Nothing Special   »   [go: up one dir, main page]

JPS6123306A - Cooling device of superconductive coil - Google Patents

Cooling device of superconductive coil

Info

Publication number
JPS6123306A
JPS6123306A JP59143207A JP14320784A JPS6123306A JP S6123306 A JPS6123306 A JP S6123306A JP 59143207 A JP59143207 A JP 59143207A JP 14320784 A JP14320784 A JP 14320784A JP S6123306 A JPS6123306 A JP S6123306A
Authority
JP
Japan
Prior art keywords
coil
conductor
coolant
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59143207A
Other languages
Japanese (ja)
Other versions
JPH0510809B2 (en
Inventor
Kunishige Kuroda
黒田 邦茂
Yoshitoshi Hotta
堀田 好寿
Nobuhiro Hara
原 伸洋
Toshiji Tominaka
冨中 利治
Hiroshi Kimura
浩 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59143207A priority Critical patent/JPS6123306A/en
Publication of JPS6123306A publication Critical patent/JPS6123306A/en
Publication of JPH0510809B2 publication Critical patent/JPH0510809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To enable a forced-cooling system superconductive coil to cool effectively in a short time by a method wherein a coolant path for heat-exchanging which has a smaller flow resistance than a flow resistance of a coolant path inside a conductor is installed and the means to control coolant flow in the coolant path for heat-exchanging is installed. CONSTITUTION:When a coolant 6 from a coolant supply source is sent by pressure with a valve 9 open at the time of initial cooling stage, almost whole coolant 6 is flowed into a coolant path 8 for heat-exchanging and the coil 5 is cooled indirectly, as the temperature of the coil is high and the flow resistance is large. Accordingly, as the temperature of the coil 5 falls and the flow resistance becomes small gradually, the coolant 6 turns to branch to even cooling path 4 side inside the conductor, thus cooling is accelerated. When the coil 5 is enough cooled, the temperature thereof reaches to 50-100K, the valve 9 is closed and the whole coolant 6 is flowed through the coolant path 4. As the result, the temperature of the coil 5 is rapidly fallen and the coil 5 can be turned on conductive that is, superconductive state is attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導コイルの冷却装置に係り、例えば核融合
炉用超電ボロイダルコイルなどに好適な強制冷却式超′
成導コイルの冷却装置1c関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cooling device for a superconducting coil, and is a forced cooling type superconducting coil suitable for, for example, a superconducting voloidal coil for a nuclear fusion reactor.
This invention relates to a cooling device 1c for conducting coils.

〔発明の背景〕[Background of the invention]

近年、第4図に示すような、超電導体フィラメントを複
数本鋼やアルミニュウムのような安定化材中に埋め込ん
だ複合多心超電導線2の複数本をコンジット(パイプ)
3中に挿入し、コンジット3の内部空間を冷媒通路4と
して、超臨界圧ヘリウムなどの冷媒を強制的に流して冷
却する強制冷却方式の超電導導体(以下これを導体と略
称する)lが開発され、これを用いて超電導コイルを製
作する機運が高まりつつある。
In recent years, as shown in Fig. 4, multiple composite multi-core superconducting wires 2 in which multiple superconducting filaments are embedded in a stabilizing material such as steel or aluminum are used as conduits (pipes).
A superconducting conductor (hereinafter referred to as "conductor") using a forced cooling method has been developed, which is inserted into a conduit 3 and cooled by forcibly flowing a refrigerant such as supercritical pressure helium through the internal space of the conduit 3 as a refrigerant passage 4. There is a growing momentum to use this material to manufacture superconducting coils.

この方式の超電導コイルは、冷媒が導体1jなわちコン
ジット3内を流れるため、コンジット3を電気的に絶縁
することによってコイルの耐電圧特性を高めることがで
き、かつ浸漬冷却方式のようにコイルを冷媒(液体ヘリ
ウム)中[浸漬するための冷媒容器を必要としないため
、装貨全体の構成が単純となり、さらに冷媒を超電導線
20周りに強制的に流すため、冷却特性が向上する、な
どの理由により、従来の浸漬冷却方式に取って代ろ5と
している。そして、その応用としては高電圧を発生する
核融合炉用超電導ボロイダルコイルなどが考えられ、現
在各所でその開発が進めら幻ている。
In this type of superconducting coil, since the refrigerant flows through the conductor 1j, that is, the conduit 3, the withstand voltage characteristics of the coil can be improved by electrically insulating the conduit 3, and unlike the immersion cooling type, the coil can be In the refrigerant (liquid helium) [Since a refrigerant container for immersion is not required, the overall structure of the package is simple, and since the refrigerant is forced to flow around the superconducting wire 20, the cooling characteristics are improved, etc. For this reason, the conventional immersion cooling method is being replaced. Possible applications include superconducting boloidal coils for nuclear fusion reactors that generate high voltage, and development efforts are currently underway in various places.

ところで、この種導体を巻回して超電導コイルを製作し
た場合、冷媒の流れ抵抗が著しく大きくなるという問題
が生じる。この冷媒の流れ抵抗は、冷媒通路の断面積に
反比例し、冷媒通路の長さに比例するため、特に冷媒通
路の断面積が小さく、かつ冷媒通路つまり導体の長さが
長くなると、著しく大きくなり、冷媒を流通させること
が極めて困雌になる。そのため、従来は導体を短かくし
、これと並列に冷媒を流通させる冷却方式が採用される
By the way, when a superconducting coil is manufactured by winding this kind of conductor, a problem arises in that the flow resistance of the coolant becomes significantly large. This refrigerant flow resistance is inversely proportional to the cross-sectional area of the refrigerant passage and proportional to the length of the refrigerant passage, so it becomes significantly larger especially when the cross-sectional area of the refrigerant passage is small and the length of the refrigerant passage, that is, the conductor, is long. , it becomes extremely difficult to distribute the refrigerant. Conventionally, therefore, a cooling method has been adopted in which the conductor is made short and a refrigerant is passed in parallel with it.

このような従来の冷却方式を第5図および第6図に示す
。導体lをソレノイド状または螺旋状に巻回することに
よって構成された強制冷却方式の超電導コイル(以下こ
れをコイルと略称する)5は、初期冷却から超電導状態
が保持できる温反まで、冷媒供給源(図示せず)から連
続的に冷媒6が圧送されて徐々に冷却される。コイル5
での流通圧力損失が小さい場合には、第5図に示すよう
に、冷媒通路4はlルートで構成されるが、流通圧力損
失が太ぎい場合には、第6図に示すように、冷媒通路4
は複数の部分通路4A、4B、・・・・・・・・・4N
[区分され、これらの各部分通路が互に並列に接続され
る。そして、いずれの場合にも、電流7は励磁電源(図
示せず)より1ルートで供給される。なお、コイル5は
一般には数百m〜数kmの導体lの巻回からなり、その
冷媒6の流通圧力損失が大きいので、第6図の冷却方式
が採用される場合が多い。
Such a conventional cooling system is shown in FIGS. 5 and 6. A forced cooling superconducting coil (hereinafter referred to as a coil) 5, which is constructed by winding a conductor l in a solenoid shape or a spiral shape, serves as a refrigerant supply source from initial cooling to warm temperature cooling where a superconducting state can be maintained. Refrigerant 6 is continuously fed under pressure from (not shown) and gradually cooled. coil 5
When the flow pressure loss is small, the refrigerant passage 4 is configured with the L route as shown in FIG. aisle 4
is a plurality of partial passages 4A, 4B, ......4N
[Sectioned, and each of these partial passages are connected in parallel to each other.] In either case, the current 7 is supplied through one route from an excitation power source (not shown). Incidentally, the coil 5 generally consists of a conductor 1 wound several hundred meters to several kilometers long, and the circulation pressure loss of the refrigerant 6 is large, so the cooling method shown in FIG. 6 is often adopted.

また、このような強制冷却方式を採用した場合には、前
述したようにクライオスタット(図示せず)は、従来の
浸漬冷却方式を採用した場合と違って、単なる真空容器
となるため、他の冷媒、例えば液体窒累で予冷すること
ができない構造となる。したがって、コイル5は常温か
ら冷却が始められる。冷媒供給源から圧送される冷媒6
は、その温度が冷却の初期と終期で適切に選択される場
合もあるが、いずれにしても初期冷却時1cはコイル5
を流通するうちにその温度が上昇して流れ抵抗が著しく
高くなり、冷媒供給源の供給圧力が上限に達しても殆ん
ど冷媒を流すことができず、冷却に膨大な時間を必要と
し、実験室的な時間尺度では冷却不可能となる場合があ
る。そこで前述したように、冷媒通路を複数に区分して
短かくし、これらな互に並列に接続する冷却方式が採用
されるが、それでもコイル5が300に〜100Kの温
度にある場合には、事情は幾分緩和されるものの、かな
りの冷却時間を必要とする。また、このような並列接続
の冷却方式を採用する場合&]j次のような問題点も発
生する。その第1点は、冷媒通路が並列であるため冷媒
供給源からの冷媒流計が増大し、冷媒供給源の容量を太
きくしなげJlばならないので、直接コストアンプにつ
ながる。第2点は、並列接続された各冷媒通路の相互間
で冷媒流量のアンバランスか生じるため、これをバラン
スさせろための制御が必要となり、コイル5の運転が複
雑となる。さらに第3点を工、コイル5を構成している
導体lの区分された各部分を冷媒6に対して並列に、電
流7に対して直列に接続するための分岐が多数必要とな
り、コイル製作上極めて厄介な作業となるばかりでなく
、コイルの信頼性をも低下させる原因となる。
In addition, when such a forced cooling method is adopted, the cryostat (not shown) becomes a mere vacuum container, unlike when the conventional immersion cooling method is adopted, as mentioned above, so it cannot be used with other refrigerants. For example, the structure is such that it cannot be precooled with liquid nitrogen. Therefore, cooling of the coil 5 starts from room temperature. Refrigerant 6 pumped from a refrigerant supply source
In some cases, the temperature may be appropriately selected at the beginning and end of cooling, but in any case, during the initial cooling, 1c is the temperature of coil 5.
As the refrigerant flows through the refrigerant, its temperature rises and the flow resistance becomes extremely high, and even if the supply pressure of the refrigerant supply source reaches the upper limit, almost no refrigerant can flow, and it takes a huge amount of time to cool down. Cooling may not be possible on laboratory time scales. Therefore, as mentioned above, a cooling method is adopted in which the refrigerant passage is divided into a plurality of sections and shortened and connected in parallel with each other. Although this is somewhat alleviated, it requires considerable cooling time. In addition, when such a parallel connection cooling method is adopted, the following problems also occur. The first point is that since the refrigerant passages are parallel, the refrigerant flow meter from the refrigerant supply source increases, and the capacity of the refrigerant supply source must be increased, which directly leads to an increase in cost. The second point is that since an unbalance in the refrigerant flow rate occurs between the refrigerant passages connected in parallel, control is required to balance this, and the operation of the coil 5 becomes complicated. In addition, a third point is required, and many branches are required to connect each section of the conductor l that makes up the coil 5 in parallel to the refrigerant 6 and in series to the current 7, so the coil fabrication requires a large number of branches. Not only is this extremely troublesome work, but it also causes a decrease in the reliability of the coil.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の問題点を解決し、
強制冷却方式の超電導コイルを効率よく短時間に冷却し
得る冷却装置を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a cooling device that can efficiently cool a forced cooling type superconducting coil in a short time.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、強制冷却方式の超
電導コイルと並列にかつ熱交換できるように、導体内部
の冷媒通路の流れ抵抗よりも小さい流れ抵抗をもつ熱交
換用冷媒通路を設け、かつこの熱交換用冷媒通路を流通
する冷媒の流量を制御する手段を設けることにより、導
体内部とは別に導体外部からも間接的に冷却し得るよう
にしたことを特徴とする。
To achieve this objective, the present invention provides a heat exchange refrigerant passage having a flow resistance smaller than the flow resistance of the refrigerant passage inside the conductor so as to be able to exchange heat in parallel with the forced cooling superconducting coil, Moreover, by providing means for controlling the flow rate of the refrigerant flowing through this heat exchange refrigerant passage, it is possible to indirectly cool the outside of the conductor in addition to the inside of the conductor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は導体内部の冷媒通路4が1ルートで構成された
コイルに適用した場合の実施例である。
FIG. 1 shows an embodiment in which the refrigerant passage 4 inside the conductor is applied to a coil having one route.

導体lを巻回してなるコイル5と十分に熱交換可能な状
態でかつ導体内部の冷媒通路4と並列に、導体外部から
コイル5を間接的に冷却する熱交換用冷媒通路8が設け
られている。この熱交換用冷媒通路8は、その流れ抵抗
が冷媒通路4の流れ抵抗よりもはるかに小さく形成され
ており、その入口側にはパルプ9が設けられろ。また、
この熱交換用冷媒通路8は、コイル5に対してその内部
に設置してもよいし、コイル5の表面に当接して設置し
てもよい。さらに、その構造も、単なる管状のもの、冷
却フィンのついた管状のもの、あるいは冷媒6を貯める
ことができる容器状のものなどを採用することかできる
A heat exchange refrigerant passage 8 for indirectly cooling the coil 5 from the outside of the conductor is provided in a state in which sufficient heat can be exchanged with the coil 5 formed by winding the conductor l and in parallel with the refrigerant passage 4 inside the conductor. There is. The heat exchange refrigerant passage 8 is formed so that its flow resistance is much smaller than that of the refrigerant passage 4, and a pulp 9 is provided on the inlet side thereof. Also,
This heat exchange refrigerant passage 8 may be installed inside the coil 5, or may be installed in contact with the surface of the coil 5. Further, its structure may be a simple tubular structure, a tubular structure with cooling fins, or a container-like structure in which the refrigerant 6 can be stored.

このようvc構成された冷却装置では、初期冷却時まず
パルプ9を開いた状態で冷媒供給源から冷媒6を圧送す
ると、コイル5は温度が高く、七の流れ抵抗が極めて大
きいので、冷媒6は殆んどすべてが熱交換用冷媒通路8
に流入し、コイル5を間接的に冷却する。これに伴って
コイル5は温度が下がり、その流れ抵抗が次第に小さく
なってくるので、冷媒6は導体内部の冷媒通路4側にも
分流するようになり、冷却が早められる。コイル5が十
分に冷却されて、その温度が50〜100Kになったら
、パルプ9を閉じて冷媒6をすべて冷媒通路4に流す。
In a cooling device having such a VC configuration, when the refrigerant 6 is pumped from the refrigerant supply source with the pulp 9 open during initial cooling, the temperature of the coil 5 is high and the flow resistance of the refrigerant 6 is extremely large. Almost all refrigerant passages for heat exchange 8
and cools the coil 5 indirectly. Along with this, the temperature of the coil 5 decreases and its flow resistance gradually decreases, so that the refrigerant 6 also flows to the refrigerant passage 4 side inside the conductor, and cooling is accelerated. When the coil 5 is sufficiently cooled to a temperature of 50 to 100 K, the pulp 9 is closed and all of the refrigerant 6 is allowed to flow into the refrigerant passage 4.

これによりコイル5はその温度が急激に下がり、コイル
5を通電し得る状態、つまり超電導状態にすることがで
きる。なお、この実施例において、パルプを熱交換用冷
媒通路8だけでなく、冷媒通路40入口にも設けること
ができる。
As a result, the temperature of the coil 5 decreases rapidly, and the coil 5 can be brought into a state where it can be energized, that is, into a superconducting state. In this embodiment, pulp can be provided not only at the heat exchange refrigerant passage 8 but also at the entrance of the refrigerant passage 40.

また、笛2図は導体内部の冷媒通路4が並列接続された
複数ルートで構成されたコイルに適用した場合の実施例
である。第1図の実施例と同様に1ルートの熱交換用冷
媒通路8が設けられているが、これを並列接続された複
数ルートにすることもできろ。しかし、この複数ルート
はできるだけ小さい数にするのがよい。
Further, Fig. 2 shows an example in which the refrigerant passage 4 inside the conductor is applied to a coil configured of a plurality of routes connected in parallel. Although one route of heat exchange refrigerant passage 8 is provided as in the embodiment shown in FIG. 1, it is also possible to provide a plurality of routes connected in parallel. However, it is better to keep the number of these multiple routes as small as possible.

第3図にその構造をより具体化した本発明の実施例を示
す。この実施例は、導体lをダブルパンケーキ状に巻回
した例である。導体lの各ターン間およびパンケーキ間
は絶縁物12で電気的に絶縁されるとともに、パンケー
キ間には銅、アルミニュウムなどの熱良導体からなる冷
却フィン10が絶縁された状態で挿入され、かつ冷却フ
ィンlOの外周に熱交換用冷媒通路8が螺旋状に巻回さ
れた状態で取り付けられた上、これらがボビン11に装
着されている。
FIG. 3 shows an embodiment of the present invention with a more specific structure. This embodiment is an example in which the conductor l is wound in a double pancake shape. Each turn of the conductor l and between the pancakes are electrically insulated with an insulator 12, and cooling fins 10 made of a good thermal conductor such as copper or aluminum are inserted between the pancakes in an insulated state, and A heat exchange refrigerant passage 8 is attached to the outer periphery of the cooling fin IO in a spirally wound state, and is also attached to a bobbin 11.

この第3図に示す超電導コイル5を試作し、熱交換用冷
媒通路8のない場合とある場合について実験した結果の
概略を説明する。
The superconducting coil 5 shown in FIG. 3 was manufactured as a prototype, and the results of experiments conducted with and without the heat exchange refrigerant passage 8 will be briefly described.

導体lとして冷媒通路断面7mm角のコンクツ3中に直
径1mmの超電導線2を30本挿入して構成された第4
図に示す構造の導体を用い、コイル内径100mm、外
径200mm、高さ200mm、 巻i72ターンのコ
イル5を製作した。また、冷媒供給源としてはコンプレ
ッサと熱交換器を組合せたものを用いた。最初、熱交換
用冷媒通路8のない場合について冷却実験を行なったと
ころ、常温から冷却を開始し、導体l内に超臨界圧ヘリ
ウムが流れるようになるまでに18時間かかり、そして
熱交換器内で使用する液体ヘリウムは15001を消費
した。これに対して、熱交換用冷媒通路8と冷却フィン
10を第3図のように設けた場合について冷却実験を行
なったところ、時間は6分の1に短縮され、液体へ1ノ
ウムの消費量は10分の1に低減することができた。
The fourth conductor L was constructed by inserting 30 superconducting wires 2 with a diameter of 1 mm into a concrete 3 with a refrigerant passage cross section of 7 mm square.
Using a conductor having the structure shown in the figure, a coil 5 with an inner diameter of 100 mm, an outer diameter of 200 mm, a height of 200 mm, and a winding i of 72 turns was manufactured. Moreover, a combination of a compressor and a heat exchanger was used as a refrigerant supply source. At first, when we conducted a cooling experiment for the case without the heat exchange refrigerant passage 8, we found that it took 18 hours to start cooling from room temperature and for supercritical pressure helium to flow inside the conductor 1, and then inside the heat exchanger. The amount of liquid helium used was 15,001. On the other hand, when we conducted a cooling experiment with a heat exchange refrigerant passage 8 and cooling fins 10 as shown in Figure 3, the time was shortened to one-sixth, and the consumption of 1 noum to liquid was could be reduced to one-tenth.

なお、第3図の実施例では、導体lをパンケーキ状に巻
回しているため、冷却フィンlOをコイル5の巻軸に対
して直交するように配置しているが、導体lをソレノイ
ド状に巻回した場合には、冷却フィンIOをコイル5の
巻軸に対して平行に配置し、その外部突出端に熱交換用
冷媒通路8を渦巻状f巻回した状態で取り付ければよい
In the embodiment shown in FIG. 3, since the conductor l is wound in a pancake shape, the cooling fins lO are arranged perpendicularly to the winding axis of the coil 5, but the conductor l is wound in a solenoid shape. In the case where the cooling fins IO are arranged parallel to the winding axis of the coil 5, the heat exchange refrigerant passage 8 may be attached to the externally projecting end thereof in a spiral f-wound state.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、導体内部に冷媒
通路を有する強制冷却方式の超電導コイルと並列にかつ
熱交換できるように、導体内部の冷媒通路の流れ抵抗よ
りも小さい流れ抵抗をもつ熱交換用冷媒通路を設け、か
つこの熱交換用冷媒通路を流通する冷媒の流量を制御す
る手段を設けて、導体内部とは別に導体外部からも間接
的に冷却し得るよ5VCしたので、強制冷却方式の超電
導コイルを効率よく短時間に冷却することができろ。
As explained above, according to the present invention, the conductor has a flow resistance smaller than the flow resistance of the refrigerant passage inside the conductor so as to be able to exchange heat in parallel with a forced cooling type superconducting coil having a refrigerant passage inside the conductor. By providing a refrigerant passage for heat exchange and a means for controlling the flow rate of the refrigerant flowing through this refrigerant passage for heat exchange, 5VC can be indirectly cooled not only from the inside of the conductor but also from the outside of the conductor. It would be possible to efficiently cool superconducting coils using cooling methods in a short time.

その結果、例えば初期冷却時間を著しく短縮し、また冷
却に要する冷媒の消費量も大幅に節減jることか可能と
なる。
As a result, for example, it becomes possible to significantly shorten the initial cooling time and to significantly reduce the amount of refrigerant consumed for cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ異なる本発明の各実施例
に係る冷却装置の基本構成な示す系統図、第3図は本発
明の一実施例に係る冷却装置の具体的構成を示す断面図
、第4図は強制冷却超電導導体の断面図、第5図および
第6図はそれぞれ異なる従来の強制冷却式超電導コイル
の冷却装置の基本構成を示す系統図である。 ■・・・・・・導体、4・・・・・・導体内部の冷媒通
路、5・・・・・・超電導コイル、6・・・・・・冷媒
、8・・・・・・熱交換用冷媒通路、9・・・・・・バ
ルブ、lO・・・・・・冷却フィン。 N−、−11↓ N4              、B」 ぺ !        吟
1 and 2 are system diagrams showing the basic configuration of cooling devices according to different embodiments of the present invention, and FIG. 3 is a sectional view showing the specific configuration of a cooling device according to an embodiment of the present invention. , FIG. 4 is a sectional view of a forcedly cooled superconducting conductor, and FIGS. 5 and 6 are system diagrams showing the basic configurations of different conventional forced cooling superconducting coil cooling devices. ■...Conductor, 4...Refrigerant passage inside the conductor, 5...Superconducting coil, 6...Refrigerant, 8...Heat exchange refrigerant passage, 9...valve, lO...cooling fin. N-, -11↓ N4, B” Pe! Gin

Claims (1)

【特許請求の範囲】 1、導体内部に冷媒通路を有する超電導導体を巻回して
なる超電導コイルにおいて、この超電導コイルと並列に
かつ熱交換できるように、前記導体内部の冷媒通路の流
れ抵抗よりも小さい流れ抵抗をもつ熱交換用冷媒通路を
設け、かつこの熱交換用冷媒通路を流通する冷媒の流量
を制御する手段を設けたことを特徴とする超電導コイル
の冷却装置。 2、特許請求の範囲第1項において、前記超電導導体の
複数ターンと伝熱的に接触する冷却フィンを設け、この
冷却フィンを前記熱交換用冷媒通路に接続したことを特
徴とする超電導コイルの冷却装置。
[Claims] 1. In a superconducting coil formed by winding a superconducting conductor having a refrigerant passage inside the conductor, the flow resistance of the refrigerant passage inside the conductor is higher than the flow resistance of the refrigerant passage inside the conductor so that heat exchange can be performed in parallel with the superconducting coil. 1. A cooling device for a superconducting coil, characterized in that a heat exchange refrigerant passage with low flow resistance is provided, and means for controlling the flow rate of refrigerant flowing through the heat exchange refrigerant passage. 2. A superconducting coil according to claim 1, characterized in that cooling fins are provided in thermally conductive contact with a plurality of turns of the superconducting conductor, and the cooling fins are connected to the heat exchange refrigerant passage. Cooling system.
JP59143207A 1984-07-12 1984-07-12 Cooling device of superconductive coil Granted JPS6123306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143207A JPS6123306A (en) 1984-07-12 1984-07-12 Cooling device of superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143207A JPS6123306A (en) 1984-07-12 1984-07-12 Cooling device of superconductive coil

Publications (2)

Publication Number Publication Date
JPS6123306A true JPS6123306A (en) 1986-01-31
JPH0510809B2 JPH0510809B2 (en) 1993-02-10

Family

ID=15333370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143207A Granted JPS6123306A (en) 1984-07-12 1984-07-12 Cooling device of superconductive coil

Country Status (1)

Country Link
JP (1) JPS6123306A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232405A (en) * 1987-03-20 1988-09-28 Semiconductor Energy Lab Co Ltd Power accumulator using superconducting ceramic material
JPS63240005A (en) * 1987-03-27 1988-10-05 Semiconductor Energy Lab Co Ltd Manufacture of superconducting material
JPH02288207A (en) * 1989-04-28 1990-11-28 Hitachi Ltd Forced-cooling superconducting coil device
JPH0434072A (en) * 1990-05-21 1992-02-05 Nagasuna Boiler Kogyo Kk Formation of crimp and device therefor
JPH108372A (en) * 1996-06-24 1998-01-13 Kyoto Kikai Kk Weight reducing processing of polyester fabric
US5932524A (en) * 1987-03-23 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing superconducting ceramics
JP2001015323A (en) * 1999-07-01 2001-01-19 Ishikawajima Harima Heavy Ind Co Ltd Helium circulation cooling equipment
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232405A (en) * 1987-03-20 1988-09-28 Semiconductor Energy Lab Co Ltd Power accumulator using superconducting ceramic material
US5932524A (en) * 1987-03-23 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing superconducting ceramics
US6506709B1 (en) 1987-03-23 2003-01-14 Semiconductor Energy Laboratory Co., Ltd. Devices utilizing oriented superconducting ceramics
JPS63240005A (en) * 1987-03-27 1988-10-05 Semiconductor Energy Lab Co Ltd Manufacture of superconducting material
JPH0570287B2 (en) * 1987-03-27 1993-10-04 Handotai Energy Kenkyusho
JPH02288207A (en) * 1989-04-28 1990-11-28 Hitachi Ltd Forced-cooling superconducting coil device
JP2635165B2 (en) * 1989-04-28 1997-07-30 株式会社日立製作所 Forced cooling superconducting coil device
JPH0434072A (en) * 1990-05-21 1992-02-05 Nagasuna Boiler Kogyo Kk Formation of crimp and device therefor
JPH108372A (en) * 1996-06-24 1998-01-13 Kyoto Kikai Kk Weight reducing processing of polyester fabric
JP2001015323A (en) * 1999-07-01 2001-01-19 Ishikawajima Harima Heavy Ind Co Ltd Helium circulation cooling equipment
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same

Also Published As

Publication number Publication date
JPH0510809B2 (en) 1993-02-10

Similar Documents

Publication Publication Date Title
US4692560A (en) Forced flow cooling-type superconducting coil apparatus
US6112531A (en) Superconducting system
US5686876A (en) Superconducting magnet apparatus
JP2007005793A (en) Pulsed magnetic field generator
US3639672A (en) Electrical conductor
JPS6123306A (en) Cooling device of superconductive coil
JPS5912004B2 (en) Quasi-superconducting coil
JPH11219814A (en) Superconducting magnet and method for precooling the same
JPH10112407A (en) Super-conductive cable system
JPS61179508A (en) Forced cooling superconductive coil device
JPS61229306A (en) Superconducting coil
US6094333A (en) Operation control method for superconducting coil
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
Smirnov et al. A pulsed superconducting dipole magnet for the Nuclotron
JPS61125002A (en) Forcibly cooled superconductive coil device
JP2635165B2 (en) Forced cooling superconducting coil device
Leupold et al. 32 tesla hybrid magnet system
O'Connor et al. Design and testing of the 1.5 T superconducting solenoid for the BaBar detector at PEP-II in SLAC
Kim et al. Design of conduction cooling system for a high current HTS DC reactor
Franken et al. Design and construction of an eight Tesla insert coil
JPS61110407A (en) Superconductive magnet
JPH0536526A (en) Method for cooling forced cooling conductor
JPH0536312A (en) Superconductive cable
Kawagoe et al. Stability evaluation of a conduction-cooled prototype LTS pulse coil for UPS-SMES
JPH03283678A (en) Current lead of superconducting magnet apparatus