JPS6168748A - Photomagnetic recording medium - Google Patents
Photomagnetic recording mediumInfo
- Publication number
- JPS6168748A JPS6168748A JP18878684A JP18878684A JPS6168748A JP S6168748 A JPS6168748 A JP S6168748A JP 18878684 A JP18878684 A JP 18878684A JP 18878684 A JP18878684 A JP 18878684A JP S6168748 A JPS6168748 A JP S6168748A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- recording medium
- magneto
- recording
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、消去書替可能な高密度メモリーに利用され、
光照射による加熱で記録され磁気カー効果、ファラデー
効果などの磁気光学効果を利用して読み出しのできるデ
ィスクやカード、シート状の光磁気記録媒体に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to erasable and rewritable high-density memory,
The present invention relates to magneto-optical recording media in the form of disks, cards, and sheets that are recorded by heating with light irradiation and can be read using magneto-optical effects such as the magnetic Kerr effect and the Faraday effect.
従来、光磁気記録媒体としては、 Mini、 Mn(
:u旧などの多結晶薄膜、GdCo、 GdFe、 T
bFe、 [1yFe。Conventionally, as magneto-optical recording media, Mini, Mn (
: Polycrystalline thin film such as u old, GdCo, GdFe, T
bFe, [1yFe.
GdTbFe 、↑bロアFe、 GdFeCo、 T
bFeCo、 GdTbCoなどの非晶質薄膜、 Gd
Feガーネットなどの単結晶S膜などが知られている。GdTbFe, ↑b lower Fe, GdFeCo, T
Amorphous thin film such as bFeCo, GdTbCo, Gd
Single crystal S films such as Fe garnet are known.
これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーで書
き込むための書き込み効率、および書き込まれた信号を
SIN比よく読み出すための読み出し効率等を勘案する
と、最近では前記非晶質PJIliが光熱磁気記録媒体
用として優れていると考えられている。Among these thin films, the film-forming efficiency when manufacturing large-area thin films at temperatures near room temperature, the writing efficiency for writing signals with small photothermal energy, and the reading efficiency for reading written signals with a good SIN ratio are important. Considering these factors, the amorphous PJIli is recently considered to be excellent for use in photothermal magnetic recording media.
さらに書き込み効率、読み出し効率を向上させるために
前記非晶質薄膜を光が透過する程度に超薄膜化し、その
上に反射層を設けた構成も提案されている。Furthermore, in order to improve writing efficiency and reading efficiency, a configuration has been proposed in which the amorphous thin film is made ultra-thin to the extent that light can pass therethrough, and a reflective layer is provided thereon.
しかし、前記の非晶質磁性薄膜は一般に耐腐食性が劣り
、湿気を有する雰囲気中では腐食されて磁気特性の劣化
が生じるという欠点があり、記録媒体としての長期保存
性に問題があった。また前記の反射層を設けた構成では
、非晶質磁性薄膜が非常に薄いため一層、腐食されやす
い、その上。However, the above-mentioned amorphous magnetic thin film generally has poor corrosion resistance, and has the disadvantage that it corrodes in a humid atmosphere, resulting in deterioration of magnetic properties, and has a problem in long-term storage as a recording medium. Furthermore, in the configuration in which the reflective layer is provided, the amorphous magnetic thin film is very thin and is even more susceptible to corrosion.
反射層の金属材料としては記録・再生に用いる光の反射
率が十分大きいものを使わなければならず、それ自身の
耐腐食性や防湿性とを両立させることがむずかしかった
0本発明はこれらの問題点を解決し、耐腐食性の高い光
磁気記録媒体を提供することを目的とする。The metal material for the reflective layer must have a sufficiently high reflectance for the light used for recording and reproduction, and it is difficult to achieve both corrosion resistance and moisture resistance. The purpose is to solve the problems and provide a magneto-optical recording medium with high corrosion resistance.
本発明の光磁気記録媒体は、基板上にFIi気記録層を
有し、更に該磁気記録層上に反射層を有してなる光磁気
記録媒体において、前記反射層が、二層の金属層からな
り、前記磁気記録層から遠い側に配設された金属等が他
方の金属層よりもイオン化傾向の大きい金属で、かつ不
動態被膜を形成可能な金属からなることを特徴とする。The magneto-optical recording medium of the present invention has an FIi magnetic recording layer on a substrate, and further has a reflective layer on the magnetic recording layer, wherein the reflective layer is a two-layer metal layer. The magnetic recording layer is characterized in that the metal disposed on the side far from the magnetic recording layer is a metal that has a greater ionization tendency than the other metal layer, and is also made of a metal that can form a passive film.
以下1本発明の光磁気記録媒体を図面に基づいてより詳
細に説明する。第1図は、本発明の光磁気記録媒体の一
実施態様を示す模式断面図である。Hereinafter, the magneto-optical recording medium of the present invention will be explained in more detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing one embodiment of the magneto-optical recording medium of the present invention.
1は基板であり、従来公知の材料例えば、ガラス、アク
リル系樹脂、ポリカーボネート、ポリエチレン、ポリイ
ミド等を用いることができる。Reference numeral 1 represents a substrate, and conventionally known materials such as glass, acrylic resin, polycarbonate, polyethylene, and polyimide can be used.
2は磁気記録層であり、本発明の目的から非晶質磁性f
i膜によって形成するのがよいが、MnB i 。2 is a magnetic recording layer, and from the purpose of the present invention, an amorphous magnetic f
It is preferable to form the MnB i film.
MnCuB1等の多結晶薄膜等の従来公知の磁気光学効
果を有する薄膜であってもよい。It may be a thin film having a conventionally known magneto-optic effect, such as a polycrystalline thin film such as MnCuB1.
特に、良好な記録効率・再生効率を得るためにはGd、
Tb、 Dy等の希土類金属の中の1種以上の金属元
素とFe、 Go、 Ni等の遷移金属の中の1種以上
の金属元素とからなる非晶質磁性薄膜が望ましい、−例
としてGdCa、 TbFe、 GdTbFe、 Tb
DyFe。In particular, in order to obtain good recording efficiency and reproduction efficiency, Gd,
An amorphous magnetic thin film consisting of one or more metal elements among rare earth metals such as Tb and Dy and one or more metal elements among transition metals such as Fe, Go, and Ni is desirable, for example, GdCa. , TbFe, GdTbFe, Tb
DyFe.
TbFeCo、 GdTbFeC:o等の非晶質薄膜を
挙げるコトができる。Amorphous thin films such as TbFeCo and GdTbFeC:o can be used.
磁気記録層2は真空蒸着法、スパッタリング法等により
形成される。The magnetic recording layer 2 is formed by a vacuum evaporation method, a sputtering method, or the like.
3と3′は反射層であり、この反射層3及び3′により
記録の際には磁気記録層2を透過した記録光が再び磁気
記録層2へ照射されることにより記録光のエネルギーは
有効に利用できる。再生の際には、再生光の一部は磁気
記録層2で反射され、一部は磁気記録層2を透過し反射
層3,3′で反射される0、前者の反射光はカー効果を
受け、後者の反射光はファラデー効果を受けているので
1両者の反射光の検出により再生効率を高めることがで
きる。3 and 3' are reflective layers, and during recording, the recording light that has passed through the magnetic recording layer 2 is irradiated onto the magnetic recording layer 2 again by the reflective layers 3 and 3', so that the energy of the recording light is effective. Available for During reproduction, part of the reproduction light is reflected by the magnetic recording layer 2, and part of the reproduction light is transmitted through the magnetic recording layer 2 and reflected by the reflective layers 3 and 3'.The former reflected light has the Kerr effect. Since the latter reflected light is subject to the Faraday effect, the reproduction efficiency can be increased by detecting both of the reflected lights.
反射層3の材料としては、使用する光波長において十分
な反射率を有し、イオン化傾向の比較的小さい金属の中
から選ばれる。特にCu、 Au、 Aiptなどが好
ましい、一方1反射層3′の材料としては、イオン化傾
向が反射層3の材料より大きく、かつ酸化されて不動態
被膜を形成する耐食性の金属の中から選ばれる。好まし
い材料として、Or、 Ti、 jV!、 Taなどが
挙げられる。特にOrは酸化されると強固な不動態被膜
が形成されるので好ましい。The material for the reflective layer 3 is selected from metals that have sufficient reflectance at the wavelength of light used and have a relatively small tendency to ionize. Particularly preferred are Cu, Au, Aipt, etc., while the material for the first reflective layer 3' is selected from corrosion-resistant metals that have a greater ionization tendency than the material for the reflective layer 3 and form a passive film when oxidized. . Preferred materials include Or, Ti, jV! , Ta, etc. In particular, Or is preferable because it forms a strong passive film when oxidized.
反射層3及び3′は上記の材料を使用して真空蒸着、ス
パッタリング等の方法によって形成される。The reflective layers 3 and 3' are formed using the above-mentioned materials by vacuum deposition, sputtering, or other methods.
反射層3及び3′が上記のような構成とされることによ
って、前記した反射層本来の働きに加え、m気記録層2
の腐食を防止する働きも有する。すなわち、反射層3′
上に設けられる接着層4が吸湿しても、反射層3′は不
動態被膜を形成するので酸素や水分等は該層3′を透過
せず。By having the reflective layers 3 and 3' configured as described above, in addition to the original function of the reflective layer described above, the recording layer 2
It also has the function of preventing corrosion. That is, the reflective layer 3'
Even if the adhesive layer 4 provided thereon absorbs moisture, the reflective layer 3' forms a passive film, so oxygen, moisture, etc. do not pass through the layer 3'.
磁気記録層2の腐食が防止される。また1反射層3′に
たとえビンボールが存在しても次のような理由から反射
層3は腐食を受けにくい、即ち、一般的にイオン化傾向
の大きい金属はど酸化されやすく、イオン化傾向の異な
る金属が隣接している場合には、その隣接界面に酸素、
水分が浸透した場合にイオン化傾向の大きい金属面の腐
食が先に進行し、結果としてイオン化傾向の小さい金属
面の腐食の進行が抑制されるためである。Corrosion of the magnetic recording layer 2 is prevented. In addition, even if there are glass balls in the first reflective layer 3', the reflective layer 3 is not easily corroded for the following reasons.In general, metals with a large ionization tendency are easily oxidized, and metals with a different ionization tendency are are adjacent, oxygen at the adjacent interface,
This is because when moisture penetrates, corrosion progresses first on metal surfaces with a high ionization tendency, and as a result, the progress of corrosion on metal surfaces with a low ionization tendency is suppressed.
以上のように1反射層3は反射層3′によって腐食から
保護されているので、該層3の材料としては耐食性能を
問題とせずに記録光・再生光の反射能力に利点をおいて
選択でさる。従って、本発明の光磁気記録媒体は耐食性
の向上のみならず記録効率や再生効率の向上においても
有効である。As described above, the reflective layer 3 is protected from corrosion by the reflective layer 3', so the material for the layer 3 is selected based on its ability to reflect recording and reproducing light without worrying about corrosion resistance. It's a monkey. Therefore, the magneto-optical recording medium of the present invention is effective not only in improving corrosion resistance but also in improving recording efficiency and reproduction efficiency.
反射層3と3′の層厚の合計は従来の一層の反射層の層
厚と同程度とする。The total thickness of the reflective layers 3 and 3' is approximately the same as the thickness of a single conventional reflective layer.
接着層4は、この光磁気記録媒体の機械的保護等のため
に基板(不図示)と貼り合せたり、両面で記録再生がで
きるようにもう1つの記録媒体(不図示)を貼り合せた
りするための層である。The adhesive layer 4 is bonded to a substrate (not shown) for mechanical protection of the magneto-optical recording medium, or is bonded to another recording medium (not shown) so that recording and reproduction can be performed on both sides. This is a layer for
なお、基板lと磁気記録層2との間に光磁気記録媒体の
耐腐食性・耐久性を更に向上させるために、SiO、5
i02 、 Sl、Nm 、 Aiq03等の保護
層を設はノーjl 、種々の目的でryT定の位置に他
の層を設け(もよい。In addition, in order to further improve the corrosion resistance and durability of the magneto-optical recording medium, SiO, 5
Although protective layers such as i02, Sl, Nm, and Aiq03 are not provided, other layers may be provided at certain positions for various purposes.
また、第2図に示すように、磁気記#i層2と反射層3
との間にSiO、5iiN*等の誘電体層5を真空75
着、スパッタリング等の方法により設けてもよい。こう
することにより、磁気記録層2を透過した再生光の一部
がこの誘電体と反射層3及び3′ との間で多重反射し
、この光と磁気記録層2で反射された再生光の一部とを
同時に検出することにより、再生効率を高めることもで
きる。In addition, as shown in FIG. 2, the magnetic recording layer #i layer 2 and the reflective layer 3
A dielectric layer 5 of SiO, 5iiN*, etc. is placed between the
It may be provided by a method such as deposition or sputtering. By doing this, a part of the reproduction light transmitted through the magnetic recording layer 2 is multiple-reflected between this dielectric material and the reflective layers 3 and 3', and this light and the reproduction light reflected by the magnetic recording layer 2 are combined. By simultaneously detecting a part of the data, it is also possible to improve the regeneration efficiency.
また、本発明の光磁気記録媒体は、正確な記録・再生の
ために第3図に示すように案内溝を設けることもできる
。これは、射出成形等によって基板1に案内溝を設け、
この基板1上に各種の層を均一に被膜することによって
形成できる。第3図において6は、 SiO、SiO□
、 Si3N、 、 Affi、03等の保護層で
ある。Further, the magneto-optical recording medium of the present invention may be provided with guide grooves as shown in FIG. 3 for accurate recording and reproduction. This is done by providing guide grooves on the substrate 1 by injection molding or the like.
It can be formed by uniformly coating various layers on this substrate 1. In Fig. 3, 6 is SiO, SiO□
, Si3N, , Affi, 03 and the like.
以上説明したように反射層をイオン化傾向の異なる2層
の金属層とするという簡単な改良で、記録再生の性能と
、保存寿命との両方を向上させることができた。As explained above, both the recording and reproducing performance and the shelf life can be improved by a simple improvement in which the reflective layer is made up of two metal layers with different ionization tendencies.
以下、本発明を実施例及び比較例により更に詳細に説明
する。Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.
実施例1 第2図に示す構成の光磁気記録媒体を作成した。Example 1 A magneto-optical recording medium having the configuration shown in FIG. 2 was prepared.
基板■として1.1mm厚の基板ガラスを用い、その上
にスパッタリング装置を用いてGdTbFeCaの厚さ
150への非晶質合金薄膜を磁気記録層2として形成
した。その上に引きつづき同じ装置の中でSiのターゲ
ットを用い、ArとN2の程合ガスを使ってスパッタリ
ングにより厚さ38QQA(7)窒化硅素膜を誘電体層
5として形成した。その後、これをスバシ・タリング装
置から取り出し、真空蒸着装置に童・・2トし、て、反
射層3としてCuを厚さ100OA、反射層3 どして
Crを厚さ3000A真空ノベ着した6次番二反射層3
′上にシリコン系接着剤でノ、(板ガラスと接着し光磁
気記録媒体を作製した。A glass substrate with a thickness of 1.1 mm was used as the substrate (2), and an amorphous alloy thin film of GdTbFeCa having a thickness of 150 mm was formed thereon as the magnetic recording layer 2 using a sputtering device. Subsequently, a silicon nitride film having a thickness of 38 QQA (7) was formed as the dielectric layer 5 thereon by sputtering using a Si target in the same apparatus and using gases in the proportions of Ar and N2. Thereafter, this was taken out from the Subashi taring apparatus, placed in a vacuum evaporation apparatus, and then Cu was deposited to a thickness of 100 OA as a reflective layer 3, and Cr was vacuum-deposited to a thickness of 3000 Å. Next second reflective layer 3
A magneto-optical recording medium was prepared by adhering it to a plate glass using a silicone adhesive.
この光磁気記録媒体のIII)!腐食性を調べるために
、85℃、85%RHの条件下に1000時間放置した
。III) of this magneto-optical recording medium! In order to examine the corrosivity, it was left for 1000 hours at 85° C. and 85% RH.
その結果外観上回の変化もなく、保磁力の低下も初期値
の10%以内であった。As a result, there was no change in appearance, and the decrease in coercive force was within 10% of the initial value.
実施例2
反射層3′ としてCrの代りに層厚2QOOAのTi
とした以外は実施例1と全く同様にして光磁気記録媒体
を作製し、85℃、85%RHの条件下に1000時間
放置した。その結果外観上変化なく、保磁力の低下も初
期値の10%以内であった。Example 2 Ti with a layer thickness of 2 QOOA was used instead of Cr as the reflective layer 3'.
A magneto-optical recording medium was prepared in exactly the same manner as in Example 1 except for the above, and was left for 1000 hours at 85° C. and 85% RH. As a result, there was no change in appearance, and the decrease in coercive force was within 10% of the initial value.
比較例1
実施例1において、反射層を層厚300〇へのCu膜一
層のみとした以外は実施例1と全く同様にして光磁気記
録媒体を作製し、85°C585%RHの条件下に10
00時間放置した。その結果ピンホール状の腐食が部分
的に発生しており保磁力の低下も初期値の30%に達し
ていた。Comparative Example 1 A magneto-optical recording medium was prepared in exactly the same manner as in Example 1 except that the reflective layer was a single layer of Cu film with a layer thickness of 3000 mm, and was heated under the conditions of 85° C. and 585% RH. 10
It was left for 00 hours. As a result, pinhole-like corrosion occurred partially and the coercive force decreased by 30% of its initial value.
実施例1.2及び比較例とを比べると1本発明により#
腐食性が向上することか明らかである。Comparing Example 1.2 and Comparative Example, #1 according to the present invention
It is clear that the corrosivity is improved.
実施例3
トラッキング用案内溝を成形したPMMA製ディスク状
の基板lにまずスパッタ装置で窒化硅素の保5層6を1
00OAの厚さに形成し、その−ヒに引きつづき実施例
1と同様な非晶質磁性合金薄膜を200人形成し、引さ
つづ3窒化硅素11Qを誘電体層3として形成した0次
に真空蒸着装置の中で反射層3としてCuを厚さ100
0人、反射層3′としてCrを厚さ3oooA真空蒸着
した。このようにして2つの光磁気記録媒体を形成し、
反射層3′を互いにシリコ−・7ぐ慶ri剤で貼り合せ
た。Example 3 First, a protective layer 6 of silicon nitride was applied using a sputtering device to a disk-shaped substrate 1 made of PMMA on which a tracking guide groove was formed.
After that, 200 amorphous magnetic alloy thin films similar to those in Example 1 were formed, and 3 silicon nitride 11Q was formed as the dielectric layer 3. Cu was deposited to a thickness of 100 mm as the reflective layer 3 in a vacuum evaporation device.
Cr was vacuum-deposited to a thickness of 300A as the reflective layer 3'. In this way, two magneto-optical recording media are formed,
The reflective layers 3' were bonded to each other using a silicone adhesive.
ニーの光磁気記録媒体を記録再生装置で評価した。回転
数180Orpm記録レーザーパワー7mW、再生レー
ザーパワー211IllI、波長830nmで、4 M
HzのCAM比は46仙であった。The magneto-optical recording medium was evaluated using a recording and reproducing device. Rotation speed 180Orpm, recording laser power 7mW, reproduction laser power 211IllI, wavelength 830nm, 4M
The Hz CAM ratio was 46 cents.
この記録媒体を45°C195%RHの条件下に100
0時間放置後再び記録再生したところG/Nは44龜で
あった。外観的にも何の変化もみちれなかった。This recording medium was heated at 45°C and 195% RH.
After being left for 0 hours, recording and reproduction was performed again, and the G/N was 44 mm. There was no noticeable change in appearance.
比較例2
実施例3において1反射層を層厚400〇へのCull
I2一層のみとしたこと以外は実施例3と全く同様にし
て光磁気配Q奴体を作製し、その評価をした。Comparative Example 2 Cull one reflective layer to a layer thickness of 4000 in Example 3
A magneto-optical Q-coupled body was prepared and evaluated in exactly the same manner as in Example 3 except that only one I2 layer was used.
初期のCAMは46tIIであったが、45℃、95%
IIIH。The initial CAM was 46tII, but at 45℃, 95%
IIIH.
1000時間後では3448に落ちてしまい、外観的に
も腐食と思われる変色が認められた。After 1000 hours, the value dropped to 3448, and discoloration that appeared to be corrosion was observed in appearance.
比較例3
実施例3において1反射層を層厚+oooAのCr膜一
層のみとしたこと以外は実施例3と全く同様にして光磁
気記録媒体を作製し、その評価をした。Comparative Example 3 A magneto-optical recording medium was prepared and evaluated in exactly the same manner as in Example 3, except that one reflective layer was a single Cr film with a thickness of +oooA.
初期のCAMは36(Lllと低く実用に酎えるもので
はなかった。The early CAM was too low to be of practical use, at 36 (Lll).
実施例3と比較例2.3とを比べてみても、本発明は耐
腐食性が高く、磁気特性も良好なものであることは明ら
かである。Even when comparing Example 3 and Comparative Examples 2.3, it is clear that the present invention has high corrosion resistance and good magnetic properties.
第1−第3図は本発明の光磁気記録媒体の実施例を示す
模式断面図である6
1:Xi板、 2:ra気記録層。
3.3’:反射層、 4:接着層、
5:誘電体層、 6:保護層。1 to 3 are schematic cross-sectional views showing examples of the magneto-optical recording medium of the present invention. 6 1: Xi plate, 2: Ra air recording layer. 3.3': reflective layer, 4: adhesive layer, 5: dielectric layer, 6: protective layer.
Claims (1)
反射層を有してなる光磁気記録媒体において、前記反射
層が二層の金属層からなり、前記磁気記録層から遠い側
に配設された金属層が他方の金属層よりもイオン化傾向
の大きい金属で、かつ不動態被膜を形成可能な金属から
なることを特徴とする光磁気記録媒体。 2)前記磁気記録層が遷移金属から選ばれた1種以上の
金属元素及び希土類金属から選ばれた1種以上の金属元
素からなる特許請求の範囲第1項記載の光磁気記録媒体
。 3)前記磁気記録層から遠い側に配設された金属層がC
rから成る特許請求の範囲第1項記載の光磁気記録媒体
。[Scope of Claims] 1) A magneto-optical recording medium having a magnetic recording layer on a substrate and further having a reflective layer on the magnetic recording layer, wherein the reflective layer is composed of two metal layers, A magneto-optical recording medium characterized in that the metal layer disposed on the side far from the magnetic recording layer is made of a metal that has a greater ionization tendency than the other metal layer and is also made of a metal that can form a passive film. 2) The magneto-optical recording medium according to claim 1, wherein the magnetic recording layer comprises one or more metal elements selected from transition metals and one or more metal elements selected from rare earth metals. 3) The metal layer disposed on the side far from the magnetic recording layer is C
A magneto-optical recording medium according to claim 1, comprising r.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18878684A JPS6168748A (en) | 1984-09-11 | 1984-09-11 | Photomagnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18878684A JPS6168748A (en) | 1984-09-11 | 1984-09-11 | Photomagnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6168748A true JPS6168748A (en) | 1986-04-09 |
Family
ID=16229766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18878684A Pending JPS6168748A (en) | 1984-09-11 | 1984-09-11 | Photomagnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6168748A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177736A (en) * | 1986-01-31 | 1987-08-04 | Sharp Corp | Optical memory element |
US4877690A (en) * | 1989-03-01 | 1989-10-31 | Eastman Kodak Company | Magnetooptical recording element |
JPH02199645A (en) * | 1989-01-30 | 1990-08-08 | Mitsubishi Kasei Corp | Magneto-optical recording medium |
-
1984
- 1984-09-11 JP JP18878684A patent/JPS6168748A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177736A (en) * | 1986-01-31 | 1987-08-04 | Sharp Corp | Optical memory element |
JPH02199645A (en) * | 1989-01-30 | 1990-08-08 | Mitsubishi Kasei Corp | Magneto-optical recording medium |
US4877690A (en) * | 1989-03-01 | 1989-10-31 | Eastman Kodak Company | Magnetooptical recording element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5783320A (en) | Magneto-optical recording medium and process for producing the same | |
US4975339A (en) | Magneto-optical recording medium with at least one protective layer containing platinum and/or palladium | |
JPH0352142B2 (en) | ||
JPS6148148A (en) | Thermooptical magnetic recording medium | |
US5639563A (en) | Magneto-optical recording medium | |
JP2504946B2 (en) | Magneto-optical recording medium | |
US4777082A (en) | Optical magnetic recording medium | |
JPS6168748A (en) | Photomagnetic recording medium | |
JPS61144744A (en) | Optomagnetic recording medium and its production | |
JP2670846B2 (en) | Optical recording medium | |
JPS60219655A (en) | Optical recording medium | |
JPH02223040A (en) | Magneto-optical recording medium | |
JPH0442452A (en) | Magneto-optical disk and production thereof | |
JP2829335B2 (en) | Magneto-optical recording medium | |
JPH0731831B2 (en) | Magneto-optical recording medium | |
JP2604361B2 (en) | Magneto-optical recording medium | |
JPS6252743A (en) | Optical recording medium | |
JPH02128346A (en) | Magneto-optical disk | |
JP2932687B2 (en) | Magneto-optical recording medium | |
JP2678222B2 (en) | Magneto-optical recording medium | |
JPS6148149A (en) | Thermooptical magnetic recording medium | |
JPS62246160A (en) | Medium for photomagnetic recording | |
JPS63200345A (en) | Magneto-optical disk | |
JPH0644624A (en) | Magneto-optical recording medium | |
JPS6332750A (en) | Information recording medium |