Nothing Special   »   [go: up one dir, main page]

JP2946593B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP2946593B2
JP2946593B2 JP2020312A JP2031290A JP2946593B2 JP 2946593 B2 JP2946593 B2 JP 2946593B2 JP 2020312 A JP2020312 A JP 2020312A JP 2031290 A JP2031290 A JP 2031290A JP 2946593 B2 JP2946593 B2 JP 2946593B2
Authority
JP
Japan
Prior art keywords
sintered body
less
silicon nitride
hot
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2020312A
Other languages
Japanese (ja)
Other versions
JPH03223168A (en
Inventor
尚登 広崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2020312A priority Critical patent/JP2946593B2/en
Publication of JPH03223168A publication Critical patent/JPH03223168A/en
Application granted granted Critical
Publication of JP2946593B2 publication Critical patent/JP2946593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の目的】[Object of the invention]

(産業上の利用分野) 本発明は、自動車,機械装置,化学装置,宇宙航空機
器などの幅広い分野において使用される各種構造部品の
素材として利用でき、特に優れた高温強度を有するファ
インセラミック材料を得るのに好適なホットプレス(1
軸加圧焼結)窒化珪素質焼結体およびその製造方法に関
するものである。 (従来の技術) 窒化珪素を主成分とする焼結体は、常温および高温で
化学的に安定であり、高い機械的強度を有するため、軸
受などの摺動部材、ターボチャージャロータなどのエン
ジン部材として好適な材料である。 しかし、窒化珪素はこれ単独では焼結が困難であるた
め、通常の場合には、この窒化珪素に、MgO,Al2O3,Y2O3
などの焼結助剤を添加して焼結を行う方法が用いられて
いる(この種の窒化珪素質焼結体の製造方法としては、
特開昭49−63710号,特開昭54−15916号,特開昭60−13
7873号などに開示された多くのものがある。) (発明が解決しようとする課題) しかしながら、上述したような窒化珪素にMgO,Al2O3,
Y2O3などの酸化物を多量に添加して焼成するこによって
得られた従来の窒化珪素質焼結体においては、焼結体中
の粒界に低融点のガラス相を含有しているため、焼結体
の耐クリープ特性,高温強度,耐酸化性などの高温特性
が低下するという課題があった。 これに対し、本発明者は焼結体中に酸素含有量を低減
することによって高温強度が改善されるという知見を得
ており、先の特願昭63−199709号,特願昭1−55923号
として提案を行っている。 しかし、上記焼結体では、酸化物助剤とSiO2の割合に
よっては焼結しにくい組成があり、ガス圧焼結法では緻
密化が困難であるという課題がった。 (発明の目的) 本発明は、上記のような従来の課題に着目してなされ
たものであって、常温のみならず高温における強度特性
に優れており、高温において強度低下が少ない窒化珪素
質焼結体およびその製造方法を提供することを目的とし
ている。
(Industrial application field) The present invention can be used as a material for various structural components used in a wide range of fields such as automobiles, mechanical devices, chemical devices, and aerospace devices. Hot press suitable for obtaining (1
Axial pressure sintering) The present invention relates to a silicon nitride sintered body and a method for producing the same. (Prior Art) A sintered body containing silicon nitride as a main component is chemically stable at normal and high temperatures and has high mechanical strength. Therefore, sliding members such as bearings and engine members such as turbocharger rotors are used. Is a suitable material. However, since silicon nitride is difficult to sinter alone, MgO, Al 2 O 3 , Y 2 O 3
A method of sintering by adding a sintering aid such as this is used (as a method for producing this kind of silicon nitride sintered body,
JP-A-49-63710, JP-A-54-15916, JP-A-60-13
There are many things disclosed in, for example, 7873. (Problems to be Solved by the Invention) However, MgO, Al 2 O 3 ,
A conventional silicon nitride-based sintered body obtained by adding and sintering a large amount of an oxide such as Y 2 O 3 contains a low-melting glass phase at a grain boundary in the sintered body. Therefore, there is a problem that high-temperature characteristics such as creep resistance, high-temperature strength, and oxidation resistance of the sintered body are deteriorated. On the other hand, the present inventor has found that the high-temperature strength is improved by reducing the oxygen content in the sintered body, and has been disclosed in Japanese Patent Application Nos. 63-199709 and 1-55923. No. is proposed. However, in the above sintered body, there is a composition that is difficult to sinter depending on the ratio of the oxide auxiliary and SiO 2 , and there is a problem that it is difficult to achieve the densification by the gas pressure sintering method. (Object of the Invention) The present invention has been made in view of the conventional problems as described above, and has excellent strength characteristics not only at ordinary temperatures but also at high temperatures, and has a small decrease in strength at high temperatures. It is an object of the present invention to provide a body and a method of manufacturing the same.

【発明の構成】Configuration of the Invention

(課題を解決するための手段) 本発明者は、前記提案に引き続き、窒化珪素質焼結体
の高温特性に及ぼす焼結助剤や焼成条件等の影響につい
て鋭意検討した結果、ガス圧焼結法で焼結が困難な組成
であってもホットプレス法によって緻密化することがで
き、さらにこの手法で得られた焼結体ではより一層の高
温強度の向上が可能であることを見い出した。 本発明は、上記知見に基づくものであって、Si3N4
a・Re2O3−b・SiO2(ただし、Re2O3は1種また2種以
上の周期表III a族元素の酸化物)で表わされ、aが0.5
mo%以上5.0mo%以下、bが0.5mo%以上5.0mo
%以下でかつb/(a+b)が0.50以上0.66以下であり、
焼結体中の酸素含有量が2重量%以下、焼結体のかさ密
度が理論密度の95%以上であるホットプレス窒化珪素質
焼結体の構成としたことを特徴としており、このような
ホットプレス窒化珪素質焼結体を製造するにあたって
は、0.3重量%以上4.0重量%以下の酸化珪素を含む窒化
珪素粉末に、1種または2種以上の周期表III a族元素
の酸化物を添加して2気圧以上500気圧以下の窒素雰囲
気下で1800℃以上2200℃以下の温度でかつ100kgf/cm2
上の圧力でホットプレス(hot press;1軸加圧焼結)す
ることにより焼結体のかさ密度が理論密度の95%以上と
なるまで焼成する構成としたものであり、このようなホ
ットプレス窒化珪素質焼結体の製造方法の構成を前述し
た従来の課題を解決するための手段としたことを特徴と
している。 (作用) 以下に、本発明における各構成要件の作用についてそ
れら数値の限定理由などと共にさらに詳細に説明する。 本発明に係わるホットプレス窒化珪素質焼結体は、前
述のように、焼結助剤として添加されて当該焼結体中に
持ち越される周期表III a族元素の酸化物の合計含有量
を0.5mo%以上5.0mo%以下、酸化珪素の含有量を0.
5mo%以上5.0mo%以下とし、かつ焼結体中の全酸化
物に対する酸化珪素のモル比を0.50以上0.66以下の範囲
とすると共に焼結体中の酸素含有量を2重量%以下、か
さ密度を理論密度の95%以上とすることによって、優れ
た高温特性を具備するものにしたことを特徴としてい
る。 ここで、この焼結体中の酸素は、焼結助剤として添加
された前記酸化物と、出発原料である窒化珪素粉末に不
純物として含まれる酸化珪素に由来するものであり、焼
結後の焼結体中に2重量%を越えて存在すると当該焼結
体の高温特性を劣化させるため、焼結体中の酸素含有量
を2重量%以下に限定する必要がある。 また、焼結体の理論密度に対するかさ密度の比を95%
以上としたのは、前記比が95%未満の焼結体は緻密性に
欠け、常温および高温における強度が低下することによ
る。 周期表III a族元素の酸化物は、焼結助剤が焼結体に
持ち越されたものであり、焼結後の焼結体中の含有量の
合計が0.5mo%以上5.0mo%以下となるように出発原
料中に添加混合されねばならない。これは、焼結体中の
前記酸化物の含有量が0.5mo%に満たない場合には焼
結助剤としての効果を発揮することができずに焼結性が
悪くなって緻密な焼結体が得られず、逆に5.0mo%を
越えた場合には焼結性は良好であるものの、該焼結体の
高温特性を悪化させることによる。なお、これらの元素
としては、後述するように、通常はY,La,Nd,Smなどが単
独あるいは複合で用いられる。 さらに、焼結体中の全酸化物に対する酸化珪素(Si
O2)のモル比、すなわちb/(a+b)の値は、粒界相中
の過剰酸化量を決めるもので、前記モル比が0.50未満の
場合および0.66を超えた場合いずれも焼結性は良好であ
るが低融点の液相が生成するため高温強度が十分でな
い。そして、前記モル比が0.50以上0.66以下の組成では
高融点の液相が生成するため焼結性は低下するものの本
発明の製造方法によれば十分に緻密な焼結体が得られ、
より一層の高温強度の向上が可能となる。 本発明に係わる窒化珪素質焼結体では、上記した焼結
体中の酸素含有量,かさ密度,さらに各成分の含有量や
成分比等の条件が満足される限り、出発原料や成形,焼
成などの製造方法に係わる条件については特に問わない
ものであるが、製造方法の一例を述べると、前述したよ
うに、0.3重量%以上4.0重量%以下の酸化珪素を含む窒
化珪素粉末に、1種または2種以上の周期表III a族元
素の酸化物を添加して2気圧以上500気圧以下の窒素雰
囲気下で1800℃以上2200℃以下の温度でかつ100kgf/cm2
以上の圧力でホットプレス(1軸加圧焼結)することに
より前記焼結体のかさ密度が理論密度の95%以上となる
まで焼成する製造方法を採用することができる。 これらのうち窒化珪素中の不純物酸化珪素(SiO2
は、焼結体中の過剰酸素量に影響を及ぼすので最終組成
の条件を満たすように決めなければならに。しかし、最
初に窒化珪素中に含まれていた酸化珪素は、焼成中にSi
Oガスとして飛散する部分があり、しかもその飛散量は
焼成条件などにより変化するため、焼成プロセスにあわ
せて決めなければならないが、0.3重量%以上4.0重量%
以下の範囲が望ましいと言うことができる。なお、窒化
珪素中の酸化珪素含有量が少ないため、最終組成のSiO2
含有量の条件を満たさない場合は、出発原料として酸化
珪素を添加することもできる。 さらに焼結助剤となる出発原料酸化物を構成する周期
表III a族元素としては、Sc,Y,ランタノイド(原子番号
57〜71)などがあるが、通常はこれらのうちY,La,Nd,Sm
などが価格,入手性,取扱い性の都合などにより使用さ
れやすい。そして、この場合の酸化物は、1種類の単独
添加でもよいが、特に助剤量が少ない場合は、焼結性を
向上させるために、2種以上の混合系を用いる方がよ
い。 次いで、これらの混合物をホットプレスにより焼成す
る。この場合に採用するホットプレスの条件は、2気圧
以上500気圧以下の窒素雰囲気下で1800℃以上2200℃以
下の温度でかつ100kgf/cm2以上の圧力でホットプレス
(1軸加圧焼結)することにより焼結体のかさ密度が95
%以上になるまで行う。 このとき、窒素雰囲気が2気圧未満では Si3N4→3Si+2N2 の反応により窒化珪素が分解するため緻密な焼結体が得
られない。また、500気圧を越える圧力では閉気孔中に
高圧ガスが閉じ込められるため終期焼結が阻害されて緻
密な焼結体は得られなくなる。したがって、窒素雰囲気
における圧力は2気圧以上500気圧以下とし、ホットプ
レス(1軸加圧焼結)の際の圧力は100kgf/cm2以上の圧
力で行う。このとき、圧力が100kgf/cm2よりも低いと焼
結促進の効果が少ないので好ましくない。さらにこの際
の温度は1800℃以上2200℃以下とするが、焼結温度が18
00℃よりも低いと緻密化は促進されず、2200℃を越える
と粒成長のため強度が低下するので好ましくない。 (実施例) 実施例1〜5 平均粒径が1.0μm、酸化珪素含有量が1.5重量%であ
る窒化珪素粉末に、第1表の実施例1〜5に示した混合
物組成となるように周期表III a族元素の酸化物を焼結
助剤として添加して、エタノール中で24時間ボールミル
混合を行い、乾燥の後、黒鉛型に入れて同じく第1表に
示したホットプレス条件でホットプレスを行った。 ここで得られた焼結体の組成を第2表に示す。 さらに前記各焼結体を3×4×40mmの形状にダイヤモ
ンドホイールで研削加工し、各焼結体の密度を測定する
と共に室温および1400℃でスパン30mmの3点曲げ試験を
行って強度を測定した。これらの結果を同じく第2表に
示す。 第2表に示すように、この実施例で得られた各焼結体
はいずれも密度が95%以上であり、室温における強度が
大であると共に、高温における強度が低下したい高温特
性の優れた焼結体であることが確認された。 比較例1,2 比較例1,2においては第1表のそれぞれ比較例1,2の欄
に示すように周期表III a族元素の酸化物の合計が0.5mo
%と少なめにしたほかは実施例1と同様にして混合
し、同じく第1表の比較例1,2の欄に示すホットプレス
条件でホットプレスを行った。 ここで得られた焼結体の組成を第2表に示す。 また、各焼結体の密度,常温強度および高温強度を前
記実施例と同様にして調べたところ、同じく第2表に示
す結果であった。 第2表に示すように、比較例1,2の焼結体では焼結体
中の全酸化物に対する酸化珪素の割合が多すぎるため、
高温で強度の低下を生ずるものであることが認められ
た。 比較例3 第1表の実施例1の欄に示した混合物組成よりなる混
合粉末を200kgf/cm2の圧力で金型成形したのち、2000kg
f/cm2の圧力でラバープレス成形を行って成形対を作製
し、次いで前記成形体を10気圧の窒素ガス圧下で1900℃
で1時間焼成した。 そして、得られた焼結体のかさ密度は理論密度の90%
であり、室温強度は450MPaであった。また、1400℃にお
ける高温強度を調べたところ、320MPaであった。 このように、0.50≦b/(a+b)≦0.66の組成におい
て通常のガス圧焼結法では緻密な焼結体を得ることがで
きなかった。 比較例4 第1表の実施例1の欄に示した混合物組成よりなる混
合粉末を黒鉛型に入れて1900℃で1気圧の窒素ガス圧下
で200kgf/cm2の加圧力で1時間ホットプレスを行って焼
結体を得た。 ここで得られた焼結体は熱分解を起して金属Siが生成
することにより緻密化しなかった。
(Means for Solving the Problems) Following the above proposal, the present inventor conducted intensive studies on the effects of sintering aids, sintering conditions, and the like on the high-temperature characteristics of the silicon nitride sintered body. It has been found that even a composition that is difficult to sinter by the method can be densified by the hot press method, and that the sintered body obtained by this method can further improve the high-temperature strength. The present invention is based on the above findings, and is based on Si 3 N 4
a · Re 2 O 3 -b · SiO 2 ( provided that, Re 2 O 3 is one also oxides of two or more of the periodic table III a group element) is represented by, a 0.5
mo% or more and 5.0mo% or less, b is 0.5mo% or more and 5.0mo
% And b / (a + b) is 0.50 or more and 0.66 or less,
The hot-pressed silicon nitride-based sintered body is characterized in that the oxygen content in the sintered body is 2% by weight or less and the bulk density of the sintered body is 95% or more of the theoretical density. In producing a hot-pressed silicon nitride sintered body, one or more oxides of Group IIIa element of the periodic table are added to a silicon nitride powder containing 0.3% by weight or more and 4.0% by weight or less of silicon oxide. And sintered under a nitrogen atmosphere of 2 to 500 atm at a temperature of 1800 to 2200 ° C and a pressure of 100 kgf / cm 2 or more by hot press (uniaxial pressure sintering). And a method for producing such a hot-pressed silicon nitride-based sintered body by means of a method for solving the above-mentioned conventional problems. It is characterized by having. (Operation) Hereinafter, the operation of each component in the present invention will be described in more detail together with the reasons for limiting the numerical values and the like. As described above, the hot-pressed silicon nitride-based sintered body according to the present invention has a total content of the oxide of the Group IIIa element in the periodic table IIIa added as a sintering aid and carried over into the sintered body by 0.5. mo% or more and 5.0mo% or less, the content of silicon oxide is set to 0.
5 mol% to 5.0 mol%, the molar ratio of silicon oxide to all oxides in the sintered body is in the range of 0.50 to 0.66, the oxygen content in the sintered body is 2 wt% or less, and the bulk density is Is set to 95% or more of the theoretical density to thereby provide excellent high-temperature characteristics. Here, the oxygen in the sintered body is derived from the oxide added as a sintering aid and the silicon oxide contained as an impurity in the silicon nitride powder as a starting material. If the content exceeds 2% by weight in the sintered body, the high-temperature characteristics of the sintered body are deteriorated. Therefore, it is necessary to limit the oxygen content in the sintered body to 2% by weight or less. In addition, the ratio of the bulk density to the theoretical density of the sintered body is 95%
The reason for the above is that the sintered body having the ratio of less than 95% lacks denseness and the strength at room temperature and high temperature is reduced. The oxides of Group IIIa elements of the Periodic Table are those in which the sintering aid is carried over to the sintered body, and the total content of the sintered body after sintering is 0.5 mol% or more and 5.0 mol% or less. Must be added to and mixed with the starting materials. This is because when the content of the oxide in the sintered body is less than 0.5% by mole, the effect as a sintering aid cannot be exerted and the sinterability deteriorates, resulting in a dense sintering. If a sintered body is not obtained, and if it exceeds 5.0% by mole, sinterability is good, but the high temperature characteristics of the sintered body are deteriorated. As these elements, Y, La, Nd, Sm, etc. are usually used alone or in combination as described later. Furthermore, silicon oxide (Si) for all oxides in the sintered body
The molar ratio of O 2 ), that is, the value of b / (a + b), determines the amount of excessive oxidation in the grain boundary phase. When the molar ratio is less than 0.50 or more than 0.66, the sinterability is low. Although good, a high-temperature strength is not sufficient because a liquid phase having a low melting point is generated. And, in the composition having a molar ratio of 0.50 or more and 0.66 or less, although a high melting point liquid phase is generated, sinterability is reduced, but a sufficiently dense sintered body is obtained according to the production method of the present invention,
It is possible to further improve the high-temperature strength. In the silicon nitride-based sintered body according to the present invention, as long as the conditions such as the oxygen content and the bulk density in the above-described sintered body, and the contents and the component ratios of the respective components are satisfied, the starting material, the forming, and the firing are performed. Although there is no particular limitation on the conditions for the production method such as, for example, as described above, one kind of silicon nitride powder containing 0.3% by weight or more and 4.0% by weight or less of silicon oxide is used as described above. Alternatively, two or more kinds of oxides of Group IIIa elements are added, and a temperature of 1800 ° C. to 2200 ° C. and 100 kgf / cm 2 in a nitrogen atmosphere of 2 to 500 atm.
By performing hot pressing (uniaxial pressure sintering) at the above pressure, a manufacturing method in which the sintered body is fired until the bulk density becomes 95% or more of the theoretical density can be adopted. Of these, impurity silicon oxide (SiO 2 ) in silicon nitride
Must be determined to satisfy the condition of the final composition because it affects the amount of excess oxygen in the sintered body. However, the silicon oxide initially contained in the silicon nitride became
Since there is a portion that scatters as O gas, and the amount of the scatter varies depending on the firing conditions, it must be determined according to the firing process.
The following ranges can be said to be desirable. Since the silicon oxide content in silicon nitride is low, the final composition of SiO 2
When the content condition is not satisfied, silicon oxide can be added as a starting material. Further, Sc, Y, lanthanoids (atomic numbers)
57-71), but usually Y, La, Nd, Sm
Are easily used due to the price, availability, and handling convenience. In this case, one kind of the oxide may be added alone, but particularly when the amount of the auxiliary agent is small, it is better to use a mixture of two or more kinds in order to improve the sinterability. Next, the mixture is fired by hot pressing. The hot pressing conditions used in this case are hot pressing (uniaxial pressure sintering) at a temperature of 1800 ° C to 2200 ° C and a pressure of 100 kgf / cm 2 or more in a nitrogen atmosphere of 2 to 500 atm. By doing so, the bulk density of the sintered body becomes 95
Perform until the concentration reaches at least%. At this time, if the nitrogen atmosphere is less than 2 atm, a dense sintered body cannot be obtained because silicon nitride is decomposed by a reaction of Si 3 N 4 → 3Si + 2N 2 . If the pressure exceeds 500 atm, high-pressure gas is confined in the closed pores, so that final sintering is hindered and a dense sintered body cannot be obtained. Therefore, the pressure in a nitrogen atmosphere is set to 2 atm or more and 500 atm or less, and the pressure at the time of hot pressing (uniaxial pressure sintering) is set to 100 kgf / cm 2 or more. At this time, if the pressure is lower than 100 kgf / cm 2 , the effect of accelerating sintering is small, which is not preferable. In addition, the temperature at this time is 1800 ° C or more and 2200 ° C or less, but the sintering temperature is 18
If the temperature is lower than 00 ° C., densification is not promoted, and if it exceeds 2200 ° C., the strength is lowered due to grain growth, which is not preferable. (Examples) Examples 1 to 5 Periodically, a silicon nitride powder having an average particle size of 1.0 μm and a silicon oxide content of 1.5% by weight was to have a mixture composition shown in Examples 1 to 5 in Table 1. Table III Addition of an oxide of Group a element as a sintering aid, ball mill mixing in ethanol for 24 hours, drying, placing in graphite mold and hot pressing under hot pressing conditions also shown in Table 1 Was done. Table 2 shows the composition of the sintered body obtained here. Each of the sintered bodies was ground to a shape of 3 × 4 × 40 mm with a diamond wheel, and the density of each sintered body was measured. At the same time, the strength was measured by performing a three-point bending test with a span of 30 mm at room temperature and 1400 ° C. did. These results are also shown in Table 2. As shown in Table 2, each of the sintered bodies obtained in this example had a density of 95% or more, had high strength at room temperature, and had excellent high-temperature characteristics in which the strength at high temperature was desired to decrease. It was confirmed that it was a sintered body. Comparative Examples 1 and 2 In Comparative Examples 1 and 2, as shown in the columns of Comparative Examples 1 and 2 in Table 1, the total of the oxides of the Group IIIa element in the periodic table was 0.5 mol.
%, And mixed in the same manner as in Example 1, except that the mixture was hot-pressed under the hot-press conditions shown in Comparative Examples 1 and 2 in Table 1. Table 2 shows the composition of the sintered body obtained here. Further, the density, room temperature strength, and high temperature strength of each sintered body were examined in the same manner as in the above example, and the results are shown in Table 2. As shown in Table 2, in the sintered bodies of Comparative Examples 1 and 2, the ratio of silicon oxide to the total oxides in the sintered bodies was too large.
It was found that the strength decreased at high temperatures. Comparative Example 3 A mixed powder having the mixture composition shown in the column of Example 1 in Table 1 was subjected to die molding at a pressure of 200 kgf / cm 2 , and then 2,000 kg.
A molded pair was prepared by performing rubber press molding at a pressure of f / cm 2 , and then the molded body was heated at 1900 ° C. under a nitrogen gas pressure of 10 atm.
For 1 hour. The bulk density of the obtained sintered body is 90% of the theoretical density.
And the room temperature strength was 450 MPa. When the high-temperature strength at 1400 ° C. was examined, it was 320 MPa. Thus, a dense sintered body could not be obtained by the ordinary gas pressure sintering method in the composition of 0.50 ≦ b / (a + b) ≦ 0.66. Comparative Example 4 A mixed powder having the mixture composition shown in the column of Example 1 in Table 1 was placed in a graphite mold and hot-pressed at 1900 ° C. under a nitrogen gas pressure of 1 atm under a pressure of 200 kgf / cm 2 for 1 hour. Performed to obtain a sintered body. The sintered body obtained here did not densify due to the generation of metallic Si due to thermal decomposition.

【発明の効果】【The invention's effect】

以上説明してきたように、本発明に係わるホットプレ
ス窒化珪素質焼結体は、Si3N4−a・Re2O3−b・SiO
2(ただし、Re2O3は1種また2種以上の周期表III a族
元素の酸化物)で表わされ、aが0.5mo%以上5.0mo
%以下,bが0.5mo%以上5.0mo%以下でかつb/(a+
b)が0.50以上0.66以下であり、焼結体中の酸素含有量
が2重量%以下、焼結体のかさ密度が理論密度の95%以
上である構成としたものであるから、室温のみならず、
高温における強度の低下が少なく、耐クリープ特性,高
温強度,耐熱性,耐酸化性などの高温特性に優れたファ
インセラミック材料であって、高温で使用される各種構
造物品の素材として好適なものであり、これら各種構造
物品の軽量化に大きく貢献するものである。
As described above, the hot-pressed silicon nitride-based sintered body according to the present invention is formed of Si 3 N 4 -a.Re 2 O 3 -b.SiO
2 (where Re 2 O 3 is one or more oxides of Group IIIa elements of the Periodic Table III), and a is 0.5 mol% or more and 5.0 mol% or more.
% Or less, b is 0.5mo% or more and 5.0mo% or less and b / (a +
b) is 0.50 or more and 0.66 or less, the oxygen content in the sintered body is 2% by weight or less, and the bulk density of the sintered body is 95% or more of the theoretical density. Without
It is a fine ceramic material that has a small decrease in strength at high temperatures and has excellent high temperature properties such as creep resistance, high temperature strength, heat resistance, and oxidation resistance, and is suitable as a material for various structural articles used at high temperatures. It greatly contributes to weight reduction of these various structural articles.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】次式、Si3N4−a・Re2O3−b・SiO2(ただ
し、Re2O3は1種また2種以上の周期表III a族元素の酸
化物)で表わされ、aが0.5mo%以上5.0mo%以下、
bが0.5mo%以上5.0mo%以下でかつb/(a+b)が
0.50以上0.66以下であり、焼結体中の酸素含有量が2重
量%以下、焼結体のかさ密度が理論密度の95%以上であ
ることを特徴とするホットプレス窒化珪素質焼結体。
1. The following formula: Si 3 N 4 -a.Re 2 O 3 -b.SiO 2 (where Re 2 O 3 is one or more oxides of Group IIIa elements of the periodic table) Where a is 0.5mo% or more and 5.0mo% or less,
b is 0.5mo% or more and 5.0mo% or less and b / (a + b) is
A hot-pressed silicon nitride sintered body characterized in that the sintered body has an oxygen content of 0.5% or more and 0.66 or less, the oxygen content in the sintered body is 2% by weight or less, and the bulk density of the sintered body is 95% or more of the theoretical density.
【請求項2】焼結体中の酸素含有量が1.40重量%以下で
あることを特徴とする請求項1記載のホットプレス窒化
珪素質焼結体。
2. The hot-pressed silicon nitride sintered body according to claim 1, wherein the sintered body has an oxygen content of 1.40% by weight or less.
【請求項3】0.3重量%以上4.0重量%以下の酸化珪素を
含む窒化珪素粉末に、1種または2種以上の周期表III
a族元素の酸化物を添加して2気圧以上500気圧以下の窒
素雰囲気下で1800℃以上2200℃以下の温度でかつ100kgf
/cm2以上の圧力でホットプレスすることにより焼結体の
かさ密度が理論密度の95%以上となるまで焼成すること
を特徴とする請求項1記載のホットプレス窒素珪素質焼
結体の製造方法。
3. A method according to claim 1, wherein said silicon nitride powder contains 0.3% by weight or more and 4.0% by weight or less of silicon oxide.
100 kgf at a temperature of 1800 ° C or more and 2200 ° C or less under a nitrogen atmosphere of 2 atm or more and 500 atm or less by adding an oxide of a group a element
2. The hot-pressed silicon nitride sintered body according to claim 1, wherein the sintered body is fired by hot pressing at a pressure of not less than / cm 2 until the bulk density of the sintered body becomes 95% or more of the theoretical density. Method.
JP2020312A 1990-01-29 1990-01-29 Silicon nitride sintered body and method for producing the same Expired - Lifetime JP2946593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020312A JP2946593B2 (en) 1990-01-29 1990-01-29 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020312A JP2946593B2 (en) 1990-01-29 1990-01-29 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03223168A JPH03223168A (en) 1991-10-02
JP2946593B2 true JP2946593B2 (en) 1999-09-06

Family

ID=12023620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020312A Expired - Lifetime JP2946593B2 (en) 1990-01-29 1990-01-29 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2946593B2 (en)

Also Published As

Publication number Publication date
JPH03223168A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JPH0826815A (en) Rare earth complex oxide-based sintered body and method for producing the same
JPH07330436A (en) Silicon nitride heat resistant member and method for manufacturing the same
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2970131B2 (en) Method for producing silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP2642429B2 (en) Silicon nitride sintered body and method for producing the same
JPH06345535A (en) Production of silicon nitride sintered compact
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JPH07110788B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2734755B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2720201B2 (en) Method for producing silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH07215768A (en) Silicon nitride sintered compact and its production
JPH0840774A (en) Silicon nitride sintered body
JPH05238829A (en) Sintered silicone nitride ceramic
JPH06116038A (en) Production of silicon nitride-silicon carbide composite sintered compact