Nothing Special   »   [go: up one dir, main page]

JP2550698B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP2550698B2
JP2550698B2 JP1076272A JP7627289A JP2550698B2 JP 2550698 B2 JP2550698 B2 JP 2550698B2 JP 1076272 A JP1076272 A JP 1076272A JP 7627289 A JP7627289 A JP 7627289A JP 2550698 B2 JP2550698 B2 JP 2550698B2
Authority
JP
Japan
Prior art keywords
recording medium
magneto
optical recording
thin film
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1076272A
Other languages
Japanese (ja)
Other versions
JPH02254650A (en
Inventor
憲幸 岩室
恵司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1076272A priority Critical patent/JP2550698B2/en
Priority to NL9000678A priority patent/NL9000678A/en
Priority to DE19904009843 priority patent/DE4009843C2/en
Publication of JPH02254650A publication Critical patent/JPH02254650A/en
Application granted granted Critical
Publication of JP2550698B2 publication Critical patent/JP2550698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光を用い光熱磁気的に情報を記録
し、記録された磁気的情報を磁気光学効果を利用して読
み出す光磁気記録媒体に関する。
The present invention relates to a magneto-optical recording medium for recording information magneto-optically using laser light and reading the recorded magnetic information by utilizing the magneto-optical effect. Regarding

〔従来の技術〕[Conventional technology]

近年、書き換え可能な光磁気メモリの実用化が有望視
されている。この光磁気メモリに使用する光磁気記録媒
体は、例えばTbFeCoのような希土類を含む遷移金属非晶
質材料からなり、ディスク面に対して垂直方向に磁化容
易軸を有する垂直磁化薄膜を、ガラス,樹脂等の基板上
に形成したもので、情報の記録は上記磁性薄膜へのレー
ザ光による熱磁気書き込みにより行い、記録情報の再生
は磁化光学極カー(Kerr)効果による上記磁性薄膜から
の反射光の偏光面回転(カー回転)を検出することで行
う。
In recent years, the practical application of rewritable magneto-optical memory has been considered promising. A magneto-optical recording medium used in this magneto-optical memory is made of a transition metal amorphous material containing a rare earth element such as TbFeCo, and a perpendicularly magnetized thin film having an easy axis of magnetization in a direction perpendicular to the disk surface is made of glass, It is formed on a substrate such as resin. Information is recorded by thermomagnetic writing on the magnetic thin film with laser light, and recorded information is reproduced by the reflected light from the magnetic thin film due to the magnetization optical polar Kerr effect. This is done by detecting the rotation of the polarization plane (Kerr rotation).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところが、垂直磁化薄膜として現在用いられている磁
性薄膜のカー回転角θkは0.3゜〜0.4゜であり、再生光
の記録ビットにより変調度は1%程度と小さく、再生時
の読み出しCN比が十分でないことが問題となる。再生CN
比は、40dB以上あれば媒体の誤り率が一定になると報告
されており、信頼性を高めるためには45dB以上であるこ
とが望ましいとされている。そこで、磁性薄膜と基板の
間にSi3N4,AlN等の誘電体膜を配置して記録媒体の反射
率を低くした時に、見かけ上カー回転角が増大すること
を利用してCN比を向上させる方法が提案されている。
However, the Kerr rotation angle θk of the magnetic thin film currently used as the perpendicular magnetization thin film is 0.3 ° to 0.4 °, and the modulation degree is small at about 1% depending on the recording bit of the reproducing light, and the read CN ratio at the time of reproducing is sufficient. Not being a problem. Play CN
It is reported that the ratio of the medium is constant if the ratio is 40 dB or more, and it is said that the ratio is preferably 45 dB or more to improve reliability. Therefore, when the dielectric film such as Si 3 N 4 or AlN is placed between the magnetic thin film and the substrate to reduce the reflectivity of the recording medium, the apparent Kerr rotation angle is increased to improve the CN ratio. Ways to improve have been proposed.

しかし、誘電体膜の材料としてSi3N4,AlN等を用いる
と、スパッタ時に入る内部応力により薄膜層に亀裂が入
り、この亀裂を通して大気中の水分が磁性膜中に侵入し
て膜を腐食させるため、大気中に放置すると、記録,再
生特性が劣化する欠点を有していた。また誘電体薄膜層
の膜厚が不適当な場合には、記録媒体の反射率が十分下
がらず、見かけのカー回転角θkも増大せず、記録,再
生特性の改善ができない。
However, when Si 3 N 4 , AlN, etc. are used as the material of the dielectric film, the thin film layer cracks due to the internal stress entering during sputtering, and moisture in the atmosphere penetrates into the magnetic film through this crack and corrodes the film. Therefore, if left in the atmosphere, the recording and reproducing characteristics deteriorate. Further, if the film thickness of the dielectric thin film layer is inappropriate, the reflectance of the recording medium does not decrease sufficiently, the apparent Kerr rotation angle θk does not increase, and the recording and reproducing characteristics cannot be improved.

一方、光磁気記録媒体への情報の記録および消去は半
導体レーザを用いて行うが、情報の転送速度を増加させ
るためにディスク回転数を上昇させると、記録媒体上へ
の一点に照射されるレーザビームの照射時間が短くな
り、半導体レーザでは記録媒体温度が記録および消去の
動作点、すなわちキュリー温度まで上がらなくなる可能
性がある。
On the other hand, recording and erasing of information on the magneto-optical recording medium are performed by using a semiconductor laser. However, when the disc rotation speed is increased to increase the information transfer rate, a laser is irradiated onto one point on the recording medium. The irradiation time of the beam is shortened, and in the semiconductor laser, the temperature of the recording medium may not reach the operating point for recording and erasing, that is, the Curie temperature.

本発明の課題は、上記の問題を解決し、磁性薄膜と基
板の間に誘電体層を配置して向上させた再生CN比を低下
させることなく、半導体レーザを用いて高いディスク回
転数における記録媒体への記録および消去が可能な光磁
気記録媒体を提供することにある。さらに大気中におい
ても、誘電体膜に亀裂発生のない耐食性の優れた光磁気
記録媒体を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to record at a high disk rotation speed by using a semiconductor laser without lowering a reproducing CN ratio improved by disposing a dielectric layer between a magnetic thin film and a substrate. An object is to provide a magneto-optical recording medium capable of recording and erasing on the medium. Another object of the present invention is to provide a magneto-optical recording medium which is excellent in corrosion resistance and does not crack in the dielectric film even in the atmosphere.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上述の課題を解決するため、基板上に誘電
体層を介して基板面に垂直方向の磁化容易軸を凹有する
磁性薄膜を備えた光磁気記録媒体において、前記誘電体
層は、0.5〜4.5原子%のCuを含む膜厚40〜120nmのSiAlO
N膜からなることを特徴としている。
The present invention, in order to solve the above problems, in a magneto-optical recording medium comprising a magnetic thin film having a concave easy magnetization axis in the direction perpendicular to the substrate surface via a dielectric layer, in the magneto-optical recording medium, the dielectric layer, SiAlO with a thickness of 40-120 nm containing 0.5-4.5 atomic% Cu
It is characterized by consisting of N film.

〔作用〕[Action]

SiAlON膜はSi3N4,AlNに比べスパッタ時に入る内部応
力が小さく、亀裂の発生が少ないので磁性薄膜を腐食さ
せることなく、膜厚が40〜120nmであれば記録媒体の反
射率を低くして再生CN比が45dBを上回り、また高い記録
感度を得ることができる。そして0.5〜4.5原子%のCuを
加えることにより、再生CN比を45dB以上に確保し、一方
信号記録および消去のために必要なレーザパワーを低下
させることができる。
Compared to Si 3 N 4 and AlN, the SiAlON film has smaller internal stress during sputtering and less cracks, so it does not corrode the magnetic thin film, and if the film thickness is 40 to 120 nm, it reduces the reflectance of the recording medium. As a result, the reproduction CN ratio exceeds 45 dB and high recording sensitivity can be obtained. Then, by adding 0.5 to 4.5 atom% of Cu, the reproducing CN ratio can be secured at 45 dB or more, while the laser power required for signal recording and erasing can be reduced.

〔実施例〕〔Example〕

第1図は、本発明の実施例の光磁気記録媒体の構成を
示す断面図である。すなわち、ガラス,樹脂などからな
る透明基板1上に本発明に基づく各種誘電体層2を積層
し、その上にTbFe,TbFeCoなどの非晶質磁性薄膜3を形
成し、さらに誘電体膜からなる保護層4を積層したもの
である。
FIG. 1 is a sectional view showing the structure of a magneto-optical recording medium according to an embodiment of the present invention. That is, various dielectric layers 2 according to the present invention are laminated on a transparent substrate 1 made of glass, resin, etc., an amorphous magnetic thin film 3 of TbFe, TbFeCo, etc. is formed thereon, and further a dielectric film is formed. The protective layer 4 is laminated.

以下に述べる参考例及び実施例では基板1として十分
に脱ガスを行った5.25インチのポリカーボネート板を用
い、磁性薄膜3としてはスパッタリング法で形成したTb
23Fe69Co8またはTb24Fe70Co6膜を用い、保護層4として
は誘電体層2と同じ材料を同じ方法で100nmの厚さに成
膜した。
In the following Reference Examples and Examples, a fully degassed 5.25-inch polycarbonate plate is used as the substrate 1, and the magnetic thin film 3 is made of Tb formed by a sputtering method.
A 23 Fe 69 Co 8 or Tb 24 Fe 70 Co 6 film was used, and as the protective layer 4, the same material as the dielectric layer 2 was formed to a thickness of 100 nm by the same method.

参考例1: 誘電体層2としてSiAlONを用いた参考例である。SiAl
ON薄膜はSiAlON焼結ターゲットを用いアルゴンガス圧0.
6Pa,スパッタパワー300Wの条件でRFマグネトロンスパッ
タ法により各種の厚さに形成した。磁性薄膜3のスパッ
タリングは誘電体層2を形成後、真空を破らずにTbFeCo
合金ターゲットをアルゴンガス圧0.2Pa,スパッタパワー
300Wの条件6のDCマグネトロンスパッタ法で行い、70nm
の厚さのTb23Fe69Co8膜を得た。
Reference Example 1: This is a reference example using SiAlON as the dielectric layer 2. SiAl
The ON thin film uses a SiAlON sintered target and the argon gas pressure is 0.
Various thicknesses were formed by the RF magnetron sputtering method under the conditions of 6 Pa and sputtering power of 300 W. After forming the dielectric layer 2, the magnetic thin film 3 is sputtered with TbFeCo without breaking the vacuum.
Argon gas pressure 0.2Pa, sputter power for alloy target
Performed by DC magnetron sputtering method under condition 6 of 300 W, 70 nm
A Tb 23 Fe 69 Co 8 film having a thickness of 100 μm was obtained.

このようにして得られる光磁気記録媒体の誘電体層2
のSiAlON薄膜の膜厚dを0〜170nmの範囲で変えた場合
の信号再生時のCN比,信号記録時の最適記録レーザパワ
ーPwoptを測定した。測定はピックアップ位置半径30mm
および60mm,ディスク回転数1800rpm,記録周波数1.88MH
z,印加磁界400Oe,再生レーザパワー1mWで行った。第2
図に示す測定結果は、再生CN比については、半径30mmの
位置で測定して線21で示し、最適記録パワーPwoptにつ
いては半径60mmの位置で測定して線22で示している。
The dielectric layer 2 of the magneto-optical recording medium thus obtained
When the film thickness d of the SiAlON thin film was changed from 0 to 170 nm, the CN ratio during signal reproduction and the optimum recording laser power P wopt during signal recording were measured. Measurement is with a pickup position radius of 30 mm
And 60mm, disk speed 1800rpm, recording frequency 1.88MH
z, applied magnetic field of 400 Oe, and reproduction laser power of 1 mW. Second
In the measurement results shown in the figure, the reproducing CN ratio is shown by a line 21 when measured at a radius of 30 mm, and the optimum recording power P wopt is shown by a line 22 when measured at a radius of 60 mm.

第2図より明らかなように、SiOlON薄膜の膜厚dが40
〜120nmの範囲でCN比がディジタル記録に必要な45dBを
上回っており、Pwoptが8〜8.5mWと高記録感度が実現さ
れている。
As is clear from FIG. 2, the film thickness d of the SiOlON thin film is 40
The CN ratio exceeds 45 dB required for digital recording in the range of up to 120 nm, and P wopt of 8 to 8.5 mW achieves high recording sensitivity.

また、実施例の記録媒体ではSi3N4,AlNを誘電体とし
て用いた時のような亀裂発生は全くなかった。
In addition, in the recording medium of the example, there was no crack generation at the time when Si 3 N 4 or AlN was used as the dielectric.

さらに温度60℃,相対湿度90%の恒温恒湿槽中に1000
時間放置して特性変化を調べた結果、第3図に示す通り
再生CN比も変化せず、また亀裂や腐食生成物も確認され
なかった。
Furthermore, 1000 in a constant temperature and humidity chamber with a temperature of 60 ° C and a relative humidity of 90%.
As a result of examining the characteristic change after leaving for a while, as shown in FIG. 3, the recycled CN ratio did not change, and neither crack nor corrosion product was confirmed.

そこで、以下に述べる実施例においては、誘電体層2
の膜厚を40〜120nmの範囲内に成膜することとした。
Therefore, in the embodiments described below, the dielectric layer 2
The film thickness was decided to be within the range of 40 to 120 nm.

実施例1: 誘電体層2としてCuを添加したSiAlONを用いた実施例
である。誘電体層2形成は、例えば1mm×1mm×40mmの寸
法のCu片を埋め込んだSiAlON焼結ターゲットを用い実施
例1と同一の条件で行い、Cu2.0原子%を含むSiAlON誘
電体層2を90nmの厚さに形成し、引きつづいて実施例1
と同一条件のDCマグネトロンスパッタ法でTb24Fe70Co6
磁性薄膜3を70nmの厚さに形成した。同様にしてSiAlON
焼結ターゲットに埋め込むCu片を変えるのみでCuの含有
量の異なる誘電体層2を有する光磁気記録媒体を作成し
た。Cu2.0原子%を含むSiAlON誘電体層を有する光磁気
記録媒体においては、信号記録の最適記録レーザーパワ
ーPwopt,信号消去時の消去レーザーパワーPEは共に4.5m
Wと十分低い値となり、また再生CN比は45dBを上回る53d
Bが得られた。しかし、Cu10.0原子%を含むSiAlON誘電
体層を有するものではPwopt,PEとも4.0mWと2.0原子%と
余り変わらないが、再生CN比は41dBとなり45dBを下回
る。第4図にCu含有量と再生CN比,Pwopt,PEとの関係を
それぞれ線41,42,43で示し、SiAlON誘電体層2に含有さ
れるCuの量が0.1原子%を超えるあたりからPwopt,PE
低下しはじめ、6.0原子%を超えると再生CN比が45dB以
下に劣化する。特に、Cu含有量が0.5〜4.5原子%の範囲
では、再生CN比が52〜53dB,Pwopt,PEは4.5〜5.0mWとほ
ぼ均一な特性が実現できる。
Example 1: An example using SiAlON with Cu added as the dielectric layer 2. The dielectric layer 2 is formed under the same conditions as in Example 1 by using a SiAlON sintered target in which Cu pieces having dimensions of 1 mm × 1 mm × 40 mm are embedded, and the SiAlON dielectric layer 2 containing Cu 2.0 atomic% is formed. It is formed to a thickness of 90 nm, and subsequently, Example 1
DC magnetron sputtering under the same conditions as Tb 24 Fe 70 Co 6
The magnetic thin film 3 was formed to a thickness of 70 nm. Similarly, SiAlON
A magneto-optical recording medium having a dielectric layer 2 having a different Cu content was prepared only by changing the Cu piece embedded in the sintering target. In the magneto-optical recording medium having the SiAlON dielectric layer containing 2.0 atomic% Cu , the optimum recording laser power P wopt for signal recording and the erasing laser power P E for signal erasing are both 4.5 m.
It is a sufficiently low value as W, and the reproduction CN ratio exceeds 45 dB at 53d.
B was obtained. However, with the SiAlON dielectric layer containing 10.0 atomic% Cu , both P wopt and P E are 4.0 mW, which is 2.0 atomic%, which is not so different, but the reproduction CN ratio is 41 dB, which is less than 45 dB. Fig. 4 shows the relationship between the Cu content and the regenerated CN ratio, P wopt , and P E by lines 41, 42, and 43, respectively, when the amount of Cu contained in the SiAlON dielectric layer 2 exceeds 0.1 atomic%. Therefore , P wopt and P E begin to decrease, and when it exceeds 6.0 atomic%, the reproduction CN ratio deteriorates to 45 dB or less. In particular, when the Cu content is in the range of 0.5 to 4.5 atom%, the reproduction CN ratio is 52 to 53 dB, and P wopt and P E are 4.5 to 5.0 mW, which are almost uniform characteristics.

〔発明の効果〕〔The invention's effect〕

本発明によれば、磁性薄膜と基体の間に配置して記録
媒体の反射率を低め、見かけのカー回転角を大きくする
ための誘電体層に40〜120nmの厚さの0.5〜4.5原子%のC
uを添加したSiAlONの膜を用いることにより、再生CN比
を所期の45dB以上に確保しながら記録感度,消去特性の
優れた光磁気記録媒体を得ることができた。
According to the present invention, the dielectric layer is disposed between the magnetic thin film and the substrate to lower the reflectance of the recording medium and to increase the apparent Kerr rotation angle. C
By using the SiAlON film with u added, we were able to obtain a magneto-optical recording medium with excellent recording sensitivity and erasing characteristics, while ensuring the reproduction CN ratio of 45 dB or more.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の光磁気記録媒体の断面構造
図、第2図は本発明の参考例の媒体のSiAlON膜厚と再生
CN比の関係線図、第3図は本発明の参考例の媒体の高湿
中の放置時間と再生CN比の関係線図、第4図はSiAlON膜
中のCuの含有量と再生CN比,最適記録レーザパワー,消
去レーザパワーとの関係線図である。 1……基板、2……誘電体層、3……磁性薄膜、4……
保護層。
FIG. 1 is a sectional structural view of a magneto-optical recording medium of an embodiment of the present invention, and FIG. 2 is a SiAlON film thickness and reproduction of a medium of a reference example of the present invention.
Relationship diagram of CN ratio, FIG. 3 is a relationship diagram of the standing time in high humidity of the medium of the reference example of the present invention and the regeneration CN ratio, and FIG. 4 is the Cu content in the SiAlON film and the regeneration CN ratio. FIG. 3 is a relational diagram with optimum recording laser power and erasing laser power. 1 ... Substrate, 2 ... Dielectric layer, 3 ... Magnetic thin film, 4 ...
Protective layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に誘電体層を介して基板面に垂直方
向の磁化容易軸を有する磁性薄膜を備えた光磁気記録媒
体において、前記誘電体層は、0.5〜4.5原子%のCuを含
む膜厚40〜120nmのSiAlON膜からなることを特徴とする
光磁気記録媒体。
1. A magneto-optical recording medium comprising a magnetic thin film on a substrate having an easy axis of magnetization perpendicular to the substrate surface via a dielectric layer, wherein the dielectric layer contains Cu of 0.5 to 4.5 atomic%. A magneto-optical recording medium comprising a SiAlON film having a thickness of 40 to 120 nm.
JP1076272A 1989-03-28 1989-03-28 Magneto-optical recording medium Expired - Lifetime JP2550698B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1076272A JP2550698B2 (en) 1989-03-28 1989-03-28 Magneto-optical recording medium
NL9000678A NL9000678A (en) 1989-03-28 1990-03-22 MAGNETO-OPTICAL RECORDING MEDIUM.
DE19904009843 DE4009843C2 (en) 1989-03-28 1990-03-27 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076272A JP2550698B2 (en) 1989-03-28 1989-03-28 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH02254650A JPH02254650A (en) 1990-10-15
JP2550698B2 true JP2550698B2 (en) 1996-11-06

Family

ID=13600611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076272A Expired - Lifetime JP2550698B2 (en) 1989-03-28 1989-03-28 Magneto-optical recording medium

Country Status (3)

Country Link
JP (1) JP2550698B2 (en)
DE (1) DE4009843C2 (en)
NL (1) NL9000678A (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3685649T2 (en) * 1986-01-29 1993-01-21 Fujitsu Ltd APPARATUS WITH OPTICAL MEMORY AND METHOD FOR THE PRODUCTION THEREOF.
JPH0785314B2 (en) * 1986-02-05 1995-09-13 沖電気工業株式会社 Protective film for magneto-optical recording medium
JPS63269348A (en) * 1987-04-27 1988-11-07 Oki Electric Ind Co Ltd Magneto-optical recording medium
JP2536819B2 (en) * 1987-07-23 1996-09-25 ティーディーケイ株式会社 Optical recording medium
JP2630399B2 (en) * 1987-07-10 1997-07-16 ティーディーケイ株式会社 Optical recording medium
EP0304873B1 (en) * 1987-08-26 1991-11-21 Sony Corporation Magneto-optical recording medium
EP0349271B1 (en) * 1988-06-28 1995-02-22 Sharp Kabushiki Kaisha Magneto-optic memory device

Also Published As

Publication number Publication date
DE4009843A1 (en) 1990-10-04
JPH02254650A (en) 1990-10-15
NL9000678A (en) 1990-10-16
DE4009843C2 (en) 1995-09-07

Similar Documents

Publication Publication Date Title
JPH0325737A (en) Magneto-optical recording medium
US4777082A (en) Optical magnetic recording medium
JP2550698B2 (en) Magneto-optical recording medium
GB2158281A (en) Optical recording medium
JPH0350344B2 (en)
JP2921590B2 (en) Magneto-optical recording medium
JP2604361B2 (en) Magneto-optical recording medium
JP2507592B2 (en) Optical recording medium
EP0239974A2 (en) Magneto-optical recording medium
JP2829335B2 (en) Magneto-optical recording medium
JPH0350343B2 (en)
EP0316803A2 (en) Magneto-optical recording medium
JP2960470B2 (en) Magneto-optical recording medium
JP2817505B2 (en) Single-plate optical disk for magneto-optical recording and its recording / reproducing method
JPS6332748A (en) Information recording medium
JPH0350342B2 (en)
Chen et al. Dynamic Study of Amorphous Tb-Fe Film for Magneto-Optic Memory Applications
JP2834846B2 (en) Method for manufacturing magneto-optical recording medium
JPH02265043A (en) Magneto-optical recording medium
JPS6168748A (en) Photomagnetic recording medium
JP2740814B2 (en) Magneto-optical recording medium
JPH0690813B2 (en) Amorphous magneto-optical layer
JPH0638370B2 (en) Amorphous magneto-optical layer
JP2678222B2 (en) Magneto-optical recording medium
JPH02126445A (en) Magneto-optical recording medium