Nothing Special   »   [go: up one dir, main page]

JPS6389462A - Manufacture of silicon nitride base sintered body - Google Patents

Manufacture of silicon nitride base sintered body

Info

Publication number
JPS6389462A
JPS6389462A JP61233293A JP23329386A JPS6389462A JP S6389462 A JPS6389462 A JP S6389462A JP 61233293 A JP61233293 A JP 61233293A JP 23329386 A JP23329386 A JP 23329386A JP S6389462 A JPS6389462 A JP S6389462A
Authority
JP
Japan
Prior art keywords
sintered body
temperature
silicon nitride
atm
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233293A
Other languages
Japanese (ja)
Inventor
尚登 広崎
明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP61233293A priority Critical patent/JPS6389462A/en
Publication of JPS6389462A publication Critical patent/JPS6389462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は自動車2機械装置、化学装置、宇宙航空機器
等々の広い分野において使用される各種構造部品の素材
として利用でき、特に優れた高温強度を有するファイン
セラミックス材料を得るのに好適な窒化珪素質焼結体の
製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention can be used as a material for various structural parts used in a wide range of fields such as automobiles, mechanical equipment, chemical equipment, aerospace equipment, etc., and has particularly excellent high-temperature strength. The present invention relates to a method for producing a silicon nitride sintered body suitable for obtaining a fine ceramic material having the following properties.

(従来の技術) 窒化珪素を主成分とする焼結体は常温および高温で科学
的に安定であり、高い機械的強度を有するため、軸受な
どの摺動部材、ターボチャージャロータなどのエンジン
部材等として好適な材料である。
(Prior art) Sintered bodies whose main component is silicon nitride are scientifically stable at room and high temperatures and have high mechanical strength, so they are suitable for sliding parts such as bearings, engine parts such as turbocharger rotors, etc. It is a suitable material as

しかし、窒化珪素は単独では焼結が困難なため、通常の
場合、MgO,八l z(h−Yz(h等の焼結助剤を
添加して焼結を行う方法が用いられている。また、焼結
体中に残留するガラス相の融点の向上およびガラス相の
量の低下を目的としてSi粉末にYgO:+を添加した
混合物を窒化後焼成する方法が知られている。
However, since it is difficult to sinter silicon nitride alone, a method is usually used in which sintering is performed by adding a sintering aid such as MgO, 8lz(h-Yz(h), etc.). Furthermore, a method is known in which a mixture of Si powder to which YgO:+ is added is nitrided and then fired for the purpose of improving the melting point of the glass phase remaining in the sintered body and reducing the amount of the glass phase.

(発明が解決しようとする問題点) しかしながら、上述する従来の焼結方法において、焼結
は、焼結時に生ずる液相を媒介とした液相焼結によると
考えられており、焼結後に液相はガラス相として焼結体
中に残留する。一方、焼結体の耐クリープ特性、高温強
度、耐酸化性等の特性については、焼結体中に残留する
ガラス相に大きく影響を受ける。そして、特に、軟化温
度の低いガラス相が多く存在すると窒化珪素質焼結体の
高温機械特性を著しく低下するので好ましくないという
問題点があった。
(Problems to be Solved by the Invention) However, in the conventional sintering method described above, sintering is thought to be based on liquid phase sintering mediated by the liquid phase generated during sintering. The phase remains in the sintered body as a glass phase. On the other hand, the properties of the sintered body, such as creep resistance, high temperature strength, and oxidation resistance, are greatly affected by the glass phase remaining in the sintered body. In particular, there is a problem in that the presence of a large amount of glass phase with a low softening temperature is undesirable because it significantly deteriorates the high-temperature mechanical properties of the silicon nitride sintered body.

また、上述する窒化後焼成する方法では窒化反応の速度
が遅いため窒化に時間を要するばかりか、厚肉部品の場
合には窒化の効率が低下するため大型形状部品に適用で
きないという問題点があった。
In addition, the above-mentioned method of firing after nitriding not only requires time for nitriding because the nitriding reaction rate is slow, but also has the problem that it cannot be applied to large-sized parts because the nitriding efficiency decreases in the case of thick-walled parts. Ta.

(問題点を解決するための手段) この発明は、上述した従来の問題点に着目してなされた
もので、特に高温における強度にすぐれ、大型部品への
適用が可能である窒化珪素質焼結体を生産性良く製造す
る方法を開発し、この発明に到達したものである。
(Means for Solving the Problems) The present invention was made by focusing on the above-mentioned conventional problems. This invention was achieved by developing a method for manufacturing the body with high productivity.

この発明の窒化珪素質焼結体の製造方法は珪素粉末に、
周期律表Ua族、第IIIa族、’lrs  Aj!か
らなる群から選択する少なくとも1種の元素の酸化物お
よび/または酸化物前駆物質を添加混合して原料混合粉
末を得、この原料粉末からなる成形体を10気圧以上の
窒素雰囲気下で1000〜1500℃の範囲の温度で処
理し、次いで1気圧以上の窒素ガス雰囲気下で1600
〜2200℃の範囲の温度で処理することを特徴とする
The method for producing a silicon nitride sintered body of the present invention includes silicon powder,
Periodic Table Group Ua, Group IIIa, 'lrs Aj! A raw material mixed powder is obtained by adding and mixing an oxide of at least one element selected from the group consisting of: Treated at a temperature in the range of 1500°C and then heated to 1600°C under a nitrogen gas atmosphere of 1 atm or more.
It is characterized by processing at a temperature in the range of ~2200°C.

この発明の一実施態様において、成形体を10気圧以上
の窒素雰囲気下で1000〜1500℃の範囲の温度で
窒化処理した後、1気圧以上500気圧未満の窒素ガス
雰囲気下で1600〜2200℃の範囲の温度で処理し
、次いで500気圧以上の窒素雰囲気下で1600〜2
200℃の範囲の温度で焼結処理することができる。
In one embodiment of the present invention, the molded body is nitrided at a temperature in the range of 1000 to 1500°C in a nitrogen atmosphere of 10 atm or more, and then heated at 1600 to 2200°C in a nitrogen gas atmosphere of 1 atm or more but less than 500 atm. treated at temperatures ranging from 1,600 to 2
The sintering process can be carried out at temperatures in the range of 200°C.

この発明において使用する出発原料はSi粉末に、周期
律表第IIa族、第■a族、Zr、  AIからなる群
から選択する少なくとも1種の元素の酸化物および/ま
たは酸化物前駆物質を添加した混合粉末である。これら
の粉末は数μmの粒径になるように十分に粉砕、混合す
るのが好ましい。また、酸化物は炭酸塩など、加熱によ
り酸化物に変わるものを使用することもできる。尚、本
発明において、酸化物前駆物質とは、これらの加熱によ
り酸化物に変わるもののことを指す。
The starting material used in this invention is Si powder to which an oxide and/or oxide precursor of at least one element selected from the group consisting of Group IIa, Group IVa, Zr, and AI of the periodic table is added. It is a mixed powder. These powders are preferably sufficiently ground and mixed to have a particle size of several μm. Further, as the oxide, it is also possible to use an oxide that changes into an oxide when heated, such as carbonate. In the present invention, oxide precursors refer to substances that are converted into oxides by heating.

上述する周期律表第Ua族、第IIIa族、Zr、  
Alからなる群から選択する少なくとも1種の元素の酸
化物および/または酸化物前駆物質の、Si粉末に対す
る添加量は、焼結後に上記酸化物前駆物質が全て酸化物
に、Si粉末が全て窒化珪素になった場合に、周期律表
IIa族、第IIIa族、Zr、  Alからなる群か
ら選ばれた1種以上の元素の酸化物と窒化珪素の全重量
中、前記酸化物の重量がおおよそのめどとして約5〜3
0重量%の範囲になるように決める。約5重量%未満で
は助剤としての作用が得られなくなり、また約30重量
%以上になると窒化珪素粉末の比率が少なくなり、窒化
珪素の特性が低下してくる。
Group Ua, Group IIIa, Zr of the periodic table mentioned above,
The amount of the oxide and/or oxide precursor of at least one element selected from the group consisting of Al added to the Si powder is such that after sintering, all of the oxide precursor becomes an oxide and all of the Si powder is nitrided. In the case of silicon, the weight of the oxide is approximately equal to the total weight of the oxide of one or more elements selected from the group consisting of Group IIa, Group IIIa, Zr, and Al of the periodic table and silicon nitride. Approximately 5 to 3
It is determined to be within the range of 0% by weight. If it is less than about 5% by weight, it will not function as an auxiliary agent, and if it is more than about 30% by weight, the proportion of silicon nitride powder will decrease and the properties of silicon nitride will deteriorate.

上記混合粉末は適当な成形手段で成形体に形成する。こ
の成形手段については、特に限定しないが、例えば金型
プレス成形、ラバープレス、射出成形など通常のセラミ
ックスの成形方法を目的とする品物の形状に合わせて選
択できる。
The above mixed powder is formed into a molded body using a suitable molding means. The molding means is not particularly limited, but can be selected from conventional ceramic molding methods such as die press molding, rubber press molding, and injection molding, depending on the shape of the intended product.

この発明において窒化工程は10気圧以上の窒素ガス雰
囲気下で、1000〜1500℃の範囲、望ましくは1
200〜1450℃の範囲の温度で行う。高圧の窒素ガ
ス圧下で窒化反応を行うことにより、窒化反応が促進さ
れる。また、窒化反応が進むと、密度が上昇するにつれ
て開気孔が減少するため、常圧の窒素中では内部へのガ
スの供給が阻害され大型形状部品の會化が難しくなるが
、高圧の窒素中で窒化することにより内部へのガスの供
給量が増えるために内部まで十分に窒化反応を進めるこ
とができる。窒化反応の温度は1000℃以下では反応
が遅く、1500℃以上ではSiの溶融が起るために形
状が保持できなくなる。従って、1000〜1500℃
の温度の範囲内で、徐々に昇温するのが望ましい。また
、窒化処理の時間は使用する粒子の大きさや、その使用
量により影響し、−概に示すことができないが、要する
に窒化が終了するまで行うようにすればよい。
In this invention, the nitriding step is carried out in a nitrogen gas atmosphere of 10 atm or more at a temperature in the range of 1000 to 1500°C, preferably 1
It is carried out at a temperature in the range of 200-1450°C. The nitriding reaction is promoted by performing the nitriding reaction under high nitrogen gas pressure. In addition, as the nitriding reaction progresses, the number of open pores decreases as the density increases, so gas supply to the interior is inhibited in nitrogen at normal pressure, making it difficult to assemble large-sized parts, but in nitrogen at high pressure, By nitriding, the amount of gas supplied to the inside increases, so the nitriding reaction can proceed sufficiently to the inside. When the temperature of the nitriding reaction is below 1000°C, the reaction is slow, and when it is above 1500°C, Si melts and the shape cannot be maintained. Therefore, 1000-1500℃
It is desirable to gradually increase the temperature within the range of . Further, the time for the nitriding treatment depends on the size of the particles used and the amount used, and cannot be given in general terms, but in short, it is sufficient to carry out the nitriding treatment until the nitriding is completed.

次に、焼結工程は1気圧以上の窒素ガス雰囲気下で16
00〜2200℃の範囲の温度で行う。1気圧以下では
5iJaの分解が激しく、緻密な焼結体が得られない。
Next, the sintering process is performed under a nitrogen gas atmosphere of 1 atm or more.
It is carried out at a temperature in the range of 00 to 2200°C. If the pressure is below 1 atm, 5iJa decomposes violently and a dense sintered body cannot be obtained.

分解を抑えるのに必要なガス圧力は焼成温度によって決
まり、高温はど高いガス圧が必要となる。また、焼成温
度1600℃以下では充分な量の液相が生成しないため
緻密化しない。2200℃以上では粒成長が激しくなり
、焼結体強度が低下する。この焼結処理は緻密な焼結体
が得られるまで行う。
The gas pressure required to suppress decomposition is determined by the firing temperature; higher temperatures require higher gas pressures. Furthermore, if the firing temperature is 1600° C. or lower, a sufficient amount of liquid phase will not be generated, so that densification will not occur. At temperatures above 2200°C, grain growth becomes intense and the strength of the sintered body decreases. This sintering process is continued until a dense sintered body is obtained.

上述する添加助剤の量が少ない場合、高融点助剤を使用
する場合など焼結性が悪い場合は、焼成工程は次の2工
程により行うのが良い。
When the amount of the above-mentioned additive auxiliary agent is small, or when the sinterability is poor, such as when a high melting point auxiliary agent is used, the firing process is preferably performed by the following two steps.

まず、窒化処理した成形体を1気圧以上500気圧未満
の窒素雰囲気下で1600〜2200℃の範囲の温度で
処理する。処理時間は10分間以上が好ましい。
First, the nitrided molded body is treated in a nitrogen atmosphere of 1 atm or more and less than 500 atm at a temperature in the range of 1600 to 2200°C. The treatment time is preferably 10 minutes or more.

この工程で、成形体が1600〜2200℃の範囲の温
度に加熱されることにより、酸化物系助剤が液相を形成
し液相焼結の機構により緻密化が進行する。
In this step, the compact is heated to a temperature in the range of 1,600 to 2,200° C., whereby the oxide-based auxiliary agent forms a liquid phase, and densification progresses by the mechanism of liquid phase sintering.

この時、雰囲気を窒素雰囲気下で1気圧以上500気圧
未満とするのは、1気圧未満では窒化珪素が分解し緻密
化しなくなり、500気圧以上では焼結体中に高圧の窒
素ガスが閉じ込められるため理論密度の90%程度まで
しか緻密化しないためである。この工程で理論密度90
%以上(残部は閉気孔)の焼結体が得られる。次に、こ
のように処理した焼結体を、更に500気圧以上の窒素
雰囲気下テ1600〜2200℃の範囲の温度で処理す
る。この工程では、通常のHIP処理と同様のメカニズ
ムで残された閉気孔が消滅し、緻密な焼結体が得られる
At this time, the atmosphere is set to 1 atm or more and less than 500 atm in a nitrogen atmosphere because if it is less than 1 atm, silicon nitride will decompose and will not become densified, and if it is over 500 atm, high pressure nitrogen gas will be trapped in the sintered body. This is because the density is only increased to about 90% of the theoretical density. In this process, the theoretical density is 90
% or more (the remainder has closed pores). Next, the thus treated sintered body is further treated at a temperature in the range of 1,600 to 2,200° C. in a nitrogen atmosphere of 500 atmospheres or more. In this step, the remaining closed pores disappear by a mechanism similar to that of normal HIP processing, and a dense sintered body is obtained.

この2つの工程において、処理温度を16oO〜220
0℃の範囲にするのは、1600℃未満では焼結性が悪
く、十分に緻密化しないため高温強度が低下し、また、
2200℃以上では窒化珪素の粒成長が大きく、常温お
よび高温強度が低下するためである。これらの焼結工程
は温度および圧力をコントロールすることにより一回の
処理で行うことが好ましいが、2つの工程に分けて行っ
てもよい。そして、焼結工程を通じて、成形体を5i3
Nt+ Si:+N4+510z+ BIJ+//lN
などの粉体で被ってもよい。また、雰囲気ガスは窒素ガ
ス100%が好ましいが、他のAr等の不活性ガスを添
加してもよい。
In these two steps, the processing temperature is 16oO to 220o.
The reason for setting the temperature in the range of 0°C is that below 1600°C, the sinterability is poor and it is not sufficiently densified, resulting in a decrease in high temperature strength.
This is because at 2200° C. or higher, grain growth of silicon nitride becomes large and the strength at room temperature and high temperature decreases. These sintering steps are preferably carried out in one process by controlling the temperature and pressure, but may be carried out in two steps. Then, through the sintering process, the molded body is made into 5i3
Nt+ Si:+N4+510z+ BIJ+//lN
It may be covered with powder such as Further, although the atmospheric gas is preferably 100% nitrogen gas, other inert gases such as Ar may be added.

(発明の効果) 上述するように、この発明によれば、緻密で、高強度の
窒化珪素質焼結体を得ることができる。
(Effects of the Invention) As described above, according to the present invention, a dense and high-strength silicon nitride sintered body can be obtained.

(実施例1) SiffNイに換算して90重景%のSt粉末と10重
景%の酸化イツトリウムを適当な手段で緻密に混合して
混合粉末を得た。この混合粉末を200 kgf/am
”の圧力でラバープレス成形してφ50 X 50 v
sの形状の成形体を形成した。この成形体を第1図に示
す窒化−焼成処理スケジュールエの条件により2000
気圧の窒素雰囲気下で約1200℃から約1500 ”
Cの温度に約6時間にわたり50℃7時の昇温速度で加
熱して窒化し、次いで10気圧の窒素雰囲気下で190
0℃の温度で約30分間にわたり加熱し、更に雰囲気圧
力を徐々に上げ2000気圧で約1.5時間にわたり加
熱して焼成した。3.30g/c+n’の密度を有する
焼結体を得た。
(Example 1) A mixed powder was obtained by densely mixing St powder with a concentration of 90% in terms of SiffN and yttrium oxide with a concentration of 10% in terms of SiffN. 200 kgf/am of this mixed powder
Rubber press molded with a pressure of φ50 x 50v
A molded body having the shape of s was formed. This compact was heated to 2,000 ml under the conditions of the nitriding-firing treatment schedule shown in Fig. 1.
From about 1200℃ to about 1500℃ under nitrogen atmosphere at atmospheric pressure
Nitriding was carried out by heating to a temperature of
It was heated at a temperature of 0° C. for about 30 minutes, and then the atmospheric pressure was gradually increased to 2000 atm for about 1.5 hours to perform baking. A sintered body having a density of 3.30 g/c+n' was obtained.

この得られた焼結体を切断し、観察したところ、その内
部に未反応部分は存在していなかった。また、焼結体か
ら3 X 4 X4Qwの形状の試験片を切出し、スパ
ン301mによる1200℃の3点曲げ試験を行った。
When the obtained sintered body was cut and observed, no unreacted portion was present inside it. Further, a test piece having a shape of 3×4×4Qw was cut out from the sintered body and subjected to a three-point bending test at 1200° C. with a span of 301 m.

この結果を表1に示す。この場合、5本の試験片につい
て測定した平均の値を示している。
The results are shown in Table 1. In this case, the average value measured for five test pieces is shown.

これらの試験から、この発明により緻密で高強度の窒化
珪素質焼結体を得ることができた。
From these tests, it was possible to obtain a dense and high-strength silicon nitride sintered body according to the present invention.

(比較例1) 表2に示すように実施例1と同じ組成から、実施例1に
試験すると同様に成形処理して成形体を作った。この成
形体を第2図に示す処理スケジュール■の条件により1
気圧の窒素雰囲気下で約1200℃から1500℃の温
度に約6時間にねたり50’c/時の昇温速度で加熱し
、次いで約30分間にわたり1900℃の温度に昇温し
、この温度で窒素雰囲気の圧力を約2時間にわたって2
000気圧に高めながら加熱し、次いでこの窒素雰囲気
下、1900℃で約1゜30時間加熱して焼成した。
(Comparative Example 1) As shown in Table 2, a molded article was made from the same composition as in Example 1 and subjected to the same molding treatment as tested in Example 1. This molded body was processed into 1
heating at a heating rate of 50'C/hour for about 6 hours under a nitrogen atmosphere at atmospheric pressure, then heating to a temperature of 1900C for about 30 minutes, The pressure of the nitrogen atmosphere was increased to 2 for about 2 hours.
The mixture was heated at a pressure of 1,000 atm and then fired at 1,900°C for about 1°30 hours in this nitrogen atmosphere.

かようにして得た焼結体を実施例1に記載すると同様に
試験したところ、密度2.70g/cm3までしか緻密
化せず、焼結体の内部にSiの未反応部分が存在してい
た。
When the thus obtained sintered body was tested in the same manner as described in Example 1, it was densified only to a density of 2.70 g/cm3, indicating that there was an unreacted portion of Si inside the sintered body. Ta.

(実施例2〜4) St粉末と酸化物粉末を表1に示す組成(Si粉末はS
i3N4換算の値を示す)および割合で混合し、200
 kgf/cm”の圧力で金型成形し、続いて2000
kg f / am ”の圧力でラバープレスして25
X 6 X50mmの板状の成形体を成形した。これら
の各成形体を窒素雰囲気下で実施例1に記載すると同様
に第1図に示すスケジュールIの条件で加熱処理した。
(Examples 2 to 4) The composition of St powder and oxide powder is shown in Table 1 (Si powder is S
i3N4 equivalent values are shown) and mixed at a ratio of 200
Mold molding is performed at a pressure of 2000 kgf/cm”.
Rubber press at a pressure of 25 kg f/am
A plate-shaped molded body with dimensions of X 6 X 50 mm was molded. Each of these molded bodies was heat treated under a nitrogen atmosphere under the conditions of Schedule I shown in FIG. 1 in the same manner as described in Example 1.

次いで、得られた各焼結体の表面を研削し、3×4X4
Qmmの形状の試験片に加工した。これらの各試験片に
ついて、密度およびスパン30mmによる1200℃の
3点曲げ試験を行った。これらの結果を、各5本の試験
片について測定した平均の値として表2に示す。表2に
示すように、この発明により緻密で高強度の窒化珪素質
焼結体を得ることができた。
Next, the surface of each obtained sintered body was ground and 3×4×4
It was processed into a test piece with a shape of Qmm. Each of these test pieces was subjected to a three-point bending test at 1200° C. with a density and a span of 30 mm. These results are shown in Table 2 as the average value measured for each of the five test pieces. As shown in Table 2, according to the present invention, a dense and high-strength silicon nitride sintered body could be obtained.

(比較例2〜4) Si3N、粉末と酸化物粉末を表2に示す組成および割
合で混合し、実施例2に記載すると同様にして各成形体
を成形した。これらの各成形体を第3図に示す処理スケ
ジュール■の条件によって1気圧の窒素雰囲気下で約4
時間にわたり1900℃の温度に昇温し、この温度で約
30分間加熱し、次いで約1.30時間にわたって窒素
雰囲圧を2000気圧に上げ、更にこの圧力下で約1時
間加熱処理した。
(Comparative Examples 2 to 4) Si3N powder and oxide powder were mixed in the composition and ratio shown in Table 2, and each molded body was molded in the same manner as described in Example 2. Each of these compacts was heated under the conditions of treatment schedule ① shown in Figure 3 in a nitrogen atmosphere of 1 atm.
The temperature was increased to 1900° C. over a period of time, heated at this temperature for about 30 minutes, then the nitrogen atmosphere pressure was increased to 2000 atm over about 1.30 hours, and further heat treated under this pressure for about 1 hour.

次いで、得られた各焼結体を実施例2に記載すると同様
にして各試験片を作り、曲げ試験を行った。それぞれ各
5本の試験片について測定した密度および強度の平均の
値を表2に示す。表2に示すように、酸化物粉末の添加
量が少ない場合は密度が低くなり、添加量が多い場合に
は密度は高くなるが、高温強度が低くなることがわかる
。このように、これらの比較例では高密度かつ高温で高
強度の焼結体は得られなかった。
Next, test pieces were made from each of the obtained sintered bodies in the same manner as described in Example 2, and a bending test was performed. Table 2 shows the average values of density and strength measured for each of the five test pieces. As shown in Table 2, it can be seen that when the amount of oxide powder added is small, the density becomes low, and when the amount added is large, the density becomes high but the high temperature strength becomes low. Thus, in these comparative examples, a sintered body with high density and high strength at high temperature could not be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1および実施例2〜4において成形体を
窒化−焼成処理するスケジュール■を示す曲線図、 第2図は比較例1において成形体を処理するスケジュー
ル■を示す曲線図、 および 第3図は比較例2〜4において成形体を処理するスケジ
ュール■を示す曲線図である。 特許出願人  日産自動車株式会社 代理人弁理士  杉  村  暁  査問   弁理士
   杉   村   興   作第1図 第2図 に埋時間C時間)
FIG. 1 is a curve diagram showing the schedule (■) for nitriding and firing the compacts in Example 1 and Examples 2 to 4, FIG. 2 is a curve diagram showing the schedule (■) for treating the compacts in Comparative Example 1, and FIG. 3 is a curve diagram showing schedule (2) for processing molded bodies in Comparative Examples 2 to 4. Patent Applicant: Nissan Motor Co., Ltd. Representative Patent Attorney Akatsuki Sugimura Examiner: Patent Attorney Oki Sugimura Time (C) for Figure 1 and Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 1、珪素粉末に、周期律表第IIa族、第IIIa族、
Zr、Alからなる群から選択する少なくとも1種の元
素の酸化物および/または酸化物前駆物質を添加混合し
て原料混合粉末を得、この原料粉末からなる成形体を1
0気圧以上の窒素雰囲気下で1000〜1500℃の範
囲の温度で処理し、次いで1気圧以上の窒素ガス雰囲気
下で1600〜2200℃の範囲の温度で処理すること
を特徴とする窒化珪素質焼結体の製造方法。
1. Silicon powder contains Group IIa and Group IIIa of the periodic table,
An oxide of at least one element selected from the group consisting of Zr and Al and/or an oxide precursor is added and mixed to obtain a raw material mixed powder, and a molded body made of this raw material powder is
A silicon nitride sintered material characterized by being treated at a temperature in the range of 1000 to 1500°C under a nitrogen atmosphere of 0 atm or more, and then at a temperature in the range of 1600 to 2200°C in a nitrogen gas atmosphere of 1 atm or more. Method for producing solids.
JP61233293A 1986-10-02 1986-10-02 Manufacture of silicon nitride base sintered body Pending JPS6389462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233293A JPS6389462A (en) 1986-10-02 1986-10-02 Manufacture of silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233293A JPS6389462A (en) 1986-10-02 1986-10-02 Manufacture of silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS6389462A true JPS6389462A (en) 1988-04-20

Family

ID=16952832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233293A Pending JPS6389462A (en) 1986-10-02 1986-10-02 Manufacture of silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS6389462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283670A (en) * 1989-04-24 1990-11-21 Shin Etsu Chem Co Ltd Production of sintered silicon nitride having high strength
WO1999011583A1 (en) * 1997-09-03 1999-03-11 Sumitomo Electric Industries, Ltd. Silicon nitride sinter having high thermal conductivity and process for preparing the same
WO2002076908A1 (en) * 2001-03-26 2002-10-03 Ngk Insulators, Ltd. Porous silicon nitride article and method for production thereof
JP2008024579A (en) * 2006-03-31 2008-02-07 National Institute Of Advanced Industrial & Technology Reaction sintered silicon nitride-based composite and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283670A (en) * 1989-04-24 1990-11-21 Shin Etsu Chem Co Ltd Production of sintered silicon nitride having high strength
WO1999011583A1 (en) * 1997-09-03 1999-03-11 Sumitomo Electric Industries, Ltd. Silicon nitride sinter having high thermal conductivity and process for preparing the same
US6143677A (en) * 1997-09-03 2000-11-07 Sumitomo Electric Industries, Ltd. Silicon nitride sinter having high thermal conductivity and process for preparing the same
WO2002076908A1 (en) * 2001-03-26 2002-10-03 Ngk Insulators, Ltd. Porous silicon nitride article and method for production thereof
US6846764B2 (en) 2001-03-26 2005-01-25 Ngk Insulators, Ltd. Silicon nitride porous body and method of manufacturing the same
JP2008024579A (en) * 2006-03-31 2008-02-07 National Institute Of Advanced Industrial & Technology Reaction sintered silicon nitride-based composite and method for producing the same

Similar Documents

Publication Publication Date Title
JPS6152111B2 (en)
JPS6138149B2 (en)
JPH09268072A (en) Production of silicon nitride sintered compact
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JP2742619B2 (en) Silicon nitride sintered body
US5545362A (en) Production method of sintered silicon nitride
JPS6152110B2 (en)
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JP2642429B2 (en) Silicon nitride sintered body and method for producing the same
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
KR950014356B1 (en) Method of manufacturing composite materials of iron-siliconcarbide
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPH01100064A (en) Production of silicon nitride sintered compact
JPH01119563A (en) Production of silicon nitride-based sintered compact
JPS63195170A (en) Manufacture of silicon nitride sintered body
JPS6357388B2 (en)
JPS60186470A (en) Manufacture of silicon nitride sintered body