JPS58213404A - Superconductive energy storage device in shape of toroidal coil - Google Patents
Superconductive energy storage device in shape of toroidal coilInfo
- Publication number
- JPS58213404A JPS58213404A JP57094926A JP9492682A JPS58213404A JP S58213404 A JPS58213404 A JP S58213404A JP 57094926 A JP57094926 A JP 57094926A JP 9492682 A JP9492682 A JP 9492682A JP S58213404 A JPS58213404 A JP S58213404A
- Authority
- JP
- Japan
- Prior art keywords
- liquid helium
- vessel
- helium
- dummy
- energy storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims description 15
- 238000004891 communication Methods 0.000 claims description 4
- 239000003507 refrigerant Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 45
- 239000001307 helium Substances 0.000 abstract description 43
- 229910052734 helium Inorganic materials 0.000 abstract description 43
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 43
- 239000002826 coolant Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- RQYPKEPGBCFZAQ-UHFFFAOYSA-N [Au].[He] Chemical compound [Au].[He] RQYPKEPGBCFZAQ-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は超電導エネルギー貯蔵装置に係り、とくにトロ
イダル・コイル状の超電導エネルギー貯蔵装置の改良に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to superconducting energy storage devices, and more particularly to improvements in toroidal coil superconducting energy storage devices.
超電導エネルギー貯蔵装置は、ソレノイド状超電導コイ
ルとトロイダル状超電導コイルのニガ式が考えられてい
る。前者は超電導線材の使用量が多少少なくてすみ、後
者は漏洩Qpがなく、その大半径を大きく、小半径を小
さくする設計では電磁力が極めて小さくできる点が特徴
である。超電導エネルギー貯蔵装置は、現在概念設計の
段階にあり大型装置が建設された例はないが、ピーク電
力の平滑化に将来なくてはならない@置である。A superconducting energy storage device is considered to be of the Niga type, which includes a solenoid-like superconducting coil and a toroidal-like superconducting coil. The former requires a little less superconducting wire, and the latter has no leakage Qp, and is characterized by the fact that the electromagnetic force can be extremely small by designing the large radius to be large and the small radius to be small. Although superconducting energy storage devices are currently in the conceptual design stage and no large-scale devices have been constructed, they are an essential device in the future for smoothing peak power.
最も近い将来の需要は、核融合炉用の数十〜数百ギガ・
ジュール規模の装置と考えられている。The most immediate future demand is tens to hundreds of gigabytes for fusion reactors.
It is considered a joule-scale device.
従来のトロイダル・コイル状超電導エネルギー貯蔵装置
の例を−クライオスタット方式にとり、その構成を第1
図と第2図に示す。第1図は超電導コイル2を内側に配
置し、その周囲に液体ヘリウム容器3、輻射断熱板4、
真空容器5f順次配置し、これをドーナツ状に構成した
超電導エネルギー貯蔵袋[1を示す。配管6は液体ヘリ
ウムを液体ヘリウム容器に注入、又は回収(気化したヘ
リウムガス)するためのもので、配管7は輻射断熱板4
を冷却するための液体窒素全注入、又は回収するための
ものである。本図から明らかな如く、超電導コイル2の
内側空間はいわば無駄な空間で、液体ヘリウム張込み量
を著しく増大させることになり、運転コストを高める原
因となる。第2図は第1図とほぼ同様な構成であるが、
超電導コイル2の内’9111の無駄な空間を無くシ、
液体ヘリウム張込み量ケ減らすためにダミー容器8を配
置した例である。ダミー容器8は当然真空容器であり、
かつ、圧力容器でなけ扛ばならない。したがって、装置
全体の重量増加ケもたらし建設費と運転費の増大をきた
す。さらにダミー容器8を配置してもこの空間は全く利
用価値のない無駄な空間にとどまる。An example of a conventional toroidal coil superconducting energy storage device is a cryostat system, and its configuration is shown in the first example.
As shown in Fig. and Fig. 2. In Fig. 1, a superconducting coil 2 is placed inside, and around it a liquid helium container 3, a radiation heat insulating plate 4,
A superconducting energy storage bag [1] is shown in which vacuum containers 5f are sequentially arranged and configured in a donut shape. Piping 6 is for injecting liquid helium into a liquid helium container or recovering (vaporized helium gas), and piping 7 is for radiant heat insulation plate 4
The purpose is to completely inject or recover liquid nitrogen to cool it down. As is clear from this figure, the space inside the superconducting coil 2 is a wasted space, which significantly increases the amount of liquid helium filled, which causes an increase in operating costs. Figure 2 has almost the same configuration as Figure 1, but
Eliminate wasted space inside the superconducting coil 2.
This is an example in which a dummy container 8 is arranged to reduce the amount of liquid helium filled. The dummy container 8 is naturally a vacuum container,
Moreover, it must be destroyed unless it is a pressure vessel. Therefore, the overall weight of the device increases, resulting in increased construction and operating costs. Furthermore, even if the dummy container 8 is placed, this space remains a wasted space with no use value.
本発明は上述の点に鑑み成さf″したもので、その目的
とするところは、超電導コイルの無駄な空間を有効活用
するとともに、装置の安定性をも高めるトロイダル・コ
イル状超電導エネルギー貯蔵装置tケ提供するにある。The present invention has been developed in view of the above points, and its purpose is to effectively utilize the wasted space of superconducting coils and to improve the stability of the device. There are a lot of things to offer.
本発明はトロイダル・コイルの内部空間全冷媒貯蔵用タ
ンクとすることにより所期の目的を達成するように成し
たものである。The present invention achieves the intended purpose by using a toroidal coil internal space as a tank for storing the entire refrigerant.
以下、図面の実施例に基づいて本発明の詳細な説明する
。尚、符号は従来と同一のものは同符号ケ使用する。第
、!陸に本発明の一実施例を示し、ダミー容器8を液体
ヘリウム貯蔵用容器として利用する場合である。貯蔵エ
ネルギーが数十〜数白ギガ・ジュールの装置では、使用
液体ヘリウム量は数万〜数十万リットル程度にもなる。Hereinafter, the present invention will be described in detail based on embodiments of the drawings. Note that the same reference numerals are used for the same items as in the past. No.! An embodiment of the present invention is shown on land, where the dummy container 8 is used as a liquid helium storage container. In devices with stored energy of several tens to several gigajoules, the amount of liquid helium used is on the order of tens of thousands to hundreds of thousands of liters.
揚水発電所に替りうる超電導エネルギー貯蔵装置でVl
、数百万リットルにも及ぶといわれている。かかる大量
の液体ヘリウムを貯蔵しておくための容器全別途用意す
るかわりにダミー容器8をこnに流用する。それには、
単に配管67を追加するだけで十分である。超電導コイ
ルを冷却する方法は小形の超電導マグネットの冷却方法
と同様で、まずヘリウム液化機で液体ヘリウムを生成し
、これを配管6′を通してダミー容器8に貯める。この
とき配管6′の復管と配管6の往管全接続させておけば
、超電導コイル2の冷却に寄与するばかりでなく、貯蔵
効率もよくなる効果が期待できる。さらに、ダミー容器
8と液体ヘリウム容器3はほとんど同圧力、同温度で使
用さ扛るため圧力容器である必要はなくその材料の肉厚
も薄くでき前記欠点を解消したことにもなる。液化機に
よって所定の量の液体ヘリウムが生成貯蔵されれば、ダ
ミー容器8カ・ら配管6′の往管と配管6の往管を接続
し、液体ヘリウム金超電導コイル2を収納した液体ヘリ
ウム容器3に移送し、これ金満せば装置は稼動状態とな
る。Vl with superconducting energy storage device that can replace pumped storage power plants
It is said to amount to several million liters. Instead of preparing a separate container for storing such a large amount of liquid helium, the dummy container 8 is used for this purpose. For that,
Simply adding piping 67 is sufficient. The method for cooling the superconducting coil is similar to the method for cooling a small superconducting magnet. First, liquid helium is produced in a helium liquefaction machine, and this is stored in a dummy container 8 through a pipe 6'. At this time, if all the incoming pipes of the pipe 6' and the outgoing pipes of the pipe 6 are connected, it can be expected that not only will it contribute to the cooling of the superconducting coil 2, but also that the storage efficiency will be improved. Furthermore, since the dummy container 8 and the liquid helium container 3 are used at almost the same pressure and temperature, they do not need to be pressure containers, and the thickness of the material can be made thinner, thereby eliminating the above-mentioned drawbacks. When a predetermined amount of liquid helium is generated and stored by the liquefier, the dummy container 8 is connected to the outgoing pipe of piping 6' and the outgoing pipe of piping 6, and the liquid helium container containing the liquid helium gold superconducting coil 2 is connected. 3, and once the money is filled, the device will be in operation.
稼動中の液体ヘリウム容器内の液体ヘリウム減少分も同
様な手法でダミー容器8から逐次補給することができる
。また、稼動中へIJウム液化機で生成する液体ヘリウ
ムケダミー容器8内に貯蔵することもできる。ダミー容
器8は液体ヘリウムで周囲がかこま扛ているため貯蔵効
率は極めて高くなる。The reduced amount of liquid helium in the liquid helium container during operation can be successively replenished from the dummy container 8 using the same method. It is also possible to store the liquid helium in the kedummy container 8 produced by the IJium liquefaction machine during operation. Since the dummy container 8 is surrounded by liquid helium, the storage efficiency is extremely high.
本発明で期待される附加的な効果として、超電導エネル
ギー貯蔵装置の安全保護対策に極めて適している点があ
げられる。数十ギガ・ジュール以上のエネルギーを保有
する装置が破壊した場合の損害は装置自身にとどまらず
、周辺にも及び甚大である。特に超電導コイルの場合、
超電導状態がやぶれると、冷謀である液体ヘリウムが一
挙に気化し、液体ヘリウム容器3内の圧力は急上昇し、
その破壊?招く。当然超電導コイルの保護と容器類の保
護は十分検討がなされ対策が構じられているが、万全を
期するために、超′…、24状態がやぷ扛ると同時に液
体ヘリウム容器3内の液体Q、 lllラム他所に移送
するようにしておけば急激な圧力上昇倉免れることがで
き極めて安全である。すなわち、この時点でダミー容器
8に移送できるよう配管6と6′ヲ適切に接続しておけ
は、液体ヘリウム容器3内の圧力上昇によって自動的に
移送できる。An additional effect expected from the present invention is that it is extremely suitable for safety protection measures for superconducting energy storage devices. If a device that possesses energy of several tens of gigajoules or more is destroyed, the damage will be severe, not only to the device itself but also to its surroundings. Especially in the case of superconducting coils,
When the superconducting state breaks down, the cold liquid helium vaporizes all at once, and the pressure inside the liquid helium container 3 rises rapidly.
Its destruction? invite Naturally, the protection of the superconducting coils and the containers have been thoroughly considered and countermeasures have been taken, but to be on the safe side, it is necessary to ensure that the superconducting coils and containers are protected at the same time that the superconducting coils and containers are protected. If the liquid Q and lll rams are transferred to another location, a sudden pressure rise can be avoided and it is extremely safe. That is, if the pipes 6 and 6' are properly connected at this point so that the liquid helium can be transferred to the dummy container 8, the pressure increase in the liquid helium container 3 can automatically transfer the liquid helium.
液体のままで移送できれば移送時間も短縮され、圧力上
昇も最小限に抑えらnlかつ、液体ヘリウムの回収も可
能となり、極めて危険な状態ケ経ることなく損失を最小
限にとどめることが可能となる。If it can be transferred as a liquid, the transfer time will be shortened, the pressure increase will be minimized, and liquid helium can be recovered, making it possible to minimize losses without going through extremely dangerous conditions. .
第4図に本発明の他の実施例を示す。これは第3図の配
管の接続を簡略化しただけであり、その機能と効果は全
く同じである。すなわち、液体ヘリウム容器3とダミー
容器8とを連通パイプ9で連絡させたもので、両容器の
圧力會制闘することによって液体ヘリウムの移送を行な
わせるようにし友。いうまでもなく、第3図に示さfL
る配管6′などを補足した9、連通パイプ9にパルプを
設けるなどして制御しやすくしてもよい。液体ヘリウム
容器3とダミー容器8との間で液体ヘリウムを移送する
効率は第3図の方式に比べ、連通パイプ9が常に液体ヘ
リウム温度と等しく保たれているため、極めて高い点が
特徴である。FIG. 4 shows another embodiment of the invention. This is just a simplified version of the piping connection shown in Figure 3, and its functions and effects are exactly the same. That is, the liquid helium container 3 and the dummy container 8 are connected through a communication pipe 9, and the liquid helium is transferred by controlling the pressure between the two containers. Needless to say, fL shown in FIG.
The control may be facilitated by supplementing the pipe 6' etc. 9 or providing pulp in the communication pipe 9. Compared to the method shown in FIG. 3, the efficiency of transferring liquid helium between the liquid helium container 3 and the dummy container 8 is extremely high because the communication pipe 9 is always kept at the same temperature as the liquid helium. .
同、第3図及び第4図には配管を1個所しか図示してい
ないが、装置規模に応じ複数本設置してもよいことはい
つまでもない。Although only one pipe is shown in FIGS. 3 and 4, a plurality of pipes may be installed depending on the scale of the apparatus.
以上説明した本発明によれば、トロイダル・コイル内側
の空間を液体ヘリウム貯蔵のための空間に活用でき、別
途貯蔵タンクを建設する必要がなく、超電導コイルが超
電導性を失なう非常時の際にも液体ヘリウム容器内の液
体ヘリウムケ回収するための空間に利用でき、系内圧力
上昇ケ最小限に抑えられ、経済的にも安全性の面からも
極めて有効で、超電導エネルギー貯蔵装置の建設に寄与
するところ甚だ大である。According to the present invention described above, the space inside the toroidal coil can be used as a space for storing liquid helium, and there is no need to construct a separate storage tank, and in the event of an emergency when the superconducting coil loses its superconductivity. It can also be used as a space for collecting liquid helium in a liquid helium container, minimizing pressure rise in the system, and is extremely effective from both an economic and safety standpoint, and is useful for constructing superconducting energy storage devices. The contribution is enormous.
第1図及び第2図は従来例のトロイダル・コイル状超電
導エネルギー貯蔵装置を示す断面図、第3図は本発明に
かかるトロイダル・コイル状超電導エネルギー貯蔵装置
の一実施例?示す断面図、第4図は本発明の他の実施例
を示す断面図である。
1・・・トロイダル・コイル状超電導エネルギー貯蔵装
置、2・・・超電導コイル、3・・・液体ヘリウム容器
、4・・・輻射断熱板、5・・・真空容器、6.6’・
・・液体ヘリウム給排管、7・・・液体窒素給排管、8
・・・ダミー71図
′)I2図
乙
3.3[¥1
6
第4図1 and 2 are sectional views showing a conventional toroidal coil superconducting energy storage device, and FIG. 3 is an embodiment of the toroidal coil superconducting energy storage device according to the present invention. FIG. 4 is a sectional view showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Toroidal coil-shaped superconducting energy storage device, 2... Superconducting coil, 3... Liquid helium container, 4... Radiation insulation board, 5... Vacuum container, 6.6'
...Liquid helium supply and discharge pipe, 7...Liquid nitrogen supply and discharge pipe, 8
...Dummy Figure 71') I2 Figure Otsu 3.3 [¥1 6 Figure 4
Claims (1)
に構成したことf%徴とするトロイダル・コイル状超電
導エネルギー貯蔵装置。 2、特許請求の範囲第1項に記載した冷媒貯蔵用タンク
とトロイダル・コイル容器を連通口でつないだことを特
徴とするトロイダル・コイル状超電導エネルギー貯蔵装
置。[Claims] 1. A toroidal coil superconducting energy storage device characterized in that the internal space of the toroidal coil is configured as a refrigerant storage tank. 2. A toroidal coil superconducting energy storage device, characterized in that the refrigerant storage tank described in claim 1 and the toroidal coil container are connected through a communication port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57094926A JPS58213404A (en) | 1982-06-04 | 1982-06-04 | Superconductive energy storage device in shape of toroidal coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57094926A JPS58213404A (en) | 1982-06-04 | 1982-06-04 | Superconductive energy storage device in shape of toroidal coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58213404A true JPS58213404A (en) | 1983-12-12 |
Family
ID=14123571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57094926A Pending JPS58213404A (en) | 1982-06-04 | 1982-06-04 | Superconductive energy storage device in shape of toroidal coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58213404A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63232405A (en) * | 1987-03-20 | 1988-09-28 | Semiconductor Energy Lab Co Ltd | Power accumulator using superconducting ceramic material |
US20160365182A1 (en) * | 2015-06-11 | 2016-12-15 | Rolls-Royce North American Technologies, Inc. | Superconducting magnetic energy storage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839312Y1 (en) * | 1970-10-13 | 1973-11-19 | ||
JPS5683516U (en) * | 1979-12-03 | 1981-07-06 | ||
JPS5725016U (en) * | 1980-07-21 | 1982-02-09 |
-
1982
- 1982-06-04 JP JP57094926A patent/JPS58213404A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839312Y1 (en) * | 1970-10-13 | 1973-11-19 | ||
JPS5683516U (en) * | 1979-12-03 | 1981-07-06 | ||
JPS5725016U (en) * | 1980-07-21 | 1982-02-09 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63232405A (en) * | 1987-03-20 | 1988-09-28 | Semiconductor Energy Lab Co Ltd | Power accumulator using superconducting ceramic material |
US20160365182A1 (en) * | 2015-06-11 | 2016-12-15 | Rolls-Royce North American Technologies, Inc. | Superconducting magnetic energy storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6622494B1 (en) | Superconducting apparatus and cooling methods | |
Claudet et al. | Tore Supra and He II cooling of large high field magnets | |
US3358463A (en) | Integrated superconducting magnetcryostat system | |
CN105210152A (en) | Apparatus for passively cooling a nuclear plant coolant reservoir | |
Aymar et al. | Conceptual design of a superconducting Tokamak:" TORUS II SUPRA" | |
JPS58213404A (en) | Superconductive energy storage device in shape of toroidal coil | |
KR20070006590A (en) | Undercooled horizontal cryostat configuration | |
CN219530547U (en) | High-capacity zero-evaporation storage liquid helium tank box | |
KR102381886B1 (en) | Nuclear reactor long-term cooling system | |
Sartain et al. | Cryostat for reactor irradiation | |
JP3725305B2 (en) | Superconducting magnet cooling system | |
Haug et al. | The proximity cryogenic system for the ATLAS toroidal magnets | |
Green et al. | The two-coil toroid magnet, an option for ASTROMAG | |
KR960011210B1 (en) | A pressurized water reactor of a passive type | |
Haubenreich et al. | Superconducting magnets for fusion | |
Obert et al. | The liquid nitrogen and supercritical helium cooling loop for the jet pumped divertor cryopump | |
US4920754A (en) | System for dumping cryogens in a superconducting solenoid installation | |
Skellett | The Culham superconducting levitron | |
Turck | Tore-Supra: a Tokamak with superconducting toroidal field coils | |
Wolff | The cryogenic system of Tesla | |
Saxena | First experiments with SST-1 tokamak | |
Green | Progress on the superconducting magnet for the time projection chamber experiment (TPC) at PEP | |
CN118582656A (en) | Large-capacity zero-evaporation storage liquid helium tank box/tank container | |
Fraas | Cryogenic system for the superconducting magnets of a full-scale thermonuclear power plant | |
Duffy et al. | Refrigeration for the Livermore superconducting Levitron |