Nothing Special   »   [go: up one dir, main page]

JP2617306B2 - Manufacturing method of superconducting device - Google Patents

Manufacturing method of superconducting device

Info

Publication number
JP2617306B2
JP2617306B2 JP62067028A JP6702887A JP2617306B2 JP 2617306 B2 JP2617306 B2 JP 2617306B2 JP 62067028 A JP62067028 A JP 62067028A JP 6702887 A JP6702887 A JP 6702887A JP 2617306 B2 JP2617306 B2 JP 2617306B2
Authority
JP
Japan
Prior art keywords
superconducting
hollow
superconducting device
ceramic
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62067028A
Other languages
Japanese (ja)
Other versions
JPS63232405A (en
Inventor
舜平 山崎
Original Assignee
株式会社 半導体エネルギ−研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 半導体エネルギ−研究所 filed Critical 株式会社 半導体エネルギ−研究所
Priority to JP62067028A priority Critical patent/JP2617306B2/en
Publication of JPS63232405A publication Critical patent/JPS63232405A/en
Priority to JP3125245A priority patent/JPH0628210B2/en
Priority to JP3297945A priority patent/JPH0628211B2/en
Application granted granted Critical
Publication of JP2617306B2 publication Critical patent/JP2617306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、セラミック系超電導材料を利用した超電導
装置の作製方法に関する。
The present invention relates to a method for manufacturing a superconducting device using a ceramic superconducting material.

「従来の技術」 従来、超電導材料はNb−Ge(例えばNb3Ge)等の金属
材料が用いられている。この材料は金属であるため、延
性、展性または曲げ性を高く有し、超電導マグネット用
コイル、また電力蓄積用コイルとして用いることが可能
である。
"Background of the Invention" Conventionally, superconducting material metal material such as Nb-Ge (e.g. Nb 3 Ge) is used. Since this material is a metal, it has high ductility, malleability, or bendability, and can be used as a coil for a superconducting magnet or a coil for power storage.

しかし、この金属の超電導材料はTc(超電導臨界温度
を以下Tcという)オンセットが小さく、23Kまたはそれ
以下でしかなかった。しかしその工業的応用を考えるな
らば、このTcが100Kまたはそれ以上を有し、Tco(電気
抵抗が零となる温度)が液体窒素温度である77Kまたは
それ以上であることがきわめて重要である。
However, the superconducting material of this metal had a small onset of Tc (superconducting critical temperature, hereinafter referred to as Tc), and was only 23K or less. However, considering its industrial application, it is very important that this Tc has a temperature of 100 K or more, and that Tco (temperature at which the electric resistance becomes zero) is 77 K or more, which is the temperature of liquid nitrogen.

最近、かかる超電導材料として、銅の酸化物セラミッ
ク材料が注目されている。しかしこの銅の酸化物セラミ
ックスは延性、展性および曲げ性に乏しい。加えて成型
した後の加工がきわめて困難であるという他の欠点を有
する。
Recently, copper oxide ceramic materials have attracted attention as such superconducting materials. However, this copper oxide ceramic has poor ductility, malleability and bendability. In addition, it has another disadvantage that processing after molding is extremely difficult.

「従来の問題点」 このため、銅の酸化物セラミックスを用いて、任意の
形状の超電導装置を作製することは、従来は困難であっ
た。加えて、超電導セラミックスを機械的に金属で補強
する手段も構造も知られていない。
"Conventional Problems" For this reason, it has been conventionally difficult to fabricate a superconducting device having an arbitrary shape using copper oxide ceramics. In addition, there is no known means or structure for mechanically reinforcing superconducting ceramics with metal.

「問題を解決すべき手段」 本発明の超電導装置の作製方法は、中空金属支持体の
内壁に銅の酸化物の超電導セラミックス粉末の溶液をコ
ーティングする工程と、前記溶液がコーティングされた
中空金属支持体を酸化雰囲気中において加熱する工程
と、前記一連の工程を複数回繰り返す工程とを有するこ
とを特徴とする。
"Means for Solving the Problem" A method for manufacturing a superconducting device of the present invention comprises a step of coating a solution of a superconducting ceramic powder of copper oxide on an inner wall of a hollow metal support, and a step of coating a hollow metal support coated with the solution. The method includes a step of heating the body in an oxidizing atmosphere, and a step of repeating the series of steps a plurality of times.

本発明超電導装置の作製方法によって作製された超電
導装置は、セラミックスに金属または金属化合物の支持
体を添わしめているので、機械的強度に加えて、このセ
ラミックスが非超電導状態になった時も電流を流し得る
手段となし得る。この中空の支持体の内部に超電導セラ
ミック材料となるべき材料を混合または溶かした、また
はゲル状にした溶液を中空パイプの一方を一次的に塞い
で他方より注入する。
Since the superconducting device manufactured by the method for manufacturing a superconducting device of the present invention has a ceramic or a metal compound support attached to ceramics, in addition to the mechanical strength, the superconducting device also generates a current even when the ceramics enters a non-superconducting state. It can be a means of shedding. A solution in which a material to be a superconducting ceramic material is mixed or dissolved, or gelled, is injected into the hollow support from one side by temporarily closing one of the hollow pipes.

次にこの中空パイプ全体を加熱し、液体成分である溶
媒全体を気化して除去する。するとこの超電導セラミッ
ク材料は中空パイプの内壁にコーティングされる。これ
を加熱し、焼成させるとともに、酸化または還元を繰り
返し行うことにより、超電導性を有するセラミック材
料、例えば銅の酸化物セラミックスである(A1-XBx)yC
uOz x=0.01〜0.3,y=1.3〜2.2,z=2.0〜4.5で示され
る分子構造を有し、AがY(イットリューム),Ga(ガ
リューム),Zr(ジルコニューム),Nb(ニオブ),Ge
(ゲルマニューム),Yb(イッテルビューム)またはそ
の他のランタノイドより1つまたは複数種選ばれ、Bは
Ra(ラジューム),Ba(バリューム)またはSr(ストロ
ンチューム),Ca(カルシューム),Mg(マグネシュー
ム),Be(ベリリューム)より1つまたは複数種選ば
れ、セラミックスを形成する。
Next, the entire hollow pipe is heated to vaporize and remove the entire solvent as a liquid component. Then, the superconducting ceramic material is coated on the inner wall of the hollow pipe. This is heated, fired, and repeatedly oxidized or reduced to produce a ceramic material having superconductivity, for example, a copper oxide ceramic (A 1-X Bx) yC
uOz x = 0.01-0.3, y = 1.3-2.2, z = 2.0-4.5, where A is Y (yttrium), Ga (gallium), Zr (zirconium), Nb (niobium), Ge
(Germanum), one or more selected from Yb (Ytterbum) or other lanthanoids, B is
One or more types are selected from Ra (Radium), Ba (Value) or Sr (Strontium), Ca (Calcium), Mg (Magnesium), and Be (Beryllium) to form ceramics.

本発明で用いられるセラミックスは上記以外の元素を
A,Bまたは添加不純物として加えることが可能である。
The ceramic used in the present invention contains elements other than the above.
It is possible to add as A, B or additional impurities.

本発明においては、中空金属支持体の内壁に第1の層
として超電導セラミック材料がコーティングされるが、
さらにその上側にこの第1の層のセラミック材料を十分
固化した後、第2層のセラミック材料をコーティングす
べく、同一工程を繰り返すものである。この場合、それ
ぞれのコーティング層でAまたはBの種類、X,Y,Zの値
の一部を変更してもよい。
In the present invention, the inner wall of the hollow metal support is coated with a superconducting ceramic material as a first layer.
After the ceramic material of the first layer is sufficiently solidified thereon, the same process is repeated to coat the ceramic material of the second layer. In this case, the type of A or B and a part of the values of X, Y, and Z may be changed in each coating layer.

本発明において、さらにこれを繰り返して多層構造と
してもよいことはいうまでもない。
In the present invention, it goes without saying that this may be repeated to form a multilayer structure.

「作用」 本発明の超電導装置の作製方法で作製された超電導装
置により、初めて安価な大電力用バッテリを作ることが
可能となった。
[Operation] With the superconducting device manufactured by the method for manufacturing a superconducting device of the present invention, an inexpensive high-power battery can be manufactured for the first time.

特にその応用として、太陽電池等の光電変換装置で発
電した電気エネルギを蓄積させ得る。さらにこの超電導
装置が需要地と数百〜数千Kmも離れている場合、この超
電導装置に電気エネルギを充電して、それをトラック、
船等により輸送することにより、電気エネルギという目
に見えないエネルギを移送し得る。かつ本発明により作
製された超電導装置は化学反応を用いないため、長期使
用においても何らの化学的な劣化もない。
In particular, as an application thereof, electric energy generated by a photoelectric conversion device such as a solar cell can be stored. Furthermore, when the superconducting device is located hundreds to thousands of kilometers away from the place of demand, the superconducting device is charged with electric energy and is used for trucks,
By transporting by ship or the like, invisible energy called electric energy can be transferred. In addition, since the superconducting device manufactured according to the present invention does not use a chemical reaction, there is no chemical deterioration even in long-term use.

また、本発明によって作製されたコイル状の超電導装
置の始点と終点を互いに電気的に抵抗が零であるセラミ
ックスで連結することにより、エンドレスコイルとし得
る。このコイルは電流損失のないコイル、即ち電気エネ
ルギを蓄積できる超電導装置として用いることが可能と
なる。
An endless coil can be obtained by connecting the start point and the end point of the coil-shaped superconducting device manufactured according to the present invention to each other with ceramics having zero electrical resistance. This coil can be used as a coil having no current loss, that is, a superconducting device capable of storing electric energy.

以下図面に従って本発明の実施例を示す。 Embodiments of the present invention will be described below with reference to the drawings.

「実施例1」 この実施例では(A1-XBx)yCuOzにおいてAとしてY
をY2O3,BとしてBaをBaCO3またはCuとしてCuOを用いた。
それぞれ高純度化学社製の99.95%以上のものを用い
た。これらをx=0.05,x=0.075及びx=0.1,y=1.8,y
=2.0,y=2.2とした。これらを混合して9種類の混合物
を作った。これらを一度、kg/cm2の圧力で加圧しタブレ
ットとし700℃、3時間さらに1000℃10時間で大気中で
仮焼成した。さらにこれらを再び粉砕した。そしてその
平均粒径が100μm以下、例えば10μm程度となるよう
にした。この混合物をカプセル内に封入し、再びこれを
5kg/cm2の圧力でパレスし、タブレット状とした。そし
てこれを1000℃、10時間酸化性雰囲気例えば大気中で本
焼成した。するとこの構造はペルプスカイト構造もみら
れるが、変形H2NiF4型がX線解析像から観察された。
"Example 1" In this example, in (A 1-X Bx) yCuOz, A is Y
Was used as Y 2 O 3 , B as BaCO 3 as Ba or CuO as Cu.
Each used 99.95% or more of high purity chemical company. These are x = 0.05, x = 0.075 and x = 0.1, y = 1.8, y
= 2.0 and y = 2.2. These were mixed to form nine types of mixtures. These were once pressurized at a pressure of kg / cm 2 to form tablets, and calcined in air at 700 ° C. for 3 hours and 1000 ° C. for 10 hours. These were further ground again. The average particle size was adjusted to 100 μm or less, for example, about 10 μm. This mixture is encapsulated in a capsule and again
It was palace at a pressure of 5 kg / cm 2 to form a tablet. This was fired at 1000 ° C. for 10 hours in an oxidizing atmosphere, for example, in the air. Then, although this structure also had a perpsite structure, a modified H 2 NiF 4 type was observed from the X-ray analysis image.

次にこの本焼成したTcオンセットが40K以上好ましく
は90K,Tcoが好ましくは77K以上あることを電圧−電流−
温度特性より確認する。
Next, the voltage-current-confirmed that the fully fired Tc onset was 40K or more, preferably 90K, and Tco was preferably 77K or more.
Check from the temperature characteristics.

再びこのタブレットを微粉末とした。そしてこの平均
粒径が100μm以下〜5μm例えば30μmになるように
した。この工程において、この粉砕の際、その結晶構造
が基本的に破壊しないように努めた。
This tablet was again made into a fine powder. The average particle size was adjusted to 100 μm or less to 5 μm, for example, 30 μm. In this step, an attempt was made to basically prevent the crystal structure from being destroyed during the pulverization.

この粉末を液体、例えばフロン液またはアルコール例
えばエタノールその他の液体中に混合、または溶かし
た。
This powder was mixed or dissolved in a liquid, for example, a Freon liquid or an alcohol, for example, ethanol or another liquid.

この溶液を中空の支持体である第1図に示した金属パ
イプ(2)、例えば銅または銅の化合物(例えばNiCu化
合物)の内部に他方を塞いで注いだ。このパイプをセラ
ミック粒子が内壁に均一な厚さに付着すべく回転、上下
振動をしつつ全体を100〜400℃の温度に加熱した。
This solution was poured into a hollow support such as a metal pipe (2) shown in FIG. 1, for example, copper or a copper compound (for example, a NiCu compound), with the other plugged. The entire pipe was heated to a temperature of 100 to 400 ° C. while rotating and vertically vibrating so that the ceramic particles adhered to the inner wall to a uniform thickness.

かくしてこの中空パイプの内部の溶媒を除去すること
ができ、その内壁にセラミック粒をコーティング(3)
した。
Thus, the solvent inside the hollow pipe can be removed, and the inner wall thereof is coated with ceramic particles (3).
did.

この時内壁とより密着させやすくするため、エポキシ
系、アクリル系の樹脂を溶かした溶媒、例えばトルエン
等を用いてもよい。
At this time, a solvent in which an epoxy-based or acrylic-based resin is dissolved, for example, toluene or the like may be used to make the inner wall more easily adhered.

この後この内壁に付着し乾燥させたセラミックスに対
して、その中空部に酸素または酸素とアルゴンの混合気
体を導入して、酸化させつつ500〜1100℃、例えば600℃
3時間さらに800℃5時間の加熱焼成を行った。
Thereafter, for the ceramic adhered to the inner wall and dried, oxygen or a mixed gas of oxygen and argon is introduced into the hollow portion thereof, and oxidized at 500 to 1100 ° C., for example, 600 ° C.
The heating and firing were performed at 800 ° C. for 5 hours for 3 hours.

かかる工程をさらに1〜5回繰り返すことにより、こ
のセラミック材を50μm〜1cm(代表的には0.5〜5mm)
の平均厚さにパイプ内に付着させることが可能となっ
た。かくして第1図に示す如き中空支持体(2)の内側
に超電導セラミックス(3)を中空(4)を有して本発
明の超電導セラミックスを用いたパイプ(1)を作るこ
とができた。
By repeating this process 1 to 5 times, the ceramic material is reduced to 50 μm to 1 cm (typically 0.5 to 5 mm).
It has become possible to adhere the inside of the pipe to an average thickness of. Thus, as shown in FIG. 1, a pipe (1) using the superconducting ceramics of the present invention having the hollow (4) with the superconducting ceramics (3) inside the hollow support (2) could be produced.

この実施例において、パイプは円環型中空支持体を用
いた。しかしその形状は角型中空支持体を用いてもよ
い。また他の形とすることも可能である。
In this example, the pipe used was an annular hollow support. However, the shape may be a square hollow support. Other shapes are also possible.

かかる超電導セラミックパイプにおいて、Tcはタブレ
ット等で作られた時のTcよりは5〜20K低い値となって
しまった。しかしこれは初期のタブレットでのTcを向上
させるとともに改良が可能である。
In such a superconducting ceramic pipe, Tc was 5 to 20 K lower than Tc when made with a tablet or the like. However, this can be improved as well as increasing the Tc on earlier tablets.

本発明はかかるセラミックスを用いてエンドレスコイ
ル構造の電力を蓄積できる超電導装置を作った。
According to the present invention, a superconducting device capable of storing power of an endless coil structure using such ceramics has been manufactured.

第2図にその縦断面図を示す。このエンドレスコイル
は太陽電池等で発電した電気エネルギのバッテリとして
用いることができる。
FIG. 2 shows a longitudinal sectional view thereof. This endless coil can be used as a battery for electric energy generated by a solar cell or the like.

図面より明らかなごとく、予め中空を実施例1と同様
に有するパイプをコイル(7)形状に作る。さらにこの
始点(5),終点(6)も同様に中空パイプ(9)で連
結する。このエンドレスコイルは注入口(8)を有す
る。この注入口は電気エネルギの入力および出力端子と
して用いることができる。
As is clear from the drawing, a pipe having a hollow in the same manner as in the first embodiment is formed in a coil (7) shape. Further, the start point (5) and the end point (6) are similarly connected by a hollow pipe (9). This endless coil has an inlet (8). This inlet can be used as an input and output terminal for electrical energy.

ここに実施例1と同様の方法で超電導セラミックスを
混合またはとかした溶液を注ぎ込む。
A solution in which superconducting ceramics are mixed or melted is poured in the same manner as in Example 1.

これを乾燥し、不要溶媒を気体として(8),
(8′)より放出し、パイプの内部を乾燥させる。さら
に実施例1と同様に酸化物気体を導入し、セラミックス
を乾燥させる。
This is dried and the unnecessary solvent is converted into a gas (8)
(8 '), and the inside of the pipe is dried. Further, an oxide gas is introduced as in Example 1, and the ceramic is dried.

かくして内部が中空、かつその内壁に超電導セラミッ
クスがコーティングされたパイプ(1)を用いたエンド
レスコイル(7)を作ることができた。このTcoは実験
では45Kであった。しかし超電導材料の選択によりTcoを
向上させ得る。また、この中空部に液体水素を導入する
ことにより、このエンドレスコイルをして抵抗零の閉回
路を作る例とし得たため、電気エネルギ蓄積装置として
用いることができた。この実施例において、電気エネル
ギの入力、出力部には失電力用ダイオードを設け、充
電、放電させた時に無限大の電流が流れないようにし
た。
Thus, an endless coil (7) using a pipe (1) having a hollow inside and a superconducting ceramics coated on the inner wall could be produced. This Tco was 45K in the experiment. However, the choice of superconducting material can improve Tco. Further, by introducing liquid hydrogen into the hollow portion, the endless coil was used to form a closed circuit with zero resistance, so that it could be used as an electric energy storage device. In this embodiment, a power loss diode is provided at the input and output portions of the electric energy so that an infinite current does not flow when charged and discharged.

「実施例2」 この実施例は(A1-XBx)yCuOz・(A1-X′B′x′)
y′Cuz′において、AとしてYb、B,B′としてBaおよび
Srを用いた。x,x′として0.075,y,y′として2.0を調整
した。するとパイプ形状とした後もTcoを74Kに保つこと
ができた。その他は実施例1と同様である。
Example 2 This example uses (A 1 -X Bx) yCuOz · (A 1 -X′B′x ′)
In y'Cuz ', A is Yb, B and B' are Ba and
Sr was used. x, x 'was adjusted to 0.075 and y, y' to 2.0. The Tco could be kept at 74K even after the pipe shape. Others are the same as the first embodiment.

「効果」 本発明によって、コーティング前には延性、展性およ
び曲げ性に乏しい超電導セラミックス材料を、任意の形
状に成形した中空金属支持体の内壁にコーティングする
ことにより、任意の形状を有する超電導装置を作製する
ことが可能となった。また、本発明によれば中空金属支
持体の内壁へコーティングされる超電導セラミックスの
粉末の成分構成をコーティング毎に変更できる。そし
て、本発明によって作製されたパイプ形状の超電導装置
の中空部に冷却材である液体、例えば液体窒素または液
体水素を封入し、連続的にこのパイプを内部より最も温
度が重要なセラミックスを直接冷やす手段と同時になり
得る。
"Effect" According to the present invention, a superconducting device having an arbitrary shape is formed by coating a superconducting ceramic material having poor ductility, malleability and bendability before coating on the inner wall of a hollow metal support formed into an arbitrary shape. Can be manufactured. Further, according to the present invention, the composition of the superconducting ceramic powder coated on the inner wall of the hollow metal support can be changed for each coating. Then, a liquid as a coolant, for example, liquid nitrogen or liquid hydrogen is filled in the hollow portion of the pipe-shaped superconducting device manufactured according to the present invention, and the pipe is continuously cooled from the inside directly to the ceramics whose temperature is most important. It can be at the same time as the means.

なお、この外側の金属を銅または銅の化合物とするこ
とにより、外部との溶接も可能であり、電気装置の一部
として用いることが可能である。
When the outer metal is made of copper or a copper compound, it can be welded to the outside and can be used as a part of an electric device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明超電導装置の作製方法によって作製さ
れた超電導セラミックパイプを示す。 第2図は、本発明超電導装置の作製方法によって作製さ
れた超電導装置の一例を示す。
FIG. 1 shows a superconducting ceramic pipe produced by the method for producing a superconducting device of the present invention. FIG. 2 shows an example of a superconducting device produced by the method for producing a superconducting device of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 15/00 ZAA C04B 35/00 ZAAJ ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H02J 15/00 ZAA C04B 35/00 ZAAJ

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中空金属支持体の内壁に銅の酸化物の超電
導セラミックス粉末の溶液をコーティングする工程と、 前記溶液がコーティングされた中空金属支持体を酸化雰
囲気中において加熱する工程と、 前記一連の工程を複数回繰り返す工程と を有することを特徴とする超電導装置の作製方法。
1. A step of coating a solution of a superconducting ceramic powder of copper oxide on an inner wall of a hollow metal support, a step of heating the hollow metal support coated with the solution in an oxidizing atmosphere, Repeating the step a plurality of times.
JP62067028A 1987-03-20 1987-03-20 Manufacturing method of superconducting device Expired - Fee Related JP2617306B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62067028A JP2617306B2 (en) 1987-03-20 1987-03-20 Manufacturing method of superconducting device
JP3125245A JPH0628210B2 (en) 1987-03-20 1991-04-27 Power storage device using superconducting ceramic material
JP3297945A JPH0628211B2 (en) 1987-03-20 1991-10-18 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067028A JP2617306B2 (en) 1987-03-20 1987-03-20 Manufacturing method of superconducting device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3125245A Division JPH0628210B2 (en) 1987-03-20 1991-04-27 Power storage device using superconducting ceramic material
JP3297945A Division JPH0628211B2 (en) 1987-03-20 1991-10-18 Superconducting device

Publications (2)

Publication Number Publication Date
JPS63232405A JPS63232405A (en) 1988-09-28
JP2617306B2 true JP2617306B2 (en) 1997-06-04

Family

ID=13333020

Family Applications (3)

Application Number Title Priority Date Filing Date
JP62067028A Expired - Fee Related JP2617306B2 (en) 1987-03-20 1987-03-20 Manufacturing method of superconducting device
JP3125245A Expired - Lifetime JPH0628210B2 (en) 1987-03-20 1991-04-27 Power storage device using superconducting ceramic material
JP3297945A Expired - Lifetime JPH0628211B2 (en) 1987-03-20 1991-10-18 Superconducting device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP3125245A Expired - Lifetime JPH0628210B2 (en) 1987-03-20 1991-04-27 Power storage device using superconducting ceramic material
JP3297945A Expired - Lifetime JPH0628211B2 (en) 1987-03-20 1991-10-18 Superconducting device

Country Status (1)

Country Link
JP (3) JP2617306B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240323B2 (en) 1998-11-30 2001-12-17 東北大学長 Manufacturing method of superconducting magnet serving both as reinforcing material and stabilizing material
EP1589542A1 (en) * 2004-04-23 2005-10-26 Gesellschaft für Schwerionenforschung mbH Superconducting cable and method for manufacturing the same
KR100720057B1 (en) * 2005-07-06 2007-05-18 학교법인 한국산업기술대학 Superconduction Magnet And Manufacturing Method For Persistent Current
JP5570776B2 (en) 2009-09-24 2014-08-13 トヨタ紡織株式会社 Vehicle seat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116757A (en) * 1974-07-31 1976-02-10 Sumitomo Chemical Co Fuenooruruiofukumu haisuino shoriho
JPS5666080A (en) * 1979-11-05 1981-06-04 Nippon Telegr & Teleph Corp <Ntt> Tunnel-junction type josephson element and manufacture thereof
JPS5753011A (en) * 1980-07-15 1982-03-29 Imi Kynoch Ltd Method of producing superconductor
JPS57164504A (en) * 1981-03-31 1982-10-09 Mitsubishi Electric Corp Superconductive coil device
JPS58213404A (en) * 1982-06-04 1983-12-12 Hitachi Ltd Superconductive energy storage device in shape of toroidal coil
JPS6123306A (en) * 1984-07-12 1986-01-31 Hitachi Ltd Cooling device of superconductive coil

Also Published As

Publication number Publication date
JPH0628211B2 (en) 1994-04-13
JPH0582341A (en) 1993-04-02
JPH0628210B2 (en) 1994-04-13
JPS63232405A (en) 1988-09-28
JPH05205940A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
JP2584990B2 (en) Manufacturing method of pipe using superconducting ceramic material
JP2617306B2 (en) Manufacturing method of superconducting device
US5147847A (en) Method for manufacturing a pipe utilizing a superconducting ceramic material
JP2585880B2 (en) Superconducting device
JP2584989B2 (en) Pipe made of superconducting ceramic material
JPH02289459A (en) Preparation of slender body consisting of needle-like crystal group in longer direction of superconductive ceramic material
US5474975A (en) Method for manufacturing an elongated member from a superconducting ceramic material
JP2532238B2 (en) Pipe manufacturing method using superconducting ceramic material
JP2585882B2 (en) Superconducting ceramic wire drawing method
JPS63252974A (en) Method for connecting superconducting material
JP2557498B2 (en) Manufacturing method of linear superconducting material
JP2585582B2 (en) How to make superconducting material
JP2519742B2 (en) Manufacturing method of superconducting material
JP2597656B2 (en) Superconducting material having high critical temperature and method for producing the same
JP2585881B2 (en) Superconducting ceramic wire drawing method.
JPS63248020A (en) Manufacture of superconductive ceramic material
JP2648724B2 (en) Manufacturing method of superconducting coil using superconducting ceramic wire drawing
JP2519741B2 (en) Manufacturing method of superconducting material
Lanagan et al. Production of wires and coils from high-temperature superconducting materials
JPH01163922A (en) Manufacture of linear superconductive material
JPS63277547A (en) Production of high-temperature superconductive porcelain
Poeppel et al. Ceramic Processing Of High-T [sub] c [/sub] Superconductors
Shukla et al. Critical current studies on metal clad R 1 Ba 2 Cu 3 O 7− x wires
JPH01153565A (en) Production of oxide superconductor
JPH01176609A (en) Manufacture of oxide superconductive wire material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees