 10 13 / cm 3 , and It is a graph which shows the relationship with the unpaired electron density | concentration of each Si powder.
FIG. 8 is a graph showing the relationship between the heat treatment temperature after washing commercially available Si powder (A) with water at pH 7 and the unpaired electron concentration of the obtained Si raw material powder.
FIG. 9 is a graph showing the relationship between the heat treatment temperature after washing commercially available Si powder (B) with water at pH 8 and the unpaired electron concentration of the obtained Si raw material powder.
FIG. 10 is a schematic view of a Si powder in which a liquid phase is generated on the surface by a reaction between a nitriding accelerator and an amorphous SiO 2 layer.
11 is a schematic view showing a state in which a Si 3 N 4 layer is generated by nitriding inside the liquid phase of FIG.
[Explanation of symbols]
1 0 Amorphous SiO 2 layer 1 1 Reduced thickness SiO 2 layer 2 0 Si (O) layer 2 1 Si (O) layer formed with Si vacancies by heat treatment 2 2
Claims (15)
このSi粉末に、価数+1〜+3価の元素で、その共有結合半径RMとSiの共有結合半径RSiとが0.5≦(RM−RSi)/RSi<0.8の関係にある元素を含む少なくとも1種の化合物粉末を混合し、
成形して、反応焼結することを特徴とする窒化ケイ素焼結体の製造方法。A method for producing a silicon nitride sintered body by reactive sintering of Si powder, after washing commercially available Si powder with water having a pH of 4 to 11, and annealing at 300 to 800 ° C. in an atmosphere other than nitrogen for 3 to 5 hours Si powder having an unpaired electron concentration of 10 15 / cm 3 to 10 20 / cm 3 obtained by
In this Si powder, elements having a valence of +1 to +3 and the covalent bond radius R M and the Si covalent bond radius R Si are 0.5 ≦ (R M −R Si ) / R Si <0.8. Mixing at least one compound powder containing the elements concerned,
A method for producing a silicon nitride sintered body, characterized by molding and reaction sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11594995A JP3677812B2 (en) | 1995-05-15 | 1995-05-15 | Silicon nitride sintered body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11594995A JP3677812B2 (en) | 1995-05-15 | 1995-05-15 | Silicon nitride sintered body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08310868A JPH08310868A (en) | 1996-11-26 |
JP3677812B2 true JP3677812B2 (en) | 2005-08-03 |
Family
ID=14675150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11594995A Expired - Fee Related JP3677812B2 (en) | 1995-05-15 | 1995-05-15 | Silicon nitride sintered body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3677812B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3149827B2 (en) * | 1997-09-09 | 2001-03-26 | 住友電気工業株式会社 | Silicon nitride based sintered body and method for producing the same |
-
1995
- 1995-05-15 JP JP11594995A patent/JP3677812B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08310868A (en) | 1996-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5756411A (en) | Sintered body of silicon nitride and method of producing the same | |
JP3677812B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3876453B2 (en) | Silicon nitride sintered body and manufacturing method thereof | |
JP3972093B2 (en) | β-Ga2O3 nano whisker and method for producing the same | |
JP6601432B2 (en) | Manufacturing method of magnetic powder | |
JPH04329808A (en) | Production of tantalum powder | |
JPS6389462A (en) | Manufacture of silicon nitride base sintered body | |
JP2742619B2 (en) | Silicon nitride sintered body | |
JP3509137B2 (en) | Aluminum nitride powder, method for producing the same, and aluminum nitride sintered body produced from the powder | |
JP3116701B2 (en) | Method for producing silicon nitride sintered body | |
JP2811493B2 (en) | Silicon nitride sintered body | |
JP2642429B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2874045B2 (en) | Method for producing porous silicon nitride-based fiber ceramic body | |
JP2683452B2 (en) | Porous ceramic body and method for producing the same | |
JP2692353B2 (en) | Method for producing high-temperature high-strength silicon nitride sintered body | |
JPH03183660A (en) | Production of silicon nitride sintered body | |
JPH06279124A (en) | Production of silicon nitride sintered compact | |
JP2694369B2 (en) | Silicon nitride sintered body | |
JPH0745345B2 (en) | Method for manufacturing silicon nitride sintered body | |
JP2777051B2 (en) | Method for producing silicon nitride based sintered body | |
JP2734755B2 (en) | Method for producing high-temperature high-strength silicon nitride sintered body | |
JP2004051459A (en) | Silicon nitride sintered compact and its manufacturing method | |
JPH07121829B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JP3529053B2 (en) | Method for producing silicon nitride sintered body | |
JP2825691B2 (en) | Method of removing binder from aluminum nitride ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050502 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |