Nothing Special   »   [go: up one dir, main page]

JP2015512634A - 動物モデルおよび治療用分子 - Google Patents

動物モデルおよび治療用分子 Download PDF

Info

Publication number
JP2015512634A
JP2015512634A JP2015502439A JP2015502439A JP2015512634A JP 2015512634 A JP2015512634 A JP 2015512634A JP 2015502439 A JP2015502439 A JP 2015502439A JP 2015502439 A JP2015502439 A JP 2015502439A JP 2015512634 A JP2015512634 A JP 2015512634A
Authority
JP
Japan
Prior art keywords
human
vertebrate
light chain
endogenous
mouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502439A
Other languages
English (en)
Other versions
JP6336435B2 (ja
JP2015512634A5 (ja
Inventor
アラン・ブラッドリー
イー−チャン・リー
キ・リアン
ウェイ・ワン
ドミニク・スペンスベルガー
フイ・リウ
ジャスパー・クルブ
Original Assignee
カイマブ・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/433,084 external-priority patent/US9445581B2/en
Application filed by カイマブ・リミテッド filed Critical カイマブ・リミテッド
Publication of JP2015512634A publication Critical patent/JP2015512634A/ja
Publication of JP2015512634A5 publication Critical patent/JP2015512634A5/ja
Application granted granted Critical
Publication of JP6336435B2 publication Critical patent/JP6336435B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • C07K16/1239Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Vibrionaceae (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/462Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本発明は、キメラヒト-非ヒト抗体およびキメラ抗体鎖の作製のための方法、そのように生じた抗体および抗体鎖、ならびに完全ヒト化抗体を含むその誘導体;前記抗体、抗体鎖および誘導体を含む組成物、加えて、前記方法に使用するのに適した、細胞、非ヒト哺乳動物およびベクターを開示する。

Description

本発明はとりわけ、外来性DNA、例として、ヒト免疫グロブリン遺伝子のDNAを含有するように工学的に作製した非ヒトの動物および細胞、医学および疾患の研究におけるそれらの使用、非ヒト動物および細胞を生成するための方法、さらに、そのような動物により生成された抗体および抗体鎖ならびにそれらの誘導体にも関する。
抗体をヒト化する際の問題を回避するために、いくつかの会社が、ヒト免疫系を有するマウスの生成に着手した。使用された戦略は、ES細胞中の重鎖および軽鎖の遺伝子座をノックアウトし、これらの遺伝子の損傷を、ヒトの重鎖および軽鎖の遺伝子を発現するように設計した導入遺伝子で補足することであった。これらのモデルは、完全にヒトの抗体を生成することができたが、以下に示す、いくつかの大きな欠点を有する。
(i)重鎖および軽鎖の遺伝子座のサイズ(それぞれ、数Mb)のために、遺伝子座全体をこれらのモデルに導入することが不可能であった。結果として、回収された遺伝子導入系は、V領域の非常に限定的なレパートリーしか有さず、定常領域のうちのほとんどが欠落し、重要な遠位エンハンサー領域は、導入遺伝子中に含まれなかった。
(ii)大きな挿入遺伝子導入系の生成の非常に低い効率、ならびにこれらのそれぞれを重鎖および軽鎖のノックアウト系統中に交雑させ、それらを再びホモ接合型とするのに必要な複雑性および時間のために、最適な発現について解析することができる遺伝子導入系の数が制限された。
(iii)個々の抗体の親和性が、未改変(非トランスジェニック)動物から得ることができる親和性にまれにしか達しなかった。
WO2007117410が、キメラ抗体を発現させるためのキメラのコンストラクトを開示している。
WO2010039900が、キメラ抗体をコードするゲノムを有するノックイン細胞およびノックイン哺乳動物を開示している。
WO2007117410 WO2010039900 WO9929837 WO0104288 WO03047336 WO2011004192
World Wide Web(www) genome.ucsc.edu World Wide Web(www) genome.ucsc.edu/FAQ/FAQreleases.html JanewayおよびTravers、Immunobiology、3版 「A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction」、Adams DJ、Quail MA、Cox T、van der Weyden L、Gorick BD、Su Q、Chan WI、Davies R、Bonfield JK、Law F、Humphray S、Plumb B、Liu P、Rogers J、Bradley A、Genomics、2005年12月;86(6):753〜8頁 Epub、2005年10月27日、The Wellcome Trust Sanger Institute、Hinxton、Cambridgeshire CB10 1SA、UK Osoegawa Kら、Genome Research、2001年、11:483〜496頁 Harlow, E.およびLane, D. 1998年、5版、Antibodies: A Laboratory Manual、Cold Spring Harbor Lab. Press、Plainview、NY PasqualiniおよびArap、Proceedings of the National Academy of Sciences (2004) 101:257〜259頁 Sambrook, JおよびRussell, D. (2001、3版)、Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press、Plainview、NY) Choi Iら、Characterization and comparative genomic analysis of intronless Adams with testicular gene expression. Genomics.2004年4月;83(4):636〜46頁 Featherstone K、Wood AL、Bowen AJ、Corcoran AE、The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J Biol Chem. 2010年3月26日;285(13):9327〜38頁、電子出版2010年1月25日 Han Cら、Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol Reprod. 2009年5月;80(5):1001〜8頁、電子出版2009年1月7日 Marcelloら、Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm-egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm、J Biol Chem. 2011年4月15日;286(15):13060〜70頁、電子出版2011年2月21日 World Wide Web(www) imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=locus&species=human&group=IGL Loder Fら、「B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals」、J Exp Med. 1999年7月5日;190(1):75〜89頁 J Exp Med. 1991年5月1日;173(5):1213〜25;「Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow」、Hardy RRら Hamers-Casterman C、Atarhouch T、Muyldermans S、Robinson G、Hamers C、Songa EB、Bendahman N、Hamers R; Naturally occurring antibodies devoid of light chains; Nature. 1993年6月3日;363(6428):446〜8頁 World Wide Web(www) kabatdatabase.com Kabat, E. A.、Wu, T. T.、Perry, H.、Gottesman, K.、およびFoeller, C. (1991) Sequences of Proteins of Immunological Interest、第5版、NIH Publication No. 91-3242、Bethesda、MD World Wide Web(www) bioinf.org.uk/abs/simkab.html World Wide Web(www) imgt.cines.fr World Wide Web(www) mrc-cpe.cam.ac.uk/vbase World Wide Web(www) bioinf.org.uk/abs World Wide Web(www) unizh.ch/〜antibody World Wide Web(www) antibody.bath.ac.uk World Wide Web(www) path.cam.ac.uk/〜mrc7/mikeimages.html World Wide Web(www) antibodyresource.com World Wide Web(www) people.cryst.bbk.ac.uk/〜ubcg07s World Wide Web(www) blogsua.com/pdf/antibody-engineering-methods-and-protocolsantibody-engineering-methods-and-protocols.pdf Barrett, M.T.、Scheffer, A.、Ben-Dor, A.、Sampas, N.、Lipson, D.、Kincaid, R.、Tsang, P.、Curry, B.、Baird, K.、Meltzer, P.S.ら、(2004)、Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA、Proceedings of the National Academy of Sciences of the United States of America 101、17765〜17770頁 www.komp.org www.eucomm.org Pettitt, S.J.、Liang, Q.、Rairdan, X.Y.、Moran, J.L.、Prosser, H.M.、Beier, D.R.、Lloyd, K.C.、Bradley, A.およびSkarnes, W.C.、(2009)、Agouti C57BU6N embryonic stem cells for mouse genetic resources、Nature Methods 「Chromosome engineering in mice」、Ramirez-Solis R、Liu PおよびBradley A、Nature、1995年;378;6558;720〜4頁 Prosser, H.M.、Rzadzinska, A.K.、Steel, K.P.およびBradley, A.、(2008)、Mosaic complementation demonstrates a regulatory role for myosin Vlla in actin dynamics of stereocilia、Molecular and Cellular Biology 28、1702〜1712頁 Ramirez-Solis, R.、Davis,A.C.およびBradley, A.、(1993)、Gene targeting in embryonic stem cells、Methods in Enzymology、225、855〜878頁 Chan, W.、Costantino, N.、Li, R.、Lee, S.C.、Su, Q.、Melvin, D.、Court, D.L.およびLiu, P.、(2007)、A recombineering based approach for high-throughput conditional knockout targeting vector construction、Nucleic Acids Research 35、e64 Chung, Y.J.、Jonkers, J.、Kitson, H.、Fiegler, H.、Humphray, S.、Scott, C.、Hunt, S.、Yu, Y.、Nishijima, I.、Velds, A.ら、(2004)、A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization、Genome research 14、188〜196頁 Liang, Q.、Conte, N.、Skarnes, W.C.およびBradley, A.、(2008)、Extensive genomic copy number variation in embryonic stem cells、Proceedings of the National Academy of Sciences of the United States of America 105、17453〜17456頁 Zhengら、NAR、1999年、Vol 27、11、2354〜2360頁 Schlake, T.;J. Bode、(1994)、「Use of mutated FLP-recognition-target-(FRT-)sites for the exchange of expression cassettes at defined chromosomal loci」、Biochemistry 33:12746〜12751頁 Wallace, H.A.C.ら、(2007)、「Manipulating the mouse genome to engineering precise functional syntenic replacements with human sequence」、Cell 128:197〜209頁 ワールドワイドウェブ(www) invitrogen.com/site/us/en/home/References/protocols/nucleic-acid-amplification-and-expression-profiling/pcr-protocol/superscript-3-one-step-rt-pcr-system-with-platinum-taq-high-fidelity.html#prot3 Ramirez-Solis, R.、A. C. Davis、およびA. Bradley、1993年、Gene targeting in mouse embryonic stem cells、Methods Enzymol、225:855〜878頁 Link, JMら、Mol. Immunol.、2005年、42、943〜955頁 Pillai Sら、Immunol. Reviews、2004年、197:206〜218頁 Wardemannら、Science、301、1374頁、(2003年) J Mol Biol.、1997年4月25日、268(1):69〜77頁、「The creation of diversity in the human immunoglobulin V(lambda) repertoire」、Ignatovich Oら Cell、2002年4月、109、補遺:S45〜55頁、「The mechanism and regulation of chromosomal V(D)J recombination」、Bassing CH、Swat W、Alt FW J Exp Med.、1999年7月5日、190(1):75〜89頁、「B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals」、Loder Fら J Exp Med.、1991年5月1日、173(5):1213〜25頁、「Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow」、Hardy RRら
本発明はとりわけ、非ヒト哺乳動物中でヒトIg可変領域を含む抗体を生成するための方法を提供し、さらに、そのような抗体を生成するための非ヒト動物モデルも提供する。
マウスについての全てのヌクレオチド座標は、他に規定がない限り、マウスC57BL/6J系統についてのNCBI m37、例えば、2007年4月ENSEMBL Release 55.37h、例えば、NCBI37 2007年7月(NCBI build 37) (例えば、UCSC version mm9、World Wide Web(www) genome.ucsc.eduおよびWorld Wide Web(www) genome.ucsc.edu/FAQ/FAQreleases.htmlを参照)に対応するものである。ヒトヌクレオチド座標は、他に規定がない限り、GRCh37 (例えば、UCSC version hg 19、World Wide Web(www) genome.ucsc.edu/FAQ/FAQreleases.html)、2009年2月 ENSEMBL Release 55.37に対応するものであり、またはNCBI36、Ensemble release 54に対応するものである。ラットヌクレオチドは、他に規定がない限り、RGSC 3.4 2004年12月 ENSEMBL release 55.34w、またはBaylor College of Medicine HGSC v3.4 2004年11月(例えば、UCSC rn4、World Wide Web(www) genome.ucsc.eduおよびWorld Wide Web(www) genome.ucsc.edu/FAQ/FAQreleases.html参照)に対応するものである。
本発明では、非ヒト哺乳動物、例えば、マウスにおいて、キメラのヒト重鎖および軽鎖遺伝子座を構築するための方法が開示される。本明細書におけるマウスでの研究への言及は、例としてのみであり、本開示から他のことが明らかでない限り、マウスへの言及は、全ての非ヒト哺乳動物への言及を含むものと解釈されるべきであり、マウスは、非ヒト哺乳動物として好ましい。
一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物カッパ定常領域の上流の1つもしくは複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の1つもしくは複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域
を含む非ヒト哺乳動物に関し、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体またはキメラ軽鎖もしくは重鎖のレパートリーを生成することができる。
一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物カッパ定常領域の上流の複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物定常領域の上流の1つまたは複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域
を含む非ヒト哺乳動物に関し、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体またはキメラ軽鎖もしくは重鎖のレパートリーを生成することができる。
一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物カッパ定常領域の上流の1つもしくは複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の1つもしくは複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域
を含む非ヒト哺乳動物細胞に関する。
一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物カッパ定常領域の上流の複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物定常領域の上流の1つまたは複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域
を含む非ヒト哺乳動物細胞に関する。
さらなる態様では、本発明は、非ヒト細胞または哺乳動物を生成するための方法に関し、この方法は、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物カッパ定常領域の上流の1つもしくは複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の1つもしくは複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域
をそれぞれ、
非ヒト哺乳動物細胞のゲノム、例として、ES細胞のゲノム中に挿入するステップを含み、
挿入の結果、非ヒト細胞または哺乳動物が、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体のレパートリーを生成することができるようになり、ステップ(a)およびステップ(b)を、いずれの順番でも実施することができ、ステップ(a)およびステップ(b)のそれぞれを、段階的にまたは単一ステップとして実施することができる。挿入は、相同組換えによってであり得る。
さらなる態様では、本発明は、所望の抗原に特異的な抗体または抗体鎖を生成するための方法に関し、この方法は、本明細書に開示するトランスジェニックな非ヒト哺乳動物を、所望の抗原を用いて免疫化するステップと、抗体または抗体鎖を回収するステップとを含む。
さらなる態様では、本発明は、完全ヒト化抗体を生成するための方法に関し、この方法は、本明細書に開示するトランスジェニックな非ヒト哺乳動物を、所望の抗原を用いて免疫化するステップと、抗体または抗体を生成する細胞を回収するステップと、次いで、非ヒト哺乳動物定常領域を、ヒト定常領域で、例えば、タンパク質またはDNAを工学的に作製することによって置き換えるステップとを含む。
さらなる態様では、本発明は、本発明により生成した、キメラ(例えば、マウス-ヒトの)形態および完全ヒト化形態の両方のヒト化抗体およびヒト化抗体鎖、さらに、前記抗体および抗体鎖の断片および誘導体、ならびに前記抗体、抗体鎖および抗体断片の、診断を含めた、医学における使用に関する。
さらなる態様では、本発明は、本明細書に記載する非ヒト哺乳動物の、薬物およびワクチンを試験するためのモデルとしての使用に関する。
一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物カッパ定常領域の上流の1つもしくは複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の1つもしくは複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域
を含む非ヒト哺乳動物に関し、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体または抗体鎖のレパートリーを生成することができる。
さらなる態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物カッパ定常領域の上流の複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物定常領域の上流の1つまたは複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域
を含む非ヒト哺乳動物に関し、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体のレパートリーを生成することができる。
場合により、非ヒト哺乳動物のゲノムを、完全宿主種特異的抗体(fully host-species specific antibody)の発現を阻止するように改変する。
挿入ヒトDNAは、一態様では、ヒト重鎖可変(V)遺伝子(variable (V) gene)の少なくとも50%、例として、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%を含み、一態様では、ヒトV遺伝子の全てを含む。
挿入ヒトDNAは、一態様では、ヒト重鎖多様性(D)遺伝子(diversity (D) gene)の少なくとも50%、例として、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%を含み、一態様では、ヒトD遺伝子の全てを含む。
挿入ヒトDNAは、一態様では、ヒト重鎖連結(J)遺伝子の少なくとも50%、例として、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%を含み、一態様では、ヒトJ遺伝子の全てを含む。
挿入ヒトDNAは、一態様では、ヒト軽鎖可変(V)遺伝子の少なくとも50%、例として、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%を含み、一態様では、ヒト軽鎖V遺伝子の全てを含む。
挿入ヒトDNAは、一態様では、ヒト軽鎖連結(J)遺伝子の少なくとも50%、例として、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%を含み、一態様では、ヒト軽鎖J遺伝子の全てを含む。
挿入ヒト遺伝子は、同じ個人もしくは異なる個人から誘導してもよく、または合成であってもよく、またはヒトコンセンサス配列を示してもよい。
V領域、D領域およびJ領域の数は、ヒト個人間で変動するが、一態様では、重鎖上には、51個のヒトV遺伝子、27個のD遺伝子および6個のJ遺伝子があり、カッパ軽鎖上には、40個のヒトV遺伝子および5個のJ遺伝子があり、ラムダ軽鎖上には、29個のヒトV遺伝子および4個のJ遺伝子があるとみなす(JanewayおよびTravers、Immunobiology、3版)
一態様では、非ヒト哺乳動物中に挿入するヒト重鎖遺伝子座は、ヒトのV領域、D領域およびJ領域の完全なレパートリーを含有し、この挿入は、ゲノム中で、非ヒト哺乳動物定常領域と機能性の配置をとり、したがって、機能性のキメラ抗体を、ヒト可変領域と非ヒト哺乳動物定常領域との間で生成することができる。この挿入ヒト重鎖遺伝子材料の全体が、本明細書では、ヒトIgH VDJ領域と呼ばれ、ヒトのV部分、D部分およびJ部分をコードするエクソン全てをコードし、また、適切には、関連のイントロンもコードする、ヒトゲノムに由来するDNAを含む。同様に、ヒトIg軽鎖カッパのV領域およびJ領域という場合、本明細書では、ヒトゲノムのV領域およびJ領域をコードするエクソン全てを含み、また、適切には、関連のイントロンも含むヒトDNAを指す。ヒトIg軽鎖ラムダのV領域およびJ領域という場合、本明細書では、ヒトゲノムのV領域およびJ領域をコードするエクソン全てを含み、また、適切には、関連のイントロンも含むヒトDNAを指す。
ヒト可変領域は、適切には、非ヒト哺乳動物定常領域の上流に挿入し、後者は、完全な定常領域、または抗原を特異的に認識することが可能である有効なキメラ抗体の形成を可能にするのに十分な定常領域の部分をコードするのに必要なDNAの全てを含む。
一態様では、キメラ抗体または抗体鎖は、宿主哺乳動物中に天然に存在する抗体において見られる1つまたは複数のエフェクター機能、例えば、抗体がFc受容体と相互作用することおよび/または補体に結合することを可能にするエフェクター機能をもたらすのに十分な宿主定常領域の一部を有する。
したがって、宿主非ヒト哺乳動物定常領域を有するキメラ抗体または抗体鎖という場合、本明細書では、完全な定常領域に限定されず、また、宿主定常領域の全てまたは1つもしくは複数のエフェクター機能をもたらすのに十分なその一部を有するキメラ抗体または抗体鎖も含む。このことはまた、本発明の非ヒト哺乳動物および細胞ならびに方法にも適用され、本発明においては、ヒト可変領域DNAを、宿主ゲノム中に挿入することができ、したがって、宿主定常領域の全部または一部を有するキメラ抗体鎖が形成される。一態様では、宿主定常領域の全体を、ヒト可変領域DNAに作動可能に連結する。
宿主非ヒト哺乳動物定常領域は、本明細書では、好ましくは、重鎖または軽鎖の必要に応じて、野生型遺伝子座に位置する内在性の宿主野生型定常領域である。例えば、ヒト重鎖DNAを、適切には、マウス12番染色体上に、適切には、マウス重鎖定常領域に隣接させて挿入する。
一態様では、ヒトDNA、例として、ヒトVDJ領域の挿入の標的を、マウスゲノムのIgH遺伝子座中のJ4エクソンとCμ遺伝子座との間の領域とし、一態様では、座標114,667,090と座標114,665,190との間、または114,667,090の後、座標114,667,091に挿入する。一態様では、ヒトDNA、例として、ヒト軽鎖カッパVJの挿入の標的を、マウス6番染色体中の、座標70,673,899と座標70,675,515との間、適切には、位置70,674,734とし、または16番染色体上のラムダマウス遺伝子座中の同等の位置を標的とする。
一態様では、キメラ抗体を形成するための宿主非ヒト哺乳動物定常領域は、異なる(非内在性の)染色体遺伝子座においてであり得る。したがって、この場合には、挿入ヒトDNA、例として、ヒトの可変VDJ領域または可変VJ領域を、非ヒトゲノム中に、天然に存在する重鎖または軽鎖の定常領域の部位とは明確に異なる部位において挿入することができる。自然のままの定常領域がヒト可変領域と機能性の配置をとるような自然のままの位置とは異なる染色体遺伝子座において、自然のままの定常領域を、ゲノム中に挿入するかまたはゲノム内で重複させることができ、したがって、本発明のキメラ抗体を依然として生成することができる。
一態様では、ヒトDNAを、宿主定常領域と宿主VDJ領域との間の野生型遺伝子座に位置する内在性の宿主野生型定常領域において挿入する。
非ヒト哺乳動物定常領域の上流の可変領域の場所という場合、可変領域および定常領域により、in vivoにおいて哺乳動物中でキメラ抗体または抗体鎖を形成することを可能にするのに適した、2つの抗体部分、すなわち、可変部分および定常部分の相対的な場所があることを意味する。したがって、挿入ヒトDNAと宿主定常領域とは、相互に機能性の配置をとって、抗体または抗体鎖を生成する。
一態様では、挿入ヒトDNAは、異なる宿主定常領域を用いて、アイソタイプスイッチ(isotype switching)を通して発現させることが可能である。一態様では、アイソタイプスイッチには、トランススイッチ(trans switching)を必要とすることもなく、それが関与することもない。ヒト可変領域DNAを、関連の宿主定常領域と同じ染色体上に挿入することは、アイソタイプスイッチを生成させるためのトランススイッチの必要性がないことを意味する。
上記で説明したように、先行技術のモデルのために使用されたトランスジェニックな遺伝子座は、ヒト起源であり、したがって、マウスが、完全にヒトの抗体を生成するB細胞を生成するように、導入遺伝子がマウス遺伝子座を補足することができた場合であっても、個々の抗体の親和性は、未変化の(非トランスジェニックな)動物から得ることができる親和性にはまれにしか達しなかった。(上記のレパートリーおよび発現レベルに加えて)このことについての主要な理由は、遺伝子座の調節エレメントがヒトであるという事実である。したがって、シグナル伝達構成成分、例えば、高頻度突然変異および高い親和性の抗体の選択を活性化するための構成成分が損なわれる。
対照的に、本発明では、宿主非ヒト哺乳動物定常領域を維持し、少なくとも1つの非ヒト哺乳動物のエンハンサーまたはその他の制御配列、例として、スイッチ領域を、非ヒト哺乳動物定常領域と機能性の配置に維持し、したがって、宿主哺乳動物において見られる、エンハンサーまたはその他の制御配列の効果の全部または一部が、トランスジェニック動物において発揮されることが好ましい。
上記のこのアプローチは、十分に多様なヒト遺伝子座を収集することが可能になり、非ヒト哺乳動物の制御配列、例として、エンハンサーにより達成されるであろう同じ高い発現レベルが可能になるように設計され、したがって、B細胞におけるシグナル伝達、例えば、スイッチ組換え部位を使用するアイソタイプスイッチが、非ヒト哺乳動物の配列を依然として使用するであろう。
そのようなゲノムを有する哺乳動物は、ヒト可変領域および非ヒト哺乳動物定常領域を有するキメラ抗体を生成するが、これらの抗体は、例えば、クローニングのステップにおいて容易にヒト化することができるであろう。さらに、これらのキメラ抗体のin vivoにおける有効性を、これらの同じ動物中で評価することもできるであろう。
一態様では、挿入ヒトIgH VDJ領域は、生殖系列配置中に、ヒト由来のV領域、D領域およびJ領域ならびに介在配列の全てを含む。
一態様では、800〜1000kbのヒトIgH VDJ領域を、非ヒト哺乳動物のIgH遺伝子座中に挿入し、一態様では、940、950または960kbの断片を挿入する。適切には、これは、ヒト14番染色体由来の塩基105,400,051〜106,368,585を含む。
一態様では、挿入IgHヒト断片は、14番染色体由来の塩基105,400,051〜106,368,585からなる。一態様では、挿入ヒト重鎖DNA、例として、14番染色体由来の塩基105,400,051〜106,368,585からなるDNAを、マウス12番染色体中に、マウスJ4領域の終点とEμ領域との間、適切には、座標114,667,090と座標114,665,190との間、または114,667,090の後、座標114,667,091に挿入する。一態様において、挿入は、座標114,667,089と座標114,667,090の間(座標は、マウスC57BL/6J系統についてのNCBI m37を参照する)、または別の非ヒト哺乳動物ゲノムにおける等価の位置にある。
一態様では、挿入ヒトカッパVJ領域は、生殖系列配置中に、ヒト由来のV領域およびJ領域ならびに介在配列の全てを含む。適切には、これは、ヒト2番染色体由来の塩基88,940,356〜89,857,000を含み、適切には、およそ917kbである。さらなる態様では、軽鎖VJ挿入部は、VセグメントおよびJセグメントの近位クラスターのみを含むことができる。そのような挿入部は、およそ473kbであろう。一態様では、ヒト軽鎖カッパDNA、例として、ヒト2番染色体由来の塩基88,940,356〜89,857,000のヒトIgK断片を、マウス6番染色体中に、座標70,673,899と座標70,675,515との間、適切には、位置70,674,734に適切に挿入する。これらの座標は、ヒトゲノムについてのNCBI36、ENSEMBL Release 54、およびマウス系統C57BL/6Jに関するマウスゲノムについてのNCBIM37を参照する。
一態様では、ヒトラムダVJ領域は、生殖系列配置中に、ヒト由来のV領域およびJ領域ならびに介在配列の全てを含む。
適切には、これは、ヒト2番染色体由来の、カッパ断片について選択された塩基に類似する塩基を含む。
一実施形態において、本発明の細胞または非ヒト哺乳動物は、マウス系統C57BL/6Jに関するマウスゲノムについてのNCBIM37を参照した、マウス12番染色体の座標114,666,183から座標114,666,725の間、例えば、座標114,666,283から座標114,666,625の間、場合により座標114,666,335から座標114,666,536の間、場合により座標114,666,385から座標114,666,486の間、もしくは座標114,666,425から座標114,666,446の間、もしくは座標114,666,435と座標114,666,436の間、または異なるマウス系統由来のマウス12番染色体の等価の位置もしくは別の非ヒト脊椎動物、例えば、ラットのゲノムにおける等価の位置に、ヒト重鎖可変領域DNAの挿入を含む。マウス系統C57BL/6Jに関する座標114,666,435と座標114,666,436の間の挿入は、GenBank (登録商標)受託番号NT114985.2の129/SvJゲノム配列を参照した、12番染色体上の座標1207826と座標1207827の間の挿入と等価である。挿入は、別のマウスゲノムなどの別のゲノムにおける等価の位置に行われてもよい。この実施形態の例において、本発明の細胞または哺乳動物は、GRCH37/hg19配列データベースを参照した、ヒト14番染色体のヌクレオチド106,328,851〜107,268,544、例えば、ヌクレオチド106,328,901〜107,268,494、例えば、ヌクレオチド106,328,941〜107,268,454、例えば、ヌクレオチド106,328,951〜107,268,444などを含む、またはそれらからなるヒトIgH VDJ領域、または異なるヒト配列もしくはデータベース由来の14番染色体に関する等価のヌクレオチドの挿入を含む。ヒト挿入は、上記で示された領域の間に行われてもよい。
一実施形態において、本発明の細胞または哺乳動物は、ヒトカッパVJ領域の挿入を含み、適切には、ヒト由来のVおよびJ領域、ならびに介在配列の全部を生殖系列配置で含み、またはそれらからなり、ヒトDNAの挿入は、マウス系統C57BL/6Jに関する、マウスゲノムについてのNCBIM37を参照してナンバリングする、マウス6番染色体の座標70,673,918〜70,675,517の間、例えば、座標70,674,418から座標70,675,017の間、例えば、座標70,674,655〜70,674,856の間、例えば、座標70,674,705〜70,674,906の間、例えば、座標70,674,745〜70,674,766の間、例えば、座標70,674,755と座標70,674,756の間などに行われてもよく、または別のマウスゲノムなどの別のゲノムにおける等価の位置における挿入であってもよい。この実施形態の例において、本発明の細胞または哺乳動物は、GRCH37/hg19配列データベースを参照した、ヒト2番染色体のヌクレオチド89,159,079〜89,630,437および/または89,941,714〜90,266,976(または異なるヒト配列もしくはデータベース由来の2番染色体に関する等価ヌクレオチド)の挿入、例えば、介在配列を含まないこれらの2つの別々の断片の挿入、または完全な89,159,079〜90,266,976領域の挿入を含む。
挿入は、
(i)場合により下記の断片(ii)に加えての、ヌクレオチド89,158,979〜89,630,537、例えば、89,159,029〜89,630,487、例えば、89,159,069〜89,630,447、例えば、89,159,079〜89,630,437
(ii)場合により断片(i)に加えての、ヌクレオチド89,941,614〜90,267,076、例えば、89,941,664〜90,267,026、例えば、89,941,704〜90,266,986、例えば、89,941,714〜90,266,976
(iii)ヌクレオチド89,158,979〜90,267,076、例えば、ヌクレオチド89,159,079〜90,266,976
を含んでもよく、またはそれらからなってもよい。
ヒト挿入は、上記で示された領域の間に行われてもよい。
一実施形態において、本発明の細胞または哺乳動物は、少なくとも1つのヒトJλ領域(例えば、生殖系列領域)および少なくとも1つのヒトCλ領域(例えば、生殖系列領域)、場合によりCλ6および/またはCλ7を含むヒトラムダ領域の挿入を含む。例えば、細胞または哺乳動物は、複数のヒトJλ領域、場合によりJλ1、Jλ2、Jλ6およびJλ7のうちの2つ以上、場合によりJλ1、Jλ2、Jλ6およびJλ7の全部を含む。例において、細胞または哺乳動物は、少なくとも1つのヒトJλ-Cλクラスター、場合により少なくともJλ7-Cλ7を含む。
一態様において、ヒトJCクラスターは、最後の内因性Jラムダの3'側に挿入され、または最後の内因性Jカッパ領域の3'側に挿入され、適切には、これらの配列のすぐ3'側、もしくはこれらの配列の実質的にすぐの3'側に挿入される。
一態様において、マウスラムダ遺伝子座への挿入は、内因性C1遺伝子セグメントの下流、例えば、3' J1C1クラスターがあるところ、適切にはC1セグメントのすぐ3'側、またはそのセグメントの実質的にすぐの3'側に行われる。
一態様(例えば、細胞または非ヒト哺乳動物)において、ヒトJCクラスターは、細胞が、カッパ遺伝子座へ挿入されたヒトラムダDNAを含む1つの染色体、および内因性カッパ遺伝子座におけるヒトカッパDNAを含む別の染色体を有するように、カッパ遺伝子座へ挿入され、任意の生じた細胞または動物は、その遺伝子座においてヘテロ接合である。
一実施形態において、本発明の細胞または哺乳動物は、ヒトEλエンハンサーを含む。
本発明の細胞または哺乳動物は、挿入されたヒトラムダVJ領域を含み、適切には、ヒト由来のV領域およびJ領域、ならびに介在配列の全部を生殖系列配置で含み、またはそれらからなり、挿入された領域は、GRCH37/hg19配列データベースを参照した、ヒト22番染色体由来のヌクレオチド22,375,509〜23,327,984、例えば、ヌクレオチド22,375,559〜23,327,934、例えば、ヌクレオチド22,375,599〜23,327,894、例えば、ヌクレオチド22,375,609〜23,327,884、または別のヒト配列もしくはデータベース由来の等価のDNAを含み、またはそれらからなる。マウスゲノムへの挿入は、(マウス系統C57BL/6Jに関するマウスゲノムについてのNCBIM37を参照した)マウス16番染色体の座標19,027,763から19,061,845の間、例えば、座標19,037,763から座標19,051,845の間、例えば、座標19,047,451から座標19,047,652の間、例えば、座標19,047,491から座標19,047,602の間、例えば、座標19,047,541から座標19,047,562の間、例えば、座標19,047,551と座標19,047,552の間(NT_039630.4の配列ファイルにおける129 SvJゲノム配列の座標1,293,646〜1,293,647に等価)に行われてもよく、または別のマウスゲノムの他のゲノムにおける等価の位置における挿入であってもよい。あるいは、ヒトラムダ核酸のマウスゲノムへの挿入は、(マウス系統C57BL/6Jに関するマウスゲノムについてのNCBIM37を参照した)マウス6番染色体の座標70,673,918から座標70,675,517の間、例えば、座標70,674,418から座標70,675,017の間、例えば、座標70,674,655から座標70,674,856の間、例えば、座標70,674,705から座標70,674,806の間、例えば、座標70,674,745から座標70,674,766の間、例えば、座標70,674,755と座標70,674,756の間、または別のゲノムにおける等価の位置に行われてもよい。ヒト挿入は、上記に示された領域の間に行われてもよい。
上記の特異的なヒト断片は全て、長さが変化し得、例えば、500塩基、1KB、2K、3K、4K、5KB、10KB、20KB、30KB、40KBまたは50KB以上等、上記の定義よりも長くてもまたは短くてもよく、これらは、適切には、ヒトV(D)J領域の全部または一部を含み、かつ好ましくは、最終的な挿入部についての要件を保持して、上記したように、必要に応じて、完全な重鎖領域および軽鎖領域をコードするヒト遺伝子材料を含む。
一態様では、上記のヒト挿入部の5'末端の長さを増加させる。挿入部を段階的に生成する場合には、長さの増加は一般に、上流(5')クローンについてである。
一態様では、最後に挿入するヒト遺伝子、一般に、挿入すべき最後のヒトJ遺伝子の3'末端は、ヒト-マウスの連結領域から、2kb未満、好ましくは、1KB未満である。
一態様では、非ヒト哺乳動物は、本明細書に開示するヒト軽鎖カッパVJ領域のいくつかまたは全てを含むが、ヒト軽鎖ラムダVJ領域は含まない。
一態様において、細胞または非ヒト哺乳動物は、完全なヒトラムダ遺伝子座(ヒト由来のラムダVJC領域)、キメラのカッパ遺伝子座(宿主カッパ定常領域に作動可能に連結したヒトカッパVJ領域)、および宿主重鎖定常領域に作動可能に連結したヒトVDJ領域を有するキメラ重鎖遺伝子座を含む。
さらなる態様では、ゲノムは、本明細書に記載するV、D(重鎖のみ)およびJの遺伝子の挿入を、重鎖遺伝子座および1つの軽鎖遺伝子座において、または重鎖遺伝子座および両方の軽鎖遺伝子座において含む。好ましくは、ゲノムは、1つまたは両方または3つ全部の遺伝子座においてホモ接合型である。
別の態様では、ゲノムは、遺伝子座のうちの1つまたは複数においてヘテロ接合型である、例として、キメラ抗体鎖および自然のまま(宿主細胞)の抗体鎖をコードするDNAについてヘテロ接合型であることができる。一態様では、ゲノムは、本発明の2つの異なる抗体鎖、例えば、2つの異なるキメラ重鎖または2つの異なるキメラ軽鎖を含む抗体鎖をコードすることが可能であるDNAについてヘテロ接合型であり得る。
一態様では、本発明は、本明細書に記載する非ヒト哺乳動物または細胞、および前記哺乳動物または細胞を生成するための方法に関し、挿入ヒトDNA、例として、ヒトのIgH VDJ領域および/または軽鎖V、J領域が、哺乳動物または細胞において、1つの対立遺伝子上にのみ見出され、両方の対立遺伝子上には見出されない。この態様では、哺乳動物または細胞は、内在性の宿主抗体重鎖または軽鎖およびキメラ重鎖または軽鎖の両方を発現する可能性がある。
本発明のさらなる態様では、ヒトのVDJ領域または軽鎖VJ領域は、その全体を使用しないが、その他の種に由来する、エクソン等のヒトのVDJ領域またはVJ領域に同等な部分、例として、その他の種に由来する1つもしくは複数のV、DもしくはJのエクソン、またはその他の種に由来する調節配列を使用することができる。一態様では、ヒト配列の代わりに使用する配列は、ヒトでもマウスでもない。一態様では、使用する配列は、げっ歯類、または霊長類、例として、チンパンジーに由来し得る。例えば、ヒト以外の霊長類に由来するJ領域の1、2、3もしくは4つ以上または全てを使用して、本発明の細胞および動物のVDJ/VJ領域中のヒトJエクソンの1、2、3もしくは4つ以上または全てを置き換えることができる。
さらなる態様では、挿入ヒトDNA、例として、ヒトのIgH VDJ領域および/または軽鎖VJ領域を、それらが、ゲノム中で、非ヒト、非マウスの種、例として、げっ歯類または霊長類の配列、例として、ラット配列に由来するミュー定常領域と作動可能に連結するように挿入することができる。
DNAエレメントを本発明において使用することができるその他の非ヒト、非マウスの種として、ウサギ、ラマ、ヒトコブラクダ、アルパカ、ラクダおよびサメが挙げられる。
一態様では、挿入ヒトDNA、例として、ヒトのVDJ領域またはVJ領域を、内在性宿主ミュー配列ではなく、むしろ非宿主ミュー配列に作動可能に連結する。
作動可能な連結は、適切には、ヒト可変領域を含む抗体重鎖または軽鎖の生成を可能にする。
一態様では、挿入ヒトDNA、例として、ヒトのIgH VDJ領域(および/または軽鎖VJ領域)を、宿主染色体中に、宿主ミュー定常領域核酸ではなく、好ましくは、非マウス、非ヒト種に由来するミュー定常領域であるミュー定常領域核酸と一緒に挿入することができる。適切には、挿入ヒトDNA、例として、ヒトのVDJ領域(および/または軽鎖VJ領域)は、非ヒト、非マウスのミューに作動可能に連結され、キメラ抗体重鎖または軽鎖を形成することができる。別の態様では、非マウス、非ヒトミューを、宿主染色体中に、ヒト可変領域エレメントとは別個の遺伝子エレメント上にか、またはゲノム中の異なる場所において、適切には、可変領域に作動可能に連結して挿入することができ、したがって、キメラ抗体の重鎖または軽鎖を形成することができる。
追加の態様において、本発明は、細胞または哺乳動物がキメラ抗体鎖を発現することができるように配置された、宿主非ヒト哺乳動物軽鎖定常領域の上流に複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域をゲノムが含む、非ヒト哺乳動物または細胞に関する。本発明はまた、細胞または哺乳動物がキメラ抗体鎖を発現することができるように、宿主非ヒト哺乳動物重鎖定常領域の上流に、複数のヒトIg軽鎖V領域および1つまたは複数のヒトJ領域を追加として、または代替としてゲノムが含む、非ヒト哺乳動物または細胞に関する。細胞または哺乳動物は、上記で開示されているように、少なくとも1つのキメラ抗体鎖を含む、重鎖と軽鎖の両方を有する抗体を発現することができてもよい。
挿入されるヒト重鎖可変領域は、本明細書に記載されたもののいずれかであってもよく、ラムダおよびカッパ定常領域の5'側の挿入について上で記載された位置に挿入されてもよい。同様に、挿入されるヒト軽鎖可変領域は、上で記載されたものであってもよく、重鎖定常領域の5'側の挿入について上で記載された位置に挿入されてもよい。
例えば、本発明の細胞または非ヒト哺乳動物のゲノムは、以下のうちの1つと組み合わせた、マウス軽鎖定常領域の上流にヒト重鎖可変領域を有する抗体鎖、またはマウス重鎖定常領域の上流にヒト軽鎖可変領域を有する抗体鎖を含む抗体をコードしてもよい:
完全なヒト抗体軽鎖;
完全なヒト抗体重鎖;
非ヒト脊椎動物(例えば、マウスまたはラット)抗体軽鎖;
非ヒト脊椎動物(例えば、マウスまたはラット)抗体重鎖;
キメラの非ヒト脊椎動物(例えば、マウスまたはラット)-ヒト抗体鎖;
非ヒト脊椎動物(例えば、マウスまたはラット)軽鎖定常領域の上流にヒト重鎖可変領域を有する抗体鎖;
非ヒト脊椎動物(例えば、マウスまたはラット)重鎖定常領域の上流にヒト軽鎖可変領域を有する抗体鎖。
本発明はまた、宿主非ヒト哺乳動物軽鎖定常領域の上流に、複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域をコードし、場合によりベクター内に含まれる導入遺伝子に関する。
本発明はまた、宿主非ヒト哺乳動物重鎖定常領域の上流に、複数のヒトIg軽鎖V領域、および1つまたは複数のヒト軽鎖J領域をコードし、場合によりベクター内に含まれる導入遺伝子に関する。
一態様では、本発明は、ゲノムが、ヒトカッパ定常領域の全部または一部の上流の1つまたは複数のヒトIg軽鎖カッパV領域および1つまたは複数のヒトIg軽鎖カッパJ領域を含む、細胞または非ヒト哺乳動物に関する。
別の態様では、本発明は、ゲノムが、ヒトラムダ定常領域の全部または一部の上流の1つまたは複数のヒトIg軽鎖ラムダV領域および1つまたは複数のヒトIg軽鎖ラムダJ領域を含む、細胞または非ヒト哺乳動物に関する。
適切には、軽鎖のVJ領域およびC領域は、抗原と特異的に反応することが可能である抗体鎖をin vivoにおいて形成することができる。
本発明の一態様では、挿入軽鎖領域中には、非ヒトコード配列がない。
そのような態様では、ヒトのカッパ領域および/またはラムダ領域を、ゲノム中に、重鎖VDJ領域またはその一部の挿入と組み合わせて、本明細書に開示する宿主重鎖定常領域の上流に挿入する。
本発明の細胞または非ヒト哺乳動物は、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、ならびに
(b)非ヒトカッパ定常領域の全部または一部の上流の1つまたは複数のヒトIg軽鎖カッパV領域および1つまたは複数のヒトIg軽鎖カッパJ領域
を含むことができ、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を含む抗体鎖を有する抗体のレパートリーを生成することができる。
本発明の細胞または非ヒト哺乳動物は、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、ならびに
宿主非ヒト哺乳動物ラムダ定常領域の上流の1つまたは複数のヒトIg軽鎖ラムダV領域および1つまたは複数のヒトIg軽鎖ラムダJ領域
を含むことができ、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を含む抗体鎖を有する抗体のレパートリーを生成することができる。
適切には、上記に開示したヒトVJC軽鎖DNAまたはその一部の挿入を、同等のマウス遺伝子座において行う。一態様では、ヒト軽鎖カッパVJCのDNAまたはその一部を、マウスカッパVJC領域の上流または下流に間を置かず挿入する。一態様では、ヒト軽鎖ラムダVJC領域またはその一部を、マウスラムダVJC領域の上流または下流に間を置かず挿入する。一態様では、ヒトカッパVJC遺伝子座のみを挿入し、ヒトラムダVJC遺伝子座は挿入しない。一態様において、ヒトラムダVJC遺伝子座のみが挿入され、ヒトカッパVJC遺伝子座は挿入されない。挿入を、本明細書に開示する技法を使用して行うことができ、適切には、宿主配列をゲノムから除去しない。一態様では、非ヒト哺乳動物宿主VJC配列を、何らかの方法で、突然変異もしくは反転により、またはヒト可変領域DNAの挿入により、または任意のその他の手段により不活性化することができる。一態様では、本発明の細胞または非ヒト哺乳動物は、完全なVJCヒト領域の挿入を含むことができる。
ヒトカッパ可変領域DNAを、ゲノム中に、ラムダ定常領域と機能性の配置で挿入すること、例えば、ラムダ定常領域の上流に挿入することができるであろう。あるいは、ヒトラムダ可変領域DNAを、カッパ定常領域と機能性の配置で挿入すること、例えば、カッパ定常領域の上流に挿入することもできるであろう。
一態様では、1つまたは複数の非ヒト哺乳動物の制御配列、例として、エンハンサー配列を、非ヒト哺乳動物のミュー定常領域の上流に、適切には、定常領域からの距離に関してその自然のままの位置に維持する。
一態様では、1つまたは複数の非ヒト哺乳動物の制御配列、例として、エンハンサー配列を、非ヒト哺乳動物のミュー定常領域の下流に、適切には、定常領域からの距離に関してその自然のままの位置に維持する。
一態様では、非ヒト哺乳動物のスイッチ配列、適切には、内在性のスイッチ配列を、非ヒト哺乳動物のミュー定常領域の上流に、適切には、定常領域からの距離に関してその自然のままの位置に維持する。
そのような場所では、宿主エンハンサー配列またはスイッチ配列は、in vivoにおいて、宿主定常領域配列と共に作動する。
一態様では、スイッチ配列は、非ヒト哺乳動物中で、ヒトでも自然のままでもなく、例えば、一態様では、非ヒト哺乳動物のスイッチ配列は、マウスのスイッチ配列でもヒトのスイッチ配列でもない。スイッチ配列は、例えば、げっ歯類もしくは霊長類の配列であってもよく、または合成の配列であってもよい。特に、非ヒト哺乳動物がマウスである場合には、スイッチ配列は、ラットの配列であってよい。例示の目的で、マウスまたはヒトの定常ミュー配列を、適切には、アイソタイプスイッチのin vivoにおける発生を可能にすることができるラットもしくはチンパンジー由来のスイッチ配列またはその他のスイッチ配列の制御下に置くことができる。
一態様において、本発明のスイッチ配列は、ラットスイッチ配列などのリピート配列GGGCTの3個、4個、5個、6個またはそれ以上(82個まで)の連続したリピート(配列番号46〜50)を含むスイッチ配列である。本明細書における「ラットスイッチ」とは、スイッチが、ラットゲノム由来のスイッチに対応する野生型スイッチであり、またはそのようなスイッチに由来することを意味する。
一態様において、本発明のスイッチ配列は、以下のリピートを含むラットスイッチ配列である:GAGCT(296個のリピート;配列番号18)、GGGGT(50個のリピート;配列番号19)およびGGGCT (83個のリピート;配列番号20)。
1つの例において、ラットスイッチ配列は、配列番号1の配列を含み、またはそれからなる。
これらの実施形態において、かつ非ヒト哺乳動物がマウスであり、または細胞がマウス細胞である場合、スイッチは、場合により、本明細書に記載されたようなラットスイッチである。
あるいは、本発明の細胞または哺乳動物に存在するスイッチ配列は、マウススイッチであり、例えば、マウス129系統もしくはマウスC57系統などのマウスに由来し、またはそれらに由来する系統由来であり、場合により、配列番号4または5の配列を含み、またはそれからなる。本明細書における「マウススイッチ」とは、スイッチが、マウスゲノム由来のスイッチに対応する野生型スイッチであり、またはそのようなスイッチに由来することを意味する。この実施形態において、および非ヒト哺乳動物がマウスであり、または細胞がマウス細胞である場合、マウススイッチ配列は、場合により、内因性スイッチであり、または別のマウス系統由来のマウススイッチである。
したがって、本発明の細胞または哺乳動物は、ヒトまたは非ヒト哺乳動物のスイッチ配列およびヒトまたは非ヒト哺乳動物のエンハンサー領域を、1つまたは複数含むことができる。それらは、ヒトまたは非ヒト哺乳動物定常領域の上流にあってよい。好ましくは、制御配列は、発現を導くか、または別の場合には、制御配列が関連する定常領域を含む抗体の生成を制御することができる。想定される1つの組合せが、マウス細胞中における、ラットのスイッチ配列と、マウスのエンハンサー配列およびマウス定常領域との組合せである。
一態様では、本発明は、3つ以上の種に由来するDNAを有する、免疫グロブリンの重鎖または軽鎖の遺伝子座を含む細胞、好ましくは、非ヒト細胞、または非ヒト哺乳動物に関する。例えば、細胞または動物は、宿主細胞の定常領域DNA、1つまたは複数のヒトのV、DまたはJのコード配列、および免疫グロブリン遺伝子座の領域を制御することができる1つまたは複数の非ヒト、非宿主DNA領域、例として、スイッチ配列、プロモーターまたはエンハンサーを含むことができ、これらのDNA領域は、in vivoにおいて、Ig DNAの発現またはアイソタイプスイッチを制御することができる。一態様では、細胞または動物はマウスであり、さらに、ヒトIg遺伝子座に由来するヒトDNA、およびさらに、マウスまたはヒトのDNAを調節することが可能である非マウスDNA配列、例として、ラットDNA配列も含む。
別の態様では、本発明は、2つ以上の異なるヒトゲノムに由来するDNAを有する、免疫グロブリンの重鎖または軽鎖の遺伝子座を含む細胞、好ましくは、非ヒト細胞、または非ヒト哺乳動物に関する。例えば、こうした細胞または動物は、重鎖もしくは軽鎖内に2つ以上のヒトゲノムに由来する重鎖V(D)J配列を、または1つのゲノムに由来する重鎖VDJのDNAおよび異なるゲノムに由来する軽鎖VJ配列を含むことができるであろう。
一態様では、本発明は、2つ以上の種に由来するDNAを有する、免疫グロブリンの重鎖もしくは軽鎖の遺伝子座またはその一部を含むDNA断片または細胞または非ヒト哺乳動物に関し、1つの種が、非コード領域、例として、調節領域に寄与し、その他の種は、コード領域、例として、V領域、D領域、J領域または定常領域に寄与する。
一態様において、異なるヒトV、DまたはJ領域に付随するヒトプロモーターおよび/または他の調節エレメントは、ヒトVDJのマウスゲノムへの挿入後、維持される。
さらなる態様では、ヒト領域、例として、ヒトV領域のプロモーターエレメントまたはその他の制御エレメントのうちの1つまたは複数を、非ヒト哺乳動物の転写機構と相互作用するように最適化する。
適切には、ヒトコード配列を、適切な非ヒト哺乳動物プロモーターの制御下に置くことができ、こうすることにより、ヒトDNAを適切な非ヒト動物細胞中で効率的に転写することが可能になる。一態様では、ヒト領域は、ヒトV領域のコード配列であり、ヒトV領域を、非ヒト哺乳動物プロモーターの制御下に置く。
工学的に組み換えること(recombineering)またはその他の組換えDNA技術の使用により、ヒトのプロモーターまたはその他の制御領域を、非ヒト哺乳動物のプロモーターまたは制御領域で機能性に置き換えて、ヒトIg領域の一部(例として、ヒトV領域)を、非ヒトIg領域を含有するベクター(例として、BAC)中に挿入することができる。工学的に組み換えること/組換え技法により、適切には、非ヒト(例えば、マウス)のDNAの一部を、ヒトIg領域で置き換え、したがって、ヒトIg領域を、非ヒト哺乳動物のプロモーターまたはその他の制御領域の制御下に置く。適切には、ヒトV領域のヒトコード領域により、マウスV領域のコード配列が置き換えられる。適切には、ヒトD領域のヒトコード領域により、マウスD領域のコード配列が置き換えられる。適切には、ヒトJ領域のヒトコード領域により、マウスJ領域のコード配列が置き換えられる。このように、ヒトのV領域、D領域またはJ領域を、非ヒト哺乳動物プロモーター、例として、マウスプロモーターの制御下に置くことができる。
一態様では、非ヒト哺乳動物細胞または哺乳動物中に挿入された唯一のヒトDNAは、Vコード領域、Dコード領域またはJコード領域であり、これらは、宿主調節配列またはその他の(非ヒト、非宿主)配列の制御下に置かれる。ヒトコード領域という場合、一態様では、ヒトのイントロンおよびエクソンの両方を含み、または別の態様では、単にエクソンを含むに過ぎず、イントロンは含まない。イントロンおよびエクソンは、cDNAの形態をとることができる。
工学的に組み換えることまたはその他の組換えDNA技術を使用して、非ヒト哺乳動物(例えば、マウス)のプロモーターまたはその他の制御領域、例として、V領域についてのプロモーターを、ヒトIg領域を含有するBAC中に挿入することも可能である。次いで、工学的に組み換えるステップにより、ヒトDNAの部分を、マウスプロモーターまたはその他の制御領域の制御下に置く。
また、本明細書に記載するアプローチを使用して、ヒト重鎖に由来するV領域、D領域およびJ領域のいくつかまたは全てを、重鎖定常領域の上流ではなく、軽鎖定常領域の上流に挿入することもできる。同様に、ヒト軽鎖のV領域およびJ領域のいくつかまたは全てを、重鎖定常領域の上流に挿入することもできる。挿入は、内在性の定常領域の遺伝子座において、例えば、内在性の定常領域と内在性のJ領域との間であり得、V遺伝子、D遺伝子またはJ遺伝子のいくつかまたは全てのみを挿入し、プロモーター配列およびエンハンサー配列は挿入しなくてもよく、あるいはV遺伝子、D遺伝子またはJ遺伝子のいくつかまたは全てと、1つもしくは複数または全てのそれぞれのプロモーター配列またはエンハンサー配列とを挿入してもよい。一態様では、生殖系列に方向付けたV断片、D断片またはJ断片の完全なレパートリーを、上流に、かつ宿主定常領域と機能性の配置で挿入することができる。
したがって、本発明により、ヒトまたは任意の種に由来するV領域および/またはD領域および/またはJ領域を、異なる種に由来する、定常領域を含む細胞の染色体中に挿入することが可能となり、キメラ抗体鎖を発現させることが可能になる。
一態様では、本発明には、いくつかのヒト可変領域DNAを、抗体鎖を生成することができるように、非ヒト哺乳動物のゲノム中に、内在性の重鎖定常領域の遺伝子座の領域において、ヒト重鎖定常領域のいくつかのまたは全てと作動可能な配置で挿入することのみが必要となる。本発明およびヒト軽鎖DNAをさらに挿入する場合のこの態様では、軽鎖DNAの挿入は、ヒト可変領域のDNAおよびヒト定常領域のDNAの両方を有する完全にヒトのコンストラクトの形態をとってもよく、またはヒト可変領域DNAおよび非ヒト、非宿主種に由来する定常領域DNAを有してもよい。また、その他の変更形態、例として、軽鎖ヒト可変領域および宿主ゲノム定常領域の両方の挿入も可能である。さらに、前記軽鎖導入遺伝子の挿入は、同等の内在性の遺伝子座においてである必要はないが、ゲノム中のどこかであればよい。そのようなシナリオでは、細胞または哺乳動物は、(ヒト可変領域DNAおよびマウス定常領域DNAを含む)キメラ重鎖、ならびにヒト可変領域DNAおよびヒト定常領域DNAを含む軽鎖を生成することができる。したがって、本発明の一態様では、ラムダおよび/またはカッパのヒト可変領域DNAを、内在性の遺伝子座の上流もしくは下流に、または実際には、異なる染色体上で、内在性の遺伝子座に挿入することができ、定常領域DNAがあってもまたはなくても挿入することができる。
ヒト軽鎖DNAを、宿主非ヒト哺乳動物定常領域の上流に挿入する場合に加えて、本発明のさらなる態様は、一方または両方の軽鎖ヒト可変領域の、同等の内在性の遺伝子座の定常領域の下流またはゲノム中の他の箇所への挿入にも関する。
一般に、ヒト可変領域DNAを、受容ゲノム中の同等の内在性の遺伝子座においてまたはそこの近くに、例えば、宿主免疫グロブリン遺伝子座の境界(上流または下流)から1、2、3、4、5、6、7、8、9または10kb以内に挿入することが好ましい。
したがって、一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、さらに、
(b)1つもしくは複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または1つもしくは複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域
を含む、細胞または非ヒト哺乳動物に関し得、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体またはキメラ軽鎖もしくは重鎖のレパートリーを生成することができる。
1つの特定の態様では、細胞または非ヒト哺乳動物のゲノムは、
宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、
宿主非ヒト哺乳動物カッパ定常領域の上流の1つまたは複数のヒトIg軽鎖カッパV領域および1つまたは複数のヒトIg軽鎖カッパJ領域、ならびに
宿主非ヒト哺乳動物ラムダ定常領域の下流の1つまたは複数のヒトIg軽鎖ラムダV領域および1つまたは複数のヒトIg軽鎖ラムダJ領域
を含み、
場合により、ヒトラムダ可変領域を、内在性の宿主ラムダ遺伝子座の上流または下流に、ヒトラムダ定常領域と作動可能に連結させて挿入することができ、したがって、非ヒト哺乳動物または細胞は、完全にヒトの抗体の軽鎖およびキメラ重鎖を生成することができる。
本発明のさらなる、異なる態様では、本発明の方法を使用することによって、遺伝子座を、順次に挿入することによって段階的に築き上げることが可能になり、したがって、ヒト可変DNAを、ヒトまたは非ヒト定常領域DNAと一緒に、非ヒト宿主細胞のゲノム中の任意の適切な場所に挿入することが可能になる。例えば、本発明の方法を使用して、ヒト免疫グロブリン可変領域DNAを、宿主ゲノムに由来する定常領域DNAと一緒に、非ヒト宿主細胞のゲノム中のどこかに挿入することができ、これにより、キメラ抗体鎖を内在性の重鎖領域以外の部位から生成することが可能になる。上記で企図した任意のヒトの重鎖または軽鎖のDNAコンストラクトを、非ヒト宿主細胞のゲノム中の任意の所望の位置に、本明細書に記載する技法を使用して挿入することができる。したがってまた、本発明は、そのような挿入を含むゲノムを有する細胞および哺乳動物にも関する。
また、本発明は、ヒトのV領域、D領域またはJ領域を、非ヒト哺乳動物のプロモーターまたはその他の制御配列と機能性の配置をとって含み、したがって、ヒトのV領域、D領域またはJ領域の発現が、非ヒト哺乳動物の細胞、例として、ES細胞中の、非ヒト哺乳動物プロモーター、特に、その細胞のゲノム中にすでに挿入されている非ヒト哺乳動物プロモーターの制御下にあるベクター、例として、BACに関する。
また本発明は、細胞および前記細胞を含有する非ヒト哺乳動物にも関し、そうした細胞または哺乳動物は、ヒトのV領域、D領域またはJ領域を、非ヒト哺乳動物のプロモーターまたはその他の制御配列と機能性の配置をとって有し、したがって、ヒトのV領域、D領域またはJ領域の発現が、細胞または哺乳動物中の非ヒト哺乳動物プロモーターの制御下にある。
したがって一般に、本発明の一態様は、ヒトのVコード配列、Dコード配列またはJコード配列を、宿主プロモーターまたは制御領域の制御下で発現することが可能である非ヒト哺乳動物の宿主細胞に関し、この発現により、ヒト可変ドメインおよび非ヒト哺乳動物定常領域を有するヒト化抗体を生成することが可能である。
一態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物定常領域の上流の複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物カッパ定常領域の上流の1つもしくは複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の1つもしくは複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域
を含む細胞、例として、非哺乳動物細胞、例として、ES細胞に関する。
別の態様では、本発明は、ゲノムが、
(a)宿主非ヒト哺乳動物カッパ定常領域の上流の複数のヒトIg軽鎖カッパV領域および1つもしくは複数のヒトIg軽鎖カッパJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流の複数のヒトIg軽鎖ラムダV領域および1つもしくは複数のヒトIg軽鎖ラムダJ領域、さらに、
(b)場合により、宿主非ヒト哺乳動物定常領域の上流の1つまたは複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域
を含む細胞、例として、非ヒト哺乳動物細胞、例として、ES細胞に関する。
一態様では、細胞は、キメラである抗体のレパートリー生成することができる非ヒト哺乳動物に発生することが可能であるES細胞であり、前記キメラ抗体は、非ヒト哺乳動物定常領域およびヒト可変領域を有する。場合により、細胞のゲノムを、完全宿主種特異的抗体の発現を阻止するように改変する。
一態様では、細胞は、人工多能性幹細胞(induced pluripotent stem cell)(iPS細胞)である。
一態様では、細胞は、単離非ヒト哺乳動物細胞である。
一態様では、本明細書に開示する細胞は、好ましくは、非ヒト哺乳動物細胞である。
一態様において、細胞は、C57BL/6、129/SVなどのM129、BALB/c、およびC57BL/6、129/SVなどのM129、またはBALB/cの任意の雑種から選択されるマウス系統由来の細胞である。
また、本発明は、本明細書に記載する細胞から増殖するか、または別の場合には、不死化細胞系を含めた、本明細書に記載する細胞から誘導する細胞系にも関する。細胞系は、本明細書に記載する挿入したヒトのV遺伝子、D遺伝子またはJ遺伝子を、生殖系列配置中またはin vivoにおける成熟に続く再構成の後のいずれかに含むことができる。細胞は、抗体産生細胞および細胞系を提供するように、腫瘍細胞(例えば、P3X63-Ag8.653 (LGC Standardsから入手できる;CRL-1580)、SP2/0-Ag14 (ECACCから入手できる)、NSIまたはNS0)への融合(例えば、電気融合または標準手順によるPEGを使用する)により不死化されてもよいし、直接的細胞不死化によって作製されてもよい。
また、本発明は、本発明において使用するためのベクターにも関する。一態様では、そのようなベクターは、BAC(バクテリア人工染色体)である。その他のクローニングベクターを、本発明において使用することができ、したがって、BACという場合、本明細書では、一般に、任意の適切なベクターを指すものとすることができることが理解されるであろう。
一態様では、挿入すべきヒトDNA、例として、VDJ領域またはVJ領域の生成のために使用するBACは、刈り込まれ、したがって、非ヒト哺乳動物中の最終的なヒトのVDJ領域もしくはVJ領域またはその一部においては、配列が、元々のヒトゲノム配列と比較した場合、重複することも、失われることもない。
一態様では、本発明は、挿入部を含むベクター、好ましくは、ヒトのVDJ遺伝子座またはVJ遺伝子座のうちのいくつかに由来するヒトDNAの領域を含むベクターに関し、こうした挿入部には、その遺伝子座に由来しないDNAが隣接する。隣接DNAは、1つもしくは複数の選択マーカーまたは1つもしくは複数の部位特異的組換え部位を含むことができる。一態様では、ベクターは、2つ以上の、例として、3つの異種特異的なかつ不和合性の(incompatible)部位特異的組換え部位を含む。一態様では、部位特異的組換え部位は、loxP部位もしくはそれらの変異体、またはFRT部位もしくはそれらの変異体であり得る。一態様では、ベクターは、1つまたは複数のトランスポゾンITR配列(逆位末端配列)を含む。
一態様では、本発明の非ヒト動物は、適切には、いずれの完全ヒト化抗体も生成しない。一態様では、これは、ヒト定常領域に由来するDNAが挿入されないからである。あるいは、例えば、任意のヒト定常領域DNA内の突然変異、または任意の定常領域ヒトDNAおよびヒト可変領域DNAからの距離に起因して、挿入ヒト可変領域DNA構成成分と協力して抗体を形成することが可能であるヒト定常領域DNAが、ゲノム中にはない。
一態様では、ヒト軽鎖定常領域DNAを、細胞のゲノム中に含めることができ、したがって、完全にヒトのラムダまたはカッパのヒト抗体鎖を生成することはできるであろうが、この態様は、キメラ重鎖を有する抗体を形成することができるに過ぎず、ヒトの可変領域および定常領域を有する完全にヒトの抗体は生成しないであろう。
一態様では、非ヒト哺乳動物のゲノムを、完全宿主種特異的抗体の発現を阻止するように改変する。完全宿主種特異的抗体は、宿主生物体由来の可変領域および定常領域の両方を有する抗体である。この文脈において、用語「特異的な」は、本発明の細胞または動物が生成する抗体の結合性にではなく、むしろ、それらの抗体をコードするDNAの起源に関するものとする。
一態様では、非ヒト哺乳動物のゲノムを、哺乳動物中で自然のまま(完全に宿主種に特異的な)抗体が発現するのを、宿主非ヒト哺乳動物Ig遺伝子座の全部または一部を不活性化することによって阻止するように改変する。この関連において、(本明細書に記載された任意の不活性化技術を使用して)内因性抗体または遺伝子セグメント利用の不活性化または阻止は、例えば、実質的に完全な不活性化または阻止である(内因性抗体鎖(例えば、内因性重鎖ではない)の、実質的に100%、すなわち、本質的にいずれも発現しない(例えば、10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満、発現する))。これは、例えば、非ヒト脊椎動物、哺乳動物によって産生される抗体レパートリーを評価することにより抗体鎖(タンパク質)レベルにおいて、または例えばRACEを使用して、抗体鎖遺伝子座のmRNA転写産物を評価することによりヌクレオチドレベルにおいて、決定することができる。一実施形態において、不活性化は、50%より多く(すなわち、抗体または転写産物の50%以下が、内因性抗体鎖である)、60%より多く、70%より多く、80%より多く、85%より多く、90%より多く、95%より多く、96%より多く、97%より多く、98%より多くまたは99%より多い。例えば、一実施形態において、内因性重鎖発現は、脊椎動物(哺乳動物)の重鎖レパートリーの85%以下、90%以下、95%以下、96%以下、97%以下、98%以下または99%以下が、内因性重鎖によって提供されるように、実質的に不活性化される。例えば、内因性重鎖発現は、脊椎動物(哺乳動物)の重鎖レパートリーの実質的にいずれも、内因性重鎖によって提供されないように、実質的に不活性化される。例えば、一実施形態において、内因性重鎖発現は、脊椎動物(哺乳動物)のカッパ鎖レパートリーの85%以下、90%以下、95%以下、96%以下、97%以下、98%以下または99%以下が、内因性カッパ鎖によって提供されるように、実質的に不活性化される。例えば、内因性カッパ鎖発現は、脊椎動物(哺乳動物)のカッパ鎖レパートリーの実質的にいずれも、内因性カッパ鎖によって提供されないように、実質的に不活性化される。例えば、一実施形態において、内因性重鎖発現は、脊椎動物(哺乳動物)のラムダ鎖レパートリーの85%以下、90%以下、95%以下、96%以下、97%以下、98%以下または99%以下が、内因性ラムダ鎖によって提供されるように、実質的に不活性化される。例えば、内因性ラムダ鎖発現は、脊椎動物(哺乳動物)のラムダ鎖レパートリーの実質的にいずれも、内因性ラムダ鎖によって提供されないように、実質的に不活性化される。
一態様では、この改変を、非ヒト哺乳動物のVDJ領域またはVJ領域の全部または一部を反転させることにより、場合により、1つもしくは複数の部位特異的リコンビナーゼ部位を、ゲノム中に挿入し、次いで、これらの部位をリコンビナーゼ媒介型切除において使用することによってか、または非ヒト哺乳動物のIg遺伝子座の全部もしくは一部を反転させることにより達成する。一態様では、二重の反転を利用することができ、すなわち、最初に、V(D)Jを内在性の遺伝子座から動かして離し、次いで、それらを正しい位置付けに戻すより局所の反転を行う。一態様では、単一のloxP部位を使用して、非ヒト哺乳動物のVDJ領域を、セントロメア遺伝子座またはテロメア遺伝子座に反転させる。
一例において、本発明のマウスまたはマウス細胞は、内因性マウス12番染色体上の位置119753123、119659458または120918606のすぐ3'側にある反転した内因性重鎖遺伝子セグメント(例えば、全体の内因性重鎖VDJ領域などのVH、DおよびJH)を含む。場合により、マウスまたは細胞のゲノムは、前記12番染色体についてホモ接合である。
本発明はまた以下を提供する:
内因性非ヒト脊椎動物(例えば、マウスまたはラット)抗体鎖遺伝子セグメントの反転および不活性化のためのカセットであって、セグメントが、非ヒト脊椎動物(例えば、マウスまたはラット)細胞(例えば、ES細胞)の染色体上の抗体鎖遺伝子座配列の一部であり、配列が、部位特異的組換え部位(例えば、lox、roxまたはfrt)にそれの3'末端で隣接しており、カセットが、発現可能な標識または選択マーカーをコードするヌクレオチド配列、ならびに5'相同性アームおよび3'相同性アームに隣接した適合性部位特異的組換え部位(例えば、lox、roxまたはfrt)を含み、相同性アームが、異なる染色体上、または内因性遺伝子セグメントから少なくとも10mb、15mb、20mb、25mb、30mb、35mb、40mb、45mbまたは50mb離れた前記染色体上の細胞ゲノムにおける、隣接するひと続きの配列に対応し、またはそれらと相同性である、カセット。
本発明はまた以下を提供する:
内因性マウス抗体重鎖遺伝子セグメントの反転および不活性化のためのカセットであって、セグメントが、マウス細胞(例えば、ES細胞)の12番染色体上の重鎖遺伝子座配列の一部であり、配列が、部位特異的組換え部位(例えば、lox、roxまたはfrt)にそれの3'末端で隣接しており、カセットが、発現可能な標識または選択マーカーをコードするヌクレオチド配列、ならびに5'相同性アームおよび3'相同性アームに隣接した適合性部位特異的組換え部位(例えば、lox、roxまたはfrt)を含み、相同性アームが、異なる染色体上、または内因性遺伝子セグメントから少なくとも10mb、15mb、20mb、25mb、30mb、35mb、40mb、45mbまたは50mb離れた12番染色体上のマウス細胞ゲノムにおける、隣接するひと続きの配列に対応し、またはそれらと相同性である、カセット。
本発明は以下を提供する:
内因性マウス抗体重鎖遺伝子セグメントの反転および不活性化のためのカセットであって、セグメントが、マウス細胞(例えば、ES細胞)の12番染色体上の重鎖遺伝子座配列の一部であり、配列が、部位特異的組換え部位(例えば、lox、roxまたはfrt)にそれの3'末端で隣接しており、カセットが、発現可能な標識または選択マーカーをコードするヌクレオチド配列、ならびに5'相同性アームおよび3'相同性アームに隣接した適合性部位特異的組換え部位(例えば、lox、roxまたはfrt)を含み、(i)5'相同性アームが、座標119753124から座標119757104までのマウス12番染色体DNAであり、かつ3'相同性アームが座標119749288から座標119753123までのマウス12番染色体DNAであり;または(ii)5'相同性アームが、座標119659459から座標119663126までのマウス12番染色体DNAであり、かつ3'相同性アームが座標119656536から座標119659458までのマウス12番染色体DNAであり;または(iii)5'相同性アームが、座標120918607から座標120921930までのマウス12番染色体DNAであり、かつ3'相同性アームが座標120915475から座標120918606までのマウス12番染色体DNAである、カセット。
実施形態(i)は、結果として、座標119753123から座標114666436までのマウス12番染色体の反転を生じる。
実施形態(ii)は、結果として、座標119659458から座標114666436までのマウス12番染色体の反転を生じる。
実施形態(iii)は、結果として、座標12091806から座標114666436までのマウス12番染色体の反転を生じる。
したがって、本発明は、ゲノムが12番染色体の反転を含むマウスまたはマウス細胞であって、反転が、反転した内因性重鎖遺伝子セグメント(例えば、全体の内因性重鎖VDJ領域などのVH、DおよびJH)を含み;マウスまたは(場合により、B細胞への分化後の)細胞が、ヒト遺伝子セグメントに由来する配列を含む可変領域を含む抗体を発現することができるように、マウスが、内因性定常領域(例えば、Cミュー)の上流で作動可能に接続した、複数のヒトVH遺伝子セグメント、複数のヒトDセグメントおよび複数のヒトJHセグメントを含むトランスジェニック重鎖遺伝子座を含み;反転が、(i)座標119753123から座標114666436までのマウス12番染色体の反転;(ii)座標119659458から座標114666436までのマウス12番染色体の反転;または(iii)座標12091806から座標114666436までのマウス12番染色体の反転である、マウスまたはマウス細胞を提供する。
一実施形態において、内因性遺伝子セグメントは、129由来マウス細胞由来であり(例えば、AB2.1細胞由来のセグメント)、相同性アームは、同質遺伝子DNA(すなわち、上記の(i)〜(iii)において述べられたそれぞれの座標によって境界を画定された129由来内因性配列と同一)である。したがって、これらの相同性アームを使用する相同組換えによって、新しい配列は生み出されない。別の実施形態において、アームは、内因性系統とは異なるマウス系統に由来する。部位特異的組換え部位は、関連したリコンビナーゼ酵素(例えば、Cre、DreまたはFlp)の発現で、挿入された反転カセットにおける部位と、内因性遺伝子セグメントに隣接する部位との間での組換えが実行され、それにより、内因性遺伝子セグメントを反転させ、重鎖遺伝子座におけるそれらの本来の位置から遠く上流(5')へ移動させるように、相互に適合性があり、かつ相互に反転している。これは、内因性重鎖発現を不活性化させる。同様に、軽鎖不活性化は、内因性軽鎖遺伝子座から少なくとも10mb、15mb、20mb、25mb、30mb、35mb、40mb、45mbまたは50mb、間隔を空けた染色体領域を参照して反転カセットの相同性アームを選択することにより、実施することができ、その染色体領域は、反転カセットにおける部位と適合性である部位特異的組換え部位を含む。
一実施形態において、発現可能な標識は、蛍光標識、例えば、GFPまたはその変種(例えば、YFP、CFPまたはRFP)である。したがって、標識は、形質転換体の選択を可能にするために抵抗性を与えるものなどの選択マーカーの代わりに、使用される。
本発明は、
(i)ゲノムが、内因性可変領域遺伝子セグメントを含む抗体鎖遺伝子座を含む、非ヒト脊椎動物細胞(例えば、ES細胞、例えば、マウスES細胞)を準備する工程;
(ii)前記内因性遺伝子セグメントの最も3'側の3'に隣接するように部位特異的組換え部位をターゲッティングする工程:
(iii)前記内因性遺伝子セグメントから少なくとも10mb離れて第2の部位特異的組換え部位をターゲッティングする工程であって、第2の部位が、第1の部位と適合性であり、かつ第1の部位に対して反転している、工程;
(iv)前記部位間に部位特異的組換えをもたらすように前記部位と適合したリコンビナーゼを発現させ、それにより、前記遺伝子セグメントを反転させ、前記遺伝子座から移動させる工程であって、内因性遺伝子セグメントが不活性化される、工程;および
(v)場合により、ゲノムが前記反転についてホモ接合である子孫細胞または脊椎動物(例えば、マウスまたはラット)へ前記細胞を発生させる工程
を含む、内因性抗体遺伝子座の遺伝子セグメントを不活性化する方法を提供する。
子孫細胞または脊椎動物のゲノムは、トランスジェニック重鎖および/または軽鎖遺伝子座を含むことができ、それぞれが、ヒト可変領域を含む抗体鎖を発現することができる。場合により、内因性重鎖およびカッパ軽鎖の発現は、本発明の方法に従って、内因性重鎖およびカッパ可変領域遺伝子セグメントを反転させることにより不活性化される。場合により、内因性ラムダ鎖発現もまた、この方法で不活性化される。
本発明の方法および反転カセットの代替において、可変領域遺伝子セグメントのみを反転させ、かつ移動させる代わりに、内因性遺伝子座の他の部分を、代替として、または追加として、反転させ、かつ移動させて、不活性化をもたらすことができる。例えば、1つもしくは複数の内因性制御エレメント(例えば、Sミューおよび/またはEミュー)および/または1つもしくは複数の内因性定常領域(例えば、Cミューおよび/またはCガンマ)を反転させ、かつ移動させることができる。
本発明の上記の関係において「隣接する」部位は、部位特異的組換え部位が、内因性配列に直接隣接し、またはそれから、例えば、3'方向に250kb、200kb、250kb、100kb、50kbまたは20kb以下だけ間隔を空けているように供給することができる。
一態様では、ヒトDNAを挿入する非ヒト哺乳動物ゲノムは、内在性のV、(D)およびJの領域を含み、内在性配列は、欠失していない。
本発明は、複数のDNA断片をDNA標的中に挿入して、適切には、近接した挿入を形成するための方法を含み、挿入断片は、介在配列なしで、一緒になって直接連結している。この方法はとりわけ、大きなDNA断片の、宿主染色体への挿入に適用でき、段階的に実施することができる。
一態様では、この方法は、第1のDNA配列であって、DNAベクターの部分および第1の目的の配列(X1)を有する配列を、標的中に挿入するステップと、第2のDNA配列であって、第2の目的の配列(X2)および第2のベクターの部分を有する配列を、第1の配列のベクターの部分中に挿入するステップと、次いで、X1とX2とを分離する任意のベクター配列のDNAを切除して、近接したX1X2配列またはX2X1配列を、標的内にもたらすステップとを含む。場合により、さらなる1つまたは複数のDNA配列であって、それぞれが、さらなる目的の配列(X3、...)およびさらなるベクターの部分を有するDNA配列を、先行するDNA配列のベクターの部分中に挿入して、近接したDNA断片を、標的中に築き上げるステップがある。
第1のDNA配列を挿入するためのDNA標的は、特定の細胞のゲノム中の特異的な部位または任意の点であり得る。
一般的な方法を、ヒトVDJ領域のエレメントの挿入に関して本明細書に記載するが、この方法は、任意の生物体に由来する任意のDNA領域の挿入、特に、>100kB、例として、100〜250kbの大きなDNA断片、またはさらにより大きな、例として、TCRもしくはHLAの断片の挿入に適用できる。VDJの挿入について本明細書に記載する特徴およびアプローチは、開示する方法のうちのいずれにも等しく適用することができる。
一態様では、挿入DNAは、ヒトDNA、例として、ヒトのVDJ領域もしくはVJ領域であり、細胞、例として、ES細胞のゲノム中に、それぞれの重鎖領域または軽鎖領域について、2、3、4、5、6、7、8、9、10、11、12、13、14、15または20個以上の別個の挿入を使用して段階的に築き上げる。断片は、適切には、同じまたは実質的に同じ細胞の遺伝子座、例えば、ES細胞の遺伝子座に、次々に挿入して、完全なVDJ領域もしくはVJ領域またはその一部を形成する。また、本発明は、ゲノムが部分的なVDJ領域のみ、例として、ヒト可変領域DNAのみを含むことができる、プロセス中の中間体を含む細胞および非ヒト動物にも関する。
さらなる態様では、トランスジェニックな非ヒト哺乳動物を生成するための方法は、ヒトのVDJ領域またはVJ領域を、宿主非ヒト哺乳動物定常領域の上流に、複数の断片を相同組換えにより段階的に挿入することによって、好ましくは、反復プロセスを使用して挿入するステップを含む。本明細書に開示するように、適切には、ヒトのVDJ遺伝子座およびVJ遺伝子座に由来するおよそ100KBの断片を挿入して、適切には、挿入プロセスの最終的な反復の後に部分的または完全なVDJ領域またはVJ領域を形成する。
一態様では、挿入プロセスを、開始カセットが細胞、例として、ES細胞のゲノム中に挿入されている部位において開始して、独特の標的領域をもたらす。一態様では、開始カセットを、非ヒト哺乳動物の重鎖遺伝子座中に挿入して、ヒト重鎖DNAの挿入において使用する。同様に、開始カセットを、非ヒト哺乳動物の軽鎖遺伝子座中に挿入して、ヒト軽鎖VJのDNAの挿入において使用することができる。開始カセットは、適切には、ヒトDNA断片を同じ骨格配列中に有するベクターと組み換えて、ヒトDNAを、細胞(例えば、ES細胞)のゲノム中に挿入することができるベクター骨格配列、および適切には、選択マーカー、例として、陰性の選択マーカーを含む。適切には、ベクター骨格配列は、BACライブラリの配列であって、BACをES細胞および哺乳動物の構築において使用することを可能にする。しかし、ベクター骨格配列は、相同配列を、例えば、相同組換え、例えば、RMCEにより挿入することができる標的部位として働く任意の配列であってよく、好ましくは、VDJ領域および定常領域のうちのいずれをもコードするDNAではない。
一態様では、第1のDNA断片を、開始カセット中に挿入し、続いて、第2のDNA断片を、第1のDNA断片の一部、適切には、第1のDNA断片のベクター骨格の部分の中に挿入する。一態様では、挿入DNA断片は、ヒトVDJ領域に由来しない5'配列および/または3'配列が隣接するヒトVDJ領域の部分を含む。一態様では、5'隣接配列および/または3'隣接配列はそれぞれ、1つもしくは複数の選択マーカーを含有し得るか、またはゲノム中に挿入されて直ちに選択系を生み出すことが可能であり得る。一態様では、一方または両方の隣接配列を、挿入に続いて、in vitroまたはin vivoにおいて、ゲノムから除去することができる。一態様では、この方法は、DNA断片を挿入するステップと、続いて、ヒトVDJのDNAに隣接する挿入断片の5'末端および3'末端の両方を選択するステップとを含む。一態様では、反復挿入を、DNA断片をこれまでに挿入した断片の5'末端において挿入することによって行うことができ、この態様では、挿入ヒトDNA配列を分離するベクターのDNAをin vivoにおいて欠失させて、近接したヒトDNA配列をもたらすことができる。
一態様では、ヒトVDJのDNAの、ゲノム中への挿入を、いずれの隣接DNAもゲノム中に残すことなく、例えば、トランスポゼース媒介型DNA切除(transposase mediated DNA excision)により達成することができる。1つの適切なトランスポゼースが、ピギーバック(Piggybac)トランスポゼースである。
一態様では、第1のヒト可変領域断片を、相同組換えにより、開始カセットの骨格配列に挿入し、次いで、任意の陰性の選択マーカーのDNAを挿入し、それに続いて、開始カセットを、リコンビナーゼ標的配列間の組換え、例として、本実施例で使用するFRT、すなわち、FLPase発現により除去する。一般に、(例えば、BACの)骨格の開始配列における繰り返し標的挿入およびそれに続くリコンビナーゼ標的配列間における再構成による除去を繰り返して、ヒトVDJ領域全体を、宿主非哺乳動物の定常領域の上流に築き上げる。
一態様では、選択マーカーまたは選択系を、この方法において使用することができる。マーカーを、DNA断片のゲノム中への挿入時に生成すること、例えば、選択マーカーを、ゲノム中にすでに存在するDNAエレメントと併せて形成することができる。
一態様では、細胞(例えば、ES細胞)のゲノムは、プロセスの間に、2つの同一の選択マーカーを同時には含有しない。本明細書の実施例に開示するように、挿入および選択の反復プロセスを、2つの異なる選択マーカーのみを使用して実施することができると見ることができ、例えば、第3のベクター断片の挿入の時期までに、第1のベクター断片および第1のマーカーは除去されてしまうので、第3の選択マーカーは、第1のマーカーと同一であり得る。
一態様では、正しい挿入事象を、任意の多段階式クローニングプロセスの次のステップに移る前に、例えば、BACの構造を、ES細胞をスクリーニングして、未変化のBAC挿入を有する細胞を同定するための高密度ゲノムアレイを使用して確認すること、配列決定、およびPCRによる検証により確認する。
開始カセット(「ランディングパッド(Landing Pad)」とも呼ばれる)
本発明はまた、ポリヌクレオチド「ランディングパッド」配列に関し、ポリヌクレオチドは、相同組換えによる標的染色体への挿入を可能にするために、標的染色体の領域に相同的な核酸領域を含み、かつ核酸のランディングパッドへのリコンビナーゼ駆動型挿入を可能にする核酸部位を含む。本発明はまた、細胞のゲノムへ挿入される、本明細書に開示されているようなランディングパッドを含む、本発明のベクター、細胞および哺乳動物に関する。
ランディングパッドは、場合により、非内因性S-ミュー、例えば、ラットS-ミュースイッチを含む。
ランディングパッドは、場合により、(5'から3'への方向で)、マウスEμ配列、非ヒト、非マウス(例えば、ラット)スイッチμおよびマウスCμの少なくとも一部またはマウスCμ全体を含む。
ラットスイッチ配列は、場合により、配列番号1を含み、またはそれからなる。
ランディングパッドは、場合により、配列番号6の5'相同性アームを含む。
ランディングパッドは、場合により、配列番号2または配列番号3の配列を有する。
一実施形態において、ランディングパッドは、発現可能な標識を含む。例えば、標識は、蛍光標識、例えば、GFPまたはその変種(例えば、YFP、CFPまたはRFP)である。したがって、標識は、選択マーカー(例えば、形質転換体の選択を可能にするために抵抗性を与えるもの)の代わりに使用される。
一実施形態において、ランディングパッドは、相同組換えを使用する細胞ゲノムへの挿入のために5'相同性アームおよび3'相同性アームを含む。相同性アームは、同質遺伝子的DNAであり得る(例えば、129由来ES細胞が使用される場合、129由来内因性配列と同一)。したがって、これらの相同性アームを使用する相同組換えにより、新しい配列は生み出されない。別の実施形態において、アームは、内因性系統(ES細胞株)とは異なるマウス系統に由来する。
本発明の方法には、ランディングパッド配列が、本明細書に開示されているような配置または配列のいずれかを含む、方法が挙げられる。
本発明の別の方法は、マウスJ1-4配列とマウスCミュー配列との間の相同組換えによる、ランディングパッドのマウス染色体への挿入の工程を含む。
本発明の別の方法は、マウスJ1-4とEミューとの間の相同組換えによる、ランディングパッドのマウス12番染色体への挿入の工程を含む。
一態様では、この方法は、部位特異的組換えを使用して、1つまたは複数のベクターを、細胞、例として、ES細胞のゲノム中に挿入する。部位特異的リコンビナーゼ系は、当技術分野で周知であり、Cre-loxおよびFLP/FRTまたはそれらの組合せを含むことができ、これらの系では、組換えが、配列相同性を有する2つの部位間において発生する。
本明細書に記載された任意の特定のCre/LoxまたはFLP/FRT系の追加として、または代替として、本発明に使用され得る他のリコンビナーゼおよび部位には、Dreリコンビナーゼ、rox部位およびPhiC31リコンビナーゼが挙げられる。
適切なBACが、Sanger centreから入手可能であり、「A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction」、Adams DJ、Quail MA、Cox T、van der Weyden L、Gorick BD、Su Q、Chan WI、Davies R、Bonfield JK、Law F、Humphray S、Plumb B、Liu P、Rogers J、Bradley A、Genomics、2005年12月;86(6):753〜8頁;Epub、2005年10月27日、The Wellcome Trust Sanger Institute、Hinxton、Cambridgeshire CB10 1SA、UKを参照されたい。また、ヒトDNAを含有するBACも、例えば、Invitrogen(商標)から入手可能である。適切なライブラリが、Osoegawa Kら、Genome Research、2001年、11:483〜496頁に記載されている。
一態様では、本発明の方法は、具体的には、
(1)第1のDNA断片を、非ヒトES細胞中に挿入するステップであって、前記断片が、ヒトのVDJ領域またはVJ領域のDNAの第1の部分、および第1の選択マーカーを含有する第1のベクターの部分を含有するステップと、
(2)場合により、第1のベクターの部分の一部を欠失させるステップと、
(3)第2のDNA断片を、第1のDNA断片を含有する非ヒトES細胞中に挿入するステップであって、前記挿入が、第1のベクターの部分の内部において発生し、第2のDNA断片が、ヒトのVDJ領域またはVJ領域の第2の部分、および第2の選択マーカーを含有する第2のベクターの部分を含有するステップと、
(4)第1の選択マーカーおよび第1のベクターの部分を、好ましくは、リコンビナーゼ酵素の作用により欠失させるステップと、
(5)第3のDNA断片を、第2のDNA断片を含有する非ヒトES細胞中に挿入するステップであって、前記挿入が、第2のベクターの部分の内部において発生し、第3のDNA断片が、ヒトのVDJ領域またはVJ領域の第3の部分、および第3の選択マーカーを含有する第3のベクターの部分を含有するステップと、
(6)第2の選択マーカーおよび第2のベクターの部分を欠失させるステップと、
(7)必要に応じて、ヒトVDJ領域またはVJヒト領域の第4のおよびさらなる断片について挿入および欠失のステップを反復して、必要に応じて、本明細書の開示に従って挿入したヒトのVDJ領域またはVJ領域の一部または全部を有するES細胞を生成し、適切には、ES細胞のゲノムの内部の全てのベクターの部分を除去するステップと
を含む。
別の態様では、本発明は、
(1)開始カセットを形成するDNAを、細胞のゲノム中に挿入するステップと、
(2)第1のDNA断片を、開始カセット中に挿入するステップであって、第1のDNA断片が、ヒトDNAの第1の部分、および第1の選択マーカーを含有するかまたは挿入時に選択マーカーを生成する第1のベクターの部分を含むステップと、
(3)場合により、ベクターのDNAの一部を除去するステップと、
(4)第2のDNA断片を、第1のDNA断片のベクターの部分中に挿入するステップであって、第2のDNA断片が、ヒトDNAの第2の部分および第2のベクターの部分を含有し、第2のベクターの部分が、第2の選択マーカーを含有するかまたは挿入時に第2の選択マーカー生成するステップと、
(5)場合により、任意のベクターのDNAを除去して、第1および第2のヒトDNA断片が近接した配列を形成することを可能にするステップと、
(6)必要に応じて、ヒトVDJのDNAの挿入およびベクターのDNAの除去のステップを反復して、宿主定常領域と協力して、キメラ抗体を生成することを可能にするのに十分な、ヒトのVDJ領域またはVJ領域の全部または一部を有する細胞を生成するステップと
を含み、
DNA断片の1つもしくは複数または全ての挿入が、部位特異的組換えを使用する。
一態様では、非ヒト哺乳動物は、多様な、少なくとも1×106個の異なる機能性のキメラの免疫グロブリン配列の組合せを生成することができる。
一態様では、ターゲッティングを、マウスのC57BL/6N系統、C57BL/6J系統、129S5系統または129Sv系統に由来するES細胞において実施する。
一態様では、非ヒト動物、例として、マウスを、RAG-1欠損もしくはRAG-2欠損背景またはその他の適切な遺伝的背景において生成し、こうした背景は、成熟した宿主Bリンパ球およびTリンパ球の生成を阻止する。
一態様では、非ヒト哺乳動物は、げっ歯類、適切には、マウスであり、本発明の細胞は、げっ歯類の細胞またはES細胞、適切には、マウスES細胞である。
当技術分野で周知の技法を使用して動物を生成するために、本発明のES細胞を使用することができる。それらの技法は、ES細胞を胚盤胞中に注射し、続いて、キメラの胚盤胞を雌中に移植して、子孫を生成し、それらの子孫を、繁殖させ、必要な挿入を有するホモ接合型の組換え体について選択することを含む。一態様では、本発明は、ES細胞由来の組織および宿主胚由来の組織からなるキメラ動物に関する。一態様では、本発明は、遺伝子的に変化した次世代の動物に関し、これらの動物は、VDJ領域および/またはVJ領域についてホモ接合型の組換え体を有する動物を含む。
さらなる態様では、本発明は、所望の抗原に特異的な抗体を生成するための方法に関し、この方法は、上記のトランスジェニックな非ヒト哺乳動物を、所望の抗原を用いて免疫化するステップと、抗体を回収するステップとを含む(例えば、Harlow, E.およびLane, D. 1998年、5版、Antibodies: A Laboratory Manual、Cold Spring Harbor Lab. Press、Plainview、NY;ならびにPasqualiniおよびArap、Proceedings of the National Academy of Sciences (2004) 101:257〜259頁を参照されたい)。適切には、免疫原性量の抗原を送達する。また、本発明は、標的抗原を検出するための方法にも関し、この方法は、上記に従って生成した抗体を、その抗体の部分を認識する二次的な検出薬剤を用いて検出するステップを含む。
さらなる態様では、本発明は、完全ヒト化抗体を生成するための方法に関し、この方法は、上記のトランスジェニックな非ヒト哺乳動物を、所望の抗原を用いて免疫化するステップと、抗体または抗体を発現する細胞を回収するステップと、次いで、非ヒト哺乳動物定常領域を、ヒト定常領域で置き換えるステップとを含む。このことは、非ヒト哺乳動物定常領域を、適切なヒト定常領域のDNA配列で置き換えるために、DNAレベルにおける標準的なクローニング技法により行うことができる。例えば、Sambrook, JおよびRussell, D. (2001、3版)、Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press、Plainview、NY)を参照されたい。
さらなる態様では、本発明は、本発明により生成した、キメラ形態および完全ヒト化形態の両方のヒト化抗体およびヒト化抗体鎖、ならびに前記抗体の医学における使用に関する。また、本発明は、そのような抗体、および薬学的に許容できる担体またはその他の賦形剤を含む医薬組成物にも関する。
ヒト配列を含有する抗体鎖、例として、ヒト-非ヒトキメラ抗体鎖を、本明細書では、ヒトタンパク質をコードする領域の存在によってヒト化されているとみなす。完全ヒト化抗体は、本発明のキメラ抗体鎖をコードするDNAから出発して、標準的な技法を使用して生成することができる。
モノクローナル抗体およびポリクローナル抗体の両方を生成するための方法は、当技術分野で周知であり、本発明は、本発明の非ヒト哺乳動物中で抗原攻撃に応答して生成されたキメラ抗体または完全ヒト化抗体のポリクローナル抗体およびモノクローナル抗体の両方に関する。
その上さらなる態様では、本発明において生成したキメラ抗体または抗体鎖を、適切には、DNAレベルで操作して、抗体様の特性または構造を有する分子、例として、定常領域が存在しない、重鎖または軽鎖由来のヒト可変領域、例えば、ドメイン抗体、または同じもしくは異なる種由来の重鎖または軽鎖のいずれかに由来する任意の定常領域を有するヒト可変領域、または非天然の定常領域を有するヒト可変領域、または任意のその他の融合パートナーと一緒になったヒト可変領域を生成することができる。本発明は、本発明により同定したキメラ抗体から誘導した全てのそのようなキメラ抗体の誘導体に関する。
さらなる態様では、本発明は、本発明の動物の、準ヒト(quasi-human)抗体のレパートリーの状況での薬物およびワクチンの起こり得る作用の解析における使用に関する。
本発明はまた、薬物またはワクチンの同定または確証のための方法に関し、その方法は、ワクチンまたは薬物を本発明の哺乳動物へ送達する工程、および免疫応答、安全性プロファイル、疾患への効果のうちの1つまたは複数をモニターする工程を含む。
本発明はまた、本明細書に開示されているような抗体または抗体誘導体、およびそのような抗体、または緩衝液、抗体検出試薬などの適切な実験試薬の使用についてのいずれの使用説明書も含むキットに関する。
本発明はまた、抗体またはその部分を作製するための方法に関し、その方法は、以下のものを準備する工程を含む:
(i)本発明に従って得られる抗体またはその部分をコードする核酸;または
(ii)本発明に従って得られる抗体またはその部分をコードする核酸が発現して、抗体が産生されることを可能にすることができる、配列情報。
本発明はまた、ヒト可変領域および非ヒト脊椎動物または哺乳動物(場合により、ラットまたはマウス)定常領域(場合により、CガンマまたはCミュー)を含むキメラ抗体に関し、抗体は、細胞(場合により、B細胞、ES細胞またはハイブリドーマ)のキメラ重鎖遺伝子座のヌクレオチド配列に対応するヌクレオチド配列によってコードされ、その遺伝子座は、非ヒト脊椎動物定常領域ヌクレオチド配列、ならびにヒトV領域、ヒトD領域およびヒトJ領域のインビボ再構成により生じた再構成VDJヌクレオチド配列を含み、V領域は、V1-3領域、V2-5領域、V4-4領域、V1-2領域またはV6-1領域のうちの1つから選択され、場合によりV1-3またはV6-1セグメントである。場合により、J領域は、JH1、JH2、JH3、JH4、JH5またはJH6のいずれかであり、一態様において、JH4またはJH6である。D領域は、一態様において、D3-9、D3-10、D6-13またはD6-19のいずれかである。一例において、再構成VDJヌクレオチド配列は、ヒトV1-3およびJH4(場合により、D3-9、D3-10、D6-13またはD-19と共に);またはV1-3およびJH6 (場合により、D3-9、D3-10、D6-13またはD-19と共に);またはV6-1およびJH4 (場合により、D3-9、D3-10、D6-13またはD-19と共に);またはV6-1およびJH6 (場合により、D3-9、D3-10、D6-13またはD-19と共に)のインビボ再構成により生じる。一例において、再構成VDJヌクレオチド配列は、ヒトV6-1 DH3-10、V1-3 DH3-10、V1-3 DH6-19、V1-3 DH3-9またはV6-1 DH6- 19のインビボ再構成によって生じる。一態様において、抗体は、本明細書における実施例および図に例示された任意の組合せを含む。場合により、インビボ再構成は、定常領域配列と同じ非ヒト脊椎動物種由来の細胞(例えば、B細胞またはES細胞)内においてである(例えば、マウスB細胞またはES細胞)。本発明はまた、ゲノムがこの段落の上に記載されているようなキメラ重鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物細胞(例えば、B細胞またはES細胞またはハイブリドーマ)に関する。本発明はまた、ゲノムがこの段落の上に記載されているようなキメラ重鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物(例えば、マウスまたはラット)に関する。
本発明はまた、キメラ抗体をコードするゲノムを有する非ヒト脊椎動物または哺乳動物に関し、キメラ抗体は、ヒト可変領域および非ヒト脊椎動物または哺乳動物(場合により、ラットまたはマウス)定常領域(場合により、CガンマまたはCミュー)を含み、哺乳動物は以下である:
V2-5、V4-4、V1-2もしくはV6-1抗体より多いV1-3抗体を発現する;および/または
V1-3 JH1、V1-3 JH2、V1-3 JH3もしくはV1-3 JH5抗体、個々のいずれかより多いV1-3 JH4もしくはV1-3 JH6抗体を発現する、および/または
V6-1 JH1、V6-1 JH2、V6-1 JH3もしくはV6-1 JH5抗体、個々のいずれかより多いV6-1 JH4もしくはV6-1 JH6抗体を発現する、および/または
V1-3 DH3-10抗体を、任意の他のD領域と共の抗体V1-3より多数、発現する。
抗体の発現は、当業者に容易に利用可能で、当技術分野における従来の方法により、評価することができる。例えば、発現は、下記の実施例に示されているように、mRNAレベルにおいて評価することができる。
本発明はまた、ヒト可変領域および非ヒト脊椎動物または哺乳動物(場合により、ラットまたはマウス)定常領域(場合により、軽鎖定常領域)を含むキメラ抗体に関し、抗体は、ゲノムが、生殖系列ヒトカッパV1-8配列および生殖系列ヒトカッパJ1配列を含む抗体鎖遺伝子座を含む哺乳動物(場合により、ラットまたはマウス)から得られ、かつ抗体は、V1-8配列およびJ1配列の前記哺乳動物におけるインビボ組換えにより得ることができ、抗体は、生殖系列ヒトカッパV1-8配列および生殖系列ヒトカッパJ1配列によってコードされるものとは異なる可変領域配列を有する。したがって、本発明のこの態様において、ヒト生殖系列配列は、少なくとも完全なヒト可変領域および非ヒト定常領域を有するキメラ抗体鎖として、非ヒト定常領域配列と共に、発現することができる、コード配列を形成するように生産的再構成を起こすことができる。これは、(停止コドンの包含のために)抗体コード配列を提供しない生殖系列ヒトカッパV1-8配列および生殖系列ヒトカッパJ1配列の組合せ、それ自体とは対照的である(実施例が下記で示しているように)。一態様において、キメラ抗体の再構成された配列は、体細胞超変異の結果である。一態様において、抗体はカッパ抗体である;別の態様において、抗体は、非ヒト重鎖定常領域(例えば、ラットまたはマウスCガンマまたはCミュー)を含む。抗体配列は、場合により、X1X2 T F G Q(式中、X1X2= PR、RT、またはPW)(配列番号21)モチーフ;場合により、X1X2 T F G Q G T K V E I K R A D A (配列番号22)モチーフを含む。そのようなモチーフは、実施例において示されているように、生殖系列配列における等価の位置に見出されない。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物細胞(例えば、B細胞またはES細胞またはハイブリドーマ)に関する。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物(例えば、マウスまたはラット)に関する。
本発明はまた、ヒト可変領域および非ヒト脊椎動物または哺乳動物(場合により、ラットまたはマウス)定常領域(場合により、軽鎖定常領域)を含むキメラ抗体であって、抗体が、ゲノムが、生殖系列ヒトカッパV1-6および生殖系列ヒトカッパJ1配列を含む抗体鎖遺伝子座を含む、哺乳動物(場合により、ラットまたはマウス)から得ることができ、抗体が、V1-6およびJ1配列の前記哺乳動物におけるインビボ組換えによって得ることができ、抗体が、生殖系列ヒトカッパV1-6および生殖系列ヒトカッパJ1配列によってコードされるものとは異なる可変領域配列を有する、キメラ抗体に関する。したがって、本発明のこの態様において、ヒト生殖系列配列は、非ヒト定常領域配列と共に、少なくとも完全なヒト可変領域および非ヒト定常領域を有するキメラ抗体として発現することができる、コード配列を形成するように生産的再構成を起こすことができる。これは、(停止コドンの包含のために)抗体コード配列を提供しない生殖系列ヒトカッパV1-6配列および生殖系列ヒトカッパJ1配列の組合せ、それ自体とは(下の実施例が示すように)対照的である。一態様において、キメラ抗体の再構成された配列は、体細胞超変異の結果である。一態様において、抗体はカッパ抗体である;別の態様において、抗体は、非ヒト重鎖定常領域(例えば、ラットまたはマウスCガンマまたはCミュー)を含む。抗体配列は、場合により、X3X4 T F G Q (式中、X3X4= PRまたはPW)(配列番号23)モチーフ;場合により、X3X4 T F G Q G T K V E I K R A D A (配列番号24)モチーフを含む。そのようなモチーフは、実施例において示されているように、生殖系列配列における等価の位置に見出されない。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物細胞(例えば、B細胞またはES細胞またはハイブリドーマ)に関する。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物(例えば、マウスまたはラット)に関する。
本発明はまた、ヒト可変領域および非ヒト(場合により、ラットまたはマウス)定常領域(場合により、CガンマまたはCミューまたはCカッパ)を含むキメラ抗体であって、その抗体が、ゲノムが、生殖系列ヒトカッパV1-5および生殖系列ヒトカッパJ1配列を含む抗体鎖遺伝子座を含む、哺乳動物(場合により、ラットまたはマウス)から得ることができ、抗体が、V1-5およびJ1配列の前記哺乳動物におけるインビボ組換えによって得ることができる、キメラ抗体に関する。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物細胞(例えば、B細胞またはES細胞またはハイブリドーマ)に関する。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物(例えば、マウスまたはラット)に関する。
本発明はまた、ヒト可変領域および非ヒト(場合により、ラットまたはマウス)定常領域(場合により、CガンマまたはCミューまたはCカッパ)を含むキメラ抗体であって、抗体が、ゲノムが、生殖系列ヒトカッパV1-5および生殖系列ヒトカッパJ4配列を含む抗体鎖遺伝子座を含む、哺乳動物(場合により、ラットまたはマウス)から得ることができ、抗体が、V1-5およびJ4配列の前記哺乳動物におけるインビボ組換えによって得ることができる、キメラ抗体に関する。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物細胞(例えば、B細胞またはES細胞またはハイブリドーマ)に関する。本発明はまた、ゲノムが、この段落の上で記載されているようなキメラ抗体鎖遺伝子座を含む、非ヒト脊椎動物または哺乳動物(例えば、マウスまたはラット)に関する。
本発明の抗体は、単離されてもよく、一態様において、それらが発現している細胞または生物体から単離される。
ゲノムが、
(a)宿主非ヒト哺乳動物定常領域の上流のヒトのIgH VDJ領域、さらに、
(b)宿主非ヒト哺乳動物カッパ定常領域の上流のヒトIg軽鎖カッパのV領域およびJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流のヒトIg軽鎖ラムダのV領域およびJ領域
を含む非ヒト哺乳動物であって、
非ヒト哺乳動物は、非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体のレパートリーを生成することができ、
場合により、非ヒト哺乳動物のゲノムは、完全宿主種特異的抗体の発現を阻止するように改変される非ヒト哺乳動物。
ゲノムが、
(a)非ヒト哺乳動物定常領域の上流のヒトIgH V領域、D領域およびJ領域、さらに、
(b)宿主非ヒト哺乳動物カッパ定常領域の上流のヒトIg遺伝子座の軽鎖カッパのV領域およびJ領域、ならびに/または宿主非ヒト哺乳動物ラムダ定常領域の上流のヒトIg遺伝子座の軽鎖ラムダのV領域およびJ領域
を含む非ヒト哺乳動物のES細胞であって、
キメラである抗体のレパートリーを生成することができ、非ヒト哺乳動物定常領域およびヒト可変領域を有する非ヒト哺乳動物に発生することが可能である
ES細胞。
キメラ抗体のレパートリーを生成することができるトランスジェニックな非ヒト哺乳動物を生成するための方法であって、前記抗体が、非ヒト哺乳動物定常領域およびヒト可変領域を有し、前記方法が、
(a)宿主非ヒト哺乳動物重鎖定常領域の上流のヒトのIgH VDJ領域、および
(b)宿主非ヒト哺乳動物ラムダ鎖またはカッパ鎖の定常領域の上流のラムダ鎖またはカッパ鎖それぞれについてのヒトIgL VJ領域
を、非ヒト哺乳動物が非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ抗体のレパートリーを生成することができるように、非ヒト哺乳動物ES細胞のゲノム中に、相同組換えにより挿入するステップを含み、
ステップ(a)およびステップ(b)を、いずれの順番でも実施することができ、ステップ(a)およびステップ(b)のそれぞれを、段階的にまたは単一ステップとして実施することができる方法。
一態様では、ヒトのVDJ領域またはVJ領域を、宿主非ヒト哺乳動物定常領域の上流に挿入することを、複数の断片を相同組換えにより段階的に挿入することによって達成する。
一態様では、段階的な挿入を、開始カセットがES細胞のゲノム中に挿入されており、BAC骨格配列および陰性の選択マーカーからなる独特の標的領域をもたらす部位において開始する。
一態様では、第1のヒト可変領域断片を、開始カセットのBAC骨格配列において、相同組換えにより挿入し、それに続いて、前記陰性の選択マーカーおよび開始カセットを、リコンビナーゼ標的配列間の組換えにより除去する。
一態様では、BAC骨格の開始配列における繰り返しの標的挿入、およびそれに続く、骨格の、リコンビナーゼ標的配列間における再構成による除去を繰り返して、ヒトVDJ領域全体を、宿主非哺乳動物の定常領域の上流に築き上げる。
正確に内因性マウスJH4-Cミューのイントロン内でのヒト可変領域遺伝子セグメントの挿入
哺乳動物がマウスであり、または細胞がマウス細胞であり、ヒト重鎖DNAの挿入が、マウスゲノムにおいて、マウス12番染色体の座標114,667,091から座標114,665,190の間に行われる、本発明による細胞または非ヒト哺乳動物がさらに提供される。
ヒト重鎖DNAの挿入が座標114,667,091で行われる、本発明による細胞または非ヒト哺乳動物がさらに提供される。
ヒトIgH VDJ領域がヒト14番染色体由来のヌクレオチド105,400,051〜106,368,585(座標は、ヒトゲノムについてNCBI36を参照する)を含む、本発明による細胞または非ヒト哺乳動物がさらに提供される。
ヒトコード領域DNA配列が、ヒトDNAの転写が非ヒト哺乳動物調節配列によって調節されるように、非ヒト哺乳動物調節配列と機能的配置にある、本発明による方法、細胞または非ヒト哺乳動物がさらに提供される。一例において、開始カセットは、マウスJ4エクソンとCアルファエクソンの間に挿入される。ベクターバックボーン配列および選択マーカーを含む、本方法に使用するのに適した開始カセットがさらに提供される。
本発明は、(態様103番から始まる)以下の態様を提供する:
103. 哺乳動物がマウスであり、または細胞がマウス細胞であり、ヒト重鎖DNAの挿入が、マウスゲノムにおいて、マウス12番染色体の座標114,667,091から座標114,665,190の間に行われる、上記の形態、例、実施形態または態様のいずれか1つによる細胞または非ヒト哺乳動物。
104. ヒト重鎖DNAの挿入が、座標114,667,091で行われる、上記の形態、例、実施形態または態様のいずれか1つによる細胞または非ヒト哺乳動物。
105. ヒトIgH VDJ領域が、ヒト14番染色体由来のヌクレオチド105,400,051〜106,368,585(座標はヒトゲノムについてNCBI36を参照する)を含む、上記の形態、例、実施形態または態様のいずれか1つによる細胞または哺乳動物。
106. ヒトコード領域DNA配列が、ヒトDNAの転写が非ヒト哺乳動物調節配列によって調節されるように、非ヒト哺乳動物調節配列と機能的配置にある、上記の形態、例、実施形態または態様のいずれか1つによる方法、細胞または哺乳動物。
107. 開始カセットがマウスJ4エクソンとCアルファエクソンの間に挿入される、態様106による方法。
108. ベクターバックボーン配列および選択マーカーを含む、態様107の方法に使用するのに適した開始カセット。
ヒト抗体可変領域遺伝子セグメントの挿入による内因性抗体鎖発現の不活性化
109. (i)(場合により、抗体遺伝子再構成後に)ヒト可変領域を含む抗体鎖を発現することができるトランスジェニック抗体鎖遺伝子座を含み;および
(ii)内因性非ヒト脊椎動物抗体鎖発現について不活性化されている
ゲノムを有する非ヒト脊椎動物(場合により、マウスまたはラット)または非ヒト脊椎動物細胞(場合により、マウスまたはラット細胞)であって、トランスジェニック遺伝子座が
(iii)内因性抗体可変領域遺伝子セグメントと内因性抗体定常領域の間に挿入された、複数のヒト抗体可変領域遺伝子セグメントを含むDNA配列であって、内因性抗体鎖発現が不活性化されている、DNA配列
を含む、非ヒト脊椎動物または非ヒト脊椎動物細胞。
トランスジェニック遺伝子座は、重鎖または軽鎖遺伝子座である。
マウスおよびラットなどの非ヒト脊椎動物における内因性重鎖発現の不活性化は、(遺伝子セグメント間の配列を含む)内因性重鎖VDJ領域の全部または部分の欠失を含んでいる。ADAM6遺伝子は、内因性マウスVDJ領域内に存在する。マウスにおいて、12番染色体のIgH遺伝子座においてVH遺伝子セグメントとD遺伝子セグメントの間(マウスVH5-1遺伝子セグメントとD1-1遺伝子セグメントの間の介在領域内)に位置するADAM6(ADAM6a、ADAM6b)の2コピーがある。これらの2つの隣接するイントロン無しのADAM6遺伝子は、95%のヌクレオチド配列同一性および90%アミノ酸同一性を有する。ヒトおよびラットにおいては、1つのみのADAM6遺伝子がある。マウスADAM6の発現パターン分析により、それがもっぱら精巣においてにだけ、発現することが示されている[1]。ADAM6転写産物は、リンパ球において検出することができるが、それは核に限定され、特にADAM6遺伝子の転写が、活性メッセンジャーRNA産生よりむしろ、D領域からの転写読み過ごしのせいであることを示唆している[2]。ラットにおいて、ADAM6は6番染色体上にある。
成熟ADAM6タンパク質は、精子頭部のアクロソームおよび後方領域上に位置する。とりわけ、ADAM6は、ADAM2およびADAM3と複合体を形成し、その複合体は、マウスにおける受精に必要とされる[3]。参考文献[4]は、モデルにおいてADAM6を意味づけており、そのモデルにおいて、このタンパク質は、ADAM6がTPST2によって硫酸化された後、ADAM3と相互作用し、ADAM6の硫酸化が、ADAM6およびADAM3を含む安定性および/または複合体形成にとって重要な意味をもち、したがって、ADAM6およびADAM3が、Tpst2ヌル精子から失われている。その研究により、Tpst2欠損マウスが、雄不妊、精子移動性欠陥および精子-卵膜相互作用の可能性のある異常を有することが観察される。
したがって、精子におけるADAM6発現の維持は、受精にとって重要な意味をもつ。したがって、ADAM6遺伝子が欠失しているトランスジェニック雄マウスおよびラットが、実行可能な妊性ではないと考えられる。これは、コロニーの繁殖を妨害し、そのようなマウスのトランスジェニック抗体産生プラットフォームとしての利用を妨害する。妊性である、改善された非ヒトトランスジェニック抗体産生脊椎動物を提供することが望ましい。
[1]. Choi Iら、Characterization and comparative genomic analysis of intronless Adams with testicular gene expression. Genomics.2004年4月;83(4):636〜46頁
[2]. Featherstone K、Wood AL、Bowen AJ、Corcoran AE、The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J Biol Chem. 2010年3月26日;285(13):9327〜38頁、電子出版2010年1月25日
[3]. Han Cら、Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol Reprod. 2009年5月;80(5):1001〜8頁、電子出版2009年1月7日
[4]. Marcelloら、Lack of tyrosylprotein sulfotransferase-2 activity results in altered sperm-egg interactions and loss of ADAM3 and ADAM6 in epididymal sperm、J Biol Chem. 2011年4月15日;286(15):13060〜70頁、電子出版2011年2月21日
本発明の態様109により、不活性化は、内因性ADAM6を含むVDJ領域またはその部分の欠失を含まないが、代わりに、挿入による不活性化は、内因性ADAM6の保存を可能にし、したがって、不妊問題のリスクを負わない。
本方法から生じる最終マウス(または本方法によって作製された細胞に由来するマウス)は、一実施形態において、雄であり、それゆえに、本発明は、ゲノム操作の結果として不妊である先行技術の雄トランスジェニックマウスを改善している。妊性マウスは、雌マウスからの卵子を受精させることができる精子を産生する。妊性は、例えば、繁殖させて、胎仔または小児マウスを産生することに成功することにより、容易に決定される。別の実施形態において、本発明の方法は、最終の雌マウスを作製する。そのような雌は、もちろん、繁殖させて、ADAM6を有し、かつ妊性である雄子孫を生み出すのに有用である。
態様109の一実施形態において、ゲノムは、トランスジェニック遺伝子座についてホモ接合である。例えば、ゲノムは、内因性ADAM6遺伝子についてホモ接合である。
態様109の脊椎動物の一実施形態において、ゲノムは、内因性重鎖およびカッパ鎖(および場合により、ラムダ鎖も)の発現について不活性化されている。
一実施形態において、態様109のパート(iii)において、前記DNAは、ヒトVH、DおよびJH遺伝子セグメント、またはヒトVLおよびJL遺伝子セグメント(例えば、VκおよびJκ遺伝子セグメント)を含む。例において、DNAは、選択マーカー、例えば、HPRT遺伝子、ネオマイシン抵抗性遺伝子、もしくはピューロマイシン抵抗性遺伝子、および/またはプロモーターを有するランディングパッドを含む。
一実施形態において、態様109のパート(iii)において、内因性遺伝子セグメントは、重鎖遺伝子座の内因性VDJ領域全体であり、および/または内因性定常領域はCミューまたはCガンマである。
一実施形態において、態様109のパート(iii)において、内因性遺伝子セグメントは、カッパ鎖遺伝子座の内因性VJ領域全体であり、および/または内因性定常領域はCカッパである。
一実施形態において、態様109のパート(iii)において、内因性遺伝子セグメントは、ラムダ鎖遺伝子座の内因性VJ領域全体であり、および/または内因性定常領域はCラムダである。
非ヒト脊椎動物細胞は、ハイブリドーマ、B細胞、ES細胞またはIPS細胞であり得る。細胞がES細胞またはIPS細胞である場合、内因性抗体鎖発現は、(例えば、非ヒト脊椎動物におけるB細胞において)細胞の子孫B細胞への分化後、不活性化される。
本発明はさらに以下を提供する:
110. 前記複数のヒト抗体遺伝子セグメントが、少なくとも11個のヒトVセグメントおよび/または少なくとも6個のヒトJセグメント、例えば、少なくとも11個のヒトVH遺伝子セグメントおよび少なくとも6個のヒトJHセグメント、および場合によりまた、少なくとも27個のヒトDセグメントを、場合によりヒト遺伝子セグメント間介在配列と共に、含む、態様109による脊椎動物または細胞。実施形態において、ヒト抗体遺伝子セグメントは、生殖系列配置で遺伝子セグメントおよび介在配列を含む、ヒト14番染色体のひと続きのDNA配列によって提供される。
111. 挿入されるDNA配列が、前記抗体遺伝子セグメントを含むヒトヌクレオチド配列を含み、ヌクレオチド配列が、少なくとも110kb、130kb、150kb、170kb、190kb、210kb、230kb、250kb、270kbまたは290kbである、態様109または110による脊椎動物または細胞。実施形態において、ヌクレオチド配列は、生殖系列配置で遺伝子セグメントおよび介在配列を含む、ヒト14番染色体のひと続きのDNA配列に対応し、例えば、少なくとも、ヒト14番染色体の座標106328951から座標106601551までのヌクレオチド配列に対応する配列、例えば、GRCH37/hg19配列データベースにおける配列である。
112. トランスジェニック遺伝子座が軽鎖カッパ遺伝子座であり、ヒト抗体遺伝子セグメントが最も3'側の内因性Jκ遺伝子セグメントと内因性Cκの間にあり、場合によりヒト抗体遺伝子セグメントが5個の機能性ヒトJλ-Cλクラスターおよび少なくとも1個のヒトVλ遺伝子セグメントを含み、例えば、少なくとも、ヒト22番染色体上に見出されるラムダ遺伝子座の座標23217291から座標23327884までのヌクレオチド配列に対応する配列である、態様109による脊椎動物または細胞。
113. トランスジェニック遺伝子座が重鎖遺伝子座であり、ヒト抗体遺伝子セグメントが、最も3'側の内因性JH遺伝子セグメント(例えば、マウスゲノムにおけるJH4)と内因性Cミューの間にある、態様109〜112のいずれか1つによる脊椎動物または細胞。
114. ゲノムが前記トランスジェニック遺伝子座についてホモ接合である、態様109〜113のいずれか1つによる脊椎動物または細胞。
115. 態様109〜114のいずれか1つによるマウスもしくはマウス細胞、またはラットもしくはラット細胞。
116. (a)ゲノムが、内因性抗体可変領域遺伝子セグメントおよび内因性抗体定常領域を含む内因性抗体鎖遺伝子座を含む、非ヒトES細胞を準備する工程;ならびに
(b)ヒト抗体可変領域遺伝子セグメントが内因性定常領域の上流に作動可能に接続されるように、複数のヒト抗体可変領域遺伝子セグメントを含むDNA配列を、前記内因性遺伝子座へ、前記内因性抗体可変領域遺伝子セグメントと前記内因性定常領域の間に挿入することにより、トランスジェニック抗体鎖遺伝子座を作製する工程であって、それにより、内因性抗体発現が不活性化されている子孫細胞を生じる能力がある非ヒト脊椎動物ES細胞が産生され、子孫が、ヒト可変領域を含む抗体を発現する能力がある、工程;ならびに
(c)場合により、前記ES細胞を、前記子孫細胞、または前記子孫細胞を含む非ヒト脊椎動物(例えば、マウスまたはラット)へ分化させる工程
を含む、非ヒト脊椎動物細胞(場合により、マウス細胞またはラット細胞)を作製する方法。
117. 前記複数のヒト抗体遺伝子セグメントが少なくとも11個のヒトVセグメントを含む、態様116による方法。
118. 前記複数のヒト抗体遺伝子セグメントが少なくとも6個のヒトJセグメントを含む、態様116または117による方法。
119. ヒトヌクレオチド配列が工程(b)において挿入され、ヌクレオチド配列が前記抗体遺伝子セグメントを含み、ヌクレオチド配列が少なくとも110kbである、態様116、117または118による方法。
120. 内因性遺伝子座が重鎖遺伝子座であり、かつヒト抗体遺伝子セグメントが、最も3'側の内因性JH遺伝子セグメントと内因性Cミューの間にある、態様110〜113のいずれか1つによる方法。
121. 子孫細胞が前記トランスジェニック遺伝子座についてホモ接合である、態様116〜120のいずれか1つによる方法。
態様116の方法の一実施形態において、方法は、内因性重鎖およびカッパ鎖(およびまた場合により、ラムダ鎖)の発現についてゲノムを不活性化することを含む。
態様116の方法の一実施形態において、パート(b)において、前記DNA配列は、ヒトVH、DおよびJH遺伝子セグメント、またはヒトVLおよびJL遺伝子セグメント(例えば、VκおよびJκ遺伝子セグメント)を含む。例において、DNAは、選択マーカー、例えば、HPRT遺伝子、ネオマイシン抵抗性遺伝子もしくはピューロマイシン抵抗性遺伝子、および/またはプロモーターを有するランディングパッドを含む。
一実施形態において、態様116のパート(b)において、内因性遺伝子セグメントは、重鎖遺伝子座の内因性VDJ領域全体であり、および/または内因性定常領域はCミューまたはCガンマである。
一実施形態において、態様116のパート(b)において、内因性遺伝子セグメントは、カッパ鎖遺伝子座の内因性VJ領域全体であり、および/または内因性定常領域はCカッパである。
一実施形態において、態様116のパート(b)において、内因性遺伝子セグメントは、ラムダ鎖遺伝子座の内因性VJ領域全体であり、および/または内因性定常領域はCラムダである。
非ヒト脊椎動物細胞は、ハイブリドーマ、B細胞、ES細胞またはIPS細胞であり得る。細胞がES細胞またはIPS細胞である場合、内因性抗体鎖発現は、(例えば、非ヒト脊椎動物におけるB細胞においての)細胞の子孫B細胞への分化後に不活性化される。
本発明はさらに以下を提供する:
前記挿入されるDNA配列が、前記ヒト抗体遺伝子セグメントを含むヒトヌクレオチド配列を含み、ヌクレオチド配列が、少なくとも110kb、130kb、150kb、170kb、190kb、210kb、230kb、250kb、270kbまたは290kbである、態様116による方法。一実施形態において、ヌクレオチド配列は、生殖系列配置で遺伝子セグメントおよび介在配列を含む、ヒト14番染色体のひと続きのDNA配列に対応し、例えば、少なくとも、ヒト14番染色体の座標106328951から座標106601551までのヌクレオチド配列に対応する配列、例えば、GRCH37/hg19配列データベースにおける配列に対応する。
トランスジェニック遺伝子座が軽鎖カッパ遺伝子座であり、ヒト抗体遺伝子セグメントが最も3'側の内因性Jκ遺伝子セグメントと内因性Cκの間にあり、場合によりヒト抗体遺伝子セグメントが5個の機能性ヒトJλ-Cλクラスターおよび少なくとも1個のヒトVλ遺伝子セグメントを含み、例えば、少なくとも、ヒト22番染色体上に見出されるラムダ遺伝子座の座標23217291から座標23327884までのヌクレオチド配列に対応する配列である、態様116による方法。
トランスジェニック遺伝子座が重鎖遺伝子座であり、かつヒト抗体遺伝子セグメントが、最も3'側の内因性JH遺伝子セグメント(例えば、マウスゲノムにおけるJH4)と内因性Cミューの間に挿入される、態様116による方法。
122. 前記トランスジェニック遺伝子座についてホモ接合性の子孫のゲノムを作製する工程を含む、態様116〜121のいずれか1つによる方法。
本発明のトランスジェニック非ヒト脊椎動物から抗体を単離すること、および治療に関連した親和性の有用な抗原特異的抗体
123. (a)上記の形態、例、実施形態または態様のいずれか1つによる脊椎動物(場合により、哺乳動物;場合により、マウスまたはラット)を準備する工程;
(b)前記脊椎動物を前記抗原(場合により、抗原が感染性疾患病原体の抗原である)で免疫化する工程;
(c)脊椎動物からBリンパ球を取り出し、抗原に結合する抗体を発現する1つまたは複数のBリンパ球を選択する工程;
(d)場合により、前記選択されたBリンパ球またはその子孫を、場合によりそれらからハイブリドーマを作製することにより、不死化する工程;および
(e)Bリンパ球によって発現する抗体(例えば、およびIgG型抗体)を単離する工程
を含む、所定の抗原を結合する抗体を単離する方法。
124. 前記抗原を結合する前記抗体をコードする核酸を前記Bリンパ球から単離する工程、場合により、その抗体の重鎖定常領域ヌクレオチド配列を、ヒトまたはヒト化重鎖定常領域をコードするヌクレオチド配列と交換する工程、ならびに場合により、前記抗体の可変領域を親和性成熟させる工程、ならびに場合により、前記核酸を発現ベクターおよび場合により、宿主へ挿入する工程を含む、態様123の方法。
125. 態様122または123の方法によって産生される抗体の突然変異体または誘導体を作製する工程をさらに含む、態様123または124の方法。
下記の実施例によって実証されているように、本発明の非ヒト脊椎動物は、それらのCDR3領域におけるヒト配列とサブ50nMの親和性の抗原特異的抗体を産生することができる。したがって、本発明は、以下をさらに提供する:
126. 表面プラズモン共鳴法によって決定される場合、サブ50nM(場合により、サブ40nM、サブ30nM、サブ20nM、サブ10nM、サブ1nM、サブ0.1nMまたはサブ0.01 nM)の親和性で所定の抗原を特異的に結合する可変領域を含む抗体またはその断片(例えば、FabまたはFab2)であって、抗体が、上記の形態、例、実施形態または態様のいずれか1つによる非ヒト脊椎動物(場合により、哺乳動物;場合により、マウスまたはラット)から単離され、前記脊椎動物の再構成されたVDJによってコードされる重鎖CDR3(Kabatにより定義される場合)を含み、VDJが、前記脊椎動物の重鎖遺伝子座のヒトJH遺伝子セグメントの、D(場合により、前記遺伝子座のヒトD遺伝子セグメント)およびVH遺伝子セグメントと共のインビボでの再構成の生成物である、抗体またはその断片。
一実施形態において、表面プラズモン共鳴法(SPR)は25℃で実行される。別の実施形態において、SPRは37℃で実行される。
一実施形態において、SPRは、約pH7またはpH7.6などの生理的pHで(例えば、pH7.6におけるHepes緩衝食塩水(HBS-EPとも呼ばれる)を使用して)実行される。
一実施形態において、SPRは、生理的塩レベル、例えば、150mM NaClで実行される。
一実施形態において、SPRは、わずか0.05体積%の界面活性剤レベルで、例えば、0.05%におけるP20(ポリソルベート20;例えば、Tween-20(商標))および3mMでのEDTAの存在下で、実行される。
一例において、SPRは、pH7.6の緩衝液、150mM NaCl、0.05%界面活性剤(例えば、P20)、および3mM EDTA中、25℃または37℃で実行される。緩衝液は、10mM Hepesを含有することができる。一例において、SPRは、HBS-EP中、25℃または37℃で実行される。HBS-EPは、Teknova Inc (California; catalogue number H8022)から入手できる。
例において、抗体の親和性は、
1. 一級アミン結合によるなどの抗マウス(または他の関連した非ヒト脊椎動物)IgG(例えば、Biacore BR-1008-38)をバイオセンサーチップ(例えば、GLMチップ)へ結合させる工程;
2. 抗マウスIgGを試験IgG抗体に曝露して、試験抗体をチップ上に捕捉する工程;
3. 試験抗原を0nM(すなわち、緩衝液のみ)と共に1024nM、256nM、64nM、16nM、4nMにおいてチップの捕捉表面上を通過させる工程;および
4. 表面プラズモン共鳴法を、例えば、上記で論じられたSPR条件下で(例えば、生理的緩衝液中、25℃で)、使用して、試験抗体の試験抗原への結合の親和性を決定する工程
により、SPRを使用して決定される。SPRは、Biacore(商標)によるなどの任意の標準SPR装置を使用して、またはProteOn XPR36(商標)(Bio-Rad(登録商標))を使用して、実行することができる。
捕捉表面の再生は、pH1.7における10mMグリシンで実行することができる。これは、捕捉された抗体を除去し、表面が別の相互作用に使用されるのを可能にする。結合データは、標準技術を使用した固有の1:1モデルに、例えば、ProteOn XPR36(商標)分析ソフトウェアに固有のモデルを使用して、フィッティングすることができる。
本発明はまた、(場合により、親和性成熟後、例えば、ファージディスプレーによる)態様126の抗体または断片由来のVHおよびVLドメインを含むscFv、ダイアボディまたは他の抗体断片に関する。
一実施形態において、抗原はセルピン、例えば、オボアルブミン、アンチトロンビンまたはアンチトリプシンである。セルピンは、プロテアーゼを阻害することができる1セットのタンパク質として最初に同定された、類似した構造をもつ1群のタンパク質である。アクロニムのセルピンは本来、多くのセルピンがキモトリプシン様セリンプロテアーゼを阻害するため(セリンプロテアーゼインヒビター)、造語された。広く研究されているセルピンスーパーファミリーの最初のメンバーは、ヒト血漿タンパク質のアンチトロンビンおよびアンチトリプシンであり、それらは、それぞれ、血液凝固および炎症を調節することにおいて重要な役割を果たす。当初、研究は、ヒト疾患におけるそれらの役割に集中した:アンチトロンビン欠乏症は、血栓症を生じ、アンチトリプシン欠乏症は、肺気腫を引き起こす。1980年、HuntおよびDayhoffは、これらの分子のどちらも、ニワトリ卵白における主要なタンパク質である、オボアルブミンとの相当なアミノ酸配列類似性を共有するという驚くべき発見をし、彼らは、新しいタンパク質スーパーファミリーを提案した。
127. 表面プラズモン共鳴法により決定される場合、サブ50nM親和性で前記抗原を特異的に結合する、態様126の抗体またはその誘導体(場合により、定常領域がヒトである誘導体、および/または親和性成熟した誘導体)と同一である抗体または断片。
128. 態様126または127の抗体または断片、および薬学的に許容される希釈剤、賦形剤または担体を含む医薬組成物。
129. 態様126または127の抗体または断片の重鎖可変領域をコードする、場合によりベクター(例えば、発現ベクター)の部分としての、ヌクレオチド配列。
130. 配列が、態様126の抗体が単離されている脊椎動物のB細胞由来のcDNAであり、またはそのようなcDNAと同一である、態様129のヌクレオチド配列。
131. 態様129または130によるヌクレオチド配列を含む、単離された宿主細胞(例えば、ハイブリドーマまたはCHO細胞またはHEK293細胞)。
132. 所定の抗原を結合する抗体を単離する方法であって、
(a)上記の形態、例、実施形態または態様のいずれか1つによる脊椎動物(場合により、哺乳動物;場合により、マウスまたはラット)を準備する工程;
(b)前記脊椎動物を前記抗原で免疫化する工程;
(c)その脊椎動物からBリンパ球を取り出し、サブnM親和性で抗原に結合する抗体を発現するBリンパ球を選択する工程であって、抗体が態様126による、工程;
(d)場合により、前記選択されたBリンパ球またはその子孫を、場合によりそれらからハイブリドーマを産生することにより、不死化する工程;および
(e)Bリンパ球によって発現した抗体(例えば、IgG型抗体)を単離する工程
を含む、方法。
133. 前記抗原を結合する前記抗体をコードする核酸を前記Bリンパ球から単離する工程;場合により、抗体の重鎖定常領域ヌクレオチド配列を、ヒトまたはヒト化重鎖定常領域をコードするヌクレオチド配列と交換する工程、ならびに場合により、前記抗体の可変領域を親和性成熟させる工程;ならびに場合により、前記核酸を発現ベクターおよび場合により宿主へ挿入する工程を含む、態様132の方法。
134. 態様132または133の方法により産生される抗体の突然変異体または誘導体を作製する工程をさらに含む、態様132または133の方法。
内因性VDJからゲノム砂漠領域までの反転による不活性化
135. 内因性マウス12番染色体上の119753123位、119659458位または120918606位のすぐ3'側にある反転した内因性重鎖遺伝子セグメント(例えば、内因性重鎖VDJ領域全体などのVH、DおよびJH)を含むマウスまたはマウス細胞であって、マウスまたは(場合により、B細胞への分化後の)細胞が、ヒト遺伝子セグメント由来の配列を含む可変領域を含む抗体を発現する能力があるように、マウスが、内因性定常領域(例えば、Cミュー)の上流に作動可能に接続した、複数のヒトVH遺伝子セグメント、複数のヒトDセグメントおよび複数のヒトJHセグメントを含むトランスジェニック重鎖遺伝子座を含む、マウスまたはマウス細胞。
136. マウスまたは細胞のゲノムが前記12番染色体についてホモ接合である、態様135のマウスまたは細胞。
137. 内因性非ヒト脊椎動物(例えば、マウスまたはラット)抗体鎖遺伝子セグメントの反転および不活性化のためのカセットであって、セグメントが、非ヒト脊椎動物(例えば、マウスまたはラット)細胞(例えば、ES細胞)の染色体上の抗体鎖遺伝子座配列の部分であり、配列が、その3'末端で部位特異的組換え部位(例えば、lox、roxまたはfrt)に隣接しており、カセットが、発現可能な標識または選択マーカーをコードするヌクレオチド配列、ならびに5'相同性アームおよび3'相同性アームに隣接した適合性部位特異的組換え部位(例えば、lox、roxまたはfrt)を含み、相同性アームが、異なる染色体上の、または前記染色体上で、内因性遺伝子セグメントから少なくとも10mb離れた、細胞ゲノム内の隣接するひと続きの配列に対応し、または相同である、カセット。
138. 内因性マウス抗体重鎖遺伝子セグメントの反転および不活性化のためのカセットであって、セグメントが、マウス細胞(例えば、ES細胞)の12番染色体上の重鎖遺伝子座配列の部分であり、配列が、その3'末端で部位特異的組換え部位(例えば、lox、roxまたはfrt)に隣接しており、カセットが、発現可能な標識または選択マーカーをコードするヌクレオチド配列、ならびに5'相同性アームおよび3'相同性アームに隣接した適合性部位特異的組換え部位(例えば、lox、roxまたはfrt)を含み、(i)5'相同性アームが座標119753124から座標119757104までのマウス12番染色体DNAであり、かつ3'相同性アームが座標119749288から座標119753123までのマウス12番染色体DNAであり;(ii)5'相同性アームが座標119659459から座標119663126までのマウス12番染色体DNAであり、かつ3'相同性アームが座標119656536から座標119659458までのマウス12番染色体DNAであり;(iii)5'相同性アームが座標120918607から座標120921930までのマウス12番染色体DNAであり、かつ3'相同性アームが座標120915475から座標120918606までのマウス12番染色体DNAである、カセット。
139. (i)ゲノムが、内因性可変領域遺伝子セグメントを含む抗体鎖遺伝子座を含む、非ヒト脊椎動物細胞(例えば、ES細胞、例えば、マウスES細胞)を準備する工程;
(ii)前記内因性遺伝子セグメントの最も3'側の3'に隣接するように部位特異的組換え部位をターゲッティングする工程;
(iii)前記内因性遺伝子セグメントから少なくとも10mb離れて第2の部位特異的組換え部位をターゲッティングする工程であって、第2の部位が、第1部位と適合性であり、かつ第1の部位に対して反転している、工程;
(iv)前記部位間に部位特異的組換えをもたらすように、前記部位と適合するリコンビナーゼを発現し、それにより、前記遺伝子セグメントを反転させ、かつ移動させて前記遺伝子座から離す工程であって、内因性遺伝子セグメントが不活性化される、工程;および
(v)場合により、ゲノムが反転についてホモ接合である、子孫細胞または脊椎動物(例えば、マウスまたはラット)へ細胞を発生させる工程
を含む、内因性抗体遺伝子座の遺伝子セグメントを不活性化する方法。
140. ゲノムが12番染色体の反転を含む、マウスまたはマウス細胞であって、反転が、反転した内因性重鎖遺伝子セグメント(例えば、内因性重鎖VDJ領域全体などのVH、DおよびJH)を含み;マウスまたは(場合により、B細胞への分化後の)細胞がヒト遺伝子セグメント由来の配列を含む可変領域を含む抗体を発現する能力があるように、マウスが、内因性定常領域(例えば、Cミュー)の上流に作動可能に接続した、複数のヒトVH遺伝子セグメント、複数のヒトDセグメントおよび複数のヒトJHセグメントを含むトランスジェニック重鎖遺伝子座を含み、反転が、(i)座標119753123から座標114666436までのマウス12番染色体の反転; (ii)座標119659458から座標114666436までのマウス12番染色体の反転; (iii)座標12091806から座標114666436までのマウス12番染色体の反転である、マウスまたはマウス細胞。
その他の態様として、以下を含む:
所望の抗原に特異的な抗体を生成するための方法であって、本明細書に開示する非ヒト哺乳動物を、所望の抗原を用いて免疫化するステップと、抗体または抗体を生成する細胞を回収するステップとを含む方法。
完全ヒト化抗体を生成するための方法であって、非ヒト哺乳動物を、本明細書の開示に従って免疫化するステップと、次いで、抗原に特異的な反応性を示す抗体の非ヒト哺乳動物定常領域を、ヒト定常領域で、適切には、抗体をコードする核酸を工学的に作製することによって置き換えるステップとを含む方法。
ヒトコード領域のDNA配列が、DNAの転写が非ヒト哺乳動物の制御配列により制御されるように、非ヒト哺乳動物の制御配列と機能性の配置をとる、本明細書に開示する方法、細胞または哺乳動物。一態様では、ヒトコード領域のV領域、D領域またはJ領域が、マウスプロモーター配列と機能性の配置をとる。
また本発明は、本明細書に開示する任意の方法に従って生成したヒト化抗体、およびそのように生成したヒト化抗体の医学における使用にも関する。
トランスジェニック非ヒト脊椎動物および細胞における内因性軽鎖不活性化およびヒトラムダ可変領域の高発現
下記の実施例においてさらに説明されているように、本発明者らは、驚くべきことに、ヒトラムダ遺伝子セグメントの内因性非ヒト脊椎動物軽鎖遺伝子座へのターゲッティング挿入により生じたトランスジェニック軽鎖遺伝子座からの、ヒトラムダ可変領域(少なくとも70%または80%ヒトVラムダ)を含む軽鎖の非常に高い発現レベルを観察している。これは、脊椎動物ゲノム内における内因性非ヒト脊椎動物VおよびJ遺伝子セグメントの存在下でさえも可能である。また、驚くべき高レベルの発現は、ヒトラムダ遺伝子セグメントの挿入が内因性カッパまたはラムダ遺伝子座内である場合、達成される。ターゲッティング挿入によるそのような高レベルは、これまで当技術分野において発表されたことはない。
本発明者らはまた、驚くべきことに、実施例においてさらに説明されているように、内因性カッパ鎖発現が、ヒトラムダ遺伝子配列の内因性カッパ遺伝子座へのターゲッティング挿入により完全に不活性化され得ることを観察した。
ヒト遺伝子セグメントの内因性Ig遺伝子座へのターゲッティング挿入は、内因性Ig定常領域、ならびに、例えばエンハンサーおよび他の遺伝子座調節領域などの内因性調節領域に関して、挿入されるヒトIg配列の操作可能な位置をそれが可能にするため、有利である。したがって、ターゲッティング挿入は、Ig遺伝子セグメントの組換え、対立遺伝子排除、親和性成熟、クラススイッチ、Ig発現のレベルおよびB細胞コンパートメントの望ましい発生のうちの1つまたは複数において重要な内因性調節を利用することを可能にする。それとして、ターゲッティング挿入は、トランスジェニックIg遺伝子座および発現を生じさせようとする当技術分野における初期の試み(その試みは、ヒトIg遺伝子セグメントを有するYACなどのベクターの非ヒト脊椎動物細胞への導入に依存した)より優れている。YACは、脊椎動物細胞ゲノムへランダムに組み込まれるため、ターゲッティング挿入により提供される調節、および内因性調節機構を利用することに関してもたらされる同時的利益を達成することが困難である。加えて、ランダム挿入は、異種性調節エレメントの調節下に入る挿入されたヒトIg遺伝子セグメント、ならびに/またはメチル化および染色質構造などのエピジェネティックな染色体改変を生じる場合が多く、それらのいずれも、適切なIg遺伝子セグメントの組換え、対立遺伝子排除、親和性成熟、クラススイッチ、Ig発現のレベルおよびB細胞コンパートメントの望ましい発生に有害であり得る。ランダム挿入は、典型的には、染色体不安定を引き起こし得る2コピー以上の導入されたトランスジーンを生じ、それゆえに、適切なIg遺伝子セグメントの組換え、対立遺伝子排除、親和性成熟、クラススイッチ、Ig発現のレベルおよびB細胞コンパートメントの望ましい発生への有害な効果に加えて、動物の繁殖能力の低下を生じる。したがって、ランダム挿入を使用する先行技術の試みは、B細胞発生の低下、相対的に小さいB細胞コンパートメント、およびIg発現の減少、および所望の特性を有する抗体を単離することにおける付随する困難をもたらす傾向にあった。
したがって、本発明は以下の態様を提供する:
ヒトラムダ可変領域の発現
1.
ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲット化挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、ヒトVλおよびJλ遺伝子セグメントが、脊椎動物の内因性軽鎖遺伝子座への挿入によって供給されており、脊椎動物が、ラムダ可変領域(ラムダ軽鎖)を含む免疫グロブリン軽鎖を発現し、ラムダ軽鎖が、ヒトVλおよびJλ遺伝子セグメントの再組合せに由来したラムダ可変領域を含む免疫グロブリン軽鎖を含む、非ヒト脊椎動物。
ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、ヒトVλおよびJλ遺伝子セグメントが、脊椎動物の内因性軽鎖遺伝子座への挿入によって供給されており、脊椎動物が、ラムダ可変領域(ラムダ軽鎖)を含む免疫グロブリン軽鎖を発現し、かつ脊椎動物によって発現したラムダ軽鎖の可変領域の少なくとも70%または80%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する、非ヒト脊椎動物。これは、下記の実施例において実証されている。
例えば、脊椎動物によって発現したラムダ軽鎖の可変領域の少なくとも70%、75%、80%、84%、85%、90%、95%、96%、97%、98%、または99%、または100%は、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する。これは、下記の実施例において実証されている。
実施形態において、以下が提供される:
ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲット化挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物ES細胞(例えば、マウスES細胞またはラットES細胞)であって、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、ヒトVλおよびJλ遺伝子セグメントが、脊椎動物細胞の内因性軽鎖遺伝子座への挿入によって供給されており、細胞が、ラムダ可変領域(ラムダ軽鎖)を含む免疫グロブリン軽鎖を発現する脊椎動物へ発生することができ、ラムダ軽鎖が、ヒトVλおよびJλ遺伝子セグメントの再組合せに由来したラムダ可変領域を含む免疫グロブリン軽鎖を含む、非ヒト脊椎動物ES細胞。
ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物ES細胞(例えば、マウスES細胞またはラットES細胞)であって、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、ヒトVλおよびJλ遺伝子セグメントが、脊椎動物細胞の内因性軽鎖遺伝子座への挿入によって供給されており、細胞が、ラムダ可変領域(ラムダ軽鎖)を含む免疫グロブリン軽鎖を発現する脊椎動物に発生することができ、かつ脊椎動物によって発現したラムダ軽鎖の可変領域の少なくとも70%または80%(例えば、少なくとも70%、75%、80%、84%、85%、90%、95%、96%、97%、98%または99%、または100%)が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する、非ヒト脊椎動物ES細胞。
一例において、驚くべきことに、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するラムダ可変領域を含む免疫グロブリン軽鎖の発現は、ゲノムが、内因性非ヒト脊椎動物ラムダ可変領域遺伝子セグメント(例えば、内因性Vλおよび/またはJλ遺伝子セグメント、場合により、VλおよびJλ遺伝子セグメントの完全な内因性レパートリー)を含む場合でさえも達成される。したがって、例において、ゲノムは、内因性非ヒト脊椎動物ラムダ可変領域遺伝子セグメント(例えば、内因性Vλおよび/またはJλ遺伝子セグメント、場合により、VλおよびJλ遺伝子セグメントの完全な内因性レパートリー)を含む。別の例において、そのような内因性遺伝子セグメントは、ゲノムに含まれない。
2. 場合により、ヒトVλおよびJλ挿入が、Vλ2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメント(場合により、ヒトCλも)を含む、態様1の脊椎動物または細胞。一例において、挿入はまた、ラムダの遺伝子セグメント間配列も含む。これらはヒト配列であり、またはそれらは、非ヒト脊椎動物種の配列であり得る(例えば、脊椎動物がマウスである場合、対応するマウスラムダ遺伝子セグメントの間の配列が使用され得る)。
3. 場合により、ゲノムが、ヒトVλおよびJλ遺伝子セグメント挿入についてホモ接合であり、かつ前記脊椎動物における内因性カッパ鎖発現が実質的に、または完全に不活性である、態様1または2の脊椎動物または細胞。一例において、軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満が、内因性カッパ鎖(すなわち、可変領域が非ヒト脊椎動物VκおよびJκ遺伝子セグメントの組換えに由来するカッパ鎖)によって供給される。
4. 場合により、内因性遺伝子座が内因性カッパ遺伝子座である、態様1〜3のいずれか1つの脊椎動物または細胞。
5. 場合により、内因性遺伝子座が内因性カッパ遺伝子座である、態様1〜4のいずれか1つの脊椎動物または細胞。
全軽鎖の≧60%はヒトラムダV領域を有する。
6. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、(i)定常領域の上流にヒトVλおよびJλ遺伝子セグメント(ヒトVλおよびJλ遺伝子セグメントが、その脊椎動物の内因性軽鎖遺伝子座への挿入によって供給されている)ならびに(ii)定常領域の上流にカッパV遺伝子セグメントを含み、脊椎動物が、ヒトラムダ可変領域(ヒトラムダ軽鎖)を含む免疫グロブリン軽鎖を発現し、かつ脊椎動物によって発現した軽鎖の少なくとも60%が、前記ヒトラムダ軽鎖によって供給される、非ヒト脊椎動物。これは、下記の実施例において実証されている。
例えば、脊椎動物によって発現した軽鎖の少なくとも65%、70%、80%、84%、85%、90%、95%、96%、97%、98%または99%、または100%は、前記ヒトラムダ軽鎖によって供給される。例えば、脊椎動物によって発現した軽鎖の少なくとも84%が、前記ヒトラムダ軽鎖によって供給される。例えば、脊椎動物によって発現した軽鎖の少なくとも95%が、前記ヒトラムダ軽鎖によって供給される。これは、下記の実施例において実証されている。
一実施形態において、ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物ES細胞(例えば、マウスES細胞またはラットES細胞)であって、ゲノムが、(i)定常領域の上流にヒトVλおよびJλ遺伝子セグメント(ヒトVλおよびJλ遺伝子セグメントが、脊椎動物の内因性軽鎖遺伝子座への挿入によって供給されている)ならびに(ii)定常領域の上流にカッパV遺伝子セグメントを含み、細胞が、ヒトラムダ可変領域(ヒトラムダ軽鎖)を含む免疫グロブリン軽鎖を発現する脊椎動物に発生することができ、かつ脊椎動物によって発現した軽鎖の少なくとも60%が、前記ヒトラムダ軽鎖によって供給される、非ヒト脊椎動物ES細胞が提供される。
7. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)であって、ゲノムが、ヒトラムダ可変領域を含む軽鎖の発現のために、内因性VLおよびJL遺伝子セグメントの下流に内因性非ヒト脊椎動物軽鎖カッパ鎖またはラムダ鎖遺伝子座へのヒト免疫グロブリンVλおよびJλ遺伝子セグメントのターゲッティング挿入を含み、ヒトVλおよびJλ挿入が、Vλ2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ(および場合により、機能的ヒトCλも)遺伝子セグメントを含む、非ヒト脊椎動物または非ヒト脊椎動物細胞。
実施例において実証されているように、前記遺伝子座からの内因性軽鎖発現は不活性化され、また、ヒトラムダ可変領域発現は、内因性ラムダ可変領域発現を凌駕する。
「下流」とは、同じ染色体上の遺伝子セグメントの3'側を意味する。一例において、内因性VおよびJ遺伝子セグメントは、ヒト遺伝子セグメントに対して反転しており、場合により、内因性軽鎖遺伝子座から移動されている。一例において、ヒト遺伝子セグメントは、前記カッパまたはラムダ遺伝子座の内因性VおよびJセグメントの全部の下流にある。内因性V-J配列および遺伝子間配列を保持する可能性は、脊椎動物において望ましくあり得る、埋め込まれた調節領域および/または遺伝子が保持されるため、有利である。
場合により、挿入はまた、ラムダ遺伝子セグメント間配列も含む。これらは、ヒト配列であり、または非ヒト脊椎動物種の配列であり得る(例えば、脊椎動物がマウスである場合、対応するマウスラムダ遺伝子セグメント間の配列が使用され得る)。
VJCλラムダ鎖の発現
8. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)であって、ゲノムが、ヒトVJC軽鎖の発現のために、内因性非ヒト脊椎動物カッパまたはラムダ定常領域の上流に内因性非ヒト脊椎動物カッパまたはラムダ軽鎖遺伝子座へのヒト免疫グロブリンVλ、JλおよびCλ遺伝子のターゲッティング挿入を含み、場合により、ヒトVJC挿入が、Vλ3-1からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる(例えば、2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる)少なくとも機能的ヒトV、J、C遺伝子セグメントを含む、非ヒト脊椎動物または非ヒト脊椎動物細胞。
実施例において実証されているように、ヒトラムダ可変領域発現は、内因性カッパ可変領域発現を凌駕する。内因性遺伝子座由来の内因性カッパ鎖発現は、不活性化することができる。
場合により、挿入はまた、ラムダ遺伝子セグメント間配列も含む。これらは、ヒト配列であり、または非ヒト脊椎動物種の配列であり得る(例えば、脊椎動物がマウスである場合、対応するマウスラムダ遺伝子セグメント間の配列が使用され得る)。
9. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)であって、ゲノムが、ヒトラムダ可変領域を含む軽鎖の発現のために、マウスVκおよびJκ遺伝子セグメントの下流に内因性非ヒト脊椎動物カッパ軽鎖遺伝子座へのVλ3-1からCλ7まで(場合により、Vλ2-18からCλ7まで)のヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVλおよびJλ(および場合により、ヒト機能的Cλ)遺伝子セグメントのターゲッティング挿入を含み、前記挿入の存在下で、前記マウスVκおよびJκ遺伝子セグメント由来の内因性カッパ軽鎖の発現が実質的に、または完全に不活性化されている、非ヒト脊椎動物または非ヒト脊椎動物細胞。
一例において、軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満が、内因性カッパ鎖(すなわち、可変領域が非ヒト脊椎動物VκおよびJκ遺伝子セグメントの組換えに由来する、カッパ鎖)によって供給される。
場合により、挿入はまた、ラムダ遺伝子セグメント間配列も含む。これらは、ヒト配列であり、または非ヒト脊椎動物種の配列であり得る(例えば、脊椎動物がマウスである場合、対応するマウスラムダ遺伝子セグメント間の配列が使用され得る)。
10. ゲノムにおいて、マウスIgK-VJがマウスEκエンハンサーから離されており、それにより、内因性IgK-VJ領域を不活性化する、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)。これは実施例において実証されている。
11. 場合により、ヒトVLおよびJL遺伝子セグメントのマウスIgK-VJとEκエンハンサーとの間での挿入により、IgK-VJがマウスEκエンハンサーから離されており、場合により、挿入が、任意の先行する態様1〜9において列挙されているような挿入、またはヒトVκおよびJκ遺伝子セグメントの挿入である、態様10の脊椎動物または細胞。
12. 場合により、ヒトVλおよびJλ遺伝子セグメントが、内因性非ヒト脊椎動物軽鎖エンハンサーの100kb、75kb、50kb、40kb、30kb、20kb、15kb、10kbまたは5kb以内に挿入されている、態様1〜11のいずれか1つの脊椎動物または細胞。一例において、挿入が内因性ラムダ遺伝子座への挿入である場合、エンハンサーはラムダエンハンサー(例えば、マウスEλ2-4、Eλ4-10またはEλ3-1)である。一例において、挿入が内因性カッパ遺伝子座への挿入である場合、エンハンサーはカッパエンハンサー(例えば、iEκまたは3'Eκ)である。
13. 場合により、軽鎖遺伝子座の内因性非ヒト脊椎動物軽鎖定常領域の上流でのヒトJλ遺伝子セグメントと共の少なくとも10個のヒトVλ遺伝子セグメントのターゲッティング挿入によりゲノムにおいてヒトVλおよびJλ遺伝子セグメントが供給される、態様1〜12のいずれか1つの脊椎動物または細胞。例えば、ヒト遺伝子セグメントは、Vλ2-18からVλ3-1までのヒトIgラムダ鎖遺伝子座の少なくとも一部;またはJλ1、Jλ2、Jλ3、Jλ6およびJλ7と共に挿入されたVλ2-18からVλ3-1までのヒトIgラムダ鎖遺伝子座の少なくとも一部;またはVλ2-18からCλ7まで(場合により、Jλ4Cλ4および/またはJλ5Cλ5を排除する)のヒトIgラムダ鎖遺伝子座の少なくとも一部の挿入により供給される。
場合により、少なくとも2個、3個、4個または5個のヒトJλが挿入される。一実施形態において、挿入されるJλはお互いに異なる。例えば、ヒトJλ1、Jλ2、Jλ3、Jλ6およびJλ7が、場合によりそれぞれJλCλクラスターの部分として、挿入される。
場合により、ヒト軽鎖エンハンサー、例えば、Eλが挿入される。例えば、ヒトJλセグメントと内因性定常領域との間;またはヒトCλ遺伝子セグメント(これらが挿入された場合)と内因性定常領域との間のヒトEλの挿入。
14. ラムダ軽鎖が、前記軽鎖遺伝子座へのターゲッティング挿入によりゲノムにおいて供給されている、ヒトVλ遺伝子セグメントVλ3-1、ならびに場合により、Vλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8およびVλ4-3のうちの1つまたは複数に由来するヒトラムダ可変領域のレパートリーを供給する、態様1〜13のいずれか1つの脊椎動物または細胞。
これは、Vλ3-1がヒトにおいて高度に使用されるラムダ遺伝子セグメントであるため(図59; Ignatovichら、1997)、有用であり、したがって、抗原に対する選択にとって、特にヒトに使用する抗体治療用物質の開発にとって、本発明の細胞および脊椎動物が、この遺伝子セグメントに基づいたラムダ可変領域の包含をもたらすことは望ましい。
15. 場合により、ラムダ軽鎖が、前記軽鎖遺伝子座へのターゲッティング挿入によりゲノムにおいて供給されている、ヒトVλ遺伝子セグメントVλ2-14、ならびにVλ2-18、Vλ3-16、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1のうちの1つまたは複数に由来するヒトラムダ可変領域のレパートリーを供給する、態様1〜14のいずれか1つの脊椎動物または細胞。
これは、Vλ2-14がヒトにおいて高度に使用されるラムダ遺伝子セグメントであるため、有用であり、したがって、抗原に対する選択にとって、特にヒトに使用する抗体治療用物質の開発にとって、本発明の細胞および脊椎動物が、この遺伝子セグメントに基づいたラムダ可変領域の包含をもたらすことは望ましい。
場合により、ラムダ軽鎖が、前記軽鎖遺伝子座へのターゲッティング挿入によりゲノムにおいて供給されている、ヒトVλ遺伝子セグメントVλ2-8、ならびにVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1のうちの1つまたは複数に由来するヒトラムダ可変領域のレパートリーを供給する、前記態様のいずれか1つの脊椎動物または細胞。
これは、Vλ2-8がヒトにおいて高度に使用されるラムダ遺伝子セグメントであるため、有用であり、したがって、抗原に対する選択にとって、特にヒトに使用する抗体治療用物質の開発にとって、本発明の細胞および脊椎動物が、この遺伝子セグメントに基づいたラムダ可変領域の包含をもたらすことは望ましい。
場合により、ラムダ軽鎖が、前記軽鎖遺伝子座へのターゲッティング挿入によりゲノムにおいて供給されている、ヒトVλ遺伝子セグメントVλ3-10、ならびにVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ2-14、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1のうちの1つまたは複数に由来するヒトラムダ可変領域のレパートリーを供給する、前記態様のいずれか1つの脊椎動物または細胞。
これは、Vλ3-10がヒトにおいて高度に使用するラムダ遺伝子セグメントであるため、有用であり、したがって、抗原に対する選択にとって、特にヒトに使用する抗体治療用物質の開発にとって、本発明の細胞および脊椎動物が、この遺伝子セグメントに基づいたラムダ可変領域の包含をもたらすことは望ましい。
16. ヒトVλ遺伝子セグメントが、Vλ2-18からVλ3-1までのヒトラムダ鎖Ig遺伝子座により含まれる機能的Vλを含む、前記態様のいずれか1つの脊椎動物または細胞。
例えば、ヒトVλ遺伝子セグメントは、少なくともヒトV遺伝子セグメントVλ3-1、または少なくともセグメントVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1を含む。
17. 場合により、脊椎動物がカッパ鎖より多いラムダ鎖を発現する、前記態様のいずれか1つの脊椎動物。ラムダ鎖は、(例えば、ラムダ定常領域と共に発現する)、VλおよびJλ遺伝子セグメントの組換えに由来する可変領域を含む。カッパ鎖は、(例えば、カッパ定常領域と共に発現する)、VκおよびJκ遺伝子セグメントの組換えに由来する可変領域を含む。
18. 場合により、脊椎動物が内因性カッパ鎖を発現しない、前記態様のいずれか1つの脊椎動物。例えば、内因性カッパ鎖発現は、内因性カッパVJ領域の全部もしくは部分の反転による、または内因性カッパ遺伝子座(本発明によるヒトラムダ遺伝子セグメントを含まない遺伝子座)におけるマーカー(例えば、neo)もしくは他の干渉配列の挿入によるなどの本明細書に記載された手段のいずれかにより不活性化することができる。
19. カッパ鎖発現が前記脊椎動物において実質的に、または完全に不活性である、前記態様のいずれか1つの脊椎動物。一例において、軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満がカッパ鎖によって供給される。
20. 場合により、ヒトEλエンハンサーが前記内因性非ヒト脊椎動物遺伝子座において挿入されている、前記態様のいずれか1つの脊椎動物または細胞。例えば、生殖系列配置でヒト5' MARおよびヒトEλ(および場合により、ヒト3' MAR)が挿入されている。例えば、ヒトJλ7-Cλ7のすぐ3'側に、ヒトラムダイントロン領域に対応し、かつ少なくともヒトEλ(および場合によりまた、ヒト3' MAR)を含む(場合により、ヒトEλの3'側に少なくとも30kbのイントロン領域を含む)配列が挿入されている。
21. 場合により、少なくともヒトJC遺伝子セグメントJλ1-Cλ1、Jλ2-Cλ2、Jλ3-Cλ3、Jλ6-Cλ6およびJλ7-Cλ7が他のヒト遺伝子セグメントに加えて挿入されている、前記態様のいずれか1つの脊椎動物または細胞。
22. 場合により、挿入されたヒト遺伝子セグメントが、場合によりヒト遺伝子セグメント間配列または対応する内因性非ヒト脊椎動物遺伝子セグメント間配列と共に、生殖系列配置である、前記態様のいずれか1つの脊椎動物または細胞。
23. 場合により、内因性非ヒト脊椎動物軽鎖エンハンサーが内因性遺伝子座において、場合により生殖系列配置で、維持されている、前記態様のいずれか1つの脊椎動物または細胞。例えば、内因性遺伝子座がカッパ遺伝子座である場合、内因性カッパエンハンサーが維持される。これは、場合により内因性軽鎖定常領域に関して生殖系列配置での、iEκおよび/または3'Eκであり得る。これは、非ヒト脊椎動物または細胞における軽鎖発現の調節を助けるのに有用であり得る。
24. 場合により、ゲノムが、内因性遺伝子座におけるヒトラムダ挿入についてヘテロ接合である、前記態様のいずれか1つの脊椎動物または細胞。例えば、内因性カッパ(例えば、マウスまたはラットカッパ)遺伝子座におけるヒトVJまたはVJC挿入についてヘテロ接合。これは、他の内因性遺伝子座(例えば、他のカッパ遺伝子座)を、異なるトランスジェニックIg遺伝子座(例えば、内因性マウスカッパ定常領域の上流かまたはヒトカッパ定常領域の上流のいずれかにヒトカッパVおよびJ遺伝子セグメントを含むトランスジェニックカッパ遺伝子座)を提供するために使用することができるため、脊椎動物の育種を助け、かつ単純化する。この場合、カッパエンハンサー(iEκおよび/または3'Eκ)は、そのカッパ遺伝子座において維持されて、内因性調節機構を使用することにより脊椎動物において発現を助けることができる。
別の実施形態において、
(a)内因性遺伝子座が、(例えば、マウスにおける)内因性ラムダ遺伝子座であり、ゲノムがラムダ遺伝子座における挿入についてヘテロ接合であり、したがって、ラムダ遺伝子座の1つの対立遺伝子が上記のようなヒトVλおよびJλ遺伝子セグメント挿入を(場合により、ヒトCλ遺伝子セグメント挿入と共に;場合により、ヒトEλ挿入と共に)含み;
(b)他方の内因性ラムダ対立遺伝子が、定常領域(例えば、前記非ヒト脊椎動物種のカッパ定常領域;ヒトカッパ定常領域;内因性ラムダ定常領域;またはヒトラムダ定常領域)の上流に複数のヒトVκ遺伝子セグメントおよび1つまたは複数のヒトJκ遺伝子セグメントを、場合により1つまたは複数のカッパエンハンサー(例えば前記非ヒト脊椎動物種の、例えば、iEκおよび/または3'Eκ)と共に、含み;ならびに
(c)内因性ラムダおよびカッパ鎖発現が不活性化されている、
前記態様のいずれか1つの非ヒト脊椎動物または細胞が提供される。
したがって、内因性VおよびJ領域の組換えに由来する可変領域を含む軽鎖の発現はないが、内因性ラムダ遺伝子座における対立遺伝子由来のヒトラムダおよびヒトカッパ軽鎖の発現がある。これは、設計が、内因性ラムダおよびカッパ遺伝子座の両方においてトランスジェニック遺伝子座を提供する必要性を避けることにより、脊椎動物の構築および育種を大いに助けるため、有益である。内因性カッパ遺伝子座(およびしたがって、内因性カッパ鎖発現)が、カッパ遺伝子セグメント(例えば、内因性Vおよび/またはJおよび/またはCカッパ)の反転、欠失により、および/またはマーカー(例えば、neo)などの割り込み配列の内因性カッパ遺伝子座への挿入により、不活性化することができる。
内因性ラムダへのヒトカッパセグメント挿入は、例えば、生殖系列配置で、全ての機能的ヒトVκおよびJκ(すなわち、場合により、偽遺伝子およびORFを排除する;IMGTデータベースを参照)、ならびに場合によりまた、ヒトiEκを含むヒトカッパ遺伝子座の部分に対応する配列を挿入することにより、実行することができる。
25. 場合により、ゲノムが、1つの内因性非ヒト脊椎動物カッパ遺伝子座対立遺伝子において前記ヒトラムダ遺伝子セグメント挿入を含み、他方の内因性カッパ遺伝子座対立遺伝子が、内因性非ヒト脊椎動物カッパ定常領域の上流にヒトカッパ免疫グロブリンVおよびJ遺伝子の挿入を含み、場合により内因性カッパ軽鎖エンハンサーが、一方または両方のカッパ遺伝子座において、場合により生殖系列配置で、維持されている、態様24の脊椎動物または細胞。
場合により、ゲノムが、1つの内因性非ヒト脊椎動物ラムダ遺伝子座対立遺伝子において前記ヒトラムダ遺伝子セグメント挿入を含み、他方の内因性ラムダ遺伝子座対立遺伝子が、内因性非ヒト脊椎動物カッパ定常領域の上流にヒトカッパ免疫グロブリンVおよびJ遺伝子の挿入を含み、場合により内因性ラムダ軽鎖エンハンサーが、一方または両方のラムダ遺伝子座において、場合により生殖系列配置で、維持されている、態様24の脊椎動物または細胞。
26. 場合により、ゲノムが、1つの内因性非ヒト脊椎動物ラムダ遺伝子座対立遺伝子において前記ヒトラムダ遺伝子セグメント挿入を含み、他方の内因性ラムダ遺伝子座対立遺伝子が、内因性非ヒト脊椎動物カッパ定常領域の上流にヒトカッパ免疫グロブリンVおよびJ遺伝子の挿入を含み、場合により内因性ラムダ軽鎖エンハンサーが、一方または両方のカッパ遺伝子座において、場合により生殖系列配置で、維持されている、態様24の脊椎動物または細胞。
27. 場合により、ゲノムが、内因性非ヒト脊椎動物遺伝子座におけるヒトラムダ挿入についてホモ接合である、態様1〜23のいずれか1つの脊椎動物または細胞。
28. 場合により、ゲノムが、内因性非ヒト脊椎動物カッパおよびラムダ遺伝子座におけるヒトラムダ遺伝子セグメント挿入についてホモ接合である、態様1〜23のいずれか1つの脊椎動物または細胞。
29. 場合により、ゲノムが、内因性非ヒト脊椎動物ラムダ遺伝子座におけるヒトラムダ遺伝子セグメント挿入についてホモ接合であり、1つの内因性カッパ遺伝子座対立遺伝子が、ヒトラムダ遺伝子セグメント挿入を含み、他方の内因性カッパ遺伝子座対立遺伝子が、ヒトカッパ可変領域を含むカッパ軽鎖の発現のためにCκ領域の上流に複数のヒトVκおよびJκ遺伝子セグメントの挿入を含む、態様1〜23および28のいずれか1つの脊椎動物または細胞。ヒトカッパ可変領域は、ヒトVκおよびJκの組換えに由来する。
30. 場合により、カッパおよびラムダ遺伝子座におけるヒトラムダ遺伝子セグメント挿入が、ヒトラムダ遺伝子セグメントの同じレパートリーの挿入である、態様27または28の脊椎動物または細胞。
31. 場合により、カッパ遺伝子座におけるヒトラムダ遺伝子セグメント挿入が、ラムダ遺伝子座におけるヒトラムダ遺伝子セグメント挿入とは異なる、態様27または28の脊椎動物または細胞。これは、その後の抗原に対する選択について、可変領域の可能性のあるレパートリーを広げるのに有用である。
32.ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲット化挿入によって生成されたIg遺伝子セグメントレパートリーを含み、ゲノムが以下の軽鎖遺伝子座構成を含む、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞):
(a)一方の内因性カッパ鎖対立遺伝子におけるL、および他方の内因性カッパ鎖対立遺伝子におけるK;または
(b)一方の内因性ラムダ鎖対立遺伝子におけるL、および他方の内因性ラムダ鎖対立遺伝子におけるK;または
(c)両方の内因性カッパ鎖対立遺伝子におけるL;
(d)両方の内因性ラムダ鎖対立遺伝子におけるL;
(e)一方の内因性カッパ鎖対立遺伝子におけるL、および他方の内因性カッパ鎖対立遺伝子が不活性化されている;または
(f)一方の内因性ラムダ鎖対立遺伝子におけるL、および他方の内因性ラムダ鎖対立遺伝子が不活性化されている;
ただし、Lは、Vλ3-1からCλ7(例えば、2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって包含される)までのヒトラムダ鎖Ig遺伝子座によって包含される少なくとも機能的ヒトVλおよびJλ(場合により、Cλ遺伝子セグメントも)のヒトラムダ遺伝子セグメント挿入を表し;および
Kは、ヒトVκおよびJκ挿入を表し;
ゲノムにおいて、ヒト遺伝子セグメントが、ヒトVおよびJ遺伝子セグメントの再組合せに由来した可変領域を含む軽鎖の発現のために、定常領域の上流に挿入されている。
33. 場合により、ゲノムが以下の構成を含む、態様32の脊椎動物または細胞:
(a)および一方もしくは両方の内因性ラムダ鎖対立遺伝子におけるL;または
(a)および一方もしくは両方の内因性ラムダ鎖対立遺伝子におけるK;または
(a)および一方の内因性ラムダ鎖対立遺伝子におけるLおよび他方の内因性ラムダ鎖対立遺伝子におけるK;または
(b)および一方もしくは両方の内因性カッパ鎖対立遺伝子におけるL;または
(b)および一方もしくは両方の内因性カッパ鎖対立遺伝子におけるK;または
(b)および一方の内因性カッパ鎖対立遺伝子におけるLおよび他方の内因性カッパ鎖対立遺伝子におけるK;または
(c)および一方もしくは両方の内因性ラムダ鎖対立遺伝子におけるK;または
(c)および一方もしくは両方の内因性ラムダ鎖対立遺伝子におけるL;または
(c)および一方の内因性ラムダ鎖対立遺伝子におけるLおよび他方の内因性ラムダ鎖対立遺伝子におけるK;または
(c)および両方の内因性ラムダ鎖対立遺伝子が不活性化されている;または
(d)および一方もしくは両方の内因性カッパ鎖対立遺伝子におけるL;または
(d)および一方もしくは両方の内因性カッパ鎖対立遺伝子におけるK;または
(d)および一方の内因性カッパ鎖対立遺伝子におけるLおよび他方の内因性カッパ鎖対立遺伝子におけるK;または
(d)および両方の内因性カッパ鎖対立遺伝子が不活性化されている。
34. 場合により、内因性カッパ鎖発現が、実質的に、または完全に不活性化されている、態様32または33の脊椎動物または細胞。内因性カッパ鎖が、内因性(非ヒト脊椎動物)VκおよびJκ遺伝子セグメントの組換えに由来する可変領域を含むカッパ軽鎖である。
35. 場合により、内因性ラムダ鎖発現が、実質的に、または完全に不活性である、態様32、33または34の脊椎動物または細胞。内因性ラムダ鎖が、内因性(非ヒト脊椎動物)VλおよびJλ遺伝子セグメントの組換えに由来する可変領域を含むラムダ軽鎖である。
36. 場合により、各L挿入が内因性ラムダまたはカッパ定常領域の上流である、態様32〜35のいずれか1つの脊椎動物または細胞。
37. 場合により、ラムダ遺伝子座への各L挿入が、内因性ラムダ定常領域の上流である、態様32〜36のいずれか1つの脊椎動物または細胞。
38. 場合により、カッパ遺伝子座への各L挿入が、内因性カッパ定常領域の上流である、態様32〜36のいずれか1つの脊椎動物または細胞。
39. 場合により、ラムダ遺伝子座への各L挿入が、ヒトラムダ定常領域の上流である、態様32〜35のいずれか1つの脊椎動物または細胞。
40. 場合により、カッパ遺伝子座への各L挿入が、ヒトカッパ定常領域の上流である、態様32〜35のいずれか1つの脊椎動物または細胞。
41. 場合により、各K挿入が、内因性ラムダまたはカッパ定常領域の上流である、態様32〜40のいずれか1つの脊椎動物または細胞。
42. 場合により、ラムダ遺伝子座への各K挿入が、内因性ラムダ定常領域の上流である、態様32〜41のいずれか1つの脊椎動物または細胞。
43. 場合により、カッパ遺伝子座への各K挿入が、内因性カッパ定常領域の上流である、態様32〜42のいずれか1つの脊椎動物または細胞。
44. 場合により、ラムダ遺伝子座への各K挿入が、ヒトラムダ定常領域の上流である、態様32〜40のいずれか1つの脊椎動物または細胞。
45. 場合により、カッパ遺伝子座への各K挿入が、ヒトカッパ定常領域の上流である、態様32〜40および44のいずれか1つの脊椎動物または細胞。
46. 場合により、挿入が、態様1〜9、11〜16および20〜31のいずれか1つによる、態様32〜45のいずれか1つに記載の脊椎動物または細胞。
47. 場合により、各ヒトラムダ挿入が、態様1〜9、11〜16および20〜31のいずれか1つによる、態様32〜46のいずれか1つの脊椎動物または細胞。
48. 場合により、各ヒトカッパ挿入が、態様1〜9、11〜16および20〜31のいずれか1つによる、態様32〜47のいずれか1つの脊椎動物または細胞。
49. 場合により、各ヒトラムダ挿入が、ヒトVλおよびJλ(および場合により、Cλ)遺伝子セグメントのレパートリーを含む、態様32〜48のいずれか1つの脊椎動物または細胞。
50. 場合により、第1および第2(および場合により、第3)のヒトラムダ挿入が行われ、挿入が、ヒトVλおよびJλ(および場合により、Cλ)遺伝子セグメントの異なるレパートリーを含む、態様32〜48のいずれか1つの脊椎動物または細胞。
51. 場合により、各ヒトカッパ挿入が、ヒトVκおよびJκ(および場合により、Cκ)遺伝子セグメントのレパートリーを含む、態様32〜50のいずれか1つの脊椎動物または細胞。
52. 場合により、第1および第2(および場合により、第3)のヒトカッパ挿入が行われ、その挿入が、ヒトVκおよびJκ(および場合により、Cκ)遺伝子セグメントの異なるレパートリーを含む、態様32〜50のいずれか1つの脊椎動物または細胞。
53. 場合により、ゲノムが、ヒトVH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座、例えば、ヒトV、DおよびJ遺伝子セグメントを含む本明細書に記載されているような重鎖遺伝子座を含む、前記態様のいずれか1つの脊椎動物または細胞。
54. 所望の抗原に特異的なラムダ可変領域を含む抗体または軽鎖を生成するための方法であって、任意の前記態様による脊椎動物を所望の抗原で免疫化する工程、および抗体もしくは軽鎖を回収し、または抗体もしくは軽鎖を産生する細胞を回収する工程を含む、方法。
55. 態様54の方法を実行して、ラムダ鎖非ヒト脊椎動物定常領域を含む抗体または軽鎖を得る工程、および非ヒト脊椎動物定常領域をヒト定常領域と、場合により抗体または軽鎖をコードする核酸の操作により、置換する工程を含む、完全ヒト化抗体または抗体軽鎖を生成するための方法。
56. 場合により医学に使用される、態様54に従って生成されたヒト化抗体もしくは抗体軽鎖、またはその誘導体。
57. 医学における、態様54に従って生成されたヒト化抗体もしくは鎖、またはその誘導体の使用。
58.非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)のゲノムにおける内因性Ig-VJ領域を不活性化する方法であって、ゲノムにおいて内因性Ig-VJと内因性エンハンサーまたは内因性定常領域との間にヒト免疫グロブリン遺伝子セグメント(例えば、VおよびJ遺伝子セグメント)を挿入して、内因性Ig-VJをエンハンサーまたは定常領域から離し、それにより、内因性Ig-VJ領域を不活性化する工程を含む、方法。
一実施形態において、内因性Ig-VJは重鎖遺伝子セグメントであり、エンハンサーは内因性重鎖エンハンサーであり、定常領域は内因性重鎖定常領域であり、ヒトIg遺伝子セグメントはヒトVH、DHおよびJH遺伝子セグメントを含む。
一実施形態において、内因性Ig-VJはラムダ軽鎖遺伝子セグメントであり、エンハンサーは内因性ラムダ鎖エンハンサーであり、定常領域は内因性ラムダ鎖定常領域であり、ヒトIg遺伝子セグメントはヒトVλおよびJλ遺伝子セグメントを含む。
一実施形態において、内因性Ig-VJはカッパ軽鎖遺伝子セグメントであり、エンハンサーは内因性カッパ鎖エンハンサーであり、定常領域は内因性カッパ鎖定常領域であり、ヒトIg遺伝子セグメントはヒトVκおよびJκ遺伝子セグメントを含む。
非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)のゲノムにおける内因性IgK-VJ領域を不活性化する方法であって、ゲノムにおいて内因性IgK-VJとEκエンハンサーとの間にヒト免疫グロブリン遺伝子セグメントを挿入して、IgK-VJをEκエンハンサーから離し、それにより、内因性IgK-VJ領域を不活性化する工程を含む、方法。
59. 場合により、ヒト遺伝子セグメントがヒトVLおよびJL遺伝子セグメントを含み、場合により、挿入が、態様1〜9、11〜16および20〜31のいずれか1つに列挙されているような挿入、またはヒトVκおよびJκ遺伝子セグメントの挿入である、態様58の方法。
60. 非ヒト脊椎動物細胞(例えば、マウスまたはラット)において免疫グロブリン軽鎖を発現する方法であって、軽鎖がラムダ可変領域(ラムダ軽鎖)を含み、脊椎動物によって発現するラムダ軽鎖の可変領域の少なくとも70%または80%(例えば、少なくとも70%、75%、80%、84%、85%、90%、95%、96%、97%、98%または99%)が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来し、方法が、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入により生成されたIg遺伝子セグメントレパートリーを脊椎動物のゲノムにおいて準備する工程を含み、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、方法が、Vλ2-18からCλ7までのヒトラムダ鎖Ig遺伝子座により含まれる少なくとも機能的ヒトVλおよびJλ(場合により、ヒトCλも)遺伝子セグメント(および場合により、遺伝子セグメント間配列)を脊椎動物の内因性軽鎖遺伝子座へ挿入する工程を含み、脊椎動物によって発現するラムダ軽鎖の可変領域の少なくとも70%または80%(例えば、少なくとも70%、75%、80%、84%、85%、90%、95%、96%、97%、98%または99%)が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来し、方法が、脊椎動物において前記軽鎖を発現する工程、および場合により、前記軽鎖の1つまたは複数を(例えば、4鎖抗体の部分として)単離する工程を含む、方法。
一実施形態において、方法は、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する可変領域を含むラムダ軽鎖を脊椎動物から単離する工程をさらに含む。例において、方法は、ラムダ軽鎖を単離する工程の前に、マウスを抗原(例えば、ヒト抗原)で免疫化する工程を含む。例において、軽鎖は、抗体、例えば、その抗原を特異的に結合する抗体、の部分である。
一実施形態において、使用は、マウスから脾臓組織(例えば、脾臓)を単離する工程、場合により、その後、その組織から少なくとも1つの抗原特異的B細胞を単離する工程であって、B細胞(複数可)が前記ラムダ軽鎖を発現する、工程をさらに含む。例えば、前記ラムダ軽鎖は、所定の抗原(例えば、ヒト抗原)を特異的に結合する抗体によって供給される。一例において、使用は、脾臓組織またはラムダ軽鎖を単離する工程の前に、マウスを抗原(例えば、ヒト抗原)で免疫化する工程を含む。例において、使用は、B細胞によって(またはB細胞のミエローマ細胞との融合により生じたハイブリドーマによって)産生されるラムダ軽鎖を単離する工程を含む。例において、使用は、脾臓組織から単離されたB細胞からハイブリドーマを作製する工程であって、ハイブリドーマが前記ラムダ軽鎖またはその誘導体を発現する、工程を含む。場合により、使用は、単離された抗体またはラムダ軽鎖の誘導体を作製する工程を含む。(本明細書における任意の態様による)抗体誘導体の例は、(例えば、抗原結合親和性を向上させるために、および/またはFc機能を増強もしくは不活性化するために、)単離された抗体と比較して1つまたは複数の突然変異を有する抗体である。そのような突然変異体は、その抗原を特異的に結合する。誘導体を生じ得る突然変異または適応には、例えば、Fc増強または不活性化を生じ得る突然変異が挙げられる。誘導体は、毒性ペイロードまたはレポーターまたは標識または他の活性部分へのコンジュゲーション後の抗体であり得る。別の例において、本発明の脊椎動物の細胞から単離されたキメラ抗体鎖または抗体は、その1つまたは全部のヒト定常領域を、対応するヒト定常領域と置換することにより改変される。例えば、そのような細胞または脊椎動物から単離された抗体の全部の定常領域が、ヒト定常領域で置換されて、完全ヒト抗体(すなわち、ヒト可変領域および定常領域を含む)を生じる。そのような抗体は、ヒト患者への投与について、患者による抗抗体反応を低下させるために有用である。
61. 非ヒト脊椎動物細胞(例えば、マウスまたはラット)において免疫グロブリン軽鎖を発現する方法であって、脊椎動物によって発現される軽鎖の少なくとも60%(例えば、少なくとも65%、70%、80%、84%、85%、90%、95%、96%、97%、98%または99%)がヒトラムダ軽鎖によって準備され、方法が、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを脊椎動物のゲノムにおいて準備する工程を含み、ゲノムが、(i)定常領域の上流にヒトVλおよびJλ遺伝子セグメントであって、Vλ2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVλおよびJλ(場合により、ヒトCλも)遺伝子セグメント(および場合により、遺伝子セグメント間配列)を脊椎動物の内因性軽鎖遺伝子座へ挿入することによって準備される、ヒトVλおよびJλ遺伝子セグメントを、ならびに(ii)定常領域の上流にカッパV遺伝子セグメントであって、脊椎動物が、ヒトラムダ可変領域(ヒトラムダ軽鎖)を含む免疫グロブリン軽鎖を発現し、かつ脊椎動物によって発現した軽鎖の少なくとも60%(例えば、少なくとも65%、70%、80%、84%、85%、90%、95%、96%、97%、98%または99%)が前記ヒトラムダ軽鎖によって供給される、カッパV遺伝子セグメントを含み、方法が、脊椎動物において前記軽鎖を発現する工程、および場合により、前記軽鎖の1つまたは複数を(例えば、4鎖抗体の部分として)単離する工程を含む、方法。
一実施形態において、方法は、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する可変領域を含むラムダ軽鎖を脊椎動物から単離する工程をさらに含む。例において、方法は、ラムダ軽鎖を単離する工程の前に、マウスを抗原(例えば、ヒト抗原)で免疫化する工程を含む。例において、軽鎖は、抗体、例えば、その抗原を特異的に結合する抗体、の部分である。
一実施形態において、使用は、マウスから脾臓組織(例えば、脾臓)を単離する工程、場合により、その後、その組織から少なくとも1つの抗原特異的B細胞を単離する工程であって、B細胞(複数可)が前記ラムダ軽鎖を発現する、工程をさらに含む。例えば、前記ラムダ軽鎖は、所定の抗原(例えば、ヒト抗原)を特異的に結合する抗体によって供給される。一例において、使用は、脾臓組織またはラムダ軽鎖を単離する工程の前に、マウスを抗原(例えば、ヒト抗原)で免疫化する工程を含む。例において、使用は、B細胞によって(またはB細胞のミエローマ細胞との融合により生じたハイブリドーマによって)産生されるラムダ軽鎖を単離する工程を含む。例において、使用は、脾臓組織から単離されたB細胞からハイブリドーマを作製する工程であって、ハイブリドーマが前記ラムダ軽鎖またはその誘導体を発現する、工程を含む。場合により、使用は、単離された抗体またはラムダ軽鎖の誘導体を作製する工程を含む。(本明細書における任意の態様による)抗体誘導体の例は、(例えば、抗原結合親和性を向上させるために、および/またはFc機能を増強もしくは不活性化するために、)単離された抗体と比較して1つまたは複数の突然変異を有する抗体である。そのような突然変異体は、前記抗原を特異的に結合する。
62. 非ヒト脊椎動物(例えば、マウスまたはラット)においてヒト免疫グロブリンVJC軽鎖を発現する方法であって、方法が、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入により生成されたIg遺伝子セグメントレパートリーを脊椎動物のゲノムにおいて準備する工程を含み、方法が、ヒトVJC軽鎖の発現のために内因性非ヒト脊椎動物カッパ定常領域の上流の内因性非ヒト脊椎動物カッパ軽鎖遺伝子座へVλ3-1からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる(例えば、2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる)少なくとも機能的ヒトVλ、Jλ、およびCλ遺伝子セグメント(および場合により、遺伝子セグメント間配列)を挿入する工程を含み、方法が、脊椎動物において前記軽鎖を発現する工程、および場合により、前記軽鎖の1つまたは複数を(例えば、4鎖抗体の部分として)単離する工程を含む、方法。
一実施形態において、方法は、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する可変領域を含むラムダ軽鎖を脊椎動物から単離する工程をさらに含む。例において、方法は、ラムダ軽鎖を単離する工程の前に、マウスを抗原(例えば、ヒト抗原)で免疫化する工程を含む。例において、軽鎖は、抗体、例えば、抗原を特異的に結合する抗体、の部分である。
一実施形態において、使用は、マウスから脾臓組織(例えば、脾臓)を単離する工程、場合により、その後、組織から少なくとも1つの抗原特異的B細胞を単離する工程であって、B細胞(複数可)が前記ラムダ軽鎖を発現する、工程をさらに含む。例えば、前記ラムダ軽鎖は、所定の抗原(例えば、ヒト抗原)を特異的に結合する抗体によって供給される。一例において、使用は、脾臓組織またはラムダ軽鎖を単離する工程の前に、マウスを抗原(例えば、ヒト抗原)で免疫化する工程を含む。例において、使用は、B細胞によって(またはB細胞のミエローマ細胞との融合により生じたハイブリドーマによって)産生されるラムダ軽鎖を単離する工程を含む。例において、使用は、脾臓組織から単離されたB細胞からハイブリドーマを作製する工程であって、ハイブリドーマが前記ラムダ軽鎖またはその誘導体を発現する、工程を含む。場合により、使用は、単離された抗体またはラムダ軽鎖の誘導体を作製する工程を含む。(本明細書における任意の態様による)抗体誘導体の例は、(例えば、抗原結合親和性を向上させるために、および/またはFc機能を増強もしくは不活性化するために、)単離された抗体と比較して1つまたは複数の突然変異を有する抗体である。そのような突然変異体は、その抗原を特異的に結合する。
63. 場合により、脊椎動物が他の態様のいずれか1つによるものである、態様38〜40のいずれか1つの方法。
64. 場合により医学に使用される、態様58〜63のいずれか1つの方法に従って単離された抗体軽鎖、またはその誘導体、またはそのような軽鎖もしくは誘導体を含む抗体。
65. 医学における、態様58〜63のいずれか1つの方法に従って単離された抗体軽鎖またはその誘導体(またはそのような軽鎖もしくは誘導体を含む抗体)の使用。
66. ラムダ可変領域を含む軽鎖(ラムダ軽鎖)を発現するための、態様1〜53のいずれか1つによる非ヒト脊椎動物(例えば、マウスまたはラット)であって、脊椎動物によって発現したラムダ軽鎖の可変領域の少なくとも70%または80%(例えば、少なくとも70%、75%、80%、84%、85%、90%、95%、96%、97%、98%または99%、または100%)が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する、非ヒト脊椎動物。
ラムダ可変領域を含む軽鎖(ラムダ軽鎖)を発現する、態様1〜53のいずれか1つによる非ヒト脊椎動物(例えば、マウスまたはラット)であって、脊椎動物によって発現したラムダ軽鎖の可変領域の少なくとも70%または80%(例えば、少なくとも70%、75%、80%、84%、85%、90%、95%、96%、97%、98%または99%または100%)が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する、非ヒト脊椎動物。
67. 軽鎖を発現するための、態様1〜53のいずれか1つによる非ヒト脊椎動物(例えば、マウスまたはラット)であって、脊椎動物によって発現した軽鎖の少なくとも60%(例えば、65%より多く、70%より多く、80%より多く、84%より多く、85%より多く、90%より多く、95%より多く、96%より多く、97%より多く、98%より多くまたは99%より多くまたは100%)が、ヒトラムダ軽鎖によって供給される、非ヒト脊椎動物。
軽鎖を発現する、態様1〜53のいずれか1つによる非ヒト脊椎動物(例えば、マウスまたはラット)であって、脊椎動物によって発現した軽鎖の少なくとも60%(例えば、65%より多く、70%より多く、80%より多く、84%より多く、85%より多く、90%より多く、95%より多く、96%より多く、97%より多く、98%より多くまたは99%より多くまたは100%)が、ヒトラムダ軽鎖によって供給される、非ヒト脊椎動物。
68. ラムダ可変領域を含む軽鎖(ラムダ軽鎖)を発現するための、態様7による非ヒト脊椎動物(例えば、マウスまたはラット)であって、ヒトラムダ可変領域を含むラムダ軽鎖の発現が、内因性非ヒト脊椎動物ラムダ可変領域を含むラムダ軽鎖の発現を凌駕し、場合により、内因性軽鎖遺伝子座からの内因性非ヒト脊椎動物ラムダ可変領域の発現を不活性化するための、非ヒト脊椎動物。
ラムダ可変領域を含む軽鎖(ラムダ軽鎖)を発現する、態様7による非ヒト脊椎動物(例えば、マウスまたはラット)であって、ヒトラムダ可変領域を含むラムダ軽鎖の発現が、内因性非ヒト脊椎動物ラムダ可変領域を含むラムダ軽鎖の発現を凌駕し、場合により、内因性軽鎖遺伝子座からの内因性非ヒト脊椎動物ラムダ可変領域の発現を不活性化するための、非ヒト脊椎動物。
69. 内因性軽鎖遺伝子座からの内因性非ヒト脊椎動物ラムダ可変領域の発現を不活性化するための、態様7、8、9または10による非ヒト脊椎動物(例えば、マウスまたはラット)。
抗体鎖のパーセンテージ発現または発現のレベルは、B細胞(例えば、末梢血リンパ球)における軽鎖mRNA転写産物のレベルにおいて決定される。代替として、または追加として、パーセンテージ発現は、脊椎動物の血清または血液における抗体軽鎖のレベルにおいて決定される。追加として、または代替として、発現は、B細胞のFACS(蛍光活性化細胞ソーティング)分析によって決定することができる。例えば、ヒトラムダ可変領域が、マウスCカッパまたはヒトCラムダ領域、それぞれと共に発現する場合、細胞表面上のマウスCカッパまたはヒトCラムダの発現を評価することによる。
これらの態様における用語「ラムダ軽鎖」とは、VλおよびJλ遺伝子セグメントの組換えに由来する(RNAまたはアミノ酸レベルにおける)可変領域配列を含む軽鎖を指す。したがって、例えば、「ヒトラムダ可変領域」は、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する可変領域である。定常領域は、カッパまたはラムダ定常領域、例えば、ヒトまたはマウス定常領域であり得る。
これらの態様における脊椎動物は、例えば、ナイーブである(すなわち、その用語が当技術分野において理解されているように、所定の抗原で免疫化されていない;例えば、研究開発に使用される動物ハウスによって提供されるような比較的無菌の環境で飼育されているそのような脊椎動物)。別の例において、脊椎動物は、所定の抗原、例えば、ヒトエピトープを有する抗原で免疫化されている。
「機能的」ヒト遺伝子セグメントへの言及は、ヒトIgラムダ遺伝子座において、いくつかのV遺伝子セグメントが非機能的な偽遺伝子である(例えば、Vλ3-17、Vλ3-15、Vλ3-13、Vλ3-7、Vλ3-6、Vλ2-5、Vλ3-4、Vλ3-2;World Wide Web(www) imgt.org/IMGTrepertoire/index.php?section=LocusGenes&repertoire=locus&species=human&group=IGLにおけるIMGTデータベースを参照)ことを認めている。また、Jλ4-Cλ4およびJλ5-Cλ5は、ヒトにおいて非機能的である。遺伝子セグメントに言及する場合、用語「機能的な」は偽遺伝子を排除する。機能的ヒトVλ遺伝子セグメントの例は、群Vλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1である。機能的ヒトJλ遺伝子セグメントの例は、群Jλ1、Jλ2およびJλ3;またはJλ1、Jλ2およびJλ7;またはJλ2、Jλ3およびJλ7;またはJλ1、Jλ2、Jλ3およびJλ7である。機能的ヒトCλ遺伝子セグメントの例は、群Cλ1、Cλ2およびCλ3;またはCλ1、Cλ2およびCλ7;またはCλ2、Cλ3およびCλ7;またはCλ1、Cλ2、Cλ3およびCλ7である。
一実施形態において、本発明の細胞または脊椎動物において発現した重鎖と共のラムダ軽鎖は、抗体を形成する。重鎖は、本明細書に記載されているように、トランスジェニック重鎖遺伝子座から発現することができる。例えば、細胞または脊椎動物のゲノムは、前記非ヒト種のミュー定常領域の上流に、1つまたは複数のヒトV遺伝子セグメント、1つまたは複数のヒトD遺伝子セグメントおよび1つまたは複数のヒトJ遺伝子セグメントを含むキメラ免疫グロブリン重鎖遺伝子座である重鎖遺伝子座を含む;内因性重鎖発現は、実質的に不活性化されている;ならびに、重鎖遺伝子座は、前記非ヒト脊椎動物種のEμエンハンサーを含む。
脊椎動物または細胞の一実施形態において、全ての内因性エンハンサーは、ヒト遺伝子セグメントが挿入されている内因性遺伝子座から除去されている。したがって、ヒトエンハンサー(例えば、Eλ)が挿入される場合、これは、他の内因性エンハンサー(例えば、その遺伝子座が内因性カッパエンハンサーである場合には、カッパエンハンサー)の効果の非存在下においてトランスジェニック遺伝子座を調節する。これは、(例えば、マウスにおいて発現をより高い比のラムダ:カッパへと導くために)非ヒト脊椎動物様カッパ:ラムダ発現比を避けるのに有用である場合がある。
内因性軽鎖(例えば、カッパまたはラムダ)発現が、本明細書に記載されているように、実質的に不活性であり、または不活性化されている場合、そのような内因性軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満が発現し、または発現可能である。一例において、そのような軽鎖が発現しておらず、または発現不可能であるならば、完全不活性化が存在する。
場合により、本発明の脊椎動物はナイーブである。したがって、脊椎動物は、所定の抗原で免疫化されていない。
例えば、本発明の細胞が、ES細胞または他のIPS幹細胞または他の多能性幹細胞である場合、細胞は、本発明の脊椎動物へと発生することができる。例えば、細胞は、乳母由来の胚盤胞へ移植され、標準技術に従って胚および動物に発生することができる。
一実施形態において、ヒトカッパ遺伝子セグメントが挿入される場合、各挿入は、以下のヒトカッパ遺伝子セグメントを含む:
(i)Vκ1-5、Vκ1-6、Vκ1-8およびVκ1-9 (ならびに場合により、Vκ5-2およびVκ4-1);または
(ii)Vκ1-5、Vκ1-6、Vκ1-8、Vκ1-9、Vκ3-11、Vκ1-12、Vκ3-15、Vκ1-16、Vκ1-17、Vκ3-20 (ならびに場合により、Vκ2-24および/またはVκ1-13);または
(iii)Vκ1-5、Vκ1-6、Vκ1-8、Vκ1-9、Vκ3-11、Vκ1-12、Vκ3-15、Vκ1-16、Vκ1-17、Vκ3-20、Vκ2-24、Vκ1-27、Vκ2-28、Vκ2-30およびVκ1-33(ならびに場合により、Vκ2-29および/またはVκ2-40および/またはVκ1-39);
ならびに場合により、
(iv)Jκ1、Jκ2、Jκ3、Jκ4およびJκ5。
一実施形態において、ヒトカッパ挿入はまた、遺伝子座においてヒトJ遺伝子セグメントの下流にヒトiEκおよび/またはヒト3'Eκを含む。
本質的にもっぱらヒト重鎖可変領域のみを発現する本発明のトランスジェニックマウスは、正常な脾臓コンパートメントおよび骨髄コンパートメント、ならびにヒト重鎖可変領域を含む正常なIg発現を発生する。
本発明者らは、驚くべきことに、実質的に内因性重鎖およびカッパ鎖発現の非存在下で、ヒト重鎖可変領域を有する抗体を発現する、本発明のトランスジェニックマウスにおいて正常なIgサブタイプ発現およびB細胞発生を観察した。下記の実施例16を参照。
本発明者らは、驚くべきことに、ヒト可変領域発現の存在下における内因性重鎖可変領域発現の不活性化が、脾臓コンパートメント(図66)または骨髄B前駆体コンパートメント(図67)におけるB細胞の比を変化させず、かつ血清における免疫グロブリンレベルが正常であり、かつ正しいIgサブタイプが発現している(図68)ことを観察した。これらのデータは、本発明による挿入されたヒト重鎖遺伝子セグメント(例えば、少なくともヒトVH遺伝子セグメントVH2-5、7-4-1、4-4、1-3、1-2、6-1、ならびに全てのヒトDおよびJH遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27;ならびにJ1、J2、J3、J4、J5およびJ6の挿入)が、トランスジェニック重鎖遺伝子座からのVDJ遺伝子セグメント再構成、B細胞受容体(BCR)シグナル伝達、および適切なB細胞成熟のために完全に機能していることを実証している。
したがって、本発明は、以下の態様(態様70から始まって番号が付いている)を提供する:
70.ヒト可変領域を含む免疫グロブリン重鎖を発現する、または発現するためのマウスであって、マウスによって発現する重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、かつ前記ヒト可変領域を含む重鎖がマウスにおいて血清IgG1、IgG2bおよびIgM(および場合により、IgG2a)抗体の部分として発現し;
マウスが、マウス定常領域(例えば、(5'から3'への方向で)マウスC-ミューおよびマウスC-デルタおよびマウスC-ガンマなどのC-ミューおよび/またはC-デルタおよび/またはC-ガンマ)の上流にヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含み、
(a)マウスが、ヒト可変領域を含む免疫グロブリン重鎖を発現する能力があり、マウスによって発現する重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり;
(b)マウスが、前記重鎖を含む血清IgG1、IgG2bおよびIgM(および場合により、IgG2a)抗体を発現する、
マウス。
Igアイソタイプは、例えば、当業者にとってよく精通しているように(および実施例16に例証されているように)、アイソタイプ適合ツール抗体を使用して、決定することができる。
実施形態において、マウスはナイーブである。
71. 正常な相対的割合の血清IgG1、IgG2a、IgG2bおよびIgM抗体を発現するための態様70のマウス。
「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける発現に匹敵することを意味する。
72. 正常な相対的割合の血清IgG1、IgG2a、IgG2bおよびIgM抗体を発現する、態様70または71のマウス。
「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける発現に匹敵することを意味する。
73.プレート上でのIg捕獲、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および標識を使用するIgの定量化(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜350μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜800μg/mlの濃度の血清IgG2b;および
(iv)約50〜300μg/mlの濃度の血清IgM;
または
(i)約10〜600μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜700μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
をマウスにおいて発現するための、態様70〜72のいずれか1つのマウス。
例えば、プレート上でのIg捕獲、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および標識を使用するIgの定量化(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜150μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜300μg/mlの濃度の血清IgG2b;および
(iv)約50〜200μg/mlの濃度の血清IgM;
または
(i)約10〜200μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜400μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
をマウスにおいて発現するための、態様70〜72のいずれか1つのマウス。
プレート上でのIg捕捉、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および標識を使用するIgの定量(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜350μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜800μg/mlの濃度の血清IgG2b;および
(iv)約50〜300μg/mlの濃度の血清IgM;
または
(i)約10〜600μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜700μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
の相対的割合でマウスIgにおいて発現するための、態様70〜72のいずれか1つのマウス。
例えば、プレート上でのIg捕獲、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および標識を使用するIgの定量化(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜150μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜300μg/mlの濃度の血清IgG2b;および
(iv)約50〜200μg/mlの濃度の血清IgM;
または
(i)約10〜200μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜400μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
の相対的割合でマウスIgにおいて発現するための、態様70〜72のいずれか1つのマウス。
74. マウスが、
プレート上でのIg捕捉、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および前記標識を使用するIgの定量(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜350μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜800μg/mlの濃度の血清IgG2b;および
(iv)約50〜300μg/mlの濃度の血清IgM;
または
(i)約10〜600μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜700μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
を発現する、態様70〜73のいずれか1つのマウス。
例えば、マウスが、
プレート上でのIg捕獲、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および前記標識を使用するIgの定量化(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜150μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜300μg/mlの濃度の血清IgG2b;および
(iv)約50〜200μg/mlの濃度の血清IgM;
または
(i)約10〜200μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜400μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
を発現する、態様70〜72のいずれか1つのマウス。
マウスが、
プレート上でのIg捕獲、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および前記標識を使用するIgの定量化(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜350μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜800μg/mlの濃度の血清IgG2b;および
(iv)約50〜300μg/mlの濃度の血清IgM;
または
(i)約10〜600μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜700μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
の相対的割合でIgを発現する、態様70〜73のいずれか1つのマウス。
例えば、
プレート上でのIg捕捉、続いて、抗マウスアイソタイプ特異的標識抗体とのインキュベーション(例えば、RTで1時間、例えば、20℃で1時間)、および前記標識を使用するIgの定量(例えば、それぞれが、0.1% Tween(商標)を含むPBS中1/10000の比率でコンジュゲートされた西洋ワサビペルオキシダーゼにコンジュゲートされた、抗マウスIgアイソタイプ特異的抗体を使用し、続いて、標識をテトラメチルベンジジン基質(TMB)で、暗闇中、室温(例えば、20℃)、4〜5分間、発色させ、硫酸を加えて標識の発色を停止させ、標識を450nmで読み取る)により決定される場合、
(i)約25〜150μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜300μg/mlの濃度の血清IgG2b;および
(iv)約50〜200μg/mlの濃度の血清IgM;
または
(i)約10〜200μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜400μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
の相対的割合でIgを発現する、態様70〜72のいずれか1つのマウス。
75. 例えばFACSによって決定される場合、正常な割合またはパーセンテージの成熟脾臓B細胞を産生するマウスにおいて脾臓B細胞から前記重鎖を発現するための、態様70〜74のいずれか1つのマウス。
「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける成熟脾臓B細胞産生に匹敵することを意味する。
例えば、本発明のマウスによって産生される総脾臓B細胞の少なくとも40%、50%、60%または70%が成熟B細胞である。脾臓B細胞はB220+であり、当業者が知っているように、相対的に高いレベルでB220を発現する。当業者によって知られているように、成熟脾臓B細胞は、B220およびIgDの両方を相対的に高いレベルで発現する。IgM発現は、この場合もやはり当技術分野において知られているように、成熟脾臓B細胞において相対的に低い。例えば、J Exp Med. 1999年7月5日;190(1):75〜89頁;「B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals」、Loder Fら、参照。
場合により、マウスは、例えば、FACSによって決定される場合、正常な比率のT1、T2および成熟脾臓B細胞を産生する。例えば、本発明のマウスは、約40〜70%の成熟脾臓B細胞、15〜35%の脾臓T1細胞および5〜10%の脾臓T2細胞を産生する(総脾臓B220陽性(高)集団に関してのパーセンテージ)。例えば、約40〜60%の成熟脾臓B細胞、15〜30% の脾臓T1細胞および5〜10%の脾臓T2細胞。「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおけるT1/T2/成熟脾臓B細胞集団に匹敵することを意味する。
76. マウスが、例えば、FACSによって決定される場合、正常な割合またはパーセンテージの成熟脾臓B細胞を産生する、態様70〜75のいずれか1つのマウス。
77. ヒト可変領域を含む免疫グロブリン重鎖を発現し、または発現するためのマウスであって、マウスによって発現する重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、(例えば、FACSによって決定される場合)正常な割合またはパーセンテージの成熟脾臓B細胞を産生するマウスにおいて発現し、マウスが、マウス定常領域(例えば、(例えば5'から3'の方向に)Cミューおよび/またはCデルタおよび/またはCガンマ)の上流にヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含み、マウスが、正常な割合またはパーセンテージの成熟脾臓B細胞を産生する、マウス。「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける成熟脾臓B細胞産生に匹敵することを意味する。
例えば、本発明のマウスにより産生される総脾臓B細胞の少なくとも40%、50%、60%または70%は成熟B細胞である。脾臓B細胞はB220+であり、当業者が知っているように、相対的に高いレベルでB220を発現する。当業者によって知られているように、成熟脾臓B細胞は、B220およびIgDの両方を相対的に高いレベルで発現する。IgM発現は、この場合もやはり当技術分野において知られているように、成熟脾臓B細胞において相対的に低い。例えば、J Exp Med. 1999年7月5日;190(1):75〜89頁;「B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals」、Loder Fら、参照。
場合により、マウスは、例えば、FACSによって決定される場合、正常な比率のT1、T2および成熟脾臓B細胞を産生する。例えば、本発明のマウスは、約40〜70%の成熟脾臓B細胞、15〜35%の脾臓T1細胞および5〜10%の脾臓T2細胞を産生する(総脾臓B220陽性(高)集団に関してのパーセンテージ)。例えば、約40〜60%の成熟脾臓B細胞、15〜30%の脾臓T1細胞および5〜10%の脾臓T2細胞。「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおけるT1/T2/成熟脾臓B細胞集団に匹敵することを意味する。
78. (例えば、FACSによって決定される場合)正常な割合またはパーセンテージの骨髄B細胞前駆細胞を産生するマウスにおいて前記重鎖を発現するための態様70〜77のいずれか1つのマウス。
一実施形態において、マウスは、(例えば、FACSによって決定される場合)正常な割合またはパーセンテージの骨髄プレB細胞、プロB細胞およびプレプロB細胞を産生するマウスにおいて前記重鎖を発現するためである。前駆細胞に関するより多くの考察については、J Exp Med. 1991年5月1日;173(5):1213〜25;「Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow」、Hardy RRら参照。
「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける骨髄B細胞産生に匹敵することを意味する。
79. マウスが、(例えば、FACSによって決定される場合)正常な割合またはパーセンテージの骨髄B細胞前駆細胞を産生する、態様70〜78のいずれか1つのマウス。
一実施形態において、マウスは、(例えば、FACSによって決定される場合)正常な割合またはパーセンテージの骨髄プレB細胞、プロB細胞およびプレプロB細胞を産生する。
「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける骨髄B細胞産生に匹敵することを意味する。
80. ヒト可変領域を含む免疫グロブリン重鎖を発現し、または発現するためのマウスであって、マウスによって発現する重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、(例えば、FACSによって決定される場合)正常な割合またはパーセンテージの骨髄B細胞前駆細胞を産生するマウスにおいて発現し、マウスが、マウス定常領域(例えば、(例えば5'から3'の方向に)Cミューおよび/またはCデルタおよび/またはCガンマ)の上流にヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含み、マウスが、正常な割合またはパーセンテージの骨髄B細胞前駆細胞を産生する、マウス。
一実施形態において、マウスは、(例えば、FACSによって決定される場合)正常な割合またはパーセンテージの骨髄プレB細胞、プロB細胞およびプレプロB細胞を産生するマウスにおいて前記重鎖を発現するためのものである。
「正常な」とは、マウス抗体鎖のみを発現するマウス(例えば、ナイーブなマウス)、例えば、ゲノムが野生型機能的Ig重鎖および軽鎖遺伝子座のみを含むマウス、例えば、野生型マウスにおける骨髄B細胞産生に匹敵することを意味する。
81. 重鎖の少なくとも90%が、ヒト可変領域を含む重鎖である、態様70〜80のいずれか1つのマウス。
例えば、重鎖の少なくとも90%、95%、96%、97%、98%、99%または99.5%または100%が、ヒト可変領域、すなわち、ヒトDおよびJH遺伝子セグメントと共のヒトVHの組換えに由来する可変領域を含む。
82. マウス定常領域が、マウスCミュー領域、Cデルタ領域およびCガンマ領域を含む、態様70〜81のいずれか1つのマウス。
一実施形態において、C領域のそれぞれが、内因性のマウスC領域である。一実施形態において、少なくともCミューおよびCデルタ領域がマウスC領域である。これは、脾臓および骨髄における様々なB細胞型および前駆体の発生に関与する内因性調節機構を利用するのに有用である。
一実施形態において、Cガンマ領域は、ヒトCガンマ領域である。これは、発現した重鎖の本質的に全部がヒト可変領域およびヒト定常領域を有するマウスにおいて、クラススイッチしたガンマ型重鎖を産生するのに有益である。
83. ヒト遺伝子セグメントとマウス定常領域の間にマウス重鎖エンハンサーがある、態様70〜82のいずれか1つのマウス。これは、内因性マウス抗体およびB細胞発生調節機構を利用するのに有用である。
84. ヒト遺伝子セグメントとマウス定常領域の間にマウスSミュースイッチがある、態様70〜83のいずれか1つのマウス。
85. マウスのゲノムが、ヒト遺伝子セグメントの上流に内因性マウス重鎖遺伝子座V、DおよびJ遺伝子セグメントを含む、態様70〜84のいずれか1つのマウス。
86. マウスV、DおよびJ遺伝子セグメントが内因性遺伝子セグメント間配列と共に存在する、態様85のマウス。
87. マウス遺伝子セグメントが逆方向である、態様85または86のマウス。したがって、それらは、マウスゲノムにおいて野生型方向に対して反転している。したがって、それらは、マウス定常領域の方向に対して反転している。
88. マウスが、ヒト可変領域を含む軽鎖(例えば、ヒトカッパ可変領域を含むカッパ軽鎖)を発現する、態様70〜87のいずれか1つのマウス。したがって、ヒト可変領域は、ヒトVLおよびJL遺伝子セグメント、例えば、ヒトVκおよびヒトJκの組換えに由来する。
89. マウスCL(例えば、内因性Cκ)の上流にヒトVκおよびJκ遺伝子セグメントを含み、場合により、ヒトVκおよびJκ遺伝子セグメントが、Vκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、Vκ4-1、Jκ1、Jκ2、Jκ3、Jκ4およびJκ5を含む、態様88のマウス。
90. ヒトVH、DHおよびJH遺伝子セグメントが、ヒトVH遺伝子セグメントVH2-5、7-4-1、4-4、1-3、1-2、6-1、ならびに全てのヒトDおよびJH遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27、ならびにJ1、J2、J3、J4、J5およびJ6を含む、態様70〜89のいずれか1つのマウス。例えば、ヒトVH、DHおよびJH遺伝子セグメントは、ヒトVH遺伝子セグメントVH2-5、7-4-1、4-4、1-3、1-2、6-1、ならびに全てのヒトDおよびJH遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、3-10、4-11、5-12、6-13、1-14、2-15、3-16、4-17、5-18、6-19、1-20、2-21、3-22、4-23、5-24、6-25、1-26および7-27、ならびにJ1、J2、J3、J4、J5およびJ6を含む。
91. ヒト可変領域を含む免疫グロブリン重鎖を発現するための態様70〜90のいずれか1つのマウスの使用であって、マウスによって発現した重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、前記ヒト可変領域を含む重鎖が、マウスにおいて血清IgG1、IgG2bおよびIgM(および場合により、IgG2a)抗体の部分として発現する、使用。使用は、非治療的、非診断的および非外科的使用である。
一実施形態において、使用は、マウスを抗原(例えば、ヒト抗原)で免疫化する工程、およびその抗原を特異的に結合するIgG1抗体を単離する工程を含む。
一実施形態において、使用は、マウスを抗原(例えば、ヒト抗原)で免疫化する工程、およびその抗原を特異的に結合するIgG2a抗体を単離する工程を含む。
一実施形態において、使用は、マウスを抗原(例えば、ヒト抗原)で免疫化する工程、およびその抗原を特異的に結合するIgG2b抗体を単離する工程を含む。場合により、使用は、単離された抗体の誘導体を作製する工程を含む。(本明細書における任意の態様による)抗体誘導体の例は、(例えば、抗原結合親和性を向上させるために、および/またはFc機能を増強もしくは不活性化するために、)単離された抗体と比較して、1つまたは複数の突然変異を有する抗体である。そのような突然変異体は、その抗原を特異的に結合する。
92. ヒト可変領域を含む免疫グロブリン重鎖を発現するための態様70〜90のいずれか1つのマウスの使用であって、マウスによって発現した重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、かつ正常な割合またはパーセンテージの成熟脾臓B細胞を産生するマウスにおいて発現する、使用。使用は、非治療的、非診断的および非外科的使用である。
一実施形態において、使用はさらに、マウスから脾臓組織(例えば、脾臓)を単離する工程、場合により、その後、その組織から少なくとも1つの抗原特異的B細胞を単離する工程であって、B細胞(複数可)が、所定の抗原を特異的に結合する抗体を発現する、工程を含む。一例において、使用は、脾臓組織を単離する工程の前に、マウスをその抗原で免疫化する工程を含む。例において、使用は、B細胞によって(またはB細胞のミエローマ細胞との融合により生じたハイブリドーマによって)産生される抗体を単離する工程を含む。場合により、使用は、単離された抗体の誘導体を作製する工程を含む。(本明細書における任意の態様による)抗体誘導体の例は、(例えば、抗原結合親和性を向上させるために、および/またはFc機能を増強もしくは不活性化するために、)単離された抗体と比較して1つまたは複数の突然変異を有する抗体である。そのような突然変異体は、その抗原を特異的に結合する。
93. ヒト可変領域を含む免疫グロブリン重鎖を発現するための態様70〜90のいずれか1つのマウスの使用であって、マウスによって発現した重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、かつ正常な割合またはパーセンテージの骨髄B細胞前駆細胞を産生するマウスにおいて発現する、使用。使用は、非治療的、非診断的および非外科的使用である。
94. 態様70、71、73、75および78の1つまたは複数において述べられた目的のための態様70〜90のいずれか1つのマウスの使用。
Igの発現(例えば、パーセンテージ発現または発現割合もしくはレベル)は、B細胞(例えば、末梢血リンパ球)における抗体鎖mRNA転写産物のレベルにおいて決定することができる。代替として、または追加として、パーセンテージ発現は、脊椎動物の血清または血液における抗体のレベルにおいて決定される。追加として、または代替として、発現は、B細胞のFACS分析によって決定することができる。
これらの態様において、「ヒト可変領域を含む重鎖」は、ヒトVH、DおよびJH遺伝子セグメントの組換えに由来する可変領域を意味する。
「本質的にもっぱら」、発現した重鎖がヒト可変領域を含むとは、すなわち、相対的に非常に少量だけの内因性マウス重鎖可変領域発現があり、またはさらに、全くそれが存在しない。例えば、重鎖の少なくとも90%、95%、96%、97%、98%、99%または99.5%または100%が、ヒト可変領域を含む重鎖である。一実施形態において、重鎖の少なくとも90%が、ヒト可変領域を含む重鎖である。パーセンテージ発現は、B細胞(例えば、末梢血リンパ球)における重鎖mRNA転写産物のレベルにおいて決定することができる。代替として、または追加として、パーセンテージ発現は、マウスの血清または血液における重鎖または抗体のレベルにおいて決定される。追加として、または代替として、発現は、B細胞のFACS分析によって決定することができる。
本明細書に記載されているように、マウスは、ヒトV、DおよびJ遺伝子セグメントが存在する、任意の内因性重鎖遺伝子座を含むことができる。一例において、マウスゲノムは、少なくともVH遺伝子セグメントVH2-5、7-4-1、4-4、1-3、1-2、6-1、ならびに全てのヒトDおよびJH遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27;ならびにJ1、J2、J3、J4、J5およびJ6がマウス定常領域の上流にある、マウス重鎖遺伝子座を含む。
これらの態様における脊椎動物は、例えば、ナイーブである(すなわち、その用語が当技術分野において理解されているように、所定の抗原で免疫化されていない;例えば、研究開発に使用される動物ハウスによって提供されるような比較的無菌の環境で飼育されているそのような脊椎動物)。別の例において、脊椎動物は、所定の抗原、例えば、ヒトエピトープを有する抗原で免疫化されている。
一実施形態において、本発明のマウスにおいて軽鎖と共に発現した重鎖は、抗体(Ig)を形成する。軽鎖は、本明細書に記載されているように、任意のトランスジェニック軽鎖遺伝子座から発現することができる。例えば、マウスのゲノムは、前記非ヒト種のミュー定常領域の上流に、1つまたは複数のヒトV遺伝子セグメント、1つまたは複数のヒトD遺伝子セグメント、および1つまたは複数のヒトJ遺伝子セグメントを含むキメラ免疫グロブリン重鎖遺伝子座である重鎖遺伝子座を含む;内因性重鎖発現は、実質的に不活性化されている;重鎖遺伝子座は前記非ヒト脊椎動物種のEμエンハンサーを含む。
任意の態様の一実施形態において、内因性軽鎖(例えば、カッパおよび/またはラムダ)発現は、例えば、本明細書に記載されているような方法を使用して、実質的に不活性であり、または不活性化されている。この場合、そのような内因性ラムダ軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満は、発現され、または発現可能である。追加として、または代替として、そのような内因性カッパ軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満は、発現され、または発現可能である。一例において、そのような軽鎖が発現しておらず、または発現不可能であるならば、内因性カッパおよび/またはラムダ発現の完全不活性化が存在する。
一実施形態において、マウスのゲノムは、ヒトカッパ遺伝子セグメント:
(i)Vκ1-5、Vκ1-6、Vκ1-8およびVκ1-9 (ならびに場合により、Vκ5-2およびVκ4-1);または
(ii)Vκ1-5、Vκ1-6、Vκ1-8、Vκ1-9、Vκ3-11、Vκ1-12、Vκ3-15、Vκ1-16、Vκ1-17、Vκ3-20 (ならびに場合により、Vκ2-24および/またはVκ1-13);または
(iii)Vκ1-5、Vκ1-6、Vκ1-8、Vκ1-9、Vκ3-11、Vκ1-12、Vκ3-15、Vκ1-16、Vκ1-17、Vκ3-20、Vκ2-24、Vκ1-27、Vκ2-28、Vκ2-30およびVκ1-33(ならびに場合により、Vκ2-29および/またはVκ2-40および/またはVκ1-39);
ならびに場合により、
(iv)Jκ1、Jκ2、Jκ3、Jκ4およびJκ5
を含む。
一実施形態において、ゲノムはまた、(i)少なくともヒトVH遺伝子セグメントVH2-5、7-4-1、4-4、1-3、1-2、6-1、ならびに全てのヒトDおよびJH遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27;ならびにJ1、J2、J3、J4、J5およびJ6、ならびに(ii)少なくともヒト遺伝子セグメントVκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、Vκ4-1、Jκ1、Jκ2、Jκ3、Jκ4およびJκ5を含む。実施例16に実証されているように、そのようなマウスは、再構成、BCRシグナル伝達、およびB細胞成熟の側面において完全に機能し得る。マウスによって発現した抗体の90%より多くは、ヒト重鎖可変領域およびヒトカッパ軽鎖可変領域を含んだ。したがって、これらのマウスは、マウスのヒト抗原での免疫化後、そのようなヒト抗原を特異的に結合するヒト可変領域を有する抗体の選択に非常に有用である。そのような抗体の単離後、当業者は、通常の技術を使用して、マウス定常領域をヒト定常領域と置換し、(場合により、例えばFc増強もしくは不活性化を有する、さらなる誘導体を生じる突然変異もしくは適応後、または毒性ペイロードもしくはレポーターもしくは他の活性部分へのコンジュゲーション後)、ヒトへの投与用の薬物候補として有用である完全なヒト抗体にたどり着くことができる。
一実施形態において、ゲノムはまた、その遺伝子座においてヒトJ遺伝子セグメントの下流にヒトiEκおよび/またはヒト3'Eκを含む。
本発明はまた、以下の条項を含む:
条項1. ヒト可変領域を含有する免疫グロブリン重鎖を発現するマウスであって、
マウスが、マウス定常領域の下流に位置するヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含むゲノムを含み;
マウスによって発現した免疫グロブリン重鎖の少なくとも90%がヒト可変領域を含むことを特徴とする、免疫グロブリン重鎖をマウスが発現し;および、
マウスが、前記ヒト可変領域を含有する重鎖を含む血清IgG1、IgG2bおよびIgM抗体を発現する、マウス。
条項2. ヒト可変領域を含有する免疫グロブリン重鎖を発現するマウスであって、
マウスが、マウス定常領域の上流に位置するヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含むゲノムを含み;
マウスによって発現した免疫グロブリン重鎖の少なくとも90%がヒト可変領域を含むことを特徴とする、免疫グロブリン重鎖をマウスが発現し;および、
マウスが、正常な割合の成熟脾臓B細胞を産生し;
前記正常な割合が、マウス可変領域を含有する免疫グロブリン重鎖を発現し、かつヒト可変領域を含有する免疫グロブリン重鎖を発現しないマウスによって産生される成熟脾臓B細胞の割合である、マウス。
条項3. ヒト可変領域を含有する免疫グロブリン重鎖を発現するマウスであって、
マウスが、マウス定常領域の上流に位置するヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含むゲノムを含み;
マウスによって発現した免疫グロブリン重鎖の少なくとも90%がヒト可変領域を含むことを特徴とする、免疫グロブリン重鎖をマウスが発現し;および、
マウスが、正常な割合の骨髄B細胞前駆細胞を産生し;
正常な割合が、マウス可変領域を含有する免疫グロブリン重鎖を発現し、かつヒト可変領域を含有する免疫グロブリン重鎖を発現しないマウスによって産生される骨髄B細胞前駆細胞の割合である、マウス。
条項4. マウスが、マウスから得られる血清の試料において正常な割合のIgG1、IgG2bおよびIgMを発現し、
正常な割合が、マウス可変領域を含有する免疫グロブリン重鎖を発現し、かつヒト可変領域を含有する免疫グロブリン重鎖を発現しないマウスによって産生される場合である、
前記条項のいずれか1つのマウス。
条項5. マウス定常領域がCミュー、Cデルタおよび/またはCガンマである、前記条項のいずれか1つのマウス。
条項6. マウス定常領域が少なくともCミュー、CデルタおよびCガンマである、条項5のマウス。
条項7. マウス定常領域が内因性マウスC領域である、前記条項のいずれか1つのマウス。
条項8. マウスがヒトCガンマ領域を発現する、前記条項のいずれか1つのマウス。
条項9. マウスがナイーブマウスである、前記条項のいずれか1つのマウス。
条項10. マウスが、前記ヒト可変領域を含有する重鎖を含む血清IgG2aを発現する、条項1のマウス。
条項11. プレート上での免疫グロブリン捕捉、続いて、それぞれが標識を含む抗マウスアイソタイプ特異的抗体とのインキュベーション、および各標識のレベルに基づいた各免疫グロブリンの定量により決定される場合、
(i)約25〜350μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜800μg/mlの濃度の血清IgG2b;および
(iv)約50〜300μg/mlの濃度の血清IgM;
または
(i)約10〜600μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜700μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
の相対的割合でIgサブタイプを発現する、前記条項のいずれか1つのマウス。
条項12. プレート上での免疫グロブリン捕捉、続いて、それぞれが標識を含む抗マウスアイソタイプ特異的抗体とのインキュベーション、および各標識のレベルに基づいた各免疫グロブリンの定量により決定される場合、
(i)約200〜2500μg/mlの濃度の総血清IgGおよびIgM;ならびに
(ii)約100〜800μg/mlの濃度の血清IgM
の相対的割合でIgサブタイプを発現する、前記条項のいずれか1つのマウス。
条項13. マウスが脾臓B細胞から前記免疫グロブリン重鎖を発現し、かつマウスが、成熟B細胞、ならびに脾臓T1およびT2細胞を含む総脾臓細胞において正常な割合の成熟脾臓B細胞を産生する、前記条項のいずれか1つのマウス。
条項14. マウスによって発現する免疫グロブリン重鎖の少なくとも95%、96%、97%、98%、99%または99.5%が、ヒト可変領域を含む免疫グロブリン重鎖である、条項1〜3のいずれか1つのマウス。
条項15. マウス免疫グロブリン重鎖エンハンサーが、前記マウス重鎖免疫グロブリン遺伝子座においてヒトVH、DHおよびJH遺伝子セグメントとマウス定常領域との間に位置する、前記条項のいずれか1つのマウス。
条項16. マウスSミュースイッチが、前記マウス重鎖免疫グロブリン遺伝子座においてヒトVH、DHおよびJH遺伝子セグメントとマウス定常領域との間に位置する、前記条項のいずれか1つのマウス。
条項17. 内因性マウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントが、前記マウス重鎖免疫グロブリン遺伝子座においてヒトVH、DHおよびJH遺伝子セグメントの上流に位置する、前記条項のいずれか1つのマウス。
条項18. マウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントが、内因性遺伝子セグメント間配列と共に、前記マウス重鎖免疫グロブリン遺伝子座内に存在する、条項17のマウス。
条項19. マウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントが、前記マウス重鎖免疫グロブリン遺伝子座において、それの天然の内因性方向に対して反転している方向に位置する、条項17または18のマウス。
条項20. マウスが、ヒトカッパ可変領域を含有する軽鎖を発現する、前記条項のいずれか1つのマウス。
条項21. マウスが、VκのヒトJκとの組換えに由来する免疫グロブリン軽鎖を発現する、条項20のマウス。
条項22. マウスが、ヒトラムダ可変領域を含有する軽鎖を発現する、前記条項のいずれか1つのマウス。
条項23. マウスが、VλのヒトJλとの組換えに由来する免疫グロブリン軽鎖を発現する、条項22のマウス。
条項24. 前記マウス重鎖免疫グロブリン遺伝子座においてマウスCLの上流に位置するヒトVκおよびJκ遺伝子セグメントを含むゲノムを含む、条項21のマウス。
条項25. マウスCLが内因性Cκである、条項24のマウス。
条項26. ヒトVκおよびJκ遺伝子セグメントが、Vκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、Vκ4-1、Jκ1、Jκ2、Jκ3、Jκ4およびJκ5を含む、条項24または25のマウス。
条項27. ヒトVH、DHおよびJH遺伝子セグメントが
ヒトVH遺伝子セグメント: VH2-5、7-4-1、4-4、1-3、1-2、6-1;
ヒトDH遺伝子セグメント: D1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27;ならびに
ヒトJH遺伝子セグメント: J1、J2、J3、J4、J5およびJ6
を含有する、前記条項のいずれか1つのマウス。
条項28. 前記条項のいずれか1つのマウスを準備する工程、および1つまたは複数の免疫グロブリン重鎖を単離する工程を含む、ヒト可変領域を含有する1つまたは複数の免疫グロブリン重鎖を得るための方法。
条項29. 各免疫グロブリン重鎖が抗体に含まれている、条項28の方法。
条項30. 前記重鎖および/または前記重鎖を含有する前記抗体が前記単離工程後に改変される、条項29の方法。
条項31. マウスを抗原で免疫化する工程が、免疫グロブリン重鎖を単離する工程の前に実施される、条項28の方法。
条項31a. 抗原がヒト抗原である、条項30の方法。
条項32. 免疫グロブリン重鎖が、抗原を特異的に結合するIgG1抗体、抗体断片または抗体誘導体内に含まれる、条項30、31または31aの方法。
条項33. 免疫グロブリン重鎖が、抗原を特異的に結合するIgG2a抗体、抗体断片または抗体誘導体内に含まれる、条項30、31または31aの方法。
条項34. 免疫グロブリン重鎖が、抗原を特異的に結合するIgG2b抗体、抗体断片または抗体誘導体内に含まれる、条項30、31または31aの方法。
条項35. 免疫グロブリン重鎖が、抗原を特異的に結合するIgM抗体、抗体断片または抗体誘導体内に含まれる、条項30、31または31aの方法。
条項36. 条項28〜35のいずれか1つの方法において単離された抗体もしくは免疫グロブリン重鎖、または抗体もしくは重鎖の抗原結合断片もしくは誘導体。
条項37. 条項36の抗体、抗体断片または抗体誘導体、および薬学的に許容される担体、賦形剤または希釈剤を含む医薬組成物。
条項38. 条項1〜27のいずれか1つのマウスを準備する工程、
マウスから脾臓またはその部分を収集する工程、および
脾臓または部分から組織を得る工程
を含む、脾臓組織を単離するための方法。
条項39. 脾臓組織から少なくとも1つの抗原特異的B細胞を単離する工程であって、B細胞が、ヒト可変領域を含有する重鎖を発現する、工程をさらに含む、条項38の方法。
条項40. マウスを抗原で免疫化する工程が、マウスから脾臓を収集する工程の前に実施される、条項38または39の方法。
条項41. 抗原がヒト抗原である、条項40の方法。
条項42. 少なくとも1つの抗原特異的B細胞が、前記重鎖を含むIgG1、IgG2a、IgG2bまたはIgM抗体を産生し、抗体が抗原を特異的に結合する、条項40または41の方法。
条項43. 前記重鎖を産生する少なくとも1つの抗原特異的B細胞が、不死性ミエローマ細胞と融合して、ハイブリドーマ細胞を生じる、条項38〜42の方法。
条項44. B細胞またはハイブリドーマ細胞から免疫グロブリン重鎖を単離する工程をさらに含む、条項38〜43の方法。
条項45. 条項44の方法において単離された抗体もしくは免疫グロブリン重鎖、またはその抗体もしくは重鎖の抗原結合断片もしくは誘導体。
条項46. 条項45の抗体、抗体断片または抗体誘導体、および薬学的に許容される担体、賦形剤または希釈剤を含む医薬組成物。
条項47. ヒト可変領域を含有する免疫グロブリン重鎖を発現するマウスを選択する工程であって、
マウスが、マウス定常領域の上流に位置するヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含むゲノムを含み、
マウスによって発現した免疫グロブリン重鎖の少なくとも90%が、ヒト可変領域を含有する免疫グロブリン重鎖であることを特徴とする、免疫グロブリン重鎖をマウスが発現し、
マウスが、前記ヒト可変領域を含有する重鎖を含む血清IgG1、IgG2bおよびIgM抗体を発現し、
マウスが、正常な割合の成熟脾臓B細胞を産生し、
マウスが、正常な割合の骨髄B細胞前駆細胞を産生し、
マウスが、マウスから得られた血清の試料において正常な割合のIgG1、IgG2a、IgG2bおよびIgMを発現し、ならびに
それぞれの前記正常な割合が、マウス可変領域を含有する免疫グロブリン重鎖を発現し、かつヒト可変領域を含有する免疫グロブリン重鎖を発現しないマウスによって産生される割合である、工程と;
前記マウスから血清を収集する工程と;
血清から、IgG1、IgG2bおよびIgM抗体を含むヒト化抗体のプールを得る工程と
を含む、ヒト化抗体を得るための方法。
条項48. 前記マウスから血清を収集する工程の前に、マウスを抗原で免疫化する工程を含む、条項47の方法。
条項49. 前記ヒト化抗体のプールを前記抗原と接触させる工程;
前記ヒト化抗体のプールにおけるヒト化抗体で前記抗原を結合させる工程;および
前記抗原に結合するヒト化抗体を単離する工程
をさらに含む、条項48の方法。
条項50. 前記抗原に結合するヒト化抗体をアイソタイプ特異的抗体と接触させる工程であって、アイソタイプ特異的抗体が、IgG1、IgG2a、IgG2bまたはIgMを認識する工程;および
前記アイソタイプ特異的抗体に結合するヒト化抗体を単離する工程
をさらに含む、条項49の方法。
条項51. 前記マウスから脾臓またはその組織を収集する工程、
脾臓組織からB細胞を単離する工程、
前記B細胞を不死性ミエローマ細胞と融合させて、血清由来のIgG抗体を含むヒト化抗体のプールを発現するハイブリドーマ細胞を生じる工程であって、その抗体のプールが条項48の方法に使用される工程
をさらに含む、条項48の方法。
条項52. 前記選択されたマウスが、前記マウス重鎖免疫グロブリン遺伝子座において、それの天然の内因性方向に対して反転している方向に位置するマウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントを含む、条項47〜51のいずれか1つの方法。
条項53. マウスが、
プレート上での免疫グロブリン捕捉、続いて、それぞれが標識を含む抗マウスアイソタイプ特異的抗体とのインキュベーション、および各標識のレベルに基づいた各免疫グロブリンの定量により決定される場合、
(i)約25〜350μg/mlの濃度の血清IgG1;
(ii)約0〜200μg/mlの濃度の血清IgG2a;
(iii)約30〜800μg/mlの濃度の血清IgG2b;および
(iv)約50〜300μg/mlの濃度の血清IgM;
または
(i)約10〜600μg/mlの濃度の血清IgG1;
(ii)約0〜500μg/mlの濃度の血清IgG2a;
(iii)約20〜700μg/mlの濃度の血清IgG2b;および
(iv)約50〜700μg/mlの濃度の血清IgM
の相対的割合でIgサブタイプを発現する、条項47〜52のいずれか1つの方法。
条項54. マウスによって発現する免疫グロブリン重鎖の少なくとも95%、96%、97%、98%、99%または99.5%が、ヒト可変領域を含む免疫グロブリン重鎖である、条項47〜53のいずれか1つの方法。
条項55. マウス免疫グロブリン重鎖エンハンサーが、前記マウス重鎖免疫グロブリン遺伝子座においてヒトVH、DHおよびJH遺伝子セグメントとマウス定常領域との間に位置する、条項47〜54のいずれか1つの方法。
条項56. マウスSミュースイッチが、前記マウス重鎖免疫グロブリン遺伝子座においてヒトVH、DHおよびJH遺伝子セグメントとマウス定常領域との間に位置する、条項47〜55のいずれか1つの方法。
条項57. 内因性マウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントが、前記マウス重鎖免疫グロブリン遺伝子座においてヒトVH、DHおよびJH遺伝子セグメントの上流に位置する、条項47〜56のいずれか1つの方法。
条項58. マウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントが、前記マウス重鎖免疫グロブリン遺伝子座において内因性遺伝子セグメント間配列と共に存在する、条項57の方法。
条項59. マウス免疫グロブリン重鎖V、DおよびJ遺伝子セグメントが、前記マウス重鎖免疫グロブリン遺伝子座において、それの天然の内因性方向に対して反転している方向で位置する、条項57または58の方法。
条項60. マウスが、ヒトカッパ可変領域を含有する軽鎖を発現する、条項47〜59のいずれか1つの方法。
条項61. マウスが、ヒトJκを含有する免疫グロブリン軽鎖を発現する、条項60の方法。
条項62. マウスが、ヒトラムダ可変領域を含有する軽鎖を発現する、条項47〜51のいずれか1つの方法。
条項63. マウスが、ヒトJλを含有する免疫グロブリン軽鎖を発現する、条項62の方法。
条項64. 前記マウス重鎖免疫グロブリン遺伝子座においてマウスCLの上流に位置するヒトVκおよびJκ遺伝子セグメントを含むゲノムを含む、条項61の方法。
条項65. マウスCLが内因性Cκである、条項64のマウス。
条項66. ヒトVκおよびJκ遺伝子セグメントが、Vκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、Vκ4-1、Jκ1、Jκ2、Jκ3、Jκ4およびJκ5を含む、条項64または65のマウス。
条項67. ヒトVH、DHおよびJH遺伝子セグメントが
ヒトVH遺伝子セグメント: VH2-5、7-4-1、4-4、1-3、1-2、6-1;
ヒトDH遺伝子セグメント: D1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27;ならびに
ヒトJH遺伝子セグメント: J1、J2、J3、J4、J5およびJ6
を含有する、条項47〜51のいずれか1つの方法。
本発明はまた、以下の属性を含む:
属性1.: ゲノムがIg H鎖遺伝子座を含む、単離された非ヒト脊椎動物の、場合により哺乳動物の、細胞であって、遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を含み、C領域がラットC領域ではない、細胞。
属性1a: ゲノムがIg H鎖遺伝子座を含む、単離された非ヒト脊椎動物の、場合により哺乳動物の、細胞であって、その遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列を含み、遺伝子座が、ヒト-ラットおよび/またはマウス-ラット配列接合部を含み、かつラット配列が、ラットスイッチ配列によって供給される、細胞。
属性2. ゲノムがIg H鎖遺伝子座を含む、単離された非ヒト脊椎動物の、場合により哺乳動物の、細胞であって、遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を含み、ラットスイッチ配列が、リピート配列GGGCTの少なくとも3個の連続したリピート(配列番号46〜50)を含むラットSミュー配列である、細胞。
属性3. ゲノムがIg H鎖遺伝子座を含む、単離された非ヒト脊椎動物の、場合により哺乳動物の、細胞であって、遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を含み、ラットスイッチ配列が、GAGCT (296個のリピート)、 GGGGT (50個のリピート)、および/またはGGGCT (83個のリピート)を含むラットSミュー配列である、細胞。
属性4. ゲノムがIg H鎖遺伝子座を含む、非ヒト脊椎動物生物体、場合により哺乳動物であって、遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を含み、C領域がラットC領域ではない、非ヒト脊椎動物生物体。
属性4a: ゲノムがIg H鎖遺伝子座を含む、非ヒト脊椎動物生物体、場合により哺乳動物であって、その遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列を含み、その遺伝子座が、ヒト-ラットおよび/またはマウス-ラット配列接合部を含み、かつそのラット配列が、ラットスイッチ配列によって供給される、非ヒト脊椎動物生物体。
属性5. ゲノムがIg H鎖遺伝子座を含む、非ヒト脊椎動物生物体、場合により哺乳動物であって、遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を含み、ラットスイッチ配列が、リピート配列GGGCTの少なくとも3個の連続したリピート(配列番号46〜50)を含むラットSミュー配列である、非ヒト脊椎動物生物体。
属性6. ゲノムがIg H鎖遺伝子座を含む、非ヒト脊椎動物生物体、場合により哺乳動物であって、遺伝子座が、5'から3'への転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を含み、ラットスイッチ配列が、GAGCT(296個のリピート)、GGGGT(50個のリピート)および/またはGGGCT(83個のリピート)を含むラットSミュー配列である、非ヒト脊椎動物生物体。
属性7. ゲノムが、3つ以上の脊椎動物種由来のDNA配列を含むIg H鎖遺伝子座を含む、単離された非ヒト脊椎動物細胞または生物体、場合により哺乳動物であって、Ig H鎖遺伝子座が、5'から3'への転写方向に、少なくともV領域、D領域、J領域、エンハンサー、ラットスイッチ配列およびC領域を含む、非ヒト脊椎動物細胞または生物体。
属性8. 細胞または生物体のゲノムが、3つ以上の脊椎動物種由来のDNA配列を含むIg L鎖遺伝子座をさらに含み、かつIg L鎖遺伝子座が、5'から3'への転写方向に、少なくともヒトV領域、ヒトJ領域およびC領域を含む、属性1〜7のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性9. 前記3つ以上の脊椎動物種がマウス、ヒトおよびラットである、属性7または8の非ヒト脊椎動物細胞または生物体。
属性10. 前記C領域が、細胞または生物体にとって内因性であり、かつ前記V、Dおよび/またはJ領域がヒトである、属性1〜9のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性11. Ig H鎖遺伝子座が、複数のV領域、1つもしくは複数のD領域、および1つもしくは複数のJ領域を含み、ならびに/またはIg L鎖遺伝子座が、複数のV領域および1つもしくは複数のJ領域を含む、属性1〜10のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性12. 前記V領域または前記複数のV領域がヒトである、属性1〜11のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性13. 前記D領域または前記1つもしくは複数のD領域がヒトである、属性1〜11のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性14. 前記J領域または前記1つもしくは複数のJ領域がヒトである、属性1〜11のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性15. 前記V領域または前記複数のV領域がヒトであり、前記D領域または前記1つもしくは複数のD領域がヒトであり、かつ前記J領域または前記1つもしくは複数のJ領域がヒトである、属性11〜14のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性16. 前記ラットスイッチ配列がラットSミューである、属性1、1a、4a、4、7〜11および15のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性17. 前記ラットスイッチ配列の上流に位置し、かつそれと作動可能に連結したマウスエンハンサー配列をさらに含む、属性1、4、7〜11および15のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性18. 前記ラットSミュー配列の上流に位置し、かつそれと作動可能に連結したマウスエンハンサー配列をさらに含む、属性16の非ヒト脊椎動物細胞または生物体。
属性19. C領域が、マウスC領域またはヒトC領域のうちの1つである、属性1〜4、7〜15のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性20. C領域がCH1である、属性19の非ヒト脊椎動物細胞または生物体。
属性21. マウスC領域が、CミューまたはCガンマの1つまたは複数である、属性19の非ヒト脊椎動物細胞または生物体。
属性22. マウスC領域が、CミューおよびCガンマである、属性21の非ヒト脊椎動物細胞または生物体。
属性23. 細胞がマウス細胞であり、または脊椎動物がマウスであり、かつマウスC領域が内因性マウスC領域である、属性7の非ヒト脊椎動物細胞または生物体。
属性24. ラットSミュー配列が、リピート配列GGGCTの少なくとも3個で最高83個までの連続したリピート(配列番号46〜50)を含む、属性1、1a、4、4aおよび7のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性25. モチーフGAGCTの296個のリピートを含むラットSミュー配列を含む、属性1、1a、2、4、4a、5および7のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性26. モチーフGGGGTの50個のリピートを含むラットSミュー配列を含む、属性1、1a、2、4、4a、5および7のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性27. モチーフGGGCTの83個のリピートを含むラットSミュー配列を含む、属性1、1a、2、4、4a、5および7のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性28. ラットSミュー配列が配列番号1を含む、前記属性のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性29. 細胞がES細胞、造血幹細胞またはハイブリドーマである、前記属性のいずれか1つの非ヒト脊椎動物細胞。
属性30. 細胞または生物体が、それぞれ、マウスES細胞またはマウスである、前記属性のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性31. 前記Ig H鎖遺伝子座が、ラットSミュー配列と作動可能に連結したヒトJH、ヒトDHおよびヒトVH2-5を含む、属性1〜10のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性32. 前記Ig H鎖遺伝子座が、ラットSミュー配列と作動可能に連結したヒトJH1-5、ヒトDHおよびヒトを含む、属性1〜10のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性33. 前記細胞がマウス細胞であり、または前記生物体がマウスであり;
前記Ig H鎖遺伝子座が、ラットSミューであるラットスイッチ配列の上流に位置し、かつそれと作動可能に連結したマウスエンハンサーを含み、かつ
前記C領域がマウス定常領域である、
属性1〜10のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性34. 前記Ig H鎖V、DおよびJ領域がヒトであり、ならびに/または前記Ig L鎖VおよびJ領域がヒトである、属性33の非ヒト脊椎動物細胞または生物体。
属性35. 前記Ig H鎖遺伝子座が、再構成されたVDJ領域を含む、属性1〜10の非ヒト脊椎動物細胞または生物体。
属性36. 前記再構成されたVDJ領域がヒトである、属性35の非ヒト脊椎動物細胞または生物体。
属性37. 細胞または生物体が、宿主非ヒト哺乳動物定常領域の上流に、複数のヒトIgH V領域、1つまたは複数のヒトD領域、および1つまたは複数のヒトJ領域を含むヒトDNAを含むゲノムを含み、かつヒトIgH VDJ領域が、ヒト14番染色体由来のヌクレオチド105,400,051〜106,368,585(座標は、ヒトゲノムについてのNCBI36、ENSEMBL Release 54を参照する)、または別のヒト由来の等価のヒト領域を含む、属性1〜10のいずれか1つの非ヒト脊椎動物細胞または生物体。
属性38. ヒトDNAが、非ヒト哺乳動物定常領域と、任意の他の非ヒトJ領域より3'側遠位に位置する非ヒト哺乳動物J領域との間に位置する、属性37の非ヒト脊椎動物細胞または生物体。
属性39. 細胞がマウス細胞であり、または生物体がマウスである場合、前記V、DおよびJ領域がヒトであり、かつマウス12番染色体の座標114,667,091から座標114,665,190(座標はマウスC57BL/6J系統についてのNCBI m37を参照する)の間に、または別の非ヒト哺乳動物ゲノムにおける等価の位置に位置する、属性37の非ヒト脊椎動物細胞または生物体。
属性40. 細胞がマウス細胞であり、または生物体がマウスである場合、前記V、DおよびJ領域がヒトであり、かつ座標114,667,089から座標114,667,090 (座標はマウスC57BL/6J系統についてのNCBI m37を参照する)の間に、または別の非ヒト哺乳動物ゲノムにおける等価の位置に位置する、属性39の非ヒト脊椎動物細胞または生物体。
属性41. 細胞がマウス細胞であり、または生物体がマウスであり、前記V、DおよびJ領域がヒトであり、かつマウス系統C57BL/6Jに関するマウスゲノムについてのNCBI m37を参照した、マウス12番染色体の座標114,666,183から座標114,666,725の間、例えば座標114,666,283から座標114,666,625の間、場合により座標114,666,335から座標114,666,536の間、場合により座標114,666,385から座標114,666,486の間、場合により座標114,666,425から座標114,666,446の間、例えば座標114,666,435と座標114,666,436の間に、または異なるマウス系統由来のマウス12番染色体の等価の位置もしくは別の非ヒト脊椎動物のゲノムにおける等価の位置に位置する、属性37の非ヒト脊椎動物細胞または生物体。
属性42. 細胞がマウス細胞であり、または生物体がマウスであり、前記Ig H鎖V、DおよびJ領域、または前記Ig L鎖VおよびJ領域がヒトである、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性43. 前記V、DおよびJ領域がヒトであり、かつGRCH37/hg19配列データベースを参照した、ヒト14番染色体のヌクレオチド106,328,851〜107,268,544、例えば、ヌクレオチド106,328,901〜107,268,494、例えば、ヌクレオチド106,328,941〜107,268,454、例えば、ヌクレオチド106,328,951〜107,268,444、または異なるヒト配列もしくはデータベース由来の14番染色体に関する等価のヌクレオチドを含み、またはそれらからなる、属性1〜10のいずれか1つよる非ヒト脊椎動物細胞または生物体。
属性44. 生殖系列配置で、ヒト由来のVおよびJ領域ならびに介在配列の全部を含むヒトカッパVJ領域DNAを含む、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性45. ヒトカッパVJ領域DNAが、(マウス系統C57BL/6Jに関する、マウスゲノムについてのNCBI m37を参照した)マウス6番染色体の座標70,673,918〜70,675,517の間、例えば座標70,674,418〜70675,017の間、例えば座標70,674, 655〜70,674,856の間、例えば座標70,674,705〜70,674,906の間、例えば座標70,674,745〜70,674,766の間、例えば座標70,674,755と座標70,674,756の間に、または別のゲノムにおける等価の位置に位置する、属性44による非ヒト脊椎動物細胞または生物体。
属性46. ヒトカッパVJ領域DNAが、GRCH37/hg19配列データベースを参照して番号づけられた、ヒト2番染色体由来の断片、または異なるヒト配列もしくはデータベース由来の2番染色体に関する等価のヌクレオチドを含み、またはそれからなり、断片が、(i)場合により断片(ii)に加えて、ヌクレオチド89,158,979〜89,630,537、例えば89,159,029〜89,630,487、例えば89,159,069〜89,630,447、例えば89,159,079〜89,630,437;(ii)場合により断片(i)に加えて、ヌクレオチド89,941,614〜90,267,076、例えば89,941,664〜90,267,026、例えば89, 941,704〜90,266,986、例えば89,941,714〜90,266,976;および(iii)ヌクレオチド89,158,979〜90,267, 076、例えばヌクレオチド89,159,079〜90,266,976のうちの1つまたは複数から選択される、属性45による非ヒト脊椎動物細胞または生物体。
属性47. 少なくとも1つのヒトJλ領域ならびに少なくとも1つのヒトCλ領域、場合によりCλ6および/またはCλ7を含むヒトラムダ領域DNAを含む、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性48. 複数のヒトJλ領域、場合によりJλ1、Jλ2、Jλ6およびJλ7のうちの2つ以上、場合によりJλ1、Jλ2、Jλ6およびJλ7の全部を含む、属性47による非ヒト脊椎動物細胞または生物体。
属性49. 少なくとも1つのヒトJλ-Cλクラスター、場合により少なくともJλ7-Cλ7を含む、属性47による非ヒト脊椎動物細胞または生物体。
属性50. ヒトEλエンハンサーを含む、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性51. 生殖系列配置で、ヒト由来のVおよびJ領域ならびに介在配列の全部を含む、ヒトラムダVJ領域DNAを含む、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性52. ヒトラムダVJ領域DNAが、GRCH37/hg19配列データベースを参照した、ヒト22番染色体由来のヌクレオチド22,375,509〜23,327,984、例えばヌクレオチド22,375,559〜23,327,934、例えばヌクレオチド22,375,599〜23,327,894、例えばヌクレオチド22,375,609〜23,327,884、または異なるヒト配列もしくはデータベース由来のヒト22番染色体に関する等価のヌクレオチドを含み、またはそれらからなる、属性51による非ヒト脊椎動物細胞または生物体。
属性53. 非マウスDNAがマウスゲノムにおいて、マウスゲノムについてのNCBI m37を参照した、マウス16番染色体の座標19,027,763から座標19,061,845の間、例えば座標, 19,037,763から座19,051,845の間、例えば座標19,047,451から座標19,047,652の間、例えば座標19,047,491から座標19,047,602の間、例えば座標19,047,541から座標19,047,562の間、例えば座標19,047,551と座標19,047,552の間に、または他のゲノムにおける等価の位置に位置する、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性54. 非ヒトDNAがマウスゲノムにおいて、マウス系統C57BL/6Jに関するマウスゲノムについてのNCBI m37を参照した、マウス6番染色体の座標70,673,918から座標70,675,517の間、例えば座標70,674,418から座標70,675,017の間、例えば座標70,674,655から座標70,674,856の間、例えば座標70,674,705から座標70,674,806の間、例えば座標70,674,745から座標70,674,766の間、例えば座標70,674,755と座標70,674,756の間に、または別のゲノムにおける等価の位置に位置する、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性55. 前記V、DおよびJ領域がヒトであり、かつヒト軽鎖カッパVJC DNAまたはその部分がマウスカッパVJC領域のすぐ上流に挿入されている、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性56. 細胞または生物体のゲノムが、完全な宿主種特異的抗体の発現を阻止し、または低下させるために改変されている、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性57. 細胞または生物体のゲノムが、非ヒト哺乳動物VDJ領域またはVJ領域の全部または部分の反転によって改変されている、属性56による非ヒト脊椎動物細胞または生物体。
属性58. 細胞または生物体のゲノムが、ヒトDNAおよび非ヒトDNAを含み、かつ前記非ヒトDNAが、除去されていない内因性VおよびJ領域、またはV、DおよびJ領域を含む、属性56による非ヒト脊椎動物細胞または生物体。
属性59. 成熟宿主Bリンパ球およびTリンパ球の産生を阻止する遺伝的バックグラウンドにおいて作製された、属性1〜10のいずれか1つによる非ヒト脊椎動物生物体。
属性60. Rag-1またはRag-2欠損バックグラウンドにおいて作製された、属性59による非ヒト脊椎動物生物体。
属性61. キメラである抗体または抗体鎖のレパートリーを生じることができる非ヒト哺乳動物に発生することが可能であるES細胞または造血幹細胞である、属性29による非ヒト脊椎動物細胞であって、前記キメラ抗体または鎖が、非ヒト哺乳動物定常領域およびヒト可変領域を有する、非ヒト脊椎動物細胞。
属性62. キメラである抗体または抗体鎖のレパートリーを生じることができる非ヒト哺乳動物の組織および器官に寄与する能力があるES細胞または造血幹細胞である、属性29による非ヒト脊椎動物細胞であって、前記キメラ抗体または鎖が、非ヒト哺乳動物定常領域およびヒト可変領域を有する、非ヒト脊椎動物細胞。
属性63. 少なくともヒト重鎖およびヒト軽鎖由来のヒト可変領域DNAを含む、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性64. 細胞または生物体が、キメラ抗体鎖をコードするDNAについて1つ、2つまたは3つ全部の免疫グロブリン遺伝子座においてホモ接合である、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性65. 細胞または生物体が、キメラ重鎖または軽鎖をコードするDNAについて1つ、2つまたは3つ全部の免疫グロブリン遺伝子座においてヘテロ接合である、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性66. 細胞または生物体のゲノムが、別の細胞または生物体由来の定常領域DNAを含まない、属性1〜10のいずれか1つによる非ヒト脊椎動物細胞または生物体。
属性67. 不死化されている、属性29による非ヒト脊椎動物細胞。
属性68. ES細胞系AB2.1、またはC57BL/6、M129、129/SV、BALB/cおよびC57BL/6、M129、129/SV、もしくはBALB/cの任意の雑種から選択されるマウス系統由来の細胞である、属性67による非ヒト脊椎動物細胞。
属性69. ヒト免疫グロブリン可変領域を含む免疫グロブリン重鎖を得るための方法であって、
属性1a、4、4a、5〜28、30〜60および63〜66のいずれか1つのマウスを準備する工程、ならびに
前記ヒト可変領域を含む免疫グロブリン重鎖を含むポリペプチドを単離する工程
を含む、方法。
属性69a. 前記免疫グロブリン重鎖が、2鎖または4鎖抗体の重鎖である、属性69の方法。
属性69b. 属性69の方法に従って単離された抗体。
属性69c. 属性69bの抗体、および薬学的に許容される担体、賦形剤または希釈剤を含む医薬組成物。
属性69d. 免疫グロブリン重鎖を単離する工程の前に、前記マウスを抗原で免疫化する工程が実施される、属性69または69aの方法。
属性69e. 抗原がヒト抗原である、属性69dの方法。
属性69f. 前記免疫グロブリン重鎖が、アイソタイプIgG1、IgG2、IgG3およびIgMの1つであり、かつ前記ヒト可変領域が前記抗原を特異的に結合する、属性69または69aの方法。
属性69g. 前記免疫グロブリン重鎖が2鎖または4鎖抗体の重鎖であり、かつ前記抗体が前記抗原を特異的に結合する、属性69fの方法。
属性70. ポリヌクレオチドランディングパッド配列であって、ポリヌクレオチドが、相同組換えによる標的染色体への挿入を可能にするために、標的染色体の領域に相同的な核酸領域を含み、かつ核酸のランディングパッドへのリコンビナーゼ駆動型挿入を可能にする核酸部位を含み、ポリヌクレオチド配列が、(i)場合により配列番号1の配列である、ラットスイッチ配列、場合によりラットSミュースイッチ;(ii)5'から3'への方向に、マウスEμ配列、ラットスイッチ配列およびマウスCμ;ならびに/または(iii)配列番号6の配列を有する3'相同性アームのうちの1つまたは複数を含む、ポリヌクレオチドランディングパッド配列。
属性71. 細胞のゲノムへ挿入されている、属性70によるランディングパッド配列を含む、非ヒト脊椎動物生物体、場合により哺乳動物。
属性72. ラットスイッチ配列が、配列GGGCTの3個、4個、5個、6個またはそれ以上の連続したリピートを含み、場合により配列番号1である、属性70または71による非ヒト脊椎動物細胞もしくは生物体、場合により哺乳動物、またはランディングパッド。
属性73. ランディングパッド配列が配列番号2の配列を含む、属性70〜72のいずれか1つによる非ヒト脊椎動物細胞もしくは生物体、場合により哺乳動物、またはランディングパッド。
属性74. ランディングパッド配列が配列番号3の配列を含む、属性70〜73のいずれか1つによる非ヒト脊椎動物細胞もしくは生物体、場合により哺乳動物、またはランディングパッド。
属性75. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、ゲノムが、5'から3'転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を有するIg H鎖遺伝子座を含む細胞を生じる工程であって、C領域がラットC領域ではない工程
を含む、単離された非ヒト脊椎動物細胞、場合により哺乳動物細胞を生成するための方法。
属性76. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、ゲノムが、5'から3'転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を有するIg H鎖遺伝子座を含む細胞を生じる工程であって、ラットスイッチ配列が、リピート配列GGGCTの少なくとも3個の連続したリピート(配列番号46〜50)を含むラットSミュー配列である工程
を含む、単離された非ヒト脊椎動物細胞、場合により哺乳動物細胞を生成するための方法。
属性77. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、ゲノムが、5'から3'転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を有するIg H鎖遺伝子座を含む細胞を生じる工程であって、ラットスイッチ配列が、GAGCT (296個のリピート)、GGGGT (50個のリピート)および/またはGGGCT (83個のリピート)を含むラットSミュー配列である工程
を含む、非ヒト脊椎動物細胞、場合により哺乳動物細胞を生成するための方法。
属性78. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、5'から3'転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を有するIg H鎖遺伝子座を含むゲノムを生じる工程であって、C領域がラットC領域ではない工程
を含む、非ヒト脊椎動物生物体、場合により哺乳動物を生成するための方法。
属性79. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、5'から3'転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を有するIg H鎖遺伝子座を含むゲノムを生じる工程であって、ラットスイッチが、リピート配列GGGCTの少なくとも3個の連続したリピート(配列番号46〜50)を含むラットSミュー配列である工程
を含む、非ヒト脊椎動物生物体、場合により哺乳動物を生成するための方法。
属性80. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、5'から3'転写方向に、V領域、J領域、D領域、ラットスイッチ配列およびC領域を有するIg H鎖遺伝子座を含むゲノムを生じる工程であって、ラットスイッチが、GAGCT (296個のリピート)、GGGGT (50個のリピート)および/またはGGGCT (83個のリピート)を含むラットSミュー配列である工程
を含む、非ヒト脊椎動物生物体、場合により哺乳動物を作製するための方法。
属性81. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、3つ以上の哺乳動物種由来のDNAを有するIg H鎖遺伝子座を含むゲノムを生じる工程であって、Ig H鎖遺伝子座が、5'から3'転写方向に、少なくともV領域、D領域、J領域、エンハンサー、ラットスイッチ配列およびC領域を含む工程
を含む、単離された非ヒト脊椎動物細胞または生物体、場合により哺乳動物を作製するための方法。
属性82. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入し、
それにより、5'から3'転写方向に、少なくともヒトVL領域、ヒトJL領域およびCL領域を含むIg L鎖遺伝子座を含むゲノムを生じる工程
をさらに含む、属性75〜81のいずれか1つの方法。
属性83. 前記定常領域(CL)がマウスまたはヒト定常領域である、属性81または82の方法。
属性84. エンハンサーがマウスエンハンサー配列である、属性81または82の方法。
属性85. 前記ラットスイッチ配列がラットSミューである、属性75、78または81〜84のいずれか1つの方法。
属性86. 前記V、Dおよび/もしくはJ領域がヒトであり、またはVおよび/もしくはJ領域がヒトである、属性75〜85のいずれか1つの方法。
属性87. IgH遺伝子座C領域が、マウスC領域またはヒトC領域のうちの1つである、属性75〜86のいずれか1つの方法。
属性88. 非ヒト哺乳動物細胞ゲノムが、その後、場合により宿主非ヒト哺乳動物Ig遺伝子座の全部または部分の反転により、場合により1つまたは複数の部位特異的リコンビナーゼ部位のそのゲノムへの挿入およびその後、宿主非ヒト哺乳動物Ig遺伝子座の全部または部分のリコンビナーゼ媒介性切除または反転におけるこれらの部位の使用により、細胞または脊椎動物生物体において天然(完全な宿主種特異的)抗体の発現を阻止するように改変される、属性75〜87のいずれか1つによる方法。
属性89. 細胞がES細胞である、属性75〜88のいずれか1つによる方法。
属性90. DNAを挿入する工程が、相同組換えによる複数の構築物の段階的挿入により達成され、前記DNAが宿主非ヒト哺乳動物定常領域の上流に挿入される、属性75〜89のいずれか1つによる方法。
属性91. 開始カセットがES細胞のゲノムへ挿入され、それにより、固有のターゲット領域を供給している部位で、DNAを挿入する工程が起きる、属性75〜90のいずれか1つによる方法。
属性92. 1つまたは複数の挿入事象が部位特異的組換えを利用する、属性75〜91のいずれか1つによる方法。
属性93. 前記1つまたは複数の挿入事象が、Frt部位、Flpリコンビナーゼ、Dreリコンビナーゼ、Rox部位またはPhiC31リコンビナーゼのうちの1つまたは複数によって媒介され、またはそれらを要する、属性92による方法。
属性94. 1つまたは複数の非天然DNA構築物を非ヒト哺乳動物細胞ゲノムへ挿入する工程が、
1 開始カセット(本明細書ではランディングパッドとも呼ばれる)を形成するDNAの細胞のゲノムへの挿入工程;
2 第1のDNA断片の挿入部位への挿入工程であって、第1のDNA断片が、ヒトDNAの第1の部分、および第1の選択マーカーを含有し、または挿入により選択マーカーを生じる第1のベクター部分を含む、工程;
3 場合により、ベクターDNAの部分の除去工程;
4 第1のDNA断片のベクター部分への第2のDNA断片の挿入工程であって、第2のDNA断片が、ヒトDNAの第2の部分および第2のベクター部分を含有し、第2のベクター部分が第2の選択マーカーを含有し、または挿入により第2の選択マーカーを生じる、工程;
5 第1および第2のヒトDNA断片が、連続した配列を形成することを可能にするための任意のベクターDNAの除去工程;ならびに
6 必要に応じて、ヒトV(D)J DNAの一部の挿入の工程とベクターDNA除去の工程を反復して、宿主定常領域と連結したキメラ抗体を生成することができるのに十分なヒトVDJまたはVJ領域の全部または部分を有する細胞を作製する工程であって、少なくとも1つのDNA断片の挿入が部位特異的組換えを使用する、工程
を含む、属性75〜93のいずれか1つによる方法。
属性95. ランディングパッド配列が、配列番号6、配列番号2または配列番号3を含む、属性75〜94のいずれか1つによる方法。
属性96. ランディングパッドが、マウスJ1-4とマウスCミュー配列の間の相同組換えによりマウス細胞ゲノムへ挿入される、属性75〜95のいずれか1つによる方法。
属性97. ランディングパッドが、マウスJ1-4とマウスEミュー配列の間の相同組換えによりマウス細胞ゲノムへ組換えられる、属性75〜95のいずれか1つによる方法。
属性98. ランディングパッドが、ラットSミュースイッチなどの非宿主Sミューを含む、属性75〜97のいずれか1つによる方法。
属性99. ヒトコード領域DNA配列が、そのヒトDNAの転写が非ヒト哺乳動物調節配列によって調節されるように、非ヒト哺乳動物調節配列と機能的配置にある、属性1〜98のいずれか1つに起因する、方法、細胞または哺乳動物。
属性100. 所望の抗原に特異的な抗体または抗体重鎖もしくは軽鎖を生成するための方法であって、属性4〜28、30〜60、63〜66または71〜74に起因する非ヒト脊椎動物を所望の抗原で免疫化する工程、およびその抗体もしくは抗体鎖を回収する工程、またはその抗体もしくは重鎖もしくは軽鎖を産生する細胞を回収する工程を含む、方法。
属性101. 属性100による方法を実行する工程、およびその後、回収された抗体または抗体鎖の非ヒト哺乳動物定常領域をヒト定常領域と、適切には、その抗体または抗体鎖をコードする核酸を操作することにより、置換する工程を含む、完全ヒト化抗体または抗体鎖を生成するための方法。
属性102. 所望の抗原を結合する、属性100もしくは101に従って作製されるヒト化抗体もしくは抗体鎖、またはその誘導体。
属性103. 医学における、所望の抗原を結合する、属性100もしくは101に従って作製されるヒト化抗体もしくは鎖、またはその誘導体の使用。
属性104. 医学に使用する、所望の抗原を結合する、属性100もしくは101に従って作製されるヒト化抗体もしくは抗体鎖、またはその誘導体。
属性105. 所望の抗原を結合する、属性100もしくは101による抗体もしくは抗体鎖、またはその誘導体、および薬学的に許容される担体または他の賦形剤を含む医薬組成物。
属性106. 所望の抗原を結合する、属性100に従って作製されるキメラ抗体のキメラ抗体誘導体。
属性107. ゲノムが、マウス12番染色体の座標114,667,090から座標114,665,190の間、例えば、座標114,667,089と座標114,667,090の間でのヒトIgH VDJ DNAの挿入を含むマウスであって、その挿入が、ヒト14番染色体由来のヌクレオチド105,400,051〜106,368,585を含み(座標は、ヒトゲノムについてのNCBI36、およびマウスC57BL/6J系統についてのNCBI m37、またはそれぞれ、別のヒト14番染色体配列における等価の座標もしくは別のマウスゲノムにおける等価の座標を参照する)、マウスが非ヒト哺乳動物定常領域およびヒト可変領域を有するキメラ重鎖のレパートリーを生じることができるように、その挿入が、宿主非ヒト哺乳動物定常領域の上流にあり、キメラ重鎖と共に抗体を形成することができる完全ヒトラムダまたはカッパヒト抗体鎖が生成され得るように、哺乳動物がまた、完全VJCヒト軽鎖領域の挿入を含む、マウス。
属性108. ゲノムが、マウス12番染色体の座標114,667,090と座標114,667,091の間でのヒトIgH VDJ DNAの挿入を含み、その挿入が、ヒト14番染色体由来のヌクレオチド105,400,051〜106,368,585を含み、またはそれらからなり(座標は、ヒトゲノムについてのNCBI36、およびマウスC57BL/6J系統についてのNCBI m37、またはそれぞれ、別のヒト14番染色体配列における等価の座標もしくは別のマウスゲノムにおける等価の座標を参照する)、マウスがマウス定常領域およびヒト可変領域を有するキメラ重鎖のレパートリーを生成することができるように、その挿入が、マウス定常領域の上流であり、キメラ重鎖と共に抗体を形成することができる完全ヒトラムダまたはカッパヒト抗体鎖が生じ得るように、マウスがまた、完全VJCヒト軽鎖領域の挿入を含む、マウス。
属性109. ゲノムが、マウス12番染色体の座標114,667,090から座標114,665,190の間でのヒトIgH VDJ DNAの挿入を含み、座標が、マウスC57BL/6J系統についてのNCBI m37、または別のマウス系統における等価の位置を参照し、その挿入が、ヒト14番染色体由来のヌクレオチド106,328,951〜107,268,444を含み、またはそれらからなり、座標が、ヒトについてのGRCH37/hg19配列データベース、または別のヒト14番染色体配列における等価の位置からの同じヌクレオチドを参照し、マウスがマウス定常領域およびヒト可変領域を有するキメラ重鎖のレパートリーを生成することができるように、その挿入が、宿主マウス定常領域の上流であり、キメラ重鎖と共に抗体を形成する完全ヒトラムダまたはカッパヒト抗体鎖を生じるように機能し得る完全VJCヒト軽鎖領域の挿入もそのマウスが含む、マウス。
属性110. 挿入が、マウス12番染色体の座標114,666,435と座標114,666,436の間である、属性109によるマウス。
属性116. (a)属性29、61、62または68のいずれか1つの非ヒトES細胞を準備する工程であって、その非ヒトES細胞が、内因性抗体発現が不活性化されている子孫細胞を生じる能力があり、かつその子孫細胞が、ヒト可変領域を含む抗体を発現する能力がある、工程;および
(b)場合により、前記子孫細胞、または前記子孫細胞を含む非ヒト脊椎動物生物体へ前記非ヒトES細胞を分化させる工程
を含む、非ヒト脊椎動物細胞、場合によりマウスまたはラットを作製する方法。
属性117. 前記複数のヒト抗体遺伝子セグメントが少なくとも11個のヒトVセグメントを含む、属性116による方法。
属性118. 前記複数のヒト抗体遺伝子セグメントが少なくとも6個のヒトJセグメントを含む、属性116または117による方法。
属性119. ヒトヌクレオチド配列が工程(b)において挿入され、そのヌクレオチド配列が、前記抗体遺伝子セグメントを含み、そのヌクレオチド配列が少なくとも110kbである、属性116〜118のいずれか1つによる方法。
属性120. 内因性遺伝子座が重鎖遺伝子座であり、かつヒト抗体遺伝子セグメントが、最も3'側の内因性JH遺伝子セグメントと内因性Cミューの間にある、属性116〜119のいずれか1つによる方法。
属性121. 子孫細胞が前記トランスジェニック遺伝子座についてホモ接合である、属性116〜120のいずれか1つによる方法。
属性122. 所定の抗原を結合する抗体を単離する方法であって、
(a)属性1a、4、4a、5〜28、30〜60、63〜66または71〜74、および107〜110のいずれか1つによる脊椎動物生物体、マウスまたは哺乳動物、場合によりラットを準備する工程;
(b)前記脊椎動物生物体、マウスまたは哺乳動物を前記抗原(場合により、抗原は感染性疾患病原体の抗原である)で免疫化する工程;
(c)脊椎動物生物体、マウスまたは哺乳動物からBリンパ球を取り出し、抗原に結合する抗体を発現する1つまたは複数のBリンパ球を選択する工程;
(d)場合により、前記選択されたBリンパ球またはその子孫を、場合によりそれ由来のハイブリドーマを生成することにより、不死化する工程;および
(e)そのBリンパ球によって発現した抗体(例えば、IgG型抗体)を単離する工程
を含む、方法。
属性123. 前記抗原を結合する前記抗体をコードする核酸を前記Bリンパ球から単離する工程;場合により、抗体の重鎖定常領域ヌクレオチド配列を、ヒトまたはヒト化重鎖定常領域をコードするヌクレオチド配列と交換し、場合により、前記抗体の可変領域を親和性成熟させる工程;および場合により、前記核酸を発現ベクターおよび場合により宿主へ挿入する工程を含む、属性122の方法。
属性124. 属性122または123の方法により産生された抗体の突然変異体または誘導体を作製する工程をさらに含む、属性122または123の方法。
属性125. 表面プラズモン共鳴法によって決定される場合、所定の抗原をサブ50nM親和性で特異的に結合する可変領域を含む抗体またはその断片であって、抗体が、属性1a、4、4a、5〜28、30〜60、63〜66または71〜74、および107〜110のいずれか1つによる非ヒト脊椎動物生物体、マウスまたは哺乳動物、場合によりラットから単離され、前記脊椎動物生物体、マウスまたは哺乳動物の再構成されたVDJによりコードされる重鎖CDR3s(Kabatにより定義される場合)を含み、VDJが、前記脊椎動物の重鎖遺伝子座のヒトJH遺伝子セグメントの、D(場合により、前記遺伝子座のヒトD遺伝子セグメント)およびVH遺伝子セグメントとのインビボでの再構成の産物である、抗体またはその断片。
属性126. 表面プラズモン共鳴法によって決定される場合、前記抗原をサブ50nM親和性で特異的に結合する、属性125の抗体と同一である抗体もしくは断片、またはその誘導体、場合により、定常領域がヒトである誘導体および/もしくは親和性成熟した誘導体。
属性127. 属性125または126の抗体または断片、および薬学的に許容される希釈剤、賦形剤または担体を含む医薬組成物。
属性128. 場合によりベクター(例えば、発現ベクター)の一部としての、属性125または126の抗体または断片の重鎖可変領域をコードするヌクレオチド配列。
属性129. 配列が、属性125の抗体が単離される脊椎動物のB細胞に由来するcDNAであり、またはそのようなcDNAと同一である、属性128のヌクレオチド配列。
属性130. 属性128または129によるヌクレオチド配列を含む、単離された宿主細胞(例えば、ハイブリドーマまたはCHO細胞またはHEK293細胞)。
属性131. 所定の抗原を結合する抗体を単離する方法であって、
(a)属性1a、4、4a、5〜28、30〜60、63〜66または71〜74、および107〜110のいずれか1つによる脊椎動物生物体、マウスまたは哺乳動物、場合によりラットを準備する工程;
(b)前記脊椎動物生物体、マウスまたは哺乳動物を前記抗原で免疫化する工程;
(c)脊椎動物生物体、マウスまたは哺乳動物からBリンパ球を取り出し、抗原にサブnM親和性で結合する抗体を発現するBリンパ球を選択する工程であって、抗体が属性125による工程;
(d)場合により、前記選択されたBリンパ球またはその子孫を、場合によりそれ由来のハイブリドーマを作製することにより、不死化する工程;および
(e)Bリンパ球によって発現した抗体(例えば、IgG型抗体)を単離する工程
を含む、方法。
属性132. 前記抗原を結合する前記抗体をコードする核酸を前記Bリンパ球から単離する工程;場合により、抗体の重鎖定常領域ヌクレオチド配列を、ヒトまたはヒト化重鎖定常領域をコードするヌクレオチド配列と交換し、場合により、前記抗体の可変領域を親和性成熟させる工程;および場合により、前記核酸を発現ベクターおよび場合により宿主へ挿入する工程を含む、属性131の方法。
属性133. 属性131または132の方法により産生された抗体の突然変異体または誘導体を作製する工程をさらに含む、属性131または132による方法。
属性137. 内因性マウス抗体重鎖遺伝子セグメントの反転および不活性化のためのカセットであって、セグメントが、マウス細胞(例えば、ES細胞)の12番染色体上の重鎖遺伝子座配列の部分であり、配列が、その3'末端で部位特異的組換え部位(例えば、lox、roxまたはfrt)に隣接しており、カセットが、発現可能な標識または選択マーカー、ならびに5'相同性アームおよび3'相同性アームに隣接した適合性部位特異的組換え部位(例えば、lox、roxまたはfrt)をコードするヌクレオチド配列を含み、(i)5'相同性アームが座標119,753,124から座標119,757,104までのマウス12番染色体DNAであり、かつ3'相同性アームが座標119,749,288から座標119,753,123までのマウス12番染色体DNAであり;(ii)5'相同性アームが座標119,659,459から座標119,663,126までのマウス12番染色体DNAであり、かつ3'相同性アームが座標119,656,536から座標119,659,458までのマウス12番染色体DNAであり;(iii)5'相同性アームが座標120,918,607から座標120,921,930までのマウス12番染色体DNAであり、かつ3'相同性アームが座標120,915,475から座標120,918,606までのマウス12番染色体DNAである、カセット。
属性138. ゲノムが12番染色体の反転を含む、マウスまたはマウス細胞であって、反転が、反転した内因性重鎖遺伝子セグメント(例えば、内因性重鎖VDJ領域全体などのVH、DおよびJH)を含み;マウスまたはマウス細胞のゲノムが、内因性定常領域(例えば、Cミュー)の上流で、かつそれと作動可能に連結された、複数のヒトVH遺伝子セグメント、複数のヒトDセグメントおよび複数のヒトJHセグメントを含み、その結果、マウスまたは(場合により、B細胞への分化後の)マウス細胞が、ヒト遺伝子セグメントに由来する配列を含む可変領域を含む抗体を発現する能力があり;反転が、(i)座標119,753,123から座標114,666,436までのマウス12番染色体の反転;(ii)座標119,659,458から座標114,666,436までのマウス12番染色体の反転;または(iii)座標120,918,606から座標114,666,436までのマウス12番染色体の反転である、マウスまたはマウス細胞。
本発明はまた以下の規定を含む:
全軽鎖の≧70%または≧80%はヒトVλである。
規定1. 組換え免疫グロブリン軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物であって、前記遺伝子座が、内因性軽鎖遺伝子座に位置するターゲッティング挿入断片を含み、ターゲッティング挿入断片が、ヒトラムダ軽鎖遺伝子座DNAを含み、かつラムダ軽鎖定常領域の上流に位置し、前記ターゲッティング挿入断片が、ヒトVλおよびJλ遺伝子セグメントのレパートリーを含み、脊椎動物が、ヒトラムダ可変領域を含む免疫グロブリン軽鎖を発現し、前記脊椎動物において発現した免疫グロブリン軽鎖の少なくとも70%または80%が、ヒトラムダ可変領域を含む、非ヒト脊椎動物。
規定2. ヒトVλおよびJλ挿入のレパートリーが、Vλ2-18からCλ7までのヒトラムダ鎖免疫グロブリン遺伝子座により含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメントを含む、規定1の脊椎動物。
規定3. 内因性軽鎖遺伝子座が内因性カッパ遺伝子座である、規定1の脊椎動物。
規定4. ゲノムが、ヒトVλおよびJλ遺伝子セグメントのレパートリーについてホモ接合であり、内因性カッパ鎖発現が実質的に不活性である、規定3の脊椎動物。
規定5. 内因性カッパ鎖発現が完全に不活性である、規定4の脊椎動物。
規定6. 内因性軽鎖遺伝子座が内因性ラムダ遺伝子座である、規定1の脊椎動物。
規定7. ゲノムが、ヒトVλおよびJλ遺伝子セグメントのレパートリーについてホモ接合であり、内因性ラムダ鎖の発現が実質的に不活性である、規定6の脊椎動物。
規定8. 内因性ラムダ鎖の発現が完全に不活性である、規定7の脊椎動物。
規定9. ターゲッティング挿入断片が、内因性VおよびJ軽鎖遺伝子セグメントの下流に位置する、規定1の脊椎動物。
規定10. ターゲッティング挿入断片がヒトラムダ軽鎖遺伝子座の定常領域を含む、規定1の脊椎動物。
規定11. 前記脊椎動物によって発現した前記軽鎖が、ヒトVλ、JλおよびCλ遺伝子セグメントの組換えに由来するV-C領域を含む、規定10の脊椎動物。
規定12. 脊椎動物がマウスES細胞またはラットES細胞に由来している、規定1の脊椎動物。
規定13. 脊椎動物がマウスまたはラットである、規定1の脊椎動物。
規定14. ターゲッティング挿入断片が、ヒト遺伝子座において機能的ヒトV軽鎖遺伝子座とJ軽鎖遺伝子セグメントの間にあるヒトラムダ軽鎖遺伝子座DNAであり、または内因性非ヒト脊椎動物ゲノムにおける対応するラムダ軽鎖遺伝子セグメントの間にあるラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含む、規定1の脊椎動物。
規定15. ターゲッティング挿入断片が、ヒトラムダ免疫グロブリン遺伝子セグメント偽遺伝子を含む、規定14の脊椎動物。
規定16. ターゲッティング挿入断片が、ヒトラムダ免疫グロブリン遺伝子セグメント偽遺伝子を欠く、規定14の脊椎動物。
規定17. 前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも70%、75%または80%、84%、85%、90%、95%、96%、97%、98%または99%または100%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するヒトV領域を含む、規定1の脊椎動物。
規定18. 前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも90%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するヒトV領域を含む、規定17の脊椎動物。
全軽鎖の≧60%がヒトVλ領域を有する。
規定19. 組換え免疫グロブリン軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物であって、前記遺伝子座が、内因性軽鎖遺伝子座に位置するターゲッティング挿入断片を含み、ターゲッティング挿入断片が、ラムダ軽鎖定常領域の上流に位置するヒトラムダ軽鎖遺伝子座DNAを含み、かつヒトVλおよびJλ遺伝子セグメントのレパートリーを含み、前記ゲノムが、軽鎖定常領域の上流に位置するカッパV遺伝子セグメントを含み、脊椎動物が、ラムダ可変領域を含む免疫グロブリン軽鎖を発現し、前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも60%がヒトラムダ可変領域を含む、非ヒト脊椎動物。
規定20. 前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも65%、70%、80%、84%、85%、90%、95%、96%、97%、98%もしくは99%または100%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するヒト可変領域を含む、規定19の脊椎動物。
規定21. 前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも84%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するヒト可変領域を含む、規定20の脊椎動物。
規定22. 前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも95%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するヒト可変領域を含む、規定21の脊椎動物。
規定23. 脊椎動物が、マウスES細胞またはラットES細胞に由来する、規定19の脊椎動物。
規定24. 脊椎動物がマウスまたはラットである、規定19の脊椎動物。
規定25. ターゲッティング挿入断片が、内因性VおよびJ軽鎖遺伝子セグメントの下流に位置する、規定19の脊椎動物または細胞。
規定25a. 軽鎖定常領域の上流に位置するカッパV遺伝子セグメントが、内因性カッパV遺伝子セグメントである、規定19の脊椎動物。
カッパまたはラムダ遺伝子座へのVλ Jλ
規定26. 組換え免疫グロブリン軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物または細胞であって、前記遺伝子座が、内因性VおよびJ軽鎖遺伝子セグメントの下流に位置するターゲッティング挿入断片を含み、ターゲッティング挿入断片が、ヒト免疫グロブリンVλおよびJλ遺伝子セグメントを含み、前記ヒトVλおよびJλ遺伝子セグメントが、軽鎖定常領域の上流に位置し、前記ヒトVλおよびJλ遺伝子セグメントが、ヒトラムダ軽鎖遺伝子座のVλ2-18からCλ7までの少なくとも機能的VおよびJ遺伝子セグメントを含み、前記脊椎動物または細胞が、ヒトラムダ可変領域を含む免疫グロブリン軽鎖を発現する、非ヒト脊椎動物または細胞。
規定27. ターゲッティング挿入断片が、ヒトラムダ軽鎖遺伝子座の定常領域を含む、規定26の脊椎動物または細胞。
規定28. 前記脊椎動物または細胞によって発現した前記軽鎖が、ヒトVλ、JλおよびCλ遺伝子セグメントの組換えに由来するヒトV-C領域を含む、規定27の脊椎動物または細胞。
規定29. 内因性VおよびJ軽鎖遺伝子セグメントがVカッパおよびJカッパ遺伝子セグメントである、規定26の脊椎動物または細胞。
規定30. 内因性カッパ鎖発現が実質的に不活性である、規定26の脊椎動物または細胞。
規定31. 内因性カッパ鎖発現が完全に不活性である、規定30の脊椎動物または細胞。
規定32. 内因性VおよびJ軽鎖遺伝子セグメントがVラムダおよびJラムダ遺伝子セグメントである、規定26の脊椎動物または細胞。
規定33. 内因性ラムダ鎖発現が実質的に不活性である、規定26の脊椎動物または細胞。
規定34. 内因性ラムダ鎖発現が完全に不活性である、規定30の脊椎動物または細胞。
規定35. ターゲッティング挿入断片が、ヒト遺伝子座における機能的ヒトV軽鎖遺伝子セグメントとJ軽鎖遺伝子セグメントの間にあるヒトラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含み、または内因性ゲノムにおける対応するラムダ軽鎖遺伝子セグメント間にあるラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含む、規定25の脊椎動物または細胞。
規定36. ターゲッティング挿入断片が偽遺伝子を含む、規定35の脊椎動物または細胞。
規定37. 脊椎動物が、マウスES細胞またはラットES細胞に由来する、規定25の脊椎動物。
規定38. 脊椎動物がマウスまたはラットである、規定25の脊椎動物。
規定38a. 前記ヒトVλおよびJλ遺伝子セグメントが、内因性軽鎖定常領域の上流に位置する、規定25の脊椎動物。
カッパ遺伝子座へのVJCλ
規定39. 組換え免疫グロブリンカッパ軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物または細胞であって、前記遺伝子座が、内因性カッパ定常領域の上流に位置するヒトVλ、JλおよびCλ遺伝子セグメントのターゲッティング挿入断片を含み、前記脊椎動物または細胞が、ヒトVλ、JλおよびCλ遺伝子セグメントの組換えに由来するヒトV-C領域を含む免疫グロブリン軽鎖を発現し、前記ターゲッティング挿入断片が、ヒトラムダ鎖免疫グロブリン遺伝子座のVλ3-1からCλ7までの少なくとも機能的V、JおよびC遺伝子セグメントを含む、非ヒト脊椎動物または細胞。
規定40. 前記ターゲッティング挿入断片が、ヒトラムダ軽鎖免疫グロブリン遺伝子座のVλ2-18からCλ7までの少なくとも機能的V、JおよびC遺伝子セグメントを含む、規定39の脊椎動物または細胞。
規定41. ターゲッティング挿入断片が、ヒト遺伝子座における機能的ヒトV軽鎖遺伝子セグメントとJ軽鎖遺伝子セグメントの間、もしくはJ軽鎖遺伝子セグメントとC軽鎖遺伝子セグメントの間にあるヒトラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含み、または内因性非ヒト脊椎動物ゲノムにおける対応するラムダ軽鎖遺伝子セグメント間にあるラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含む、規定39の脊椎動物または細胞。
規定42. ターゲッティング挿入断片が偽遺伝子を含む、規定41の脊椎動物または細胞。
規定43. 脊椎動物が、マウスES細胞またはラットES細胞に由来する、規定39の脊椎動物。
規定44. 脊椎動物がマウスまたはラットである、規定39の脊椎動物。
規定45. 内因性カッパ鎖発現が実質的に不活性である、規定39の脊椎動物または細胞。
規定46. 内因性カッパ鎖発現が完全に不活性である、規定45の脊椎動物または細胞。
規定47. ターゲッティング挿入断片が、内因性VおよびJ軽鎖遺伝子セグメントの下流に位置する、規定39の脊椎動物または細胞。
カッパ遺伝子座へのVJλ
規定48. 組換え免疫グロブリンカッパ軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物または細胞であって、前記遺伝子座が、ターゲッティング挿入断片の上流に内因性VκおよびJκ遺伝子セグメントを含み、そのターゲッティング挿入断片が、ヒトラムダ軽鎖免疫グロブリン遺伝子座のVλ3-1からCλ7までの少なくとも機能的VλおよびJλ遺伝子セグメントを含み、前記脊椎動物または細胞が、ヒトラムダ可変領域を含む免疫グロブリン軽鎖を発現し、内因性VκおよびJκ遺伝子セグメントの組換えに由来する内因性カッパ可変領域を含む軽鎖の発現が実質的に不活性である、非ヒト脊椎動物または細胞。
規定49. 脊椎動物が、マウスES細胞またはラットES細胞に由来する、規定48の脊椎動物。
規定50. 脊椎動物がマウスまたはラットである、規定48の脊椎動物。
規定51. 前記ターゲッティング挿入断片が、ヒトラムダ軽鎖免疫グロブリン遺伝子座のVλ2-18からCλ7までの少なくとも機能的VλおよびJλ遺伝子セグメントを含む、規定48の脊椎動物または細胞。
規定52. 内因性VκおよびJκ軽鎖発現が完全に不活性である、規定48の脊椎動物または細胞。
規定53. 前記脊椎動物または細胞によって発現した免疫グロブリン軽鎖の10%未満、5%未満、4%未満、3%未満、2%未満、1%未満または0.5%未満が内因性カッパ可変領域を含む、規定48の脊椎動物または細胞。
規定54. ターゲッティング挿入断片が、ヒト遺伝子座における機能的ヒトV遺伝子セグメントとJ遺伝子セグメントの間にあるヒトラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含み、または内因性ゲノムにおける対応するラムダ軽鎖遺伝子セグメント間にあるラムダ軽鎖遺伝子座DNAである遺伝子セグメント間の介在配列を含む、規定48の脊椎動物または細胞。
規定55. 少なくとも1つの内因性カッパエンハンサー(Eκ)配列、少なくとも1つの内因性Vカッパ遺伝子セグメント、少なくとも1つの内因性Jカッパ遺伝子セグメント、および少なくとも1つの内因性Cカッパ定常領域を含む内因性免疫グロブリンカッパ軽鎖遺伝子座配列を含む組換えゲノムを有する非ヒト脊椎動物または細胞であって、内因性VカッパおよびJカッパ遺伝子セグメントが、同じ染色体上で、内因性免疫グロブリンカッパ軽鎖ポリペプチドの産生を実質的に阻止する距離だけ、それぞれの内因性Eκ配列から分離されている、非ヒト脊椎動物または細胞。
規定56. 内因性VカッパおよびJカッパ遺伝子セグメントが、内因性非組換えカッパ軽鎖遺伝子座における内因性VカッパおよびJカッパ遺伝子セグメントと、それぞれの内因性Eκ配列との間の距離より長い距離だけ、それぞれの内因性Eκ配列から分離されている、規定55の脊椎動物または細胞。
規定57. 細胞がマウス細胞またはラット細胞である、規定55の細胞。
規定57a. 脊椎動物が、マウスES細胞またはラットES細胞に由来する、規定55の脊椎動物。
規定58. 脊椎動物がマウスまたはラットである、規定55の脊椎動物。
規定59. 前記組換えゲノムが、1つまたは複数のヒトV軽鎖遺伝子セグメントおよび1つまたは複数のヒトJ軽鎖遺伝子セグメントを含むターゲッティング挿入断片を含み、そのターゲッティング挿入断片が、前記内因性VカッパおよびJカッパ遺伝子セグメントと前記それぞれの内因性Eκ配列との間に位置する、規定55の脊椎動物または細胞。
規定59a. 前記組換えゲノムが、ターゲッティング挿入断片についてホモ接合である、規定59の脊椎動物または細胞。
規定60. ターゲッティング挿入断片が、1つまたは複数のヒトVκおよび1つまたは複数のJκ遺伝子セグメントを含む軽鎖遺伝子セグメントを含む、規定59の脊椎動物または細胞。
規定60a. 前記組換えゲノムが、ターゲッティング挿入断片についてホモ接合である、規定60の脊椎動物または細胞。
規定61. ターゲッティング挿入断片が、ヒトVλおよびJλ遺伝子セグメントのレパートリーを含み、かつターゲッティング挿入断片が、内因性軽鎖遺伝子座エンハンサー配列の100kb以内に挿入されている、前記規定のいずれか1つの脊椎動物または細胞。
規定62. ターゲッティング挿入断片が、少なくとも10個のヒトVλ遺伝子またはヒトJλ遺伝子セグメントのレパートリーを含み、かつターゲッティング挿入断片が、内因性軽鎖定常領域の上流に位置する、前記規定のいずれか1つにの脊椎動物または細胞。
規定63. ターゲッティング挿入断片が、Vλ2-18からVλ3-1までのヒト免疫グロブリンラムダ鎖遺伝子座の少なくとも一部を含む、規定62の脊椎動物または細胞。
規定64. ターゲッティング挿入断片が、少なくとも2個、3個、4個または5個のヒトJλ遺伝子セグメントを含む、規定62の脊椎動物または細胞。
規定65. ヒトJλ遺伝子セグメントがお互いに異なる、規定64の脊椎動物または細胞。
規定66. ヒトJλ遺伝子セグメントがJλ1、Jλ2、Jλ3、Jλ6およびJλ7である、規定65の脊椎動物または細胞。
規定67. ターゲッティング挿入断片が、Vλ2-18からCλ7までのヒト免疫グロブリンラムダ鎖遺伝子座の少なくとも一部を含む、規定62の脊椎動物または細胞。
規定68. ターゲッティング挿入断片が、ヒトJλ4Cλ4および/またはヒトJλ5Cλ5を排除する、規定62の脊椎動物または細胞。
規定69. ターゲッティング挿入断片がヒト軽鎖エンハンサーを含む、規定62の脊椎動物または細胞。
規定70. ヒト軽鎖エンハンサーがEλ配列であり、Eλ配列が、ヒトJλ遺伝子セグメントと内因性軽鎖定常領域との間に位置する、規定69の脊椎動物または細胞。
規定71. ヒトJλ遺伝子セグメントがヒトJλCλクラスターの部分である、規定70の脊椎動物または細胞。
規定72. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ免疫グロブリン軽鎖を発現し、ヒトVλがVλ3-1、および場合によりVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8およびVλ4-3のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲッティング挿入断片に含まれる、前記規定のいずれか1つの脊椎動物または細胞。
規定73. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ免疫グロブリン軽鎖を発現し、ヒトVλがVλ2-14、および場合によりVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲッティング挿入断片に含まれる、前記規定のいずれか1つの脊椎動物または細胞。
規定74. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ免疫グロブリン軽鎖を発現し、ヒトVλがVλ2-8、および場合によりVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ4-3およびVλ3-1のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントが、ターゲッティング挿入断片に含まれる、前記規定のいずれか1つの脊椎動物または細胞。
規定75. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ免疫グロブリン軽鎖を発現し、ヒトVλがVλ3-10、および場合によりVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲッティング挿入断片に含まれる、前記規定のいずれか1つの脊椎動物または細胞。
規定76. ターゲッティング挿入断片が、ヒトラムダ軽鎖遺伝子座のVλ2-18からVλ3-1までの各機能的Vλ遺伝子セグメントを含む、前記規定のいずれか1つの脊椎動物または細胞。
規定77. 少なくともヒトVλ3-1がターゲッティング挿入断片に含まれる、前記規定のいずれか1つの脊椎動物または細胞。
規定78. 少なくともVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1が、ターゲッティング挿入断片に含まれる、規定77の脊椎動物または細胞。
規定79. 脊椎動物が、カッパ鎖より多くのラムダ鎖を発現する、前記規定のいずれか1つの脊椎動物または細胞。
規定80. 脊椎動物が内因性カッパ鎖を発現しない、前記規定のいずれか1つの脊椎動物。
規定81. 内因性カッパ鎖発現が実質的に不活性である、前記規定のいずれか1つの脊椎動物。
規定82. 内因性カッパ鎖発現が完全に不活性である、規定81の脊椎動物。
規定83. 脊椎動物が免疫グロブリン重鎖を発現する、前記規定のいずれか1つの脊椎動物。
規定84. ターゲッティング挿入断片がヒトラムダエンハンサー(Eλ)配列を含み、Eλ配列が前記内因性軽鎖遺伝子座に位置する、前記規定のいずれか1つの脊椎動物または細胞。
規定85. Eλ配列が、ターゲッティング挿入断片に含まれる最も3'側下流のCλ領域の下流に位置する、規定84の脊椎動物または細胞。
規定86. 少なくともヒトJC遺伝子セグメントJλ1-Cλ1、Jλ2-Cλ2、Jλ3-Cλ3、Jλ6-Cλ6およびJλ7-Cλ7が、ターゲッティング挿入断片に含まれる、前記規定のいずれか1つの脊椎動物または細胞。
規定87. ターゲッティング挿入断片に含まれるヒト遺伝子セグメントが生殖系列配置にある、前記規定のいずれか1つの脊椎動物または細胞。
規定88. ターゲッティング挿入が、ヒト軽鎖遺伝子座の遺伝子セグメント間配列、または内因性軽鎖遺伝子座の遺伝子セグメント間配列を含む、規定87の脊椎動物または細胞。
規定89. 内因性軽鎖エンハンサーが内因性遺伝子座に残っている、前記規定のいずれか1つの脊椎動物または細胞。
規定90. 内因性エンハンサーが生殖系列配置にある、規定89の脊椎動物または細胞。
規定91. 内因性遺伝子座がカッパ遺伝子座である、規定90の脊椎動物または細胞。
規定92. 内因性カッパエンハンサーが存在する、規定90の脊椎動物または細胞。
規定93. 内因性エンハンサーがiEκおよび/または3'Eκ配列である、規定92の脊椎動物または細胞。
規定94. 生殖系列配置が、内因性軽鎖定常領域に関してである、規定90の脊椎動物または細胞。
規定95. ゲノムが、ターゲッティング挿入断片についてヘテロ接合である、前記規定のいずれか1つの脊椎動物または細胞。
規定96. ターゲッティング挿入断片が、ヒトVおよびJ、またはヒトV、JおよびC軽鎖遺伝子セグメントを含む、規定95の脊椎動物または細胞。
規定97. ターゲッティング挿入断片が、内因性軽鎖ラムダ遺伝子座に位置する、規定96の脊椎動物または細胞。
規定98. ターゲッティング挿入断片が、内因性軽鎖カッパ遺伝子座に位置する、規定96の脊椎動物または細胞。
規定99. 内因性カッパエンハンサーが存在し、かつiEκおよび/または3'Eκ配列である、規定98の脊椎動物または細胞。
規定100. 脊椎動物がマウスES細胞またはラットES細胞に由来する、規定95の脊椎動物。
規定101. 脊椎動物がマウスまたはラットである、規定95の脊椎動物。
規定102. ゲノムが、ヒトラムダ遺伝子セグメントを含む第1のターゲッティング挿入断片、ならびにヒトカッパ免疫グロブリンVおよびJ遺伝子セグメントを含む第2のターゲッティング挿入断片を含み、第1のターゲッティング挿入断片が、第1の内因性カッパ遺伝子座内に位置し、第2のターゲッティング挿入断片が、第2の内因性カッパ遺伝子座内で、かつ内因性カッパ定常領域の上流に位置する、規定95の脊椎動物または細胞。
規定103. 内因性カッパ軽鎖エンハンサーが第1および/または第2の内因性カッパ遺伝子座内に存在する、規定102の脊椎動物または細胞。
規定104. 内因性カッパ遺伝子座が場合により、生殖系列配置にある、規定103の脊椎動物または細胞。
規定105. ゲノムが、ヒトラムダ遺伝子セグメントを含む第1のターゲッティング挿入断片、ならびにヒトカッパ免疫グロブリンVおよびJ遺伝子セグメントを含む第2のターゲッティング挿入断片を含み、第1のターゲッティング挿入断片が、第1の内因性ラムダ遺伝子座内に位置し、第2のターゲッティング挿入断片が、第2の内因性ラムダ遺伝子座内で、かつ内因性ラムダ定常領域の上流に位置する、規定95の脊椎動物または細胞。
規定106. 内因性ラムダ軽鎖エンハンサーが第1および/または第2の内因性ラムダ遺伝子座内に存在する、規定105の脊椎動物または細胞。
規定106. 内因性カッパ遺伝子座が場合により、生殖系列配置にある、規定105の脊椎動物または細胞。
規定107. ヒトラムダ遺伝子セグメントを含み、かつ内因性免疫グロブリン軽鎖遺伝子座内に位置するターゲッティング挿入断片について、ゲノムがホモ接合である、前記規定のいずれか1つの脊椎動物または細胞。
規定108. ゲノムが、ヒトラムダ遺伝子セグメントを含む2つ以上のターゲッティング挿入断片を含み、かつ内因性カッパおよび/またはラムダ遺伝子座内に位置する、前記規定のいずれか1つの脊椎動物または細胞。
規定109. ヒトラムダ遺伝子セグメントを含み、かつ各内因性ラムダ遺伝子座内に位置する第1のターゲッティング挿入断片について、ゲノムがホモ接合であり、脊椎動物または細胞が、ヒトラムダ可変領域を含むラムダ軽鎖を発現し、ヒトラムダ遺伝子セグメントを含む第2のターゲッティング挿入断片が第1の内因性カッパ遺伝子座内に位置し、複数のヒトVκおよびJκ遺伝子セグメントを含む第3のターゲッティング挿入断片が、第2の内因性カッパ遺伝子座において内因性Cκ遺伝子セグメントの上流に位置し、脊椎動物または細胞が、ヒトカッパ可変領域を含むカッパ軽鎖を発現する、規定108の脊椎動物または細胞。
規定110. ラムダ遺伝子セグメントを含み、かつ内因性カッパおよびラムダ遺伝子座内に位置するターゲッティング挿入断片が、ヒトラムダ遺伝子セグメントの同じレパートリーを含む、規定108の脊椎動物または細胞。
規定111. 第1および第2のターゲッティング挿入断片が、ヒトラムダ遺伝子セグメントの同じレパートリーを含む、規定109の脊椎動物または細胞。
規定112. ラムダ遺伝子セグメントを含むターゲッティング挿入断片がカッパ遺伝子座内に位置し、ラムダ遺伝子座内に位置するターゲッティング挿入断片が、ヒトラムダ遺伝子セグメントの異なるレパートリーを含む、規定108の脊椎動物または細胞。
規定113. 第1および第2のターゲッティング挿入断片が、ヒトラムダ遺伝子セグメントの異なるレパートリーを含む、規定109の脊椎動物または細胞。
規定114. 少なくとも1つの内因性免疫グロブリン遺伝子座内に位置する1つまたは複数の第1および/または第2のターゲッティング挿入断片を含むゲノムを有する、非ヒト脊椎動物または細胞であって、1つまたは複数の第1および/または第2のターゲッティング挿入断片、それぞれが、ヒト免疫グロブリン遺伝子セグメントのレパートリーを含み、ゲノムが以下の軽鎖遺伝子座構成のうちの1つを含む、非ヒト脊椎動物または細胞:
(a)第1の内因性カッパ鎖遺伝子座内に位置するL、および第2の内因性カッパ鎖遺伝子座内に位置するK;
(b)第1の内因性ラムダ鎖遺伝子座内に位置するL、および第2の内因性ラムダ鎖対立遺伝子内に位置するK;
(c)各内因性カッパ鎖遺伝子座内に位置するL;
(d)各内因性ラムダ鎖遺伝子座内に位置するL;
(e)第1の内因性カッパ鎖遺伝子座内に位置するL、および第2の内因性カッパ鎖遺伝子座が不活性である;または
(f)第1の内因性ラムダ鎖遺伝子座内に位置するL、および第2の内因性ラムダ鎖遺伝子座が不活性である;
ただし、Lは、ヒトラムダ鎖免疫グロブリン遺伝子座によって含まれるVλ3-1からCλ7までの少なくとも機能的ヒトVλおよびJλ遺伝子セグメントを含む第1のターゲッティング挿入断片を表し;Kは、ヒトVκおよびJκ遺伝子セグメントを含む第2のターゲッティング挿入断片を表し;各LまたはKが、定常領域の上流に位置し、それにより、ヒトVおよびJ遺伝子セグメントの組換えに由来するヒトV領域を含む軽鎖の発現を可能にする。
規定115. 脊椎動物が、マウスES細胞またはラットES細胞に由来する、規定114の脊椎動物。
規定116. 脊椎動物がマウスまたはラットである、規定114の脊椎動物。
規定117. LがヒトCλ領域をさらに含む、規定114の脊椎動物または細胞。
規定118. Lが、Vλ2-18からCλ7までの機能的ヒトラムダ鎖免疫グロブリン遺伝子セグメントを含む、規定114の脊椎動物または細胞。
規定119. ゲノムが以下の軽鎖遺伝子座構成のうちの1つを含む、規定114の脊椎動物または細胞:
(a)、ならびに第1の内因性ラムダ鎖遺伝子座内、または第1および第2の内因性ラムダ鎖遺伝子座内に位置するL;
(a)、ならびに第1の内因性ラムダ鎖遺伝子座内、または第1および第2の内因性ラムダ鎖遺伝子座内に位置するK;
(a)、および第1の内因性ラムダ鎖遺伝子座内に位置するL、および第2の内因性ラムダ鎖遺伝子座内に位置するK;
(b)、ならびに第1の内因性カッパ鎖遺伝子座内、または第1および第2の内因性カッパ鎖遺伝子座内に位置するL;
(b)、ならびに第1の内因性カッパ鎖遺伝子座内、または第1および第2の内因性カッパ鎖遺伝子座内に位置するK;
(b)、および第1の内因性カッパ鎖遺伝子座内に位置するL、および第2の内因性カッパ鎖遺伝子座内に位置するK;
(c)、ならびに第1の内因性ラムダ鎖遺伝子座内、または第1および第2の内因性ラムダ鎖遺伝子座内に位置するK;
(c)、ならびに第1の内因性ラムダ鎖遺伝子座内、または第1および第2の内因性ラムダ鎖遺伝子座内に位置するL;
(c)、および第1の内因性ラムダ鎖遺伝子座内に位置するL、および第2の内因性ラムダ鎖遺伝子座内に位置するK;
(c)、ならびに第1および第2の内因性ラムダ鎖遺伝子座が不活性である;
(d)、ならびに第1の内因性カッパ鎖遺伝子座内、または第1および第2の内因性カッパ鎖遺伝子座内に位置するL;
(d)、ならびに第1の内因性カッパ鎖遺伝子座内、または第1および第2の内因性カッパ鎖遺伝子座内に位置するK;
(d)、および第1の内因性カッパ鎖遺伝子座内に位置するL、および第2の内因性カッパ鎖遺伝子座内に位置するK;
(d)、ならびに第1および第2の内因性カッパ鎖遺伝子座が不活性である。
規定120. 内因性カッパ鎖発現が実質的に不活性である、規定114の脊椎動物または細胞。
規定121. 内因性カッパ鎖発現が完全に不活性である、規定120の脊椎動物または細胞。
規定122. 内因性ラムダ鎖発現が実質的に不活性である、規定114の脊椎動物または細胞。
規定123. 内因性ラムダ鎖発現が完全に不活性である、規定122の脊椎動物または細胞。
規定124. 1つまたは複数のLが、内因性ラムダまたはカッパ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定125. ラムダ遺伝子座に位置する1つまたは複数のLが、内因性ラムダ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定126. カッパ遺伝子座に位置する1つまたは複数のLが、内因性カッパ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定127. ラムダ遺伝子座に位置する各Lが、ヒトラムダ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定128. カッパ遺伝子座に位置する各Lが、ヒトカッパ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定129. 1つまたは複数のKが、内因性ラムダまたはカッパ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定130. ラムダ遺伝子座に位置する1つまたは複数のKが、内因性ラムダ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定131. カッパ遺伝子座に位置する各Kが、内因性カッパ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定132. ラムダ遺伝子座に位置する各Kが、ヒトラムダ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定133. カッパ遺伝子座に位置する各Kが、ヒトカッパ定常領域の上流に位置する、規定114の脊椎動物または細胞。
規定134. ゲノムが1個より多いLを含み、各Lが、ヒトVλおよびJλ遺伝子セグメントの異なるレパートリーを含む、規定114の脊椎動物または細胞。
規定135. ゲノムが2個のLを含む、規定134の脊椎動物または細胞。
規定136. ゲノムが3個のLを含む、規定134の脊椎動物または細胞。
規定137. ゲノムが1個より多いLを含み、各Lが、ヒトVλ、JλおよびCλ遺伝子セグメントの異なるレパートリーを含む、規定114の脊椎動物または細胞。
規定138. ゲノムが1個より多いKを含み、各Kが、ヒトVκおよびJκ遺伝子セグメントの異なるレパートリーを含む、規定114の脊椎動物または細胞。
規定139. ゲノムが2個のLを含む、規定138の脊椎動物または細胞。
規定140. ゲノムが3個のKを含む、規定138の脊椎動物または細胞。
規定141. ゲノムが1個より多いLを含み、各Lが、ヒトVκ、JκおよびCκ遺伝子セグメントの異なるレパートリーを含む、規定114の脊椎動物または細胞。
規定141a. 脊椎動物がマウスES細胞またはラットES細胞に由来する、規定114の脊椎動物。
規定142. ゲノムが、ヒトVH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含む、前記規定のいずれか1つの脊椎動物または細胞。
規定143. 所望の抗原に特異的なラムダ可変領域を含む抗体または軽鎖を産生するための方法であって、前記規定のいずれか1つによる脊椎動物を所望の抗原で免疫化する工程、および抗体もしくは軽鎖を回収する工程、または抗体もしくは軽鎖を産生する細胞を回収する工程を含む、方法。
規定144. 非ヒト脊椎動物定常領域をヒト定常領域と置換し、それにより、ヒト化抗体または抗体軽鎖を生成する工程をさらに含む、規定143の方法。
規定145. ヒト化抗体または抗体軽鎖が、完全ヒト化抗体または軽鎖をコードする核酸を操作することにより生成される、規定144の方法。
規定146. 規定143の方法により産生されるヒト化抗体または抗体軽鎖。
規定147. 規定146のヒト化抗体または抗体液鎖の誘導体。
規定148. 規定143の方法により産生されるヒト化抗体または抗体軽鎖、および薬学的に許容される担体、賦形剤または希釈剤を含む、医薬組成物。
規定149. 非ヒト脊椎動物または細胞のゲノムにおいて内因性IgK-VJ遺伝子セグメントを不活性化するための方法であって、方法が、ヒト免疫グロブリン遺伝子セグメントを含むターゲッティング挿入断片をゲノム内に位置付ける工程を含み、ターゲッティング挿入断片が、内因性IgK-VJ遺伝子セグメントとEκエンハンサー配列との間に位置して、そのことが内因性IgK-VJとEκエンハンサーとの間の物理的距離を増加させ、それにより、内因性IgK-VJ遺伝子セグメントを不活性化する、方法。
規定150. 非ヒト脊椎動物がマウスまたはラットである、規定149の方法。
規定150a. 脊椎動物がマウスES細胞またはラットES細胞から発生した、規定148の方法。
規定151. 細胞がマウス細胞またはラット細胞である、規定149の方法。
規定152. ヒト免疫グロブリン遺伝子セグメントがヒトVLおよびJL遺伝子セグメントを含む、規定149の方法。
規定153. ヒトVLおよびJL遺伝子セグメントが、ヒトVλおよびJλ遺伝子セグメントならびに/またはヒトVκおよびJκ遺伝子セグメントを含む、規定152の方法。
規定154. 免疫グロブリン軽鎖の少なくとも70%または80%がヒトVλおよびJλ領域を含む、免疫グロブリン軽鎖のプールを得るための方法であって、
規定1の脊椎動物または細胞を準備する工程、および
免疫グロブリン軽鎖を含む試料を単離する工程
を含む、方法。
規定154a. 試料から免疫グロブリン軽鎖を単離する工程をさらに含む、規定154の方法。
規定154b. 試料が血清、脾臓、胸腺、リンパ節または虫垂である、規定154aの方法。
規定154c. 脾臓が、B細胞を含有する脾臓組織を含む、規定154bの方法。
規定154d. B細胞を脾臓組織から単離する工程をさらに含む、規定154cの方法。
規定155. 免疫グロブリン軽鎖が抗体または抗体断片に含まれる、規定154の方法。
規定156. 規定155の方法において単離された抗体または抗体断片。
規定156a. 規定156の抗体または抗体断片の誘導体。
規定157. 規定156の抗体または抗体断片、および薬学的に許容される担体、賦形剤または希釈剤を含む、医薬組成物。
規定158. 免疫グロブリン軽鎖を含む試料を単離する工程の前に、脊椎動物を抗原で免疫化する工程を含む、規定154の方法。
規定159. 免疫グロブリン軽鎖の少なくとも60%がヒトラムダ軽鎖を含む、免疫グロブリン軽鎖のプールを得るための方法であって、
規定19の脊椎動物または細胞を準備する工程、および
免疫グロブリン軽鎖を含む試料を単離する工程
を含む、方法。
規定159a. 試料から免疫グロブリン軽鎖を単離する工程をさらに含む、規定159の方法。
規定159b. 試料が血清、脾臓、胸腺、リンパ節または虫垂である、規定159aの方法。
規定159c. 脾臓が、B細胞を含有する脾臓組織を含む、規定159bの方法。
規定159d. B細胞を脾臓組織から単離する工程をさらに含む、規定159cの方法。
規定160. 免疫グロブリン軽鎖が抗体または抗体断片に含まれる、規定159の方法。
規定161. 規定160の方法において単離された抗体または抗体断片。
規定161a. 規定161の抗体または抗体断片の誘導体。
規定162. 規定161の抗体または抗体断片、および薬学的に許容される担体、賦形剤または希釈剤を含む、医薬組成物。
規定163. 免疫グロブリン軽鎖を含む試料を単離する工程の前に、脊椎動物を抗原で免疫化する工程を含む、規定159の方法。
規定164. 非ヒト脊椎動物においてヒト免疫グロブリンVJC軽鎖を発現するための方法であって、
規定40の脊椎動物または細胞を準備する工程、および
免疫グロブリンVJC軽鎖を含む試料を単離する工程
を含む、方法。
規定164a. 非ヒト脊椎動物がES細胞から発生している、規定164の方法。
規定164a. 試料から免疫グロブリン軽鎖を単離する工程をさらに含む、規定164の方法。
規定164b. 試料が血清、脾臓、胸腺、リンパ節または虫垂である、規定164aの方法。
規定164c. 脾臓が、B細胞を含有する脾臓組織を含む、規定164bの方法。
規定164d. B細胞を脾臓組織から単離する工程をさらに含む、規定164cの方法。
規定165. 免疫グロブリンVJC軽鎖が抗体または抗体断片に含まれる、規定164の方法。
規定166. 規定165の方法において単離された抗体または抗体断片。
規定166a. 規定166の抗体または抗体断片の誘導体。
規定167. 規定166の抗体または抗体断片、および薬学的に許容される担体、賦形剤または希釈剤を含む、医薬組成物。
規定168. 免疫グロブリンVJC軽鎖を含む試料を単離する工程の前に、脊椎動物を抗原で免疫化する工程を含む、規定164の方法。
規定169. 脊椎動物が、マウスES細胞またはラットES細胞から発生した、規定164の方法。
規定39N. 組換え免疫グロブリン軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物であって、前記遺伝子座が、内因性軽鎖遺伝子座内に位置するターゲッティング挿入断片を含み、そのターゲッティング挿入断片が、ヒトラムダ軽鎖遺伝子座DNAを含み、かつラムダ軽鎖定常領域の上流に位置し、前記ターゲッティング挿入断片がヒトVλおよびJλ遺伝子セグメントのレパートリーを含み、脊椎動物が、ヒトラムダ可変領域を含む免疫グロブリン軽鎖を発現し、前記脊椎動物において発現したラムダ可変領域を含む免疫グロブリン軽鎖の少なくとも70%または80%がヒトラムダ可変領域を含む、非ヒト脊椎動物。
規定40N. 組換え免疫グロブリン軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物であって、前記遺伝子座が、内因性軽鎖遺伝子座内に位置するターゲッティング挿入断片を含み、そのターゲッティング挿入断片が、ラムダ軽鎖定常領域の上流に位置するヒトラムダ軽鎖遺伝子座DNAを含み、かつヒトVλおよびJλ遺伝子セグメントのレパートリーを含み、前記ゲノムが、軽鎖定常領域の上流に位置するカッパV遺伝子セグメントを含み、脊椎動物が、ラムダ可変領域を含む免疫グロブリン軽鎖を発現し、前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも60%がヒトラムダ可変領域を含む、非ヒト脊椎動物。
規定47N. 免疫グロブリン軽鎖の少なくとも70%または80%がヒトVλおよびJλ領域を含む、免疫グロブリン軽鎖のプールを得るための方法であって、
規定39Nの脊椎動物または細胞を準備する工程、および
免疫グロブリン軽鎖を含む試料を単離する工程
を含む、方法。
規定48N. 免疫グロブリン軽鎖の少なくとも60%がヒトラムダ軽鎖を含む、免疫グロブリン軽鎖のプールを得るための方法であって、
規定40Nの脊椎動物または細胞を準備する工程、および
免疫グロブリン軽鎖を含む試料を単離する工程
を含む、方法。
規定49N. ヒトラムダ可変領域を含む免疫グロブリン軽鎖を、免疫グロブリン軽鎖のプールから得るための方法であって、
規定40Nの脊椎動物または細胞を供給し、それにより、免疫グロブリン軽鎖の少なくとも60%がヒトラムダ可変領域を含む、免疫グロブリン軽鎖のプールを準備する工程、および
プールから1つまたは複数の免疫グロブリン軽鎖を単離する工程であって、各単離された免疫グロブリン軽鎖がヒトラムダ可変領域を含む、工程
を含む、方法。
規定50N. ヒトラムダ可変領域を含む免疫グロブリン軽鎖を、免疫グロブリン軽鎖のプールから得るための方法であって、
ヒト可変領域を含有する免疫グロブリンラムダ軽鎖を発現するマウスを選択する工程であって、マウスが、軽鎖定常領域の上流に位置するターゲッティング挿入断片を含み、ターゲッティング挿入断片が、ヒト免疫グロブリンVλおよびJλ遺伝子セグメントを含み、前記脊椎動物において発現したラムダ可変領域を含む免疫グロブリン軽鎖の少なくとも70%または80%がヒトラムダ可変領域を含み、内因性カッパおよびラムダ鎖発現が実質的に不活性である、工程;ならびに
前記マウスから血清を収集する工程;ならびに
収集された血清から1つまたは複数の免疫グロブリン軽鎖を単離する工程であって、各単離された免疫グロブリン軽鎖がヒトラムダ可変領域を含む工程
を含む、方法。
規定51N. ヒトラムダ可変領域を含む免疫グロブリン軽鎖を、免疫グロブリン軽鎖のプールから得るための方法であって、
ヒト可変領域を含有する免疫グロブリンラムダ軽鎖を発現するマウスを選択する工程であって、マウスが、軽鎖定常領域の上流に位置するターゲッティング挿入断片を含み、ターゲッティング挿入断片が、ヒト免疫グロブリンVλおよびJλ遺伝子セグメントを含み、前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも60%がヒトラムダ可変領域を含み、内因性カッパおよびラムダ鎖発現が実質的に不活性である、工程;ならびに
前記マウスから血清を収集する工程;ならびに
収集された血清から1つまたは複数の免疫グロブリン軽鎖を単離する工程であって、各単離された免疫グロブリン軽鎖がヒトラムダ可変領域を含む、方法。
規定52N. ヒトラムダ可変領域を含む免疫グロブリン軽鎖を、免疫グロブリン軽鎖のプールから得るための方法であって、
ヒト可変領域を含有する免疫グロブリンラムダ軽鎖を発現するマウスを選択する工程であって、マウスが、軽鎖定常領域の上流に位置するターゲッティング挿入断片を含み、ターゲッティング挿入断片が、ヒト免疫グロブリンVλおよびJλ遺伝子セグメントを含み、前記脊椎動物において発現したラムダ可変領域を含む免疫グロブリン軽鎖の少なくとも70%または80%がヒトラムダ可変領域を含み、前記脊椎動物によって発現した免疫グロブリン軽鎖の少なくとも60%がヒトラムダ可変領域を含み、内因性カッパおよびラムダ鎖発現が実質的に不活性である、工程;ならびに
前記マウスから血清を収集する工程;ならびに
収集された血清から1つまたは複数の免疫グロブリン軽鎖を単離する工程であって、各単離された免疫グロブリン軽鎖がヒトラムダ可変領域を含む、工程
を含む、方法。
カッパおよびラムダ可変領域を発現する非ヒト脊椎動物
(i)ヒト様比率で産生されるK鎖およびL鎖
本発明のこの態様は、非ヒト様比率に偏っていない軽鎖を産生するのに有用である。例えば、マウスにおいて、カッパ型軽鎖は、ラムダ型軽鎖によりはるかに優位を占める(典型的には、野生型マウスにおいて95%カッパ軽鎖:5%ラムダ軽鎖のオーダー)。他方、ヒトは、典型的には、約60%カッパ:約40%ラムダを示す。したがって、ラムダ発現は、マウスにおいて見出されるものよりずっと高い。より高い割合のラムダ型軽鎖が発現することができるマウスまたはラットなどの非ヒト脊椎動物を提供することが望ましい。これは、脊椎動物が、ヒトラムダ可変領域を有する軽鎖、およびヒトカッパ可変領域を有する他の軽鎖を発現する場合、有用である。この目的を達成するために、本発明者らは、上昇したラムダ軽鎖を発現するそのような脊椎動物を初めて、実証しており、このように、本発明は、以下を提供する:
ヒトIg遺伝子セグメントの1つまたは複数の内因性Ig遺伝子座へのターゲッティング挿入により生成されたIg遺伝子セグメントレパートリーをゲノムが含む非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖遺伝子座への挿入により供給されるヒトVλおよびJλ遺伝子セグメントを含み、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖遺伝子座への挿入により供給されるヒトVκおよびJκ遺伝子セグメントを含み、脊椎動物が、カッパ軽鎖可変領域を含む免疫グロブリン軽鎖、およびラムダ軽鎖可変領域を含む免疫グロブリン軽鎖を発現し、(脾臓B細胞のFACSによって決定される場合)脊椎動物によって発現する軽鎖の20%より多くが、ラムダ可変領域を含む、非ヒト脊椎動物。
残りの軽鎖はカッパ可変領域を発現する。
WO03047336は、ヒト様のカッパ:ラムダ比を生じる望ましさを教示するが、これは、これを達成するための方法の使用可能な、または説得力のある開示を提供していない。
(ii)正常なB細胞コンパートメントで産生されるK鎖およびL鎖
本発明者らは、正常な(すなわち、野生型脊椎動物に匹敵する)B細胞コンパートメントによってヒトラムダ可変領域を含む軽鎖の発現を可能にする、ヒトVおよびJラムダ遺伝子セグメントのターゲッティング挿入を含有する非ヒト脊椎動物を作製するのに成功している。したがって、本発明者らは、良いレパートリーを有するそのような軽鎖であり、かつ低下したサイズおよび成熟度の、実際、ヒトラムダ可変領域を有する軽鎖を産生することさえもできない、含まれるB細胞コンパートメントを示す先行技術のトランスジェニック非ヒト脊椎動物より信頼ができる、そのような軽鎖を有用に産生することができるような脊椎動物を提供している。したがって、本発明は、以下を提供する:
ヒトIg遺伝子セグメントの1つまたは複数の内因性Ig遺伝子座へのターゲッティング挿入により生成されたIg遺伝子セグメントレパートリーをゲノムが含む非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖遺伝子座への挿入により供給されるヒトVλおよびJλ遺伝子セグメントを含み、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖遺伝子座への挿入により供給されるヒトVκおよびJκ遺伝子セグメントを含み、脊椎動物が、カッパ軽鎖可変領域を含む免疫グロブリン軽鎖、およびラムダ軽鎖可変領域を含む免疫グロブリン軽鎖を発現し、脊椎動物が、(脾臓B細胞のFACSによって決定される場合)正常な割合またはパーセンテージの成熟脾臓B細胞を産生する、非ヒト脊椎動物。
非ヒト脊椎動物(i)および(ii)に関して、以下の実施形態が企図される(特に特定されない限り、各実施形態は(i)または(ii)に適用する):実施形態において、ヒトVλおよびJλ挿入は、Vλ3-27からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメントを含む。
一実施形態において、ヒトVλおよびJλ挿入は、少なくともヒトV遺伝子セグメントVλ3-27、Vλ3-25、Vλ2-23、Vλ3-22、Vλ3-21、Vλ3-19、Vλ2-18、Vλ3-16、Vλ2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1を含む。
一実施形態において、ヒトVλおよびJλ挿入は、ヒトJセグメントJλ1、Jλ2、Jλ3、Jλ6およびJλ7の1つ、複数または全部を含む。
一実施形態において、ヒトVλおよびJλ挿入は、ヒトJλ-Cλクラスターの挿入を含み、そのクラスターは、Jλ1からCλ7までのJおよびC遺伝子セグメントを含む。
一実施形態において、ヒトVλおよびJλ挿入は、ヒトEλエンハンサーの挿入を含む。例えば、Eλエンハンサーは、同様にその挿入によって含まれるヒトJλ7に対して生殖系列配置で提供される。例えば、Eλエンハンサーは、同様にその挿入によって含まれるヒトJλ-Cλクラスターに対して生殖系列配置で提供され、そのクラスターは、Jλ1〜Cλ7をヒト生殖系列配置で含む。ヒト生殖系列配置において、Eλエンハンサーは、Jλ-Cλクラスターの3'側である。
一実施形態または脊椎動物(i)もしくは(ii)において、ヒトVλおよびJλ挿入は、ヒト22番染色体の座標22886217〜23327884に対応する配列の挿入によって提供される。
一実施形態または脊椎動物(ii)において、ヒトVλおよびJλ挿入は、ヒト22番染色体の座標23064876〜23327884に対応する配列の挿入によって提供される。
一実施形態において、ヒトVκおよびJκ挿入は、Vκ1-33からJκ5までのヒトカッパ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメントを含む。
一実施形態において、ヒトVκおよびJκ挿入は、少なくともヒトV遺伝子セグメントVκ1-33、Vκ2-30、Vκ2-29、Vκ2-28、Vκ1-27、Vκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2およびVκ4-1を含む。
一実施形態において、ヒトVκおよびJκ挿入は、ヒトJ遺伝子セグメントJκ1、Jκ2、Jκ3、Jκ4およびJκ5の1つ、複数または全部を含む。
一実施形態において、脊椎動物によって発現した軽鎖の30%、35%、40%、45%または50%がラムダ可変領域を含む。
一実施形態において、脊椎動物によって発現した軽鎖の20%〜40%、20%〜45%または20%〜50%が、ラムダ可変領域を含む。実施形態において、脊椎動物によって発現した軽鎖の30%〜40%、30%〜45%または30%〜50%が、ラムダ可変領域を含む。
一実施形態において、前記カッパ軽鎖可変領域が、ヒトカッパ軽鎖可変領域である。
一実施形態において、ヒトVκおよびJκ遺伝子セグメントは、脊椎動物の内因性カッパ軽鎖遺伝子座内のカッパ定常領域の上流にある。
一実施形態において、ヒトVλおよびJλ遺伝子セグメントは、脊椎動物の内因性カッパ軽鎖遺伝子座内にある。
一実施形態において、ヒトVλおよびJλ遺伝子セグメントは、脊椎動物の内因性ラムダ軽鎖遺伝子座内にある。
一実施形態において、脊椎動物は、ヒトカッパ可変領域を含む軽鎖を発現し、かつヒトラムダ可変領域を含む軽鎖を発現する。例において、内因性(非ヒト脊椎動物)カッパ鎖発現は、実質的に不活性であり、もしくは不活性であり、および/または内因性(非ヒト脊椎動物)ラムダ鎖発現は、実質的に不活性であり、もしくは不活性である。脊椎動物がマウスである場合、マウスラムダ鎖発現は、典型的には非常に低く(約5%以下)、この場合、内因性ラムダ鎖発現をさらに不活性化するためにマウスゲノムを操作する必要はない可能性がある。したがって、脊椎動物がマウスである場合、内因性カッパ鎖発現は実質的に不活性であり、または不活性であり、マウスラムダ鎖発現は、総軽鎖発現の5%以下である。
一実施形態において、脊椎動物は、正常な割合またはパーセンテージの成熟脾臓B細胞を産生する。例えば、これは、脊椎動物から単離された脾臓B細胞のFACSによって決定することができる。
一実施形態において、脊椎動物は、正常な比率のT1、T2、および成熟脾臓B細胞を産生する。例えば、これは、脊椎動物から単離された脾臓B細胞のFACSによって決定することができる。
一実施形態において、脊椎動物によって産生される総脾臓B細胞の少なくとも40%、50%、60%または70%は、成熟B細胞である。例えば、これは、脊椎動物から単離された脾臓B細胞のFACSによって決定することができる。
以下の定義は、本発明の任意の形態、態様、規定、条項、属性、例または実施形態に適用する。
「に由来する(derived from)」は、その用語の普通の意味で使用される。例示的な同義語には、「として産生される(produced as)」、「に起因する(resulting from)」、「から受けられる(received from)」、「から得られる(obtained from)」、「の産物(a product of)」、「の結果(consequence of)」、および「から改変される(modified from)」が挙げられる。例えば、重鎖のヒト可変領域は、ヒトVH、DおよびJH遺伝子セグメントの組換えに由来することができ、これは、例えば、任意の付随の突然変異(例えば、接合部突然変異)を有する、本発明によるトランスジェニック重鎖遺伝子座において、これらの遺伝子セグメントのインビボ組換えを反映している。
B細胞を得ることができる試料には、血液、血清、脾臓、脾臓組織、骨髄、リンパ、リンパ節、胸腺および虫垂が挙げられるが、それらに限定されない。
抗体および免疫グロブリン鎖は、前に言及された試料のそれぞれから、およびまた次の非限定的リスト、B細胞、腹水、ハイブリドーマおよび細胞培養物から得ることができる。
「複数」は、その用語の普通の意味で用いられ、「少なくとも1つ」または「1つより多い」ことを意味する。
用語「生殖系列配置」は、生殖系列ゲノム配置を指す。例えば、トランスジェニック免疫グロブリン遺伝子座のヒト免疫グロブリン遺伝子セグメントは、遺伝子セグメントの相対的順序が、ヒト生殖系列ゲノムにおける対応する遺伝子セグメントの順序と同じである場合の生殖系列配置にある。例えば、トランスジェニック遺伝子座が、仮説上のヒト免疫グロブリン遺伝子セグメントA、BおよびCを含む本発明の重鎖遺伝子座である場合、これらは、ヒト生殖系列ゲノムの対応する遺伝子セグメントが構成5'-A-B-C-3'を含む場合、(遺伝子座において5'から3'へ)この順序で提供されるだろう。例において、ヒト免疫グロブリンのエレメント(例えば、遺伝子セグメント、エンハンサーまたは他の制御エレメント)は、本発明によるトランスジェニック免疫グロブリン遺伝子座において供給される場合、その遺伝子セグメントの相対的順序が、ヒト生殖系列ゲノムにおける対応する遺伝子セグメントの順序と同じであり、かつエレメント間のヒト配列が含まれ、これらが、ヒト生殖系列ゲノムにおける対応するエレメント間のそのような配列に対応する場合、ヒトIg遺伝子座エレメントは生殖系列配置にある。したがって、仮説例において、トランスジェニック遺伝子座は、構成5'-A-S1-B-S2-C-S3-3'でヒトエレメントを含み、式中、A、BおよびCはヒト免疫グロブリン遺伝子セグメントであり、S1〜S3はヒト遺伝子セグメント間配列であり、対応する構成5'-A-S1-B-S2-C-S3-3'がヒト生殖系列ゲノムに存在する。例えば、これは、本発明のトランスジェニック遺伝子座において、ヒト生殖系列ゲノムにおけるAからCまでのDNA配列に対応するDNA挿入断片(またはAからCまでのDNA配列を含む挿入断片)を供給することにより達成することができる。ヒト生殖系列ゲノムおよび免疫グロブリン遺伝子座における構成は、当技術分野において知られている(例えば、World Wide WebにおけるIMGT(上記参照)、Kabat、および本明細書に参照された他の抗体供給源を参照)。
用語「抗体」は、モノクローナル抗体(免疫グロブリンFc領域を有する完全長抗体を含む)、ポリエピトープ特異性をもつ抗体組成物、多特異性抗体(例えば、二重特異性抗体、ダイアボディ)、および一本鎖分子、加えて抗体断片(例えば、dAb、Fab、F(ab')2およびFv)を含む。用語「抗体」はまた、重鎖(5'-VH-(任意のヒンジ)-CH2-CH3-3')の二量体を含み、かつ軽鎖を欠くH2抗体(天然のH2抗体に類似;例えば、Nature. 1993年6月3日;363(6428):446〜8; Naturally occurring antibodies devoid of light chains; Hamers-Casterman C、Atarhouch T、Muyldermans S、Robinson G、Hamers C、Songa EB、Bendahman N、Hamers R参照)を含む。したがって、本発明の実施形態において、トランスジェニック重鎖遺伝子座から生じたRNAは、CH1遺伝子セグメントを欠き、かつ機能的抗体軽鎖を含まない重鎖をコードする。例において、トランスジェニック重鎖遺伝子座から生じたRNAは、VH単一可変ドメインをコードする(dAb;ドメイン抗体)。これらは場合により、定常領域を含む。
用語「免疫グロブリン」(Ig)は、本明細書において「抗体」と交換可能使用される。
「単離された」抗体は、それの産生環境(例えば、天然でまたは組換え的に)の成分から同定、分離および/または回収されているものである。好ましくは、単離されたポリペプチドは、それの産生環境由来の全ての他の成分との会合を含まず、例えば、その結果、その抗体は、FDA承認できる、または承認された標準へ単離されている。組換えトランスフェクション化細胞に起因するものなどのそれの産生環境の混入成分は、典型的には、その抗体の研究、診断または治療の使用に干渉する材料であり、それらには、酵素、ホルモン、および他のタンパク質性もしくは非タンパク質性溶質を挙げることができる。好ましい実施形態において、そのポリペプチドは、(1)例えば、ローリー法により決定される場合、抗体の95重量%より高くまで、いくつかの実施形態においては、99重量%より高くまで;(2)回転カップシークエネーターの使用により、N末端または内部アミノ酸配列の少なくとも15個の残基を得るのに十分な程度まで、または(3)クーマシーブルー、もしくは好ましくは銀染色を使用する非還元条件もしくは還元条件下でのSDS-PAGEによる均一性まで、精製されるだろう。単離された抗体には、その抗体の天然環境の少なくとも1つの成分が存在しないゆえに、組換え細胞内のインサイチュの抗体が挙げられる。しかしながら、普通、単離されたポリペプチドまたは抗体は、少なくとも1つの精製工程によって調製される。
「抗体断片」は、無傷抗体の一部、好ましくは、無傷抗体の抗原結合領域および/または可変領域を含む。抗体断片の例には、dAb、Fab、Fab'、F(ab')2およびFv断片;ダイアボディ;線状抗体;抗体断片から形成される一本鎖抗体分子および多特異性抗体が挙げられる。
特定のポリペプチド、抗原またはエピトープ「に特異的に結合する」または「に特異的」である抗体は、他のポリペプチド、抗原またはエピトープに実質的に結合することなく、その特定のポリペプチド、抗原またはエピトープに結合するものである。例えば、抗原またはエピトープへの結合は、その抗体が100μM以下、10μM以下、1μM以下、100nM以下、例えば、10nM以下、1nM以下、500pM以下、100pM以下または10pM以下のKDで結合する場合、特異的である。結合親和性(KD)は、当業者によって知られているような標準手順、例えば、ELISAにおける結合および/または表面プラズモン共鳴法を使用する親和性決定(例えば、fM親和性に至るまで検出することができるBiacore(商標)またはKinExA(商標)溶液相親和性測定(Sapidyne Instruments、Idaho))を使用して決定することができる。「薬学的に許容される」は、USA連邦政府もしくは州政府の規制機関によって承認された、もしくは承認できるということ、またはヒトを含む動物用の、U.S.薬局方もしくは他の一般的に認められた薬局方に列挙されているということを指す。「薬学的に許容される担体、賦形剤またはアジュバント」は、作用物質、例えば、本明細書に記載された任意の抗体または抗体鎖と共に対象に投与することができ、かつその薬理学的活性を破壊せず、その作用物質の治療的量を送達するのに十分な用量で投与される場合、無毒である、担体、賦形剤またはアジュバントを指す。
一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための反復プロセスを示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 図1〜図8のプロセスを、IgH遺伝子座およびカッパ遺伝子座についてより詳細に示す図である。 キメラマウスにおける抗体生成の背後の原理を示す図である。 キメラマウスにおける抗体生成の背後の原理を示す図である。 マウス染色体中のヒトDNAについての可能な挿入部位を示す図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための代替の反復プロセスを開示する図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための代替の反復プロセスを開示する図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための代替の反復プロセスを開示する図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための代替の反復プロセスを開示する図である。 一連のヒトBACをマウスIg遺伝子座内に挿入するための代替の反復プロセスを開示する図である。 宿主VDJ領域の反転の機構を例示する図である。 宿主VDJ領域の反転の機構を例示する図である。 宿主VDJ領域の反転の機構を例示する図である。 RMCEアプローチを使用するプラスミドの挿入についての原理の証明を例示する図である。 ランディングパッド内への順次的なRMCE組込みを例示する図である。 ランディングパッド内への挿入の成功の確認を例示する図である。 3'末端の修正(Curing)の、PCRによる確認を例示する図である。 BAC1番の挿入およびPCR診断学を示す図である。 JHおよびJKの使用量を例示する図である。 DHの使用量を例示する図である。 キメラマウスからのヒトVDJCμ転写物中におけるCDR-H3の長さの分布を例示する図である。 IGH-VDIまたはIGK-VJの接合部中における欠失および挿入のヌクレオチド数の分布を例示する図である。 それぞれのVH内のJHの使用量の分布を例示する図である。 それぞれのVH内のDHの使用量の分布を例示する図である。 VJ結合部でのヌクレオチドの獲得または喪失がIGK変異体を生じることを例示する図である。 J領域中の高頻度突然変異がIGK変異体を生じることを例示する図である。 結合部の多様性が機能的CDSを生じることを例示する図である。 JH遺伝子セグメントの同一性のプロットが、内在性遺伝子セグメントの使用が反転によって不活性化されている、本発明によるトランスジェニックマウスの脾臓Bリンパ球から生成した5'-RACE Cμ特異的ライブラリを使用することを例示する図である。 内在性遺伝子セグメントの使用が反転によって不活性化されている、本発明によるトランスジェニックマウスの脾臓Bリンパ球からの抗体配列から決定されたマウスVH対ヒトVHの使用量の比を例示する図である。 反転戦略の模式図を例示する図である。 反転のための標的構築物R57を例示する図である。 S1inv1(反転された内在性IGH遺伝子座を有する1ヒトIGH BAC(すなわち複数のヒトVH、全て機能的なヒトDおよびJH))マウスの脾臓Bリンパ球のCμ特異的5'-RACEライブラリからの配列解析が、事実上全ての転写物が再編成されたヒトVH-D-JH遺伝子セグメントに由来していることを示すことを例示する図である。 S1inv1マウスがDおよびJH遺伝子セグメントのどちらに関してもヒトと類似の使用量を示すことを例示する図である。 内在性重鎖遺伝子座内に第2のヒトBACを挿入した後にマウスVHの使用量がさらに顕著に低下することを例示する図である。 本発明のマウスからの転写物において(IgG型への)正常なクラススイッチが観察されたことを示すゲルを例示する図である。再編成された転写物は、免疫化したトランスジェニックマウスの末梢血細胞から増幅するためにヒトVH特異的およびマウスCγ特異的プライマーを用いたRT-PCRを使用して検出した。 高頻度突然変異が本発明のマウスからのこれらのIGγ鎖のヒト可変領域内で起こっていたことを実証する配列解析の増幅断片を例示する図である。 本発明のトランスジェニックマウス中の正常なB細胞区画を示すフローサイトメトリー解析を例示する図である。 本発明のトランスジェニック動物において、抗原を用いた免疫化後に正常なIgHアイソタイプおよび血清レベルが得られることを例示する図である。 本発明のトランスジェニック動物において、抗原を用いた免疫化後に正常なIgHアイソタイプおよび血清レベルが得られることを例示する図である。 パート1は、マウス内在性軽鎖遺伝子座内への挿入に使用した第1および第2のBACを例示する図である。それぞれのBAC中のヒトDNAを示す。図56のパート2は、マウス内在性カッパ鎖遺伝子座内へのヒトラムダIg遺伝子座DNAの挿入点を示す図である。図56のパート3は、マウス内在性ラムダ鎖遺伝子座内へのヒトラムダIg遺伝子座DNAの挿入点を示す図である。 野生型マウス(WT)と比較した、P1ホモ接合性マウス(P1/P1)からのB220+脾臓B細胞におけるマウスおよびヒトのCλの発現(したがって、対応してマウスおよびヒトの可変領域の発現)を決定するためのFACS解析の結果を示す図である。 野生型マウス(WT)と比較した、P2ホモ接合性マウス(P2/P2)からのB220+脾臓B細胞におけるマウスのCκおよびCλの発現を決定するためのFACS解析の結果を示す図である。検出可能なマウスCκ発現は見られなかった。 野生型マウス(WT)と比較した、P2ホモ接合性マウス(P2/P2)からのB220+脾臓B細胞におけるヒトCλの発現(したがって、対応してヒト可変領域の発現)を決定するためのFACS解析の結果を示す図である。 P2ホモ接合性マウス(P2/P2)におけるヒトVλの使用量およびヒトにおける典型的なVλの使用量(挿入図)を示す図である。 P2ホモ接合性マウス(P2/P2)におけるヒトJλの使用量およびヒトにおける典型的なJλの使用量(挿入図)を示す図である。 Vλの使用量がP2ホモ接合性マウス(P2/P2)において非常に高いことを示す図である。 P2ホモ接合性マウス(P2/P2)におけるキメラカッパ遺伝子座からのマウスVκおよびヒトVλ遺伝子セグメントの使用量の分布を示す図である。 ラムダ遺伝子座およびカッパ遺伝子座中でのRSS配置を例示する図である。 ヒトラムダDNAが挿入されておらず、かつ内在性カッパ鎖の発現が不活性化されているマウス(KA/KA)と比較した、内在性カッパ鎖の発現が不活性化されているL2ホモ接合性マウスからのB220+脾臓B細胞におけるマウスおよびヒトのCλの発現(したがって、対応してマウスおよびヒトの可変領域の発現)(L2/L2、KA/KA)を決定するためのFACS解析の結果を示す図である。マウスVλの使用が排除されるぎりぎりまでの、非常に高いヒトVλの使用量がL2/L2、KA/KAマウスで見られた。 脾臓B細胞区画の解析の図である。この図は、マウス抗体のみを発現するマウス(KA/KAマウス)からの脾臓B細胞と比較した、トランスジェニックL2/L2、KA/KAマウス(L2ホモ接合体、ヒトラムダ遺伝子セグメントの内在性ラムダ遺伝子座内への挿入についてホモ接合性、内在性カッパ鎖の発現は不活性化されている)からの脾臓B細胞に対するFACS解析の結果を示す。結果は、本発明のマウス中の脾臓B細胞区画が正常である(すなわち、マウス抗体鎖のみを発現するマウスの区画と等価である)ことを示している。 B細胞の発生ならびに骨髄および脾臓区画中のマーカーの図である。 脾臓B細胞区画の解析の図である。この図は、マウス抗体のみを発現するマウスからの脾臓B細胞と比較した、全てヒトである重鎖可変領域(ただし内在性重鎖の発現が反転によって不活性化されている)を発現する本発明のトランスジェニックS1F/HA、KA/+マウスからの脾臓B細胞に対するFACS解析の結果を示す。結果は、本発明のマウス中の脾臓B細胞区画が正常である(すなわち、マウス抗体鎖のみを発現するマウスの区画と等価である)ことを示している。 S1F/HA、+/KA=(i)S1F-第1の内在性重鎖対立遺伝子が1つのヒト重鎖遺伝子座DNAの挿入を有しており、内在性マウスVDJ領域が反転および染色体上での上流への移動によって不活性化されている、(ii)HA-第2の内在性重鎖対立遺伝子が不活性化されている(内在性妨害配列の挿入による)、(iii)+-第1の内在性カッパ対立遺伝子が野生型カッパ対立遺伝子である、および(iv)KA-第2の内在性カッパ対立遺伝子が不活性化されている(内在性妨害配列の挿入による)。この配置は、第1の内在性重鎖対立遺伝子からの重鎖を排他的にコードしている。 脾臓B細胞区画の解析の図である。この図は、+/HA、K2/KAマウスからの脾臓B細胞と比較した、全てヒトである重鎖可変領域(ただし内在性重鎖の発現が反転によって不活性化されている)およびヒトカッパ鎖可変領域を発現する本発明のトランスジェニックS1F/HA、K2/KAマウスからの脾臓B細胞に対するFACS解析の結果を示す。結果は、本発明のマウス中の脾臓B細胞区画が正常であることを示している。 S1F/HA、K2/KA=(i)K2-第1の内在性カッパ対立遺伝子が最も3'側の内在性JκとマウスCκとの間に2つのカッパ鎖遺伝子座DNAの挿入を有しており、14個のヒトVκおよびJκ1〜Jκ5の挿入を提供する、ならびに(ii)KA-第2の内在性カッパ対立遺伝子が不活性化されている(内在性妨害配列の挿入による)。この配置は、第1の内在性カッパ対立遺伝子からの、ヒト可変領域を含む重鎖および実質的にカッパ軽鎖を排他的にコードしている。 +/HA、K2/KA-この配置は、マウス重鎖およびヒトカッパ鎖をコードしている。 骨髄B前駆体区画の解析の図である。この図は、マウス抗体のみを発現するマウスからのBM B細胞と比較した、全てヒトである重鎖可変領域(ただし内在性重鎖の発現が反転によって不活性化されている)を発現する本発明のトランスジェニックS1F/HA、KA/+マウスからの骨髄(BM)B細胞に対するFACS解析の結果を示す。結果は、本発明のマウス中のBM B細胞区画が正常である(すなわち、マウス抗体鎖のみを発現するマウスの区画と等価である)ことを示している。 骨髄B前駆体区画の解析の図である。この図は、+/HA、K2/KAマウスからのBM B細胞と比較した、全てヒトである重鎖可変領域(ただし内在性重鎖の発現が反転によって不活性化されている)およびヒトカッパ鎖可変領域を発現する本発明のトランスジェニックS1F/HA、K2/KAマウスからの骨髄(BM)B細胞に対するFACS解析の結果を示す。結果は、本発明のマウス中のBM B細胞区画が正常であることを示している。 様々なマウスにおけるIgサブタイプの定量および全Igを示す図である。S1F/HA、KA/+=(i)S1F-第1の内在性重鎖対立遺伝子が1つのヒト重鎖遺伝子座DNAの挿入を有しており、内在性マウスVDJ領域が反転および染色体上での上流への移動によって不活性化されている、(ii)HA-第2の内在性重鎖対立遺伝子が不活性化されている(内在性妨害配列の挿入による)、(iii)KA-第1の内在性カッパ対立遺伝子が不活性化されている(内在性妨害配列の挿入による)、ならびに(iv)+-第2の内在性カッパ対立遺伝子が野生型カッパ対立遺伝子である。この配置は、第1の内在性重鎖対立遺伝子からの重鎖を排他的にコードしている。 S1F/HA、K2/KA=(i)K2-第1の内在性カッパ対立遺伝子が最も3'側の内在性JκとマウスCκとの間に2つのカッパ鎖遺伝子座DNAの挿入を有しており、14個のヒトVκおよびJκ1〜Jκ5の挿入を提供する、ならびに(ii)KA-第2の内在性カッパ対立遺伝子が不活性化されている(内在性妨害配列の挿入による)。この配置は、第1の内在性カッパ対立遺伝子からの、ヒト可変領域を含む重鎖および実質的にカッパ軽鎖を排他的にコードしている。 +/HA、K2/+-この配置は、マウス重鎖ならびにマウスおよびヒトの両方のカッパ鎖をコードしている。 +/HA、+/KA-この配置は、マウスの重鎖およびカッパ鎖をコードしている。この図中、「Igの合計」とはIgGおよびIgMアイソタイプの合計である。 様々なマウスにおけるIgサブタイプの定量および全Igを示す図である。 S1F/HA、K2/KA(n=15匹)およびマウス抗体鎖のみを発現する12匹のマウス(+/HA、+/KA(n=6匹)および野生型マウス(WT、n=6匹))。
配列
配列番号1はラットスイッチ配列である。
配列番号2はランディングパッドターゲティングベクター(長いバージョン)である。
配列番号3はランディングパッドターゲティングベクター(短い方のバージョン)である。
配列番号4はマウス系統129スイッチである。
配列番号5はマウス系統C57スイッチである。
配列番号6はランディングパッドの5'相同性アームである。
配列番号7はオリゴHV2-5である。
配列番号8はオリゴHV4-4である。
配列番号9はオリゴHV1-3である。
配列番号10はオリゴHV1-2である。
配列番号11はオリゴHV6-1である。
配列番号12はオリゴCμである。
配列番号13はオリゴKV1-9である。
配列番号14はオリゴKV1-8である。
配列番号15はオリゴKV1-6である。
配列番号16はオリゴKV1-5である。
配列番号17はオリゴCKである。
配列番号18〜20はラットスイッチ配列である。
配列番号21はX1X2 T F G Q、式中、X1X2= PR、RT、またはPWである。
配列番号22はX1X2 T F G Q G T K V E I K R A D A、式中、X1X2= PR、RT、またはPWである。
配列番号23はX3X4 T F G Q、式中、X3X4= PRまたはPWである。
配列番号24はX3X4 T F G Q G T K V E I K R A D A、式中、X3X4= PRまたはPWである。
配列番号25はプライマーE1554である。
配列番号26はプライマーE1555である。
配列番号27はプライマーELP1352_Cγ1である。
配列番号28はプライマーELP1353_Cγ2bである。
配列番号29はプライマーELP1354_Cγ2aである。
配列番号30はプライマーELP1356_VH4-4である。
配列番号31はプライマーELP1357_VH1-2,3である。
配列番号32はプライマーELP1358_VH6-1である。
配列番号33はプライマーmIgG1_2 revである。
配列番号34はプライマーmIgG2b revである。
配列番号35はプライマーmIgG2a_2 revである。
配列番号36はプライマーmCH1 unirevである。
配列番号37はプライマーmCH1 unirev_2である。
配列番号38〜45はCDRH3配列である。
配列番号46〜50は、GGGCTの3個、4個、5個、6個またはそれ以上(82個まで)のリピートである。
配列番号51〜55は、CTB(クローニングされている、参照物質)に対する重鎖CDR1配列である。
配列番号56〜60は、CTB(クローニングされている、参照物質)に対する重鎖CDR2配列である。
配列番号61〜63は、CTB(クローニングされている、参照物質)に対する重鎖CDR3配列である。
配列番号64〜68は、CTB(クローニングされている、参照物質)に対するJ領域配列である。
本明細書に記載する特定の実施形態は、例証の目的で示すのであって、本発明を制限するものではないことが理解されるであろう。本発明の主要な特徴を、本発明の範囲から逸脱することなく、種々の実施形態において利用することができる。当業者であれば、本明細書に記載する特定の手順に対する多数の均等物を認識するか、またはそれらを日常的な研究を使用するだけで究明することができるであろう。そのような均等物は、本発明の範囲に属するとみなされ、特許請求の範囲により網羅される。本明細書で言及する刊行物および特許出願は全て、本発明が関係する当業者の技能のレベルを示す。刊行物および特許出願は全て、それぞれ個々の刊行物または特許出願が、参照により組み込まれていることを具体的かつ個々に示すのと同じ程度に、参照により本明細書に組み込まれている。
単語「ある(a)」または「ある(an)」の使用は、用語「含む(comprising)」と併せて使用する場合、特許請求の範囲および/または本明細書においては、「1つ(one)」を意味することができるが、またこれは、「1つまたは複数の」、「少なくとも1つの」および「1つまたは2つ以上」の意味とも一致する。特許請求の範囲における用語「または(or)」の使用は、選択肢のみを指すかまたは選択肢が相いれないことが明確に示されない限り、「および/また(and/or)」を意味するために使用するが、本開示は、選択肢のみおよび「および/または」を指す定義を支持する。本出願全体を通して、用語「約(about)」は、値が、装置、値を決定するために利用した方法について内在する誤差の変動、または研究対象の間に存在する変動を含むことを示すために使用する。
本明細書および請求項において使用する場合、単語「含む(comprising)」(およびcomprisingの任意の形態、例として、「comprise」および「comprises」)、「有する(having)」(およびhavingの任意の形態、例として、「have」および「has」)、「含む(including)」(およびincludingの任意の形態、例として、「includes」および「include」)、または「含有する(containing)」(および、containingの任意の形態、例として、「contains」および「contain」)は、包括的または無制限であり、追加の、記載されていない要素および方法のステップを除外しない。
用語「またはそれらの組合せ(or combinations thereof)」は、本明細書で使用する場合、この用語に先行する列挙項目の置換形態および組合せを全て指す。例えば、「A、B、C、またはそれらの組合せ」は、A、B、C、AB、AC、BCまたはABCのうちの少なくとも1つを含み、特定の文脈において、順番が重要である場合にはまた、BA、CA、CB、CBA、BCA、ACB、BACまたはCABも含むことを意図する。この例に続き、1つまたは複数の項または用語の繰り返し、例として、BB、AAA、MB、BBC、AAABCCCC、CBBAAA、CABABB等を含有する組合せも明確に含む。当業者であれば、典型的には、文脈からそうでないことが明らかでない限り、任意の組合せにおける項目または用語の数には制限がないことを理解するであろう。
抗体遺伝子セグメント配列の源として、当業者はまた、以下の利用可能なデータベースおよび供給源(その更新情報を含む)を知っているし、それらの内容は、参照により本明細書に組み入れられている。
Kabatデータベース(G. JohnsonおよびT. T. Wu、2002;World Wide Web(www) kabatdatabase.com)。1996年にE. A. KabatおよびT. T. Wuにより作成され、Kabatデータベースは、抗体、T細胞受容体、主要組織適合複合体(MHC)クラスIおよびII分子、ならびに免疫学的対象となる他のタンパク質のアラインメントされた配列を公開する。検索可能なインターフェイスはSeqhuntIIツールによって提供され、有用な範囲は、配列アラインメント、配列サブグループ分類、および可変性プロットの作製に有効である。Kabat, E. A.、Wu, T. T.、Perry, H.、Gottesman, K.、およびFoeller, C. (1991) Sequences of Proteins of Immunological Interest、第5版、NIH Publication No. 91-3242、Bethesda、MDもまた参照されたい。それは、特に、本発明に使用するヒト遺伝子セグメントに関して、参照により本明細書に組み入れられている。
KabatMan(A. C. R. Martin、2002;World Wide Web(www) bioinf.org.uk/abs/simkab.html)。これは、Kabat配列データベースへのクエリを簡単にするためのウェブインターフェイスである。
IMGT(the International ImMunoGeneTics Information System(登録商標);M.-P. Lefranc、2002;World Wide Web(www) imgt.cines.fr)。IMGTは、全ての脊椎動物種の抗体、T細胞受容体およびMHC分子において特定化する統合情報システムである。それは、ヌクレオチドおよびタンパク質配列、オリゴヌクレオチドプライマー、遺伝子地図、遺伝的多型、特異性、ならびに2次元(2D)および3次元(3D)構造を含む標準化データへの共通ポータルを提供する。IMGTは、3つの配列データベース(IMGT/LIGM-DB、IMGT/MHC-DB、IMGT/PRIMERDB)、1つのゲノムデータベース(IMGT/GENE-DB)、1つの3D構造データベース(IMGT/3Dstructure-DB)、ならびに様々なウェブ供給源(「IMGT Marie-Paule page」)および対話型ツールを含む。
V-BASE (I. M. Tomlinson、2002;World Wide Web(www) mrc-cpe.cam.ac.uk/vbase)。V-BASEは、1千個より多い公開された配列から編集された全てのヒト抗体生殖系列可変領域配列の包括的なディレクトリーである。それは、再構成された抗体V遺伝子のそれらの最も近い生殖系列遺伝子セグメントへの割り当てを可能にするアラインメントソフトウェアDNAPLOT(Hans-Helmar AlthausおよびWerner Mullerによって開発された)のバージョンを含む。
抗体 - 構造および配列(A. C. R. Martin、2002;World Wide Web(www) bioinf.org.uk/abs)。このページは、抗体構造および配列に関する有用な情報を要約している。それは、Kabat抗体配列データ、抗体に関する一般的な情報、結晶構造へのクエリインターフェイス、および他の抗体関連情報へのリンクを提供する。それはまた、Protein Databank (PDB)に寄託された全ての抗体構造の自動要約を配布する。特に興味深いことには、抗体可変領域についての様々なナンバリングスキームの徹底的な説明および比較である。
AAAAA (A Ho's Amazing Atlas of Antibody Anatomy; A. Honegger、2001;World Wide Web(www) unizh.ch/〜antibody)。この供給源は、構造分析、モデリングおよび操作のためのツールを含む。それは、抗体およびT細胞受容体配列の包括的な構造アラインメントのための統一的スキームを採用し、抗体分析およびグラフ表示のためのExcel macrosを含む。
WAM (Web Antibody Modeling; N. WhiteleggおよびA. R. Rees、2001;World Wide Web(www) antibody.bath.ac.uk)。Centre for Protein Analysis and Design at the University of Bath、United Kingdomの主催。確立された理論的方法の組合せを使用して抗体Fv配列の3Dモデルを構築するためのAbMパッケージ(以前は、Oxford Molecularにより販売されていた)に基づいて、このサイトはまた、最新の抗体構造情報を含む。
Mike's Immunoglobulin Structure/Function Page (M. R. Clark、2001;World Wide Web(www) path.cam.ac.uk/〜mrc7/mikeimages.html)。これらのページは、免疫グロブリン構造および機能に関する教材を提供し、多数のカラー画像、モデルおよびアニメーションにより解説されている。さらなる情報は、抗体ヒト化およびMike Clark's Therapeutic Antibody Human Homology Project(臨床効果および抗免疫グロブリン応答を治療用抗体の可変領域配列に関連づけることを目指す)に関して入手できる。
The Antibody Resource Page (The Antibody Resource Page、2000;World Wide Web(www) antibodyresource.com)。このサイトは、それ自体、「抗体研究および供給業者の完全ガイド」として記載する。アミノ酸シーケンシングツール、ヌクレオチド抗体シーケンシングツール、およびハイブリドーマ/細胞培養データベースへのリンクが提供されている。
Humanization bY Design (J. Saldanha、2000;World Wide Web(www) people.cryst.bbk.ac.uk/〜ubcg07s)。この供給源は、抗体ヒト化テクノロジーに関する概要を提供する。最も有用な特徴は、ヒト化構築物の設計問題点、フレームワーク選択、フレームワーク逆突然変異、および結合親和性に関する情報を含む40個を超える公開されたヒト化抗体の(配列およびテキストによる)検索可能なデータベースである。
Antibody Engineering Methods and Protocols、Benny K C Lo編、Methods in Molecular Biology(商標)、Human Pressもまた参照されたい。また、World Wide Web(www) blogsua.com/pdf/antibody-engineering-methods-and-protocolsantibody-engineering-methods-and-protocols.pdfもまた参照されたい。
この開示のいずれの部分も、本内容から他のことが明らかでない限り、本開示の任意の他の部分と組み合わせて読まれてもよい。
本明細書に開示および主張された組成物および/または方法の全部は、本開示に照らせば、過度の実験なしに作製および実行することができる。本発明の組成物および方法は、好ましい実施形態に関して記載されているが、本発明の概念、精神および範囲から逸脱することなく、本明細書に記載された組成物および/または方法に、ならびにその方法の工程において、または工程の順番においてバリエーションが適用され得ることは、当業者には明らかである。当業者に明らかな全てのそのような類似した代替物および改変物は、添付の特許請求の範囲によって定義されているような本発明の精神、範囲および概念の範囲内であるとみなされる。
以下の実施例は、本発明を作製し、かつ使用する方法の完全な開示および記載を当業者に提供するために提示され、本発明者らが何を彼らの発明とみなすかの範囲を限定することを意図するものではない。
(実施例1)
BACの工学的組換え
全体的な戦略:本発明のマウスモデルは、約960kbの、V領域、D領域およびJ領域全てを含有するヒト重鎖遺伝子座を、マウス定常領域の上流に、かつ473kbのヒトカッパ領域を、マウス定常領域の上流に挿入することによって達成することができる。代わってまたは並行して、ヒトラムダ領域を、マウス定常領域の上流に挿入する。この挿入を、ES細胞中における標的遺伝子組換え(gene targeting)により、当技術分野で周知の技法を使用して達成する。
未変化のV-D-J領域を、それらの自然のまま(野生型)の配置で各遺伝子座中に高忠実度で挿入することを、適切には、ヒトバクテリア人工染色体(BAC)を、遺伝子座中に挿入することによって達成する。適切には、最終的な遺伝子座において、配列が、元々の配列と比較して、重複することも、失われることもないように、BACをトリミングする。そのようなトリミングを、工学的に組み換えることによって実施することができる。
これらの遺伝子座を網羅して適切にトリミングされた関連のヒトBACサイズは、平均して90kbである。
1つのアプローチでは、ヒトのDエレメントおよびJエレメントの完全な相補体、ならびに7または8つのヒトV領域が、以下に記載する実験的挿入スキームにおいて挿入しようとする第1のBACにより網羅される。IgH遺伝子座およびIgK遺伝子座中に挿入しようとする第1のBACは、以下のV領域を含有することができる。IgH:V6-1、VII-1-1、V1-2、VIII-2-1、V1-3、V4-4、V2-5、およびIgK:V4-1、V5-2、V7-3、V2-4、V1-5、V1-6、V3-7、V1-8。
適切には、各遺伝子座の性能を、第1のBACの挿入の後に、キメラマウスを使用して評価し、また、それに続くBACの追加それぞれの後にも評価する。この性能試験の詳細な説明については、以下を参照されたい。
それぞれ0.96Mbおよび0.473MbのIgH遺伝子座およびIgK遺伝子座全てを網羅するヒトV領域の完全な相補体をもたらすためには、IgH遺伝子座については9回の追加のBAC挿入が、IgKについては5回が必要である。
全てのBACが、ES細胞のゲノム中に挿入された場合、それらの野生型配置を保持するとは限らない。したがって、ES細胞をスクリーニングするための高密度ゲノムアレイが展開され、未変化のBAC挿入を有するES細胞を同定する(Barrett, M.T.、Scheffer, A.、Ben-Dor, A.、Sampas, N.、Lipson, D.、Kincaid, R.、Tsang, P.、Curry, B.、Baird, K.、Meltzer, P.S.ら、(2004)、Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA、Proceedings of the National Academy of Sciences of the United States of America 101、17765〜17770頁)。また、このスクリーニングにより、ES細胞のゲノムが損なわれており、したがって、キメラ動物の生殖系列を生育することができないESクローンを同定し、選択して除くことも可能になる。この評価を促進するためのその他の適切なゲノムのツールとして、配列決定およびPCRによる検証が挙げられる。
したがって、一態様では、正しいBACの構造を、次のステップに移る前に確認する。
上記の記載から、90kbのBACを用いて、遺伝子座を完全に工学的に作製するためには最低限、IgHについての10回のターゲッティングステップおよびIgKについての5回のステップを実施することが必要であることが暗示される。IgL遺伝子座を有するマウスも、IgK遺伝子座に類似する様式で生成することができる。追加のステップも、標的遺伝子組換えを支持するのに必要な選択マーカーを除去するために必要である。これらの操作を、ES細胞中で段階的に実施するので、一態様では、生殖系列の伝達能力が、このプロセス全体を通して保持される。
ES細胞系の生殖系列の可能性をステップ毎に試験することを必要とせずに、ES細胞クローンの性能を、複数回の操作を通して維持することは、本発明においては重要なことであり得る。KOMPおよびEUCOMMのグローバルノックアウトプロジェクト(global knockout project)のために現時点で使用される細胞系は、このプロジェクトのためにそれらを使用する前に2回改変されており、それらの生殖系列の伝達率は、親細胞から変化しない(これらの細胞系は、公的に入手可能である。www.komp.orgおよびwww.eucomm.orgを参照されたい)。この細胞系は、JM8と呼ばれ、100%ES細胞由来のマウスを公開されている培養条件下で生成することができる(Pettitt, S.J.、Liang, Q.、Rairdan, X.Y.、Moran, J.L.、Prosser, H.M.、Beier, D.R.、Lloyd, K.C.、Bradley, A.およびSkarnes, W.C.、(2009)、Agouti C57BL/6N embryonic stem cells for mouse genetic resources、Nature Methods)。これらの細胞は、標準的なマウスES細胞の培養条件を使用して、キメラ動物の体細胞および生殖系列の組織に再現性よく寄与する能力を実証している。この能力は、標準的なフィーダー細胞系(SNL)上で培養した細胞に関しても、フィーダーを含有しない、ゼラチンでコーティングされているのみの組織培養プレート上で増殖させた細胞に関してさえも見出すことができる。1つの特定の亜系統JM8A3は、キメラ生殖系列を生育する能力を、連続数回のサブクローニングの後に維持した。本発明の場合が該当するであろうが、広範な遺伝子の、例えば、相同組換えを介する操作によって、細胞の多能性を傷付けることはできない。そのような高いパーセントのES細胞由来の組織を有するキメラを生成する能力には、その他の利点がある。第1に、高いレベルのキメラ現象は、生殖系列の伝達の可能性と相関し、生殖系列の伝達についての、5〜6週を要するに過ぎない代理のアッセイを提供する。第2に、これらのマウスは、100%ES細胞由来であることから、工学的に作製した遺伝子座を、直接試験して、繁殖により引き起こされる遅延をなくすことができる。宿主胚が、次のセクションで記載するように、RAG-1遺伝子についての突然変異体である動物に由来することから、新しいIg遺伝子座の統合性を、キメラにおいて試験することが可能である。
使用することができる別の細胞系が、HPRT-ve細胞系、例として、AB2.1であり、これは、Ramirez-Solis R、Liu PおよびBradley A、「Chromosome engineering in mice」、Nature、1995年;378;6558;720〜4頁に開示されている。
RAG-1の補完:多くのクローンが、100%ESに由来するマウスを生成するが、そうでないものもある。したがって、ステップ毎に、マウスを、RAG-1欠損背景で生成する。こうすることによって、免疫化および抗体生成のために直接使用することができる、100%ESに由来するB細胞およびT細胞を有するマウスが得られる。RAG-2欠損背景もしくはRAG-1欠損/RAG-2欠損を組み合わせた背景、または同等の突然変異を有する細胞を使用することができ、この場合、マウスは、ES細胞に由来するB細胞および/またはT細胞のみを生成する。
ヒト-マウスのIgH遺伝子座またはIgK遺伝子座のみがこれらのマウスにおいて活性を示すために、IgH遺伝子座またはIgK遺伝子座の1つの対立遺伝子がすでに不活性化されている細胞系において、ヒト-マウスのIgH遺伝子座およびIgK遺伝子座を工学的に作製することができる。あるいは、宿主Ig遺伝子座、例として、IgH遺伝子座またはIgK遺伝子座の不活性化を、挿入後に実施してもよいであろう。
RAG-1遺伝子が突然変異しているマウス系統は、成熟したBリンパ球およびTリンパ球を有さないので、免疫不全である(US5,859,307)。Tリンパ球およびBリンパ球は、適切なV(D)J組換えが発生した場合のみに分化する。RAG-1は、この組換えのために重大な酵素であることから、RAG-1を欠くマウスは、免疫不全である。宿主胚が、遺伝子的にRAG-1のホモ接合型の突然変異体である場合、そのような胚を注射することによって生成したキメラは、動物のリンパ球組織が宿主胚に由来するならば、抗体を生成することができない。しかし、JM8細胞およびAB2.1細胞は、例えば、一般に、キメラ動物の体細胞組織の80%超に寄与し、したがって、通常、リンパ球組織を生育するであろう。JM8細胞は、野生型RAG-1活性を有し、したがって、キメラ動物中で生成される抗体は、工学的に作製したJM8のES細胞のゲノムのみによりコードされるであろう。したがって、キメラ動物を、抗原を用いて免疫化により攻撃し、それに続いて、その抗原に対する抗体を生成させることができる。このことにより、当業者が、本発明に記載する工学的に作製したヒト/マウスのIgH遺伝子座およびIgK遺伝子座の性能を試験することが可能になる。図19および20を参照されたい。
当業者は、キメラ動物を記載に従って使用して、抗体の多様性の程度を決定するであろう(例えば、Harlow, E.およびLane, D.、1998、5版、Antibodies: A Laboratory Manual、Cold Spring Harbor Lab. Press、Plainview、NYを参照されたい)。例えば、キメラ動物の血清中の特定の抗体エピトープの存在を、特異的抗イディオタイプ抗血清に対する結合性により、例えば、ELISAアッセイにおいて、究明することができるであろう。また、当業者は、キメラ動物に由来するB細胞クローンのゲノムを配列決定し、前記配列と野生型配列とを比較して、高頻度突然変異のレベルを究明することもできるであろう。そのような高頻度突然変異は、正常な抗体の成熟を示す。
また、当業者は、前記キメラ動物を使用して、抗体の機能も調べるであろう。前記抗体は、工学的に作製したIg遺伝子座からコードされる(例えば、Harlow, E.およびLane, D.、1998年、5版、Antibodies: A Laboratory Manual、Cold Spring Harbor Lab. Press、Plainview、NYを参照されたい)。例えば、抗血清を、抗原への結合性について、前記抗原を、キメラ動物を免疫化するために使用して、試験することができるであろう。そのような測定は、ELISAアッセイにより行うことができるであろう。あるいは、当業者は、抗原の中和についても、適切に免疫化したキメラ動物から収集した抗血清を添加することによって試験することができるであろう。
これらの試験のうちのいずれかについての陽性の成果が、本発明の主題である工学的に作製したIg遺伝子座の、ヒト可変領域およびマウス定常領域を有する抗体をコードする能力を実証することは当業者に周知であり、前記抗体は、野生型抗体の様式で機能することが可能である。
実験的技法:ES細胞における相同組換えにおいて使用するためのベクターを生成するために工学的に組み換えることは、例えば、WO9929837およびWO0104288に開示されており、これらの技法は、当技術分野で周知である。一態様では、ヒトDNAを工学的に組み換えることは、BACを前記ヒトDNAの供給源として使用して行う。ヒトBACのDNAを、QIAGEN(登録商標)BAC精製キットを使用して単離する。それぞれのヒトBACの骨格を、マウスIgH領域中にすでに挿入されているBACと正確に同じかまたはそれに類似する配置に工学的に組み換えることを使用して改変する。それぞれのヒトBACゲノムの挿入部を、工学的に組み換えることを使用してトリミングし、したがって、BACが挿入されると、ヒトV(D)Jゲノム領域のシームレスな近接した部分が、マウスのIgH遺伝子座またはIgK遺伝子座において形成される。BACのDNAの電気穿孔によるトランスフェクションおよびジェノタイピングを、標準的なプロトコールに従って実施する(Prosser, H.M.、Rzadzinska, A.K.、Steel, K.P.およびBradley, A.、(2008)、「Mosaic complementation demonstrates a regulatory role for myosin Vlla in actin dynamics of stereocilia」、Molecular and Cellular Biology 28、1702〜1712頁;Ramirez-Solis, R.、Davis,A.C.およびBradley, A.、(1993)、「Gene targeting in embryonic stem cells」、Methods in Enzymology、225、855〜878頁)。工学的に組み換えることは、Pentao Liuの実験室およびDon Courtの実験室により開発された手順および試薬を使用して実施する(Chan, W.、Costantino, N.、Li, R.、Lee, S.C.、Su, Q.、Melvin, D.、Court, D.L.およびLiu, P.、(2007)、「A recombineering based approach for high-throughput conditional knockout targeting vector construction」、Nucleic Acids Research 35、e64)。
非ヒト哺乳動物ゲノム、例として、マウス中への標的遺伝子組換えおよびBAC由来染色体断片の組換えのためのこれらおよびその他の技法は当技術分野で周知であり、また、例えば、www.eucomm.org/information/targeting、およびwww.eucomm.org/information/publicationsに開示されている。
C57BL/6N由来の細胞系、例として、JM8雄のES細胞の細胞培養は、標準的な技法に従う。JM8のES細胞は、体細胞組織および生殖系列に広範に寄与する点でコンピテントであることが示されるに至っており、Sanger Instituteにおける大規模マウス変異誘発プログラム、例として、EUCOMMおよびKOMPのために使用されている(Pettitt, S.J.、Liang, Q.、Rairdan, X.Y.、Moran, J.L.、Prosser, H.M.、Beier, D.R.、Lloyd, K.C.、Bradley, A.およびSkarnes, W.C.、(2009)、「Agouti C57BL/6N embryonic stem cells for mouse genetic resources」、Nature Methods)。JM8のES細胞(1.0×107個)を、10μgのl-Scel直線化ヒトBAC DNAと共に電気穿孔する(500μF、230V; Bio-Rad(登録商標))。トランスフェクタントを、ピューロマイシン(3μg/ml)またはG418(150μg/ml)のいずれかを用いて選択する。選択は、電気穿孔の24時間後(G418の場合)または48時間後(ピューロマイシンの場合)のいずれかに始め、5日間進める。10μgの直線化ヒトBAC DNAからは、最大500個のピューロマイシンまたはG418に耐性のES細胞コロニーを得ることができる。抗生物質に耐性のES細胞コロニーを、ジェノタイピングのために96ウェル細胞培養プレート中に拾って、ターゲッティングされたクローンを同定する。
ターゲッティングされたマウスES細胞クローンを同定したら、それらを、全ゲノムの統合性について、アレイによる比較ゲノムハイブリダイゼーション(Comparative Genomic Hybridization (CGH))により解析する(Chung, Y.J.、Jonkers, J.、Kitson, H.、Fiegler, H.、Humphray, S.、Scott, C.、Hunt, S.、Yu, Y.、Nishijima, I.、Velds, A.ら、(2004)、「A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization」、Genome research 14、188〜196頁、およびLiang, Q.、Conte, N.、Skarnes, W.C.およびBradley, A.、(2008)、「Extensive genomic copy number variation in embryonic stem cells」、Proceedings of the National Academy of Sciences of the United States of America 105、17453〜17456頁)。異常なゲノムを有するES細胞は、キメラマウスの生殖系列に効率的には寄与しない。BACの統合性を、BAC中の公知の機能性V遺伝子それぞれをPCRにより増幅することによって調べる。例えば、1つのアプローチでは、IgH遺伝子座について選ばれた第1のヒトBACは、6つの機能性V遺伝子を有する。このBACの統合性を、これら6つのIGH V遺伝子の存在について確認するためには、少なくとも14対のPCRプライマーを、設計し、使用して、ターゲッティングされたES細胞由来のゲノムDNAをPCRにより増幅する。これらの断片のヒト野生型のサイズおよび配列から、挿入BACが再構されていないことが確実になる。
また、より詳細なCGHによっても、挿入BACの統合性が確認される。例えば、当業者は、Agilent Technologies, Inc.が開発したオリゴaCGHプラットフォーム使用することができるであろう。このプラットフォームにより、ゲノム全域にわたるDNAコピー数の変動を高い分解能で研究することが可能になるのみならず(Barrett, M.T.、Scheffer, A.、Ben-Dor, A.、Sampas, N.、Lipson, D.、Kincaid, R.、Tsang, P.、Curry, B.、Baird, K.、Meltzer, P.S.ら、(2004)、「Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA」、Proceedings of the National Academy of Sciences of the United States of America 101、17765〜17770頁)、特異的なゲノム領域を、特別注文の設計されたアレイを使用して検査することも可能になる。cDNAプローブまたは全BACプローブに依存する伝統的なaCGH技法と比較して、60merのオリゴヌクレオチドプローブは、我々が作製するに至った工学的に作製した染色体の変化を検出するために必要である特異的なハイブリダイゼーションならびに高い感受性および精度を確実にすることができる。例えば、挿入BACの全長に沿って規則的な間隔でハイブリダイズするように設計したオリゴであれば、きわめて短い欠失、挿入またはその他の再構成さえも検出するであろう。また、このプラットフォームは、特別注文のマイクロアレイの設計にも、最も大きな柔軟性をもたらす。ターゲッティングされたES細胞ゲノムDNAおよび正常なヒト個人のゲノムDNAを、色素を用いて別個に標識し、アレイにハイブリダイズさせる。アレイのスライドを、Aglient TechnologiesのDNAマイクロアレイスキャナーを使用してスキャンする。各アレイ画像上の色素Cy5および色素Cy3の蛍光強度の逆数、ならびにlog2比の値を、Bluefuseソフトウェア(Bluegnome)を使用することによって抽出する。一貫性のない(「信頼性」<0.29または「質」=0)蛍光パターンを有するスポットを除外してから、log2比の値全てを正規化する。実験内では、任意のオリゴプローブからのシグナルについての-0.29と+0.29との間のlog2比を、コピー数変化がないとみなす。「重複」についてのlog2比の閾値は通常、>0.29999であり、欠失については、<0.29999である。
第1のヒトBACをマウスIgH遺伝子座中に挿入し、それが、未変化の、自然のまま配置中にあることを確認したら、FRTが隣接するBAC骨格を、Flp部位特異的リコンビナーゼを使用することによって切除する。通常のFlpが触媒するFRT組換えが十分には高くない場合、Flpoリコンビナーゼの改善されたバージョンであるFloを使用することができる。Floは、特定の試験では、ES細胞中で、元々のFlpよりも3〜4倍効率的である。BAC骨格を切除すると、ES細胞は、ピューロマイシン(またはG418)に対して感受性となり、FIAUに対して耐性となる(TKカセットの喪失のため)。切除事象を、ヒトゲノムDNAプライマーを使用する、接合部断片のPCRによる増幅によってさらに特徴づける。これらのFRTが隣接する、BAC骨格を含有しないES細胞を、次回のヒトBACの挿入のため、および胚盤胞への注射のために使用する。
トランスジェニックマウスを生成するためのES細胞のゲノムのターゲッティングは、添付の図1〜18を参照することによって説明するプロトコールを使用して実施することができる。
図1は、3つの基本的な骨格ベクター、すなわち、開始カセットならびに2つの大きな挿入ベクター1および2をそれぞれ示す。開始カセットは、マウスゲノム中に挿入する所望の部位と相同な配列を含み、それらの部位は、選択マーカー、およびBACの正しい挿入を確認するためのPCRに基づいたジェノタイピングのためのスタッファープライマー(stuffer primer)配列に隣接する。スタッファー-プライマー配列は、BACの追加の各ステップのジェノタイピングための基礎を提供する。この配列は、PCRプライマーに、ロバストな十分に妥当性確認が行われた配列鋳型を提供するとみなし、lScel部位に、理想的には、BAC挿入部から約1kbにおいて位置することができる。
大きな挿入ベクターは、プラスミド上にヒトDNAを含み、選択マーカーおよびプラスミドの直線化のための独特の制限部位を有して、ES細胞のゲノム中への相同組換えを援助する。
図2は、マウスJ4エクソンとCアルファエクソンとの間における、開始カセットのマウスゲノム中への相同組換えによる挿入を示す。ピューロマイシンによる選択により、カセットが挿入されたES細胞の同定が可能になる。pu(Delta)tkは、ピューロマイシンN-アセチルトランスフェラーゼ(Puro)と、単純ヘルペスウイルス1型チミジンキナーゼの切断されたバージョン(DeltaTk)との間の二機能性融合タンパク質である。pu(Delta)tkをトランスフェクトしたマウス胚性幹(ES)細胞は、ピューロマイシンに対して耐性、かつ1-(-2-デオキシ-2-フルオロ-1-ベータ-D-アラビノ-フラノシル)-5-ヨードウラシル(FIAU)に対して感受性となる。その他のHSV1 tk導入遺伝子とは異なり、puDeltatkは、雄の生殖系列を通して容易に伝達される。したがって、pu(Delta)tkは、多くのES細胞の適用例において広く使用することができる好都合な陽性/陰性の選択マーカーである。
図3は、大きな挿入ベクター1の、マウスES細胞ゲノムに対するターゲッティングを示す。ベクターの直線化を、スタッファープライマー配列と同じ位置で行い、こうすることにより、当技術分野で周知のギャップ修復ジェノタイピング戦略を可能にする。Zhengら、NAR、1999年、Vol 27、11、2354〜2360頁を参照されたい。基本的に、ターゲッティングベクターのゲノム中へのランダムな挿入は、ギャップを「修復」しないが、一方、相同組換え事象は、ギャップを修復する。適切なPCRプライマー配列の並置により、コロニーを適切な挿入を示す陽性のPCR断片について個々にスクリーニングすることが可能になる。G418を使用する陽性の選択により、neo選択マーカーを含有するマウスES細胞の同定が可能になる。PCRによる検証を、重要な意味をもつV領域、D領域およびJ領域全てについて行うことができる。アレイによる比較ゲノムハイブリダイゼーションを使用して、BACの構造の妥当性確認を行うことができる。
図4は、puro-delta-tkカセットを示し、BACプラスミド骨格を、Flpeを使用して欠失させ、FIAUにおいて選択する。Flpeは、マウスES細胞中では非効率的に働く(一過性のFlpe発現を用いて5%の欠失)ことから、ほとんどの場合、組換えは、BAC骨格に隣接する2つのFRT部位間で発生することが予想される。また、Flpoを試験して、10kb離れている2つのFRT部位間の組換え効率を見出すこともできる。
FRT欠失のステップが選択可能であることを考えると、FIAU耐性クローンをプールし、クローン解析と平行して、次のステップに直ちに進むことが可能である。あるいは、短範囲PCR(short range PCR)により、示す(Huプライマー1およびMo-プライマー)ように、ヒト配列が今ではマウス配列に隣接することを示すことが望ましい場合もある。
この段階では、200kbのヒト遺伝子座が挿入されている。
図5は、ES細胞染色体中にターゲッティングした第2の大きな挿入ベクターを示す。ヒトBACを、同じ開始カセットの挿入を使用して、マウスIgH遺伝子座にターゲッティングし、続いて、lSce1によるBACの直線化、BACの開始カセットに対するターゲッティング、およびギャップ修復ジェノタイピング戦略を行う。BACの挿入の検証を、以前と同様に実施する。
図6は、大きな挿入ベクター2の、FRTYが隣接するBAC骨格を示し、neoマーカーを、Flpoを介して欠失させる。これは選択可能ではなく、したがって、この時点でクローン解析が必要になることに留意されたい。このことにより、ヒト2の挿入部とヒト1の挿入部との並置、およびその他の妥当性確認の努力の確認が可能になる。
この段階では、約200kbのヒト遺伝子座が挿入されている。
図7は、マウスIgH遺伝子座にターゲッティングした次の大きな挿入ベクターを示す。次いで、図4と同様に、pu-delta TKカセットを除去する。このプロセスを繰り返して、その他のBACを組み込むことができる。
図8は、最終的な、予測されるES細胞コンストラクトを示す。
図9〜18は、このプロセスの詳細のさらなるレベルを提供する。
(実施例2)
部位特異的組換え
また、本発明のさらなる方法では、部位特異的組換えを利用することもできる。部位特異的組換え(SSR)は、この20年間、導入遺伝子の、定義された染色体遺伝子座中への組込みのために広く使用されている。SSRには、相同なDNA配列間の組換えが関与する。
第一世代のSSRに基づいた染色体ターゲッティングには、(ii)これまでの組込みによりもたらされた染色体のRT部位がトランスフェクトされているプラスミド中の(i)単一の組換え標的部位(RT)、例として、loxPまたはFRTの間における組換えが関与した。このアプローチを用いる主要な問題は、切除が、挿入よりも常に効率的であることから、挿入事象がまれである点である。RMCE(リコンビナーゼを介したカセット交換(recombinase-mediated cassette exchange))と呼ばれている第二世代のSSRが、1994年にSchlakeおよびBodeにより紹介された(Schlake, T.;J. Bode、(1994)、「Use of mutated FLP-recognition-target-(FRT-)sites for the exchange of expression cassettes at defined chromosomal loci」、Biochemistry 33:12746〜12751頁)。彼らの方法は、トランスフェクトされたプラスミド中の2つの異種特異的なかつ不和合性のRTを使用することに基づき、この場合、染色体上の適合性のRT部位と組み換えることができ、結果として、DNAの1つの小片と別の小片とのスワップ、またはカセット交換が生じる。このアプローチは、50kb超のBAC挿入部の組込みを含めた、多様な効率的な染色体ターゲッティングにおいて、首尾よく活用されている(Wallace, H.A.C.ら、(2007)、「Manipulating the mouse genome to engineering precise functional syntenic replacements with human sequence」、Cell 128:197〜209頁; Prosser, H.M.ら、(2008)、「Mosaic complementation demonstrates a regulatory role for myosin Vlla in actin dynamics of Stereocilia」、Mol. Cell. Biol. 28:1702〜12頁)。
BACの最も大きな挿入部のサイズは、約300kbであり、したがって、このことが、RMCEのためのカセットのサイズに関する上限を定める。
本発明において、順次的RMCE(sequential RMCE)(SRMCE)と呼ぶ、新しいSSRに基づいた技法が使用され、この技法により、BAC挿入部の、同じ遺伝子座中への連続的な挿入が可能になる。
この方法は、
1 開始カセットを形成するDNA(本明細書ではまた、ランディングパッドとも呼ぶ)を、細胞のゲノム中に挿入するステップと、
2 第1のDNA断片を、挿入部位中に挿入するステップであって、第1のDNA断片が、ヒトDNAの第1の部分、および第1の選択マーカーを含有するかまたは挿入時に選択マーカーを生成する第1のベクターの部分を含むステップと、
3 ベクターのDNAの一部を除去するステップと、
4 第2のDNA断片を、第1のDNA断片のベクターの部分中に挿入するステップであって、第2のDNA断片が、ヒトDNAの第2の部分および第2のベクターの部分を含有し、第2のベクターの部分が、第2の選択マーカーを含有するかまたは挿入時に第2の選択マーカーを生成するステップと、
5 任意のベクターのDNAを除去して、第1および第2のヒトDNA断片が近接した配列を形成することを可能にするステップと、
6 必要に応じて、ヒトV(D)JのDNAの一部の挿入およびベクターのDNAの除去のステップを反復して、宿主定常領域と協力して、キメラ抗体を生成することを可能にするのに十分な、ヒトのVDJ領域またはVJ領域の全部または一部を有する細胞を生成するステップと
を含み、
少なくとも1つのDNA断片の挿入が、部位特異的組換えを使用する。
1つの特定の態様では、このアプローチは、3つの異種特異的なかつ不和合性のloxP部位を活用する。この方法は、以下に示すステップからなり、この方法を、図22〜26に示す。
1.ランディングパッドの、定義された遺伝子座中へのターゲッティングステップ。反転させた ピギーバック(PB)ITRが隣接するHPRTミニ遺伝子を含有するエントリーベクターを、定義された領域(例えば、IGHJとEμとの間の領域、またはIGKJとEkとの間の領域、またはIGLC1とEλ3-1との間の領域)中にターゲッティングして、BACターゲッティングのためのランディングパッドとして働かせる。HPRTミニ遺伝子は、2つの合成エクソンおよび関連のイントロンからなる。5'HPRTエクソンには、2つの異種特異的なかつ不和合性のloxP部位(一方は野生型であり、他方は突然変異部位lox5171である)が、相互に反転した位置付けで隣接する(図22)。これらの2つのloxP部位が、RMCEによるBACの挿入のための組換え部位を提供する。
2.第1の改変BACの、ターゲッティングされたランディングパッド中への挿入。第1のBACは、工学的に作製した改変が隣接する、ゲノム中に挿入しようとするDNAの長さを有する。5'改変(loxP-neo遺伝子-lox2272-PGKプロモーター-PB5'LTR)、および3'改変(PB3'LTR-puroΔTK遺伝子-lox5171)を、図23に、lox部位およびPB LTRの相対的な位置付けと併せて描写する。同時に電気穿孔したベクターからの一過性のCRE発現を用いれば、DNA配列が、RMCEにより、定義された遺伝子座中に挿入されるであろう。正しい挿入が発生している細胞を、以下に従って選択することができる:(i)ピューロマイシン耐性(puroΔTK遺伝子が、ランディングパッドから、プロモーター-「PGK」-を獲得している)、(ii)6TG耐性(HPRTミニ遺伝子が破壊されている)、および(iii)G418耐性(5'領域のPGK-neoの配置を介する任意の挿入について選択する)。これらの選択形態の任意の組合せを使用することができる。G418耐性および6TG耐性は、5'末端上の正しい事象について選択し、一方、puro耐性は、3'末端上の正しい事象について選択する。
3.第1の挿入の3'改変の修正(除去)のステップ。第1のBACが適切に挿入されると、その結果、反転させたPB LTRが隣接するpuroΔTK遺伝子を有する3'末端(図24)、すなわち、本質的に適切なトランスポゾン構造が生じる。次いで、このトランスポゾンを、(電気穿孔したベクターからの)ピギーバックトランスポゼース一過性の発現により除去することができる。正しい切除事象が生じた細胞を、FIAU耐性により、すなわち、puroΔTK遺伝子からのチミジンキナーゼ活性がないことにより選択することができる。これにより、3'改変が完全に除去され、微量のヌクレオチドも残らない。
4.第2の改変BACの、第1の挿入の5'末端中への挿入。第2のBACは、工学的に作製した改変が隣接する、ゲノム中に挿入しようとするDNA(通常、第1のBACが挿入されたDNAに近接しているものとする)の長さを有する。5'改変(loxP-HPRTミニ遺伝子の5'部分-lox5171-PGKプロモーター-PB5'LTR)、および3'改変(PB3'LTR-puroΔTK-lox2272)を、図25に、lox部位およびPB LTRの相対的な位置付けと併せて描写する。同時に電気穿孔したベクターからの一過性のCRE発現を用いれば、DNA配列が、RMCEにより、定義された遺伝子座中に挿入されるであろう。正しい挿入が発生している細胞を、以下に従って選択することができる:(i)HAT耐性(HPRTミニ遺伝子が、正しい挿入事象により再構成されている、すなわち、5'および3'のエクソン構造が一緒に生じている)、ならびに(ii)ピューロマイシン耐性(puroΔTK遺伝子が、ランディングパッドから、プロモーター-「PGK」-を獲得している)。
5.第2の挿入の3'改変の修正(除去)のステップ。第2のBACが適切に挿入されると、その結果、反転させたPB LTRが隣接するpuroΔTK遺伝子を有する3'末端(図26)、すなわち、成功した第1のBACの挿入の結果にまさしく類似する、本質的に適切なトランスポゾン構造が生じる。したがって、このトランスポゾンも同様に、(電気穿孔したベクターからの)ピギーバックトランスポゼースの一過性の発現により除去することができる。正しい切除事象が生じた細胞を、FIAU耐性により、すなわち、puroΔTK遺伝子からのチミジンキナーゼ活性がないことにより選択することができる。これにより、3'改変が完全に除去され、微量のヌクレオチドも残らない。
6.第2のBACの挿入の3'改変の修正の後では、ランディングパッドは、元々のものと同一になる。このプロセス全体、すなわち、ステップ2から5を複数回繰り返して、ゲノム中に大きな挿入を築き上げることができる。完了時には、所望の挿入以外に残余のヌクレオチドは残らない。
奇数のBACをIg遺伝子座中に挿入する場合には、内在性のVDJ配列またはVJ配列を、以下に従って、染色体の工学的作製を介して、反転により不活性化することができる(図27〜29を参照されたい)。
1.「フリップオーバー(flip-over)」カセットの、内在性のVDJまたはVJから10〜40メガベース離れた5'領域中へのターゲッティング。
フリップオーバーベクター(PB3'LTR-PGKプロモーター-HPRTミニ遺伝子の5'部分-loxP-puroΔTK-CAGGSプロモーター-PB3'LTR)を、図27に、lox部位およびPB LTRの相対的な位置付けと併せて描写する。
2.一過性のCRE発現により、「フリップオーバー」カセット中のloxP部位と、5'改変中のloxP部位との間において組換えが生じる。この5'改変は、上記のステップ2および3に記載するように、本質的に、3'改変が修正された後の奇数のBACの挿入により生じた改変である。loxP部位を相互に反転させ、したがって、記載の組換え事象の結果、図28に描写するような反転が生じる。正しい反転が生じた細胞は、HPRTミニ遺伝子が、正しい反転により再構成されることから、HAT耐性である。
3.また、正しい反転は、「フリップオーバー」カセットおよび5'改変に隣接する2つのトランスポゾン構造も残す。両方のトランスポゾン構造を、一過性のピギーバックトランスポゼースの発現を用いて切除することができ、いずれの改変の残余物も残らない(図29)。正しい切除が生じた細胞を、以下に従って選択することができる:(i)6TG耐性(HPRTミニ遺伝子が欠失している)、および(ii)FIAU耐性(puroΔTK遺伝子が欠失している)。Ig遺伝子座における、記載するような反転は、内在性のIGH-VDJ領域またはIGK-VJ領域を、Eμエンハンサー領域またはEkエンハンサー領域それぞれから引き離し、内在性のIGH-VDJ領域またはIGK-VJ領域の不活性化を起こすであろう。
本発明の挿入方法は、適切には、
5'末端および3'末端の両方における、挿入DNA断片の選択、
3'改変の、好ましくは、トランスポゼース媒介型DNA切除による効率的な修正、
内在性のIGH活性またはIGK活性の、反転による不活性化、および
染色体中に残存するヌクレオチドの痕跡を残さない、改変の切除
のうちの1つまたは複数をもたらす。
(実施例3)
試験ベクターの、ゲノム中への定義された場所における挿入
このアプローチの概念実証を、図30に開示する。図30では、図22に示したランディングパッドを、マウスのゲノム中に相同組換えにより挿入し、続いて、R21プラスミドのランディングパッド中への、cre媒介型部位特異的組換えを介する挿入を行った。挿入事象により、いくつかの全般的な挿入事象、すなわち、360個のG418耐性コロニーが生成し、これらのうち、約220個が所望の遺伝子座中に挿入され、これは、HRPTミニ遺伝子座の破壊により実証された。
R21ベクターは、第1のBACの挿入ベクターを、5'末端および3'末端において模倣し、選択エレメントおよびリコンビナーゼ標的部位全てを含む。BAC配列の代わりに、小さな「スタッファー」配列がある。スタッファーにわたるPCRが実行可能であり、したがって、挿入の両方の末端を容易に試験することが可能になることから、このベクターは、本発明において設計した主要なもの全てを試験し、かつ結果の容易な試験を可能にする。R21を、cre発現ベクターと共に、IGH遺伝子座中にランディングパッドを有するES細胞中に同時に電気穿孔した。4つのセットの形質転換した細胞を、平行してトランスフェクトし、次いで、図30に示す異なる選択形態下に置いた。G418による選択(neo遺伝子発現)の結果、特異的なランディングパッドの組込みの必要がないことに起因して、最も多数のコロニーが生じた。R21のゲノム中への組込みはいずれも、G418耐性に至るneo発現をもたらす。Puroによる選択の結果、Puro+6TGまたはG418+6TGに類似するコロニー数が生じ、このことは、Puroによる選択の厳密度が、ベクター中のプロモーターを欠くPuroΔTKに起因することを示唆した。Puro発現は、組込みがプロモーターエレメント付近で発生した場合にのみ獲得され、この状態は、この設計では、ランディングパッド中で特異的に起こる可能性が最も高い。これらの結論は、図31に示す接合部のPCRからの結果により支持されている。
本発明の次のステップは、組み込まれたBACベクターの3'末端を「修正」して、挿入と隣接するゲノムとの間にシームレスな移行を残すステップである。この修正を、上記からの個々のクローン(ランディングパッド中に挿入されたR21)を拡大増殖し、このクローン中のピギーバックリコンビナーゼを、発現プラスミドのトランスフェクションを介して発現させることによって実証した。FIAUを使用して、すなわち、ピギーバック末端リピート間の「PGK-puroΔTK」エレメントの喪失を通して、3'改変が切除されたコロニーを選択した。50個のそのようなクローンが、106個の細胞のトランスフェクションから得られ、これらのうち6つを、予想されるゲノム構造について試験した。成功した修正の結果、図32中で「3」とラベルしたプライマーセット間で陽性のPCRが生じた。6つのクローンのうち、4つに正しい切除が生じ、1つのクローンは、元々の配置を維持し、最後の1つには欠失が生じた。
これらのデータは、上記に概要を述べたアプローチを使用した、DNAの、ランディングパッド中への定義されたゲノムの遺伝子座における反復挿入を実証している。
(実施例4)
ヒトIG遺伝子座の大きな部分の、マウスゲノムの定義された位置内への挿入
実施例3は、請求する発明の設計により、試験ベクターの、ゲノム中への定義された場所における挿入、この場合には、R21ベクターの、マウスIGH遺伝子座中への挿入をもたらすことが可能であることを実証した。適切な選択培地の使用およびcreリコンビナーゼの発現の結果、予測される構造を有するゲノムの変化が生じた。
本発明に記載する同じ設計エレメントを、BAC挿入部の5'末端および3'末端中に築いた。前記挿入部は、IGH遺伝子座からのヒト配列を含み、およそ166kbであった。この工学的に作製したBACを、cre発現プラスミドのDNAと併せて、マウスIGH遺伝子座にランディングパッドを有するマウスES細胞中に電気穿孔した。トランスフェクトした細胞集団を、puroを含有する培地中で増殖し、適切な挿入事象について選択した。
7つの結果として生じたクローンを単離し、さらに解析した。予想される組換え事象および結果として生じた構造を、図33に描写する。実施例3に概要を述べたR21の実験からのデータに基づき、トランスフェクトした集団を、puroを含有する培地中で選択する場合には、正しいクローンについての厳密な選択が予想された。これは、puroコード領域が、プロモーターエレメントを必要とし、これは、組換え後にランディングパッドにより、優先的に供給されるからである。したがって、7つの単離したクローンの大半は、ゲノム中にランディングパッドにおいて正しく挿入されており、このことは、診断的PCRにより決定された。正しい挿入を診断するためのプライマーを、図33に描写する。610bpの断片が、プライマー「A」とプライマー「X」との間で増幅され、478bpの断片が、プライマー「Y」とプライマー「B」との間で増幅された場合には、正しい接合部が、ゲノム中に存在する(図33および34)。「A」プライマーと「1」プライマーとの間および「2」プライマーと「B」プライマーとの間で増幅された断片があり、親ゲノム(すなわち、ランディングパッド単独)の存在を示すことに留意されたい。これらの断片は、puroによる選択下で細胞コロニー中に内部的に存在する親細胞の結果生じ、コロニーの幾何学的形状に起因して選択を回避する。コロニーを、puroを含有する培地を通して継代すると、これら親の接合部断片は姿を消し、このことは、親細胞が集団から除去されていることを示す。さらに、クローンは全て、HPRT遺伝子が正しい挿入事象により不活性化されている場合に予想されるように、6-TGに対して耐性であることも示された。
これらのデータは、ヒトIG遺伝子座の大きな部分をマウスゲノム中の定義された位置に挿入するための開示する戦略により、記載するように、マウス定常領域の上流にヒトIG領域の可変領域を複数有するマウスの構築が可能になることを示している。
(実施例5)
挿入された遺伝子座は遺伝子再編成、接合部の多様性および発現に関して機能的である
ヒトIg遺伝子セグメント(ヒトV、Dおよび/またはJ遺伝子セグメント)の挿入を有するバクテリア人工染色体(BAC)を作製した。本明細書中に記載の方法を使用して、ヒト遺伝子セグメントが内在性定常領域の上流に機能的に挿入されているキメラIgH遺伝子座およびIgK遺伝子座がもたらされるように、マウス胚性幹細胞(ES細胞)中でキメラIg遺伝子座を構築する方法においてランディングパッドを使用した。ヒトBACを挿入したES細胞クローンに由来するキメラマウス中のヒトIgH-VDJまたはIGK-VJ遺伝子セグメントが適切に再編成および発現されるかどうかを試験するために、これらのマウスからの白血球のRNA試料について、ヒト可変(V)領域およびマウス定常(C)領域のプライマー対を用いてRT-PCRを行った。オリゴの配列を以下のように示す(Table 1(表1))。PCR反応のために、それぞれのVオリゴをCオリゴと対にする(HVとCμ、KVとCκ)。
Figure 2015512634
SuperScript(登録商標)III One-Step RT-PCR System with Platinum(商標)Taq High Fidelity(Invitrogen(登録商標)、ワールドワイドウェブ(www) invitrogen.com/site/us/en/home/References/protocols/nucleic-acid-amplification-and-expression-profiling/pcr-protocol/superscript-3-one-step-rt-pcr-system-with-platinum-taq-high-fidelity.html#prot3)の1ステップ処方を使用して、遺伝子特異的プライマーおよび標的RNAを使用し、cDNA合成およびPCR増幅をどちらも1本のチューブ内で達成した。
RT-PCRの結果により、ヒトIGH-VDJまたはIGK-VJ遺伝子セグメントのほとんどが、キメラマウスにおいて適切に再編成および発現されたことが示された。VDJ/VJ再編成から生じた多様性に関する詳細を調査するために、これらの特定のRT-PCR断片をシーケンシングのために共通ベクター内にクローニングした。
シーケンシング結果は、JH、DH、およびJKの使用量(図35および図36)がヒトの結果と類似していることを示している。さらに、IGH-VDJCμ転写物からの結果は、CDR-H3の長さの範囲および平均(図37)がヒトで観察されるものに類似していることを示している。また、エクソヌクレアーゼおよびヌクレオチドの付加活性から生じた接合部の多様性(図38)も観察された。IGHの再編成は、IGKのものと比較してより高い頻度のこれらの活性を保有していた。これらのデータは、挿入された遺伝子座は遺伝子再編成、接合部の多様性および発現に関して機能的であるであることを示唆している。
(実施例6)
生産的なVJ再編成および体細胞高頻度突然変異を得ることができる
図41は、ヒト生殖系列カッパV1-8およびJ1から再編成された再編成されたVJを保有するマウスB細胞からのカッパmRNAの解析を示し、生産的なVJ再編成および体細胞高頻度突然変異の両方を得ることができることを実証しており、後者は、生殖系列配列に関してmRNAによってコードされている抗体中の変化から見られるものである。同じことがV1-6およびJ1について図42中に示されている。重要なことに、組換えが(突然変異させていない)ヒト生殖系列遺伝子セグメントの組合せによってコードされているストップコドンを排除し、それにより、抗体をコードしているmRNA配列が可能となる。図43は、挿入されたヒトカッパV1-5J1およびV1-5J4が機能的コード配列をin vivoで生じ、接合部の多様性を生じることができることを実証している。
(実施例7)
発現された再編成された重鎖における、反転による内在性IGHV遺伝子セグメントの使用の不活性化
序論
5'-RACE Cμ特異的ライブラリをトランスジェニックマウスの脾臓Bリンパ球から生成し、これをS1マウスと表示した。これらのマウスはトランスジェニック重鎖遺伝子座を含み、各遺伝子座は、内在性IGHJ4とEμとの間(マウス第12染色体:座標114666435と114666436との間)の内在性重鎖遺伝子座内に挿入された、6つの最も3'側の機能的ヒトVH遺伝子セグメント(VH2-5、7-4-1、4-4、1-3、1-2、6-1)と、全てのヒトDおよびJH遺伝子セグメント(機能的ヒトD遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26および7-27、ならびに機能的ヒトJ遺伝子セグメントJ1、J2、J3、J4、J5およびJ6を含む)を含有する。ヒトDNAは、ヒト第14染色体の座標106328951〜座標106494908の配列を含有するバクテリア人工染色体(BAC)から得た。sRMCEを使用したトランスジェニック抗体の遺伝子座の構築に関するさらなる詳細は、本明細書中の他の箇所およびWO2011004192号(本明細書中に参考として組み込まれている)中に与えられている。4×96ウェルプレートのクローンをシーケンシングのためにランダムに拾って、遺伝子セグメントの使用量を決定した。全ての検出された免疫グロブリン重鎖は、マウスVHまたはヒトVHからヒトD-JHで再編成されていた。マウスのDおよびJHセグメントは、再編成された生成物中で検出されなかった(図44)。
この結果は、ヒトVH-D-JH遺伝子セグメントを最後の内在性J領域(この場合はJH4)とEμエンハンサーとの間の内在性遺伝子座内に挿入することは、発現された再編成された免疫グロブリン重鎖について、内在性のDおよびJH遺伝子セグメントの使用を有効に不活性化させることを示している。
マウスVH対ヒトVHの使用量の比は約3対1であった(図45)。抗体生成のためにマウスVHが使用されることを完全に排除するために、内在性マウスVH-D-JHを反転させ、同じ染色体の遠位領域に移動させた。マウスVHからヒトD-JHセグメントへの再編成は、反転および重鎖遺伝子座からの距離の効果によって完全に遮断された。
反転戦略には3つのステップが含まれていた:(a)反転カセットの標的化、(b)内在性VDJの反転、および(c)マーカーの切除(図46)。
(a)反転カセットの標的化:
反転カセットは4つの構成要素からなる:CAGGSプロモーター駆動のピューロマイシン耐性デルタ-チミジンキナーゼ(puroΔtk)遺伝子、PGKプロモーター制御下の5'HPRT遺伝子セグメント、それらの間に配置し、かつ重鎖遺伝子座中にすでに存在する別のloxP部位に対して反転して配向されたloxP部位、ならびに2つの隣接するpiggyback LTR(PB3'LTR)。反転標的化カセットは、図46に示すように、第12染色体において内在性IGH遺伝子座の5'側かつ遠位である領域に挿入した。標的ESクローンをPCRによって同定および確認した。
(b)反転:
挿入の後、形質移入したプラスミドからのcreの一過性発現は、2つの反転されたloxP部位、すなわちそれぞれ反転カセット中およびBAC挿入用のランディングパッド中のものの組換えによって、内在性VH-D-JH遺伝子座および介在配列を含めた第12染色体断片の一区域の反転をもたらした。反転体をHATによって選択し、2つの組み換えられたloxP部位を交差する接合部PCRによって確認した。
(c)マーカーの切除:
反転により、反転カセットからのPB3'LTRおよびランディングパッドからのPB5'LTRの相対的な配向が再編成され、反転された領域に隣接する2つのpiggyBacトランスポゾン構造が生成された。piggyBacトランスポサーゼ(PBase)の一過性発現に伴って、これら2つのトランスポゾンが染色体(したがってマウス細胞ゲノム)から切除された。修正されたESクローンを1-(-2-デオキシ-2-フルオロ-1-b-D-アラビノフラノシル)-5-ヨードウラシル(FIAU)および6TGによって選択し、切除された領域を交差する接合部PCRによって確認した。
方法
組織培養物:ES細胞培養、電気穿孔および薬物選択の手順は以前に記載されている(Ramirez-Solis, R.、A. C. Davis、およびA. Bradley、1993年、Gene targeting in mouse embryonic stem cells、Methods Enzymol、225:855〜878頁)。
反転のための遺伝子座の標的化:手短に述べると、S1細胞系(S1.11.1)を、M15培地(15%ウシ胎児血清、2mMのグルタミン、抗生物質、および0.1mMの2-メルカプトエタノールを添加したKnockout(登録商標)DMEM)中で培養した。標的構築物R57(図47)をNotIによって相同性領域の外で直鎖状にした。合計20μgの直鎖状にした構築物を、Bio-Rad(商標)Gene Pulser(登録商標)を用いてS1細胞系(AB2.1由来)内に電気穿孔し、107個の細胞を、M15培地を含有する3つの90mm直径のSNL76/7フィーダープレート上に播種した。電気穿孔の24時間後、ピューロマイシン(3μgの活性成分/ml)を含有するM15を各90mm直径のプレートに加え、細胞を選択下にて9日間維持した。その後、96個のピューロマイシン耐性クローンを拾い、96ウェルプレート中で拡大させた。標的化事象を長期PCRによって同定した。
Cre-loxP媒介性の反転:12個の陽性クローンを一緒にプールし、M15培地を含む6ウェル組織培養プレート中で培養した。マウス内在性遺伝子座を反転させるために細胞を10μgのpCAGGS-Creプラスミドで形質移入し、その後、M15培地を含有する3つの90mm直径のSNL76/7フィーダープレート上に播種した。電気穿孔の24時間後、1×HAT(ヒポキサンチン-アミノプテリン-チミジン)を含有するM15を各90mm直径のプレートに加え、細胞を選択下にて7日間維持し、その後、1×HT(ヒポキサンチン-チミジン)で2日間処理した。48個のHAT耐性コロニーを拾い、Cre-loxP媒介性の反転後の接合部のPCR増幅によって遺伝子型決定した。
HyPBase媒介性のマーカー切除:12個の陽性クローンを一緒にプールし、M15培地を使用して6ウェル組織培養プレート中で培養した。2つの選択マーカー(Hprtミニ遺伝子およびPGK-puroΔtk遺伝子)に隣接するPBトランスポゾンLTRを活性化させるために細胞を5μgのHyPBaseプラスミドで形質移入し、M15培地を含有する1つの90mm直径のSNL76/7フィーダープレート上に播種した。電気穿孔の72時間後、その後、細胞の段階希釈液を1-(-2-デオキシ-2-フルオロ-1-b-D-アラビノフラノシル)-5-ヨードウラシル(FIAU)を添加したM15を含有する3つの90mm直径のSNL76/7フィーダープレート上に播種した。細胞を選択下にて10日間維持し、FIAU耐性コロニーを計数し、拾い、96ウェルプレート中で拡大させた。選択マーカーを切除した後に接合部のPCR増幅を行うことによって陽性クローンを同定した。その後、胚盤胞微量注入のために陽性クローンを拡大した。
キメラの生成および繁殖:ES細胞をC57/BL6の胚盤胞内に微量注入し、偽妊娠したレシピエント内に移すことによって、マウスキメラを生成した。雄キメラをC57/BL6マウスと試験的に交雑させた。S1 3'接合部PCRによってアグーチF1子孫を遺伝子型決定した。試験交雑の陽性ヘテロ接合体をさらに交雑させて、ホモ接合体を生成した。
5'-cDNA末端迅速増幅(5'RACE)PCRによるVH-D-JHの使用量の決定:TRIzol(商標)試薬(Invitrogen(登録商標)、Life Technologies Ltd(登録商標)を用いて、S1inv1マウス(KMSF30.1d)の脾臓から全RNAを抽出し、DNase Iで処理した。5'/3'RACEキット(2nd Generation、Roche)を使用して、製造者によって提供されたプロトコールに従って、5'-cDNA末端迅速増幅(5'RACE)PCRを行った。マウス内在性Cμ領域に位置するプライマーE1554(5'-ATGACTTCAGTGTTGTTCTGGTAG-3'、配列番号25)を使用して第1鎖cDNAを合成した。合成された第1のcDNA鎖は、High Pure PCR産物精製キット(Roche)を使用して精製した。5'/3'RACEキット(2nd Generation、Roche)と共に提供されたプロトコールに従ってポリ(A)テイルを付加した。キットに含まれるフォワードプライマーオリゴdTおよびネステッドCμ特異的リバースプライマーE1555(5'-CACCAGATTCTTATCAGAC-3'、配列番号26)を用いたネステッドPCRによってVH-D-JH再編成転写物の5'末端を増幅した。反応後、5'RACE PCR産物を1%アガロースゲル上で確認し、QIAquick(商標)ゲル抽出キット(QIAGEN)を使用してキットと共に提供されたプロトコールにより精製し、その後、シーケンシング解析のためにQIAGEN PCRクローニングキット(QIAGEN)を使用してpDriveベクター内にクローニングした。
結果
S1inv1(反転された内在性IGH遺伝子座を有する1ヒトIGH BAC(すなわち複数のヒトVH、全て機能的なヒトDおよびJH)バージョン1)マウスの脾臓Bリンパ球のCμ特異的5'-RACEライブラリからの配列解析は、事実上全ての転写物が再編成されたヒトVH-D-JH遺伝子セグメントに由来していることを示す(図48)。マウスVHの使用量はほぼ検出されず(0.4%)、マウスのDおよびJHの使用量は全く検出されなかった。ヒトVHの使用量は99.6%であり、ヒトDおよびJHのみが使用されていた。マウスVHのわずかな使用量は、別の染色体とのトランススイッチが原因であり、反転された配列からのマウスVHの使用が原因ではないと仮定された。反転は内在性VHの使用の完全な不活性化をもたらした。
この結果は、反転が内在性VH遺伝子セグメントの再編成を不活性化させるための有効な方法であることを示している。また、S1inv1マウスは、DおよびJH遺伝子セグメントのどちらに関してもヒトと類似の使用量も示す(図49)(Link, JMら、Mol. Immunol.、2005年、42、943〜955頁)。したがって、ヒト可変領域を含むが、マウス可変領域を含まない重鎖を発現するトランスジェニック重鎖遺伝子座を含むマウスが生成され、さらに、ヒト可変領域はヒトにおいて観察されるヒトDおよびJの使用量に相当する正常なヒト配列分布を実証した。
(実施例8)
発現された再編成された重鎖における、ヒトIgHゲノムDNAの挿入による内在性IGHV遺伝子セグメントの使用の不活性化
序論
VH-D-JH遺伝子セグメントを有するヒトBACを第12染色体中のJH4とEμとの間の内在性マウス重鎖遺伝子座内に挿入することは、ヒトVH-D-JH遺伝子セグメントがマウスEμおよび3'エンハンサーを有効に使用し、再編成されて、ヒト可変領域およびマウス定常領域を有するキメラ抗体を生成することを可能にする。一方で、内在性VH-D-JH遺伝子セグメントは内在性エンハンサーおよび定常領域から離れるように追い払われる。この距離効果は、発現された再編成された抗体産物におけるマウスのDおよびJHの使用の不活性化をもたらす。段階的なBAC挿入によって距離が増加するにつれて、マウスVHの使用量が顕著に低下するであろうことが予想される。
結果
第1のヒトBAC(マウス第14染色体の座標106328951〜座標106494908の配列を含み、6つの最も3'側の機能的VH遺伝子セグメント(VH2-5、7-4-1、4-4、1-3、1-2、6-1)および全てのヒトDおよびJH遺伝子セグメントを含有するBAC)からのヒトDNAを、AB2.1ES細胞ゲノムの内在性IGHJ4とEμとの間の(マウス第12染色体の座標114666435と114666436との間)の重鎖内在性遺伝子座内に挿入することは、発現された再編成された免疫グロブリン重鎖について、内在性のDおよびJH遺伝子セグメントの使用を有効に不活性化させる(図44)。マウスVH遺伝子セグメントと再編成された転写物は、生じるS1マウスにおいて低下している。マウスVHを使用する転写物の割合は、観察した全ての配列の約75%である(図45)。
第1のBAC DNAの挿入後、第2のヒトBAC(Chr14:106494909〜106601551)(マウス第14染色体の座標106494909〜座標106601551の配列を含み、5つのより機能的なVH遺伝子セグメント(VH3-13、3-11、3-9、1-8、3-7)を含有するBAC)からのヒトDNAを、第1のBAC挿入後の修正後に残されたランディングパッド内に挿入した(例えば図24を参照)。マウスVHの使用量は、この第2のBACの遺伝子座内への挿入後にさらに顕著に低下する。マウスVHを使用する転写物の割合は、観察した全ての配列35%へとさらに低下した(図50)。
この結果は、1つまたは複数のBACからのヒトVDJ配列を挿入することによって、内在性VH-D-JH遺伝子セグメントを不活性化する(すなわち、発現された再編成された重鎖に使用しない)ことができることを示している。段階的なBAC挿入によって距離が増加するにつれて、マウスVHの使用量が顕著に低下するであろうことが予想される。
(実施例9)
本発明のトランスジェニックマウスにおける正常なクラススイッチおよび高頻度突然変異
序論
免疫系のB細胞のアームは、抗原チャレンジに応答して高親和性の抗原特異的な抗体を生成するように進化している。抗体は、Bリンパ球中で、可変性(V)、多様性(D、IGH遺伝子座用)および連結(J)遺伝子セグメントがCμ(IGH用)またはCκもしくはCλ(IGL用)定常領域遺伝子セグメントと組換え、転写およびスプライシングされてIgM抗体を形成する、遺伝子再編成のプロセスによって生成される。B細胞発生の段階に応じて、IgMは細胞表面上に位置するか、または分泌されている。組換えプロセスは、広範囲の抗原と結合するために十分な生殖系列の多様性を有する一次抗体レパートリーを生成する。しかし、これは、通常、感染性因子などの抗原に対して有効な免疫応答に必要な高親和性の抗体を提供するためには大きさが十分でない。したがって、免疫系は多様性をさらに増加させるために2段階の多様化プロセスを採用する。抗原でチャレンジされた際、B細胞は体細胞突然変異と呼ばれるプロセスによる選択および成熟を受ける。抗原と結合する抗体を発現するB細胞は、二次リンパ器官の胚中心(GC)において複数ラウンドの多様化、クローン増殖および抗原選択を受ける。このプロセスの間、免疫グロブリン遺伝子の再編成された可変領域はヌクレオチドの置換、付加または欠失を通じて体細胞高頻度突然変異を獲得する。この段階的なプロセスは、一次レパートリーから元々選択された弱く結合するものから二次レパートリーを作成し、抗原反応性B細胞の迅速な増殖を結合品質についての著しい選択と組み合わせ、最終的に、幅広いエピトープカバレッジを有する高親和性の抗体を生じる。このプロセスの間、抗体は、Cμ定常領域がそれぞれCγ、CαまたはCεによって置き換えられて、異なるエフェクター機能を有するそれぞれIgG、AまたはEクラスの抗体を生成するクラススイッチを受ける。
6つの最も3'側の機能的VH遺伝子セグメント(VH2-5、7-4-1、4-4、1-3、1-2、6-1)および全てのDおよびJH遺伝子セグメントを含有する第1のヒトBAC(Chr14:106328951〜106494908)を、内在性IGHJ4とEμとの間(Chr12:114666435と114666436との間)の遺伝子座内に挿入することにより、ヒト可変領域およびマウス定常領域を含有するキメラ免疫グロブリン重鎖を生じるトランスジェニックマウスが生成される。この結果は、ヒト免疫グロブリン遺伝子セグメントが再編成されてマウス中で発現可能であることを実証している。ここでは、免疫化したトランスジェニックマウスが生成された抗体について適切なクラススイッチおよび高頻度突然変異を有することをさらに実証するために、RT-PCR実験および配列解析を行った。
方法
RT-PCRおよび配列解析:6〜8週年齢の野生型またはS1キメラマウスを、リン酸緩衝生理食塩水(PBS)中に懸濁させた106個のヒツジRBCの腹腔内注射によってプライミングした。免疫化したマウスは、プライミングの2週間および4週間後に同じ量のヒツジRBCで2回ブーストした。最後のブーストの4日後、免疫化したマウスから末梢血細胞を採取した。TRIzol(商標)試薬(Invitrogen(登録商標))を用いて、全RNAを末梢血細胞から単離し、DNase Iで処理した。SuperScript(商標)III First-Strand Synthesis System(Invitrogen(登録商標))を使用して、製造者によって提供されたプロトコールに従って、逆転写ポリメラーゼ連鎖反応(RT-PCR)を行った。第1鎖cDNAを、特異的Cγプライマー(Cγ1、Cγ2a、Cγ2b)を用いて合成し、次いで特異的ヒトVプライマー(VH1-2,3、VH4-4、VH6-1)およびCγプライマー(Table 2(表2))を用いたPCRを行った。反応後、RT-PCR産物を1%アガロースゲル上で確認し、QIAquick(商標)ゲル抽出キット(QIAGEN)を使用してキットと共に提供されたプロトコールにより精製し、その後、シーケンシング解析のためにQIAGEN PCRクローニングキット(QIAGEN)を使用してpDriveベクター内にクローニングした。
Table 2(表2):
Figure 2015512634
結果
免疫化したトランスジェニックマウスの末梢血細胞からの増幅のための、ヒトVH特異的およびマウスCγ特異的プライマーを用いたRT-PCRを使用して、再編成された転写物が検出された(図51)。これらの増幅断片のさらなる配列解析により、これらのIGγ鎖のヒト可変領域内で高頻度突然変異が起こっていたことが実証された(図52)。これらの結果は、VH、DおよびJH遺伝子セグメントを含有するヒトIGH BACを内在性IGHJ4とEμ領域との間の遺伝子座内に挿入することを含む本発明の遺伝子座が、抗原チャレンジ後に正常なクラススイッチおよび高頻度突然変異機能性(IgMからIgG)を有することを示している。
(実施例10)
本発明のトランスジェニックマウス中の正常なB細胞区画
序論
マウスでは、約2×107個の骨髄未成熟B細胞が毎日生成されている。これらのうち、これらの細胞の10〜20%のみが生存して骨髄を出て脾臓に入る。未成熟な脾臓B細胞集団は2つの明確に異なる部分組へと分類される:移行1(T1)および移行2(T2)B細胞。In vivo実験により、T1細胞はT2細胞を生じさせる一方で、T2細胞は成熟(M)B細胞へとさらに分化できることが示されている。未成熟B細胞(3〜4日齢)とは対照的に、成熟B細胞は長命であり(15〜20週齢)、抗原に応答する準備ができている(Pillai Sら、Immunol. Reviews、2004年、197:206〜218頁)。したがって、成熟B細胞集団の構成要素は液性免疫応答の効率に直接結びつけられている。
T1、T2およびM細胞集団は、その細胞表面のIgMおよびIgDのレベルによって分類することができる。頑強な免疫応答を開始させるためには、脾臓B細胞区画の正常な表現型が必要である。
方法
成熟Bリンパ球のフローサイトメトリー解析:脾臓から単細胞懸濁液を得るために、以下に列挙したマウスの脾臓を30μmの細胞濾過器に穏やかに通した。単細胞を、3%熱失活ウシ胎児血清(FCS、Gibco(商標))を添加したPBS中に再懸濁させた。以下の抗体を染色に使用した。
アロフィコシアニン(APC)とコンジュゲートしたB220/CD45R(eBioscience、クローンRA3-6B2)に対する抗体、フィコエリスリン(PE)とコンジュゲートしたIgD受容体(eBioscience、クローン11-26)およびフルオレセインイソチオシアネート(FITC)とコンジュゲートしたIgM受容体(eBioscience、クローン11/41)に対する抗体。
5×106個の細胞をそれぞれの染色に使用した。脾細胞を含有する各バイアルに、IgD(PE)(eBioscience、クローン11-26)、IgM(FITC)およびB220/CD45R(APC)からなる抗体のカクテルを加えた。細胞を6℃で15分間インキュベーションし、過剰の未結合抗体を除去するために洗浄し、Miltenyi Biotech社の蛍光活性化細胞分取(FACS)解析機器を使用して解析した。B細胞は、T1集団ではB220+IgM+IgD-、T2集団ではB220+IgM+IgD+、M集団ではB220+IgM-IgD+としてゲーティングした。ゲーティングシステムを使用して細胞のパーセンテージを計算した。
結果
マウスの4つの異なる遺伝子型を作製した:
・野生型(WT)、
・6つのヒトVH、全て機能的なヒトDおよびJH遺伝子セグメントが存在する上述の第1のBACヒトDNAの挿入を含む重鎖導入遺伝子についてホモ接合性であるトランスジェニックマウス(S1/S1)、
・ヒトVH、全て機能的なヒトDおよびJH遺伝子セグメントの挿入を含む重鎖導入遺伝子についてホモ接合性であるトランスジェニックマウス(H1/H1)、ならびに
・6つの機能的ヒトVκおよび5つの機能的Jκ遺伝子セグメントの挿入を含むカッパ鎖導入遺伝子についてホモ接合性であるトランスジェニックマウス(K1/K1)。
これらのナイーブマウスからの脾臓を採取し、そのB細胞区画について解析した。これらのマウス間でのT1、T2およびM細胞の数およびパーセンテージは類似しており(図53)、これは、本発明によるトランスジェニックマウスにおける内在性IG遺伝子座の遺伝子操作はそのB細胞発生を損なわないことを示している。これらのデータは、本発明による動物が抗体発見のための頑強なプラットフォームを提供することの確立を助ける。
以下の実施例16中に記載するように、内在性重鎖の発現が不活性化されているS1マウス(本明細書中に記載のように反転による不活性化が存在するS1Fマウス)に対してさらなる解析を行った。記載のように、本発明のそのようなマウスにおいて正常な脾臓および骨髄区画が見られる(すなわち、マウス抗体鎖のみを発現するマウスの区画と等価である)。
(実施例11)
本発明のトランスジェニック動物における正常なIgHアイソタイプおよび血清レベル
ラットスイッチ領域の制御下にある全てのヒトJH、全てのヒトDHおよびヒトVh2-5を保有するトランスジェニックマウス(H1)、またはマウススイッチ領域の制御下にある全てのヒトJH、全てのヒトDH、ならびにヒトVh2-5、Vh7-41、Vh4-4、Vh1-3、Vh1-2、およびVh6-1を保有するマウス(S1)を、100μgのコレラ毒素Bサブユニット(CTB、Sigma-Aldrich(商標)C9903)、完全フロイントアジュバントCFA、Sigma-Aldrich(商標)F5881中に乳化したもの)で免疫化した。少なくとも3匹の動物にscまたはipで注射し、その後、不完全フロイントアジュバント(IFA、Sigma-Aldrich(商標)F5506)中の25μgの抗原を用いて、プライミング後の(i)14日目および21日目または(ii)28日目にブーストした。血液をプライミング前の「-1」日目(事前採血)および脾臓を採取した日(通常は最後のブーストの4日後)に採取した。血清を、Igアイソタイプの抗原独立評価を使用したELISAによって解析した。このアッセイでは全ての種の全血清抗体を検出する。マウスIgG1、IgG2a、IgG2bおよびIgMの特異的検出を使用し(抗マウスIgG1HRP AbD Serotec STAR132P、抗マウスIgG2a HRP AbD Serotec STAR133P、抗マウスIgG2b HRP AbD Serotec STAR134P、抗マウスIgM HRP Abcam(商標)ab97230)、濃度は、ポリクローナルアイソタイプ対照(IgG1、カッパネズミ骨髄腫Sigma-Aldrich(商標)M9269、IgG2a、カッパネズミ骨髄腫Sigma-Aldrich(商標)M9144、IgG2b、ネズミ骨髄腫Sigma-Aldrich(商標)M8894からのカッパ、IgM、ネズミ骨髄腫Sigma-Aldrich(商標)M3795からのカッパ)を使用して、それぞれのアイソタイプについて生成された検量線から読み取った。結果(H1ホモ接合性ならびにS1ホモ接合性およびヘテロ接合性のマウスについて図54および図55)は、これらの比較的短い免疫化レジームでさえも、マウスが免疫化後に事前採血を超える全体的なIgGレベルの増加を示したことを示した。ヒト免疫グロブリン遺伝子を全く保有しない対照マウス(+/+)を含めて免疫化した場合、これらのマウスは、観察された全Igレベルにおいて比較できる変化を示した(図54)。個々のアイソタイプレベルは、様々な段階のクラススイッチを示している可能性のある動物間では、より可変的であった。IgMレベルは800μg/mlを超えることはなかった一方で、IgGレベルは、一部の動物で6mg/mlを超えた。免疫化していない対照は、スイッチされたアイソタイプIgレベルのそのような増加を示さなかった。
これらの結果は、ラットSμのラットまたはマウススイッチの制御下にある複数のヒトVDJ遺伝子セグメントを含むマウスは、抗原チャレンジに応答して生産的な組換えおよびクラススイッチを受けることができ、また、マウスは、改変していないマウスに広く匹敵する抗体レベルを生じることを実証している。トランスジェニックマウスは、免疫化後にIgG1、IgG2a、IgG2bおよびIgMアイソタイプのそれぞれの抗体を生成することができる。事前採血および最終採血中のCTBに特異的なIgの力価を決定し、全ての免疫化した動物が少なくとも1/100000のCTB特異的力価を示した。
(実施例12)
本発明の動物からの、50nm未満の親和性を有する抗卵白アルブミン抗体の生成
ラットSμスイッチ領域の制御下にある全てのヒトJH、全てのヒトDHおよびヒトVh2-5を保有するトランスジェニックマウスを、Sigma-Aldrich(商標)アジュバント(Sigma Adjuvant System(商標)S6322)中の25μgの卵白アルブミン(OVA、Sigma-Aldrich(商標)A7641)を用いてipで免疫化し、その後、同じ量のアジュバント中のOVAで14日目および21日目にブーストした。脾臓細胞を4日後に採取し、1mlのポリエチレングリコール(PEG平均MW1450、Sigma-Aldrich(商標)P7306)を使用して骨髄腫系と融合させた。融合したハイブリドーマ細胞を5つの96ウェルプレート上に播種し、ヒポキサンチン-アミノプテリン-チミジン(HAT)で選択した後、ウェルをOVAに特異的な抗体の発現についてELISAによって試験した。ELISAによって陽性のクローンを表面プラズモン共鳴(SPR)によって再度試験し、ProteOn(登録商標)XPR36(Bio-Rad(商標))を使用して結合反応速度を決定した。手短に述べると、抗マウスIgG(GE Biacore(登録商標)BR-1008-38)を第一級アミンカップリングによってGLMバイオセンサーチップとカップリングさせ、これを使用して、試験しようとする抗体を組織培養上清から直接補足した。卵白アルブミンを分析物として使用し、1024nM、256nM、64nM、16nM、4nMで補足された抗体の表面上を流し、0nM(すなわち緩衝液単独)を使用して結合データを二重参照した。抗マウスIgG補足表面の再生を10mMのグリシン、pH1.7によって行い、これにより補足された抗体が除去され、表面が別の相互作用に使用されることを可能にした。結合データをProteOn(登録商標)XPR36解析ソフトウェアに固有の1:1モデルに当てはめた。実行は、1×HBS-EP(10mMのHepes、150mMのNaCl、3mMのEDTA、0.05%ポリソルベート、pH7.6(Teknova H8022))をランニングバッファーとして使用して実施し、25℃で実施した。
8個の陽性クローンについて、RT-PCR(Access RT-PCR System、A1250、Promega)によって、重鎖V領域をIgシグナル配列に特異的なフォワードプライマー(Wardemannら、Science、301、1374頁、(2003年))を使用して、マウスIgGの定常領域については以下のリバースプライマー(Table 3(表3))を使用して回収した。
Figure 2015512634
RT-PCR産物を、同じプライマー対を使用して直接シーケンシングしたか、または、TAプラスミド(TOPO(商標)TA Cloning(商標)Kit for Sequencing、K4595-40、Invitrogen(登録商標))内にクローニングしてプラスミドシーケンシングのために提出した。結果(Table 4(表4)、以下)は、やはりほぼ同一のKD動力学的値を有していた2つの同一クローン(16C9および20B5)以外は、CDRH3配列が可変性のCDRを有していたことを示す。決定された平衡結合定数KDは、25℃でのSPRによって決定して0.38nM〜40.60nMの範囲であった。
これらの結果は、ラットCμスイッチの制御下にある複数のヒトVDJ遺伝子セグメントを含むマウスは、生産的な組換えを受けて、そのCDR3領域がヒト遺伝子セグメントによってコードされている配列を有する、高親和性の抗原特異的抗体を生成できることを実証している(ヒトJHはV-Quest、IMGTによって個別に同定した)。
Figure 2015512634
(実施例13)
本発明の動物からの、ヒトVh領域を有する抗コレラ毒素B抗体の生成
マウスSμスイッチ領域の制御下にある全てのヒトJH、全てのヒトDH、ならびにヒトVh2-5、Vh7-41、Vh4-4、Vh1-3、Vh1-2、およびVh6-1を保有するトランスジェニックマウスを免疫化し、実施例11に記載のように融合させた。融合したハイブリドーマ細胞を5つの96ウェルプレート上に播種し、ヒポキサンチン-アミノプテリン-チミジン(HAT)またはG418(Gibco(商標)カタログ番号10131-027、ロット503317)で選択した後、ウェルをCTBに特異的な抗体の発現についてELISAによって試験した。ELISAによって陽性のクローンを表面プラズモン共鳴SPRによって再度試験し、ProteOn XPR36(登録商標)(Bio-Rad(商標))を使用して結合反応速度を決定した。
手短に述べると、抗マウスIgG(GE Biacore(登録商標)BR-1008-38)を第一級アミンカップリングによってGLMバイオセンサーチップとカップリングさせ、これを使用して、試験しようとする抗体を組織培養上清から直接補足した。コレラ毒素Bを分析物として使用し、256nM、64nM、16nM、4nMおよび1nMで補足された抗体の表面上を流し、0nM(すなわち緩衝液単独)を使用して結合データを二重参照した。抗マウスIgG補足表面の再生を10mMのグリシン、pH1.7によって行い、これにより補足された抗体が除去され、表面が別の相互作用に使用されることを可能にした。結合データをProteOn XPR36(登録商標)解析ソフトウェアに固有の1:1モデルに当てはめた。実行は、1×HBS-EP(10mMのHepes、150mMのNaCl、3mMのEDTA、0.05%ポリソルベート、pH7.6(Teknova H8022))をランニングバッファーとして使用して実施し、37℃で実施した。
ELISAによって最初に同定されたクローンから、CTBとの結合をSPRによって確認した。しかし、コレラ毒素Bの五量体性質が原因で、1:1モデルへの当てはめの大多数は不良であり、平衡結合定数KDは正確に決定することができなかった。当てはめが許容可能な場合は、決定された平衡結合定数KDの範囲は0.21nM〜309nMであったが、コレラ毒素Bの五量体性質が原因で、これらは多量体の相互作用の結果であり、したがって可能な結合力構成要素との見かけ上の親和性である可能性が高い。
CTBとの結合についてSPRによって同定されたクローンを実施例12に記載のようにRT-PCRに供して、Vh領域を回収した。RT-PCR産物を、同じプライマー対を使用して直接シーケンシングした。結果は14個のクローンのみでしか得られず、その原因は、Wardemannらに記載のヒトプライマーはマウスVh領域を増幅するためには設計されておらず、したがって特定のマウスVhクラスの増幅に失敗した可能性があることと推定される。結果は、V-Quest、IMGTによって同定して、14個のCTBに特異的な回収された重鎖V領域配列のうちの3個がヒトV、DおよびJ領域であったことを示した(Table 5(表5))。
Figure 2015512634
(実施例14)
内在性カッパ遺伝子座内に挿入されたヒトラムダ遺伝子セグメントを含むトランスジェニックマウスにおける、ヒトラムダ可変領域の高発現
第1のIGL BACからのヒトラムダ遺伝子セグメントをマウスAB2.1ES細胞(ベイラー医科大学)のIGK遺伝子座内に挿入して、P1対立遺伝子と表示されるキメラ軽鎖対立遺伝子を作製した(図56)。挿入されたヒト配列はヒト第22染色体の位置23217291〜位置23327884の配列に対応し、機能的ラムダ遺伝子セグメントVλ3-1、Jλ1-Cλ1、Jλ2-Cλ2、Jλ3-Cλ3、Jλ6-Cλ6、およびJλ7-Cλ7を含む。挿入は、図56に示すように、マウスCκ領域および3'Eκの上流(すなわち、内在性軽鎖エンハンサーの100kb以内)である、マウス第6染色体上の位置70674755と706747756との間で行った。マウスVκおよびJκ遺伝子セグメントは、キメラ遺伝子座中、挿入されたヒトラムダDNAのすぐ上流に保持された。マウスラムダ遺伝子座は無処置のまま残した。キメラP1遺伝子座についてホモ接合性のマウスを、ES細胞から標準的な手順を使用して生成した。
BAC1ヒトDNA、その後にBAC2DNAの順次的な挿入によってより多くのヒト機能的Vλ遺伝子セグメントをヒトVλ3-1の上流(5'側)に挿入してP2対立遺伝子を生成した、2種類目のマウスを作製した(P2マウス)。BAC2からの挿入されたヒト配列はヒト第22染色体の位置23064876〜位置23217287の配列に対応し、機能的ラムダ遺伝子セグメントVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、およびVλ4-3を含む。キメラP2遺伝子座についてホモ接合性のマウスを、ES細胞から標準的な手順を使用して生成した。
P1およびP2ホモ接合体からの脾臓B細胞のFACS解析を行って、トランスジェニックマウスにおけるラムダ対カッパの発現およびヒトラムダ対マウスラムダの発現を評価した。
P2ホモ接合体中の軽鎖遺伝子座からのRNA転写物を解析するために標準的な5'-RACEを実施した。
軽鎖の発現およびFACS解析
脾臓から単細胞懸濁液を得るために、脾臓を30μmの細胞濾過器に穏やかに通した。単細胞を、3%熱失活ウシ胎児血清(FCS)を添加したリン酸緩衝生理食塩水(PBS)中に再懸濁させた。
以下の抗体を染色用に使用した。
ラット抗マウスラムダ(mCλ)フィコエリスリン(PE)抗体(Southern Biotech)、ラット抗マウスカッパ(mCκ)(BD Pharmingen、クローン187.1)フルオレセインイソチオシアネート(FITC)、抗ヒトラムダ(hCλ)(eBioscience、クローン1-155-2)フィコエリスリン(PE)、抗B220/CD45R(eBioscience、クローンRA3-6B2)アロフィコシアニン(APC)。NB:ヒトCλを保有する軽鎖は、挿入されたヒトVλおよびヒトJλの再編成に由来する可変領域を有すると予想された。マウスCλを保有する軽鎖は、内在性ラムダ遺伝子座からのマウスのVλおよびJλの再編成に由来する可変領域を有すると予想された。
5×106個の細胞を個々のチューブに加え、過剰の流体を除去するために遠心沈殿させ、新鮮な100μlのPBS+3%FCS中に再懸濁させた。個々のチューブのそれぞれに以下の抗体を加えた。
mλ対mκの染色には、1μlのそれぞれの抗体を1μlのB220/CD45R抗体と共に加えた。ヒトラムダ軽鎖を発現するB細胞の検出には、mλ抗体をhλ抗体で置換した。細胞を暗所、6℃で15分間インキュベーションし、続いて、未結合の抗体を除去するために新鮮なPBS+3%FCSで数回洗浄した。細胞を、Miltenyi Biotech社の蛍光活性化細胞分取(FACS)解析機器を使用して解析した。
側方散乱(SSC)および前方散乱(FSC)を使用して生きた脾臓細胞をゲーティングした。SSCおよびFSCでゲーティングした集団のうち、APC蛍光色素を使用してB220/CD45R(マウスB細胞)の部分集団を検出した。単一の陽性B220/CD45R集団を、mκ FITC蛍光色素と併せてmλまたはhλ PE蛍光色素のどちらかを保有する細胞へとさらに細分した。ゲーティングシステムを使用して各集団のパーセンテージを計算した。
驚くべきことに、P1ホモ接合体からの脾臓B細胞のFACS解析は、検出可能なマウスCκ発現を示さず(図57)、これは、BAC1からのヒトラムダ遺伝子座DNAの挿入が内在性IGK鎖の発現を妨害することを示している。
これらのマウスにおける、FACS解析によって分類された脾臓B細胞における内在性Cλの強力な発現およびヒトCλの弱い発現(マウスCλ:ヒトCλ=65:32)は、挿入されたヒトIGL配列は、IGK活性を妨害する一方で、内在性IGL遺伝子と完全に競合することができないことを示唆している。
ここでも、驚くべきことに、FACS解析はP2ホモ接合体において検出可能なマウスCκ発現を示さなかった(図58Aおよび図58B)。しかし、FACS解析後に、P2ホモ接合体からマウスまたはヒトCλとして分類された発現されたB細胞において、ヒトCλが非常に優勢である(15個のマウスラムダ可変領域:80個のヒトラムダ可変領域の比に対応してマウスCλ:ヒトCλ=15:80、すなわち、分類されたB細胞に対して84%ヒトラムダ可変領域であり、これは全B細胞の80%に対応する)。いかなる理論にも束縛されることを望まないが、本発明者らは、第2のBACからの挿入されたヒトラムダ遺伝子座配列が、内在性ラムダ遺伝子セグメントの再編成または発現と競合するという一部の利点を提供することを提案する。
本発明者らはP2ホモ接合体におけるヒトVλおよびJλの使用量を解析した。P2ホモ接合体におけるヒトVλの使用量を示す図59を参照されたい。観察された使用量はヒトで見られたものに類似していた(J Mol Biol.、1997年4月25日、268(1):69〜77頁、「The creation of diversity in the human immunoglobulin V(lambda) repertoire」、Ignatovich Oらの通り)。さらに、ヒトJλの使用量はヒトで見られたものに類似していた(図60)。偏りのない5'-RACE(cDNA末端迅速増幅)PCRクローンのシーケンシングによるヒトCλ転写物のVλ対Vκの使用量の解析は、278個のクローン配列のうち、1つのみがJλ(ヒトJλ)への再編成のためにVκを使用し、全ての他のもの(277個のクローン)はヒトVλを使用していたことを示した(図61および図62。Vλ2-5がRNA転写物レベルで検出されたが、これは、タンパク質レベルでの使用量によっては通常は拾われない擬似遺伝子である)。いかなる理論にも束縛されることを望まないが、本発明者らは、保持されたマウスVκ遺伝子セグメントは、同じ種類のRSS(組換えシグナル配列、以下の説明を参照)を有しており、再編成に不適合であるため、本質的に、挿入されたヒトJλ遺伝子セグメントと効率的に再編成できないことを提案する(図63)。また、この結果は、IGK遺伝子座のさらなる修飾なしに内在性IGK活性の不活性化および挿入されたヒトラムダ配列の優勢発現を達成できること、例えば、内在性カッパ遺伝子座の遺伝子セグメントの欠失または反転が必要ないことも示しており、このことは、ヒトラムダ可変領域(すなわち、ヒトVλおよびJλ遺伝子セグメントの組換えによって生成される可変領域)を保有する軽鎖を発現する有用なトランスジェニックマウスの作製を大いに平易にする。
V(D)Jのin vivo組換えを媒介する組換えシグナル配列(RSS)の配置は、例えばCell、2002年4月、109、補遺:S45〜55頁、「The mechanism and regulation of chromosomal V(D)J recombination」、Bassing CH、Swat W、Alt FW(その開示が本明細書中に参考として組み込まれている)で検討されている。2種類のRSSエレメント、すなわち1ターンRSS(12-RSS)および2ターンRSS(23-RSS)が同定されている。ラムダ軽鎖遺伝子座中の天然のVJ組換えでは、組換えはVラムダの3'側に位置する2ターンRSSとJラムダの5'側に位置する1ターンRSSとの間で生じ、RSSは逆の配向となる。カッパ軽鎖遺伝子座中の天然のVJ組換えでは、組換えはVカッパの3'側に位置する1ターンRSSとJカッパの5'側に位置する2ターンRSSとの間で生じ、RSSは逆の配向となる。したがって、一般に、2ターンRSSは逆の配向で1ターンRSSに適合している。
したがって、本発明者らは、(i)ヒトラムダ遺伝子セグメントをカッパ遺伝子座内に挿入することで内在性カッパ鎖の発現を不活性化する方法、ならびに(ii)内在性ラムダおよびカッパV遺伝子セグメントの存在下でさえも、非常に高いヒトラムダ可変領域の発現を達成する(したがって標的抗原に対して選択するために有用な軽鎖レパートリーを提供する)方法をどのように行うかを実証した。したがって、本発明者らは、BAC1および2によって含まれる少なくとも機能的ヒトラムダ遺伝子セグメントを挿入することによって、どのようにV遺伝子セグメントの競合、したがって内在性軽鎖の発現を顕著に除去する(ラムダ)または完全に除去する(カッパ)かを示した。本実施例では、驚くべきことに、非常に高いレベルのヒトラムダ可変領域の発現が達成された(上述の全ラムダ鎖および全軽鎖の84%)。
(実施例15)
内在性ラムダ遺伝子座内に挿入されたヒトラムダ遺伝子セグメントを含むトランスジェニックマウスにおける、ヒトラムダ可変領域の高発現
第1および第2のIGL BACからのヒトラムダ遺伝子セグメントをマウスAB2.1ES細胞(ベイラー医科大学)のラムダ遺伝子座内に挿入して、L2対立遺伝子と表示されるラムダ軽鎖対立遺伝子を作製した(図56)。挿入されたヒト配列はヒト第22染色体の位置23064876〜位置23327884の配列に対応し、機能的ラムダ遺伝子セグメントVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3、Vλ3-1、Jλ1-Cλ1、Jλ2-Cλ2、Jλ3-Cλ3、Jλ6-Cλ6、およびJλ7-Cλ7を含む。挿入は、図56に示すように、マウスCλ領域の上流かつEλ4-10とEλ3-1との間(すなわち、内在性軽鎖エンハンサーの100kb以内)である、マウス第16染色体上の位置19047551と19047556との間で行った。マウスのVλおよびJλ遺伝子セグメントは、遺伝子座中、挿入されたヒトラムダDNAのすぐ上流に保持された。カッパ鎖の発現を防止するために、マウスカッパ遺伝子座は不活性化した。L2遺伝子座についてホモ接合性のマウスを、ES細胞から標準的な手順を使用して生成した。
実施例14と類似の方法を使用して、L2ホモ接合体からの脾臓B細胞のFACS解析を行って、トランスジェニックマウスにおけるラムダ対カッパの発現およびヒトラムダ対マウスラムダの発現を評価した。
軽鎖の発現およびFACS解析
IGKノックアウト背景下(VκおよびJκ遺伝子セグメントが保持されている)におけるL2ホモ接合体中の脾臓B細胞のFACS解析は、驚くべきことに、FACS解析後に、マウスまたはヒトCλとして分類されたB細胞において、ヒトCλの発現が非常に優勢であることを示し(5個のマウスラムダ可変領域:93個のヒトラムダ可変領域の比に対応してマウスCλ:ヒトCλ=5:93、すなわち、分類されたB細胞に対して95%ヒトラムダ可変領域であり、これは全B細胞の93%に対応する)(図64A)、これは、内在性IGλ遺伝子座内の挿入されたヒトIGλ遺伝子セグメントが、内在性IGλ遺伝子セグメントの再編成または発現に競合で打ち勝つことができることを実証している。
したがって、本発明者らは、内在性ラムダおよびカッパV遺伝子セグメントの存在下でさえも非常に高いヒトラムダ可変領域の発現を達成する(したがって標的抗原に対して選択するために有用な軽鎖レパートリーを提供する)方法をどのように行うかを実証した。したがって、本発明者らは、BAC1および2によって含まれる少なくとも機能的ヒトラムダ遺伝子セグメントを挿入することによって、どのように内在性ラムダV遺伝子セグメントの競合、したがって内在性ラムダ軽鎖の発現を顕著に除去するかを示した。本実施例では、驚くべきことに、非常に高いレベルのヒトラムダ可変領域の発現が達成された(上述の全ラムダ鎖および全軽鎖の95%)。
これらのデータは、BAC1およびBAC2によって提供される機能的遺伝子セグメントの標的化挿入によって生成されたP(実施例14)またはL(実施例15)対立遺伝子のどちらかを保有するマウスが、成熟B細胞中での再編成および発現において機能できることを示している。これら2種類の対立遺伝子は、治療用抗体発見のためおよび研究ツールとしてのヒトIgラムダ鎖を生成するトランスジェニックマウスを提供するために非常に有用である。
ヒトラムダ可変領域を発現する本発明のトランスジェニックマウスは正常な脾臓区画を発生する
脾臓内で、B細胞は、細胞表面マーカーであるIgMおよびIgDのレベルに基づいて未成熟(T1およびT2)ならびに成熟(M)として特徴づけられる。T1細胞は高いIgMおよび低いIgDを有する。T2細胞はどちらも中程度のレベルで有する。M細胞は低いIgMであるが高いIgDを有する(図65)。J Exp Med.、1999年7月5日、190(1):75〜89頁、「B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals」、Loder Fらも参照されたい。
以下の実施例16に記載のものに類似の方法を使用して、動物からの脾臓B細胞を、FACSを使用して、IgDおよびIgMの発現についてスコアづけした。本発明者らは、対照マウスKA/KA(内在性カッパ鎖の発現が不活性化されているが、内在性ラムダ鎖の発現は不活性化されていない)をL2/L2、KA/KAマウス(L2ホモ接合体)と比較した。驚くべきことに、L2ホモ接合体は対照マウスに匹敵する脾臓B細胞区画を示した(図64B)。
(実施例16)
本発明のトランスジェニックマウスにおけるB細胞およびIgの発生の評価
本発明者らは、実質的に内在性の重鎖およびカッパ鎖の発現の非存在下でヒト重鎖可変領域を有する抗体を発現する、本発明のトランスジェニックマウスにおける正常なIgサブタイプの発現およびB細胞の発生を観察した。
ES細胞および上述のRMCEゲノム操作方法を使用して、以下のIg遺伝子座対立遺伝子の組合せを用いてマウスを構築した。
S1F/HA、+/KA=(i)S1F-第1の内在性重鎖対立遺伝子が1つのヒト重鎖遺伝子座DNAの挿入を有しており、内在性マウスVDJ領域が反転および染色体上での上流への移動によって不活性化されている(この対立遺伝子をS1inv1と呼ぶ上記説明を参照)、(ii)HA-第2の内在性重鎖対立遺伝子が不活性化されている(内在性妨害配列の挿入による)、(iii)+-第1の内在性カッパ対立遺伝子が野生型カッパ対立遺伝子である、ならびに(iv)KA-第2の内在性カッパ対立遺伝子が不活性化されている(内在性妨害配列の挿入による)。この配置は、第1の内在性重鎖対立遺伝子からの重鎖を排他的にコードしている。
S1F/HA、K2/KA=(i)K2-第1の内在性カッパ対立遺伝子最も3'側の内在性JκとマウスCκとの間に2つのカッパ鎖遺伝子座DNAの挿入を有しており、14個のヒトVκおよびJκ1〜Jκ5の挿入を提供する、ならびに(ii)KA-第2の内在性カッパ対立遺伝子が不活性化されている(内在性妨害配列の挿入による)。この配置は、第1の内在性カッパ対立遺伝子からの、ヒト可変領域を含む重鎖および実質的にカッパ軽鎖を排他的にコードしている。
+/HA、K2/KA-この配置は、マウス重鎖およびヒトカッパ鎖をコードしている。
+/HA、+/KA-この配置はマウスの重鎖およびカッパ鎖をコードしており、マウスは、マウスの重鎖および軽鎖のみを生じる。
骨髄中、B前駆体集団はその表面マーカーであるB220およびCD43に基づいて特徴づけられる。プレプロB細胞は生殖系列IGHおよびIGK/L立体配置を保有しており、その細胞表面上に低いB220および高いCD43を有する。プロB細胞はIGH遺伝子座中でVDJの組換えの開始を始め、B220およびCD43をどちらも中程度のレベルで保有する。プレB細胞は再編成されたIGH VDJ遺伝子座を保有し、軽鎖VJ再編成の開始を始め、B220は高いがCD43は低い。脾臓内で、B細胞は、細胞表面マーカーであるIgMおよびIgDのレベルに基づいて未成熟(T1およびT2)ならびに成熟(M)として特徴づけられる。T1細胞は高いIgMおよび低いIgDを有する。T2細胞はどちらも中程度のレベルで有する。M細胞は低いIgMであるが高いIgDを有する(図65)。J Exp Med.、1991年5月1日、173(5):1213〜25頁、「Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow」、Hardy RRらおよびJ Exp Med.、1999年7月5日、190(1):75〜89頁、「B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals」、Loder Fらも参照されたい。
本発明のトランスジェニックマウスは正常な脾臓およびBM区画を発生する
(a)脾臓区画の解析
それぞれのマウスについて、脾臓から単細胞懸濁液を得るために、脾臓を30μmの細胞濾過器に穏やかに通した。単細胞を、3%熱失活ウシ胎児血清(FCS)を添加したリン酸緩衝生理食塩水(PBS)中に再懸濁させた。5×106個の細胞を個々のチューブに加え、過剰の流体を除去するために遠心沈殿させ、新鮮な100μlのPBS+3%FCS中に再懸濁させた。個々のチューブのそれぞれに以下の抗体を加えた:抗B220/CD45R(eBioscience、クローンRA3〜6B2)アロフィコシアニン(APC)、フィコエリスリン(PE)とコンジュゲートしたIgD受容体(eBioscience、クローン11〜26)に対する抗体、およびフルオレセインイソチオシアネート(FITC)とコンジュゲートしたIgM受容体(eBioscience、クローン11/41)に対する抗体。
IgM対IgDの染色には、5×106個の細胞をそれぞれの染色に使用した。脾細胞を含有する各バイアルに、抗IgD(PE)、抗IgM(FITC)および抗B220/CD45R(APC)からなる抗体のカクテルを加えた。細胞を6℃で15分間インキュベーションし、過剰の未結合の抗体を除去するために洗浄し、Miltenyi Biotech社の蛍光活性化細胞分取(FACS)解析機器を使用して解析した。B細胞は、T1集団ではB220IgMIgD(すなわちB220+IgM+IgD-)、T2集団ではB220IgMIgD(B220+IgM+IgD+)、M集団ではB220IgMIgD(B220+IgM-IgD+)としてゲーティングした。ゲーティングシステムを使用して細胞のパーセンテージを計算した。本発明者らは、対数スケールを用いてプロット上の細胞集団の部分組を同定および定義するためにゲートを使用した。ゲートを適用する前に、それぞれの蛍光色素について単一染色抗体を使用して、陽性(高強度の蛍光色素)と陰性(検出可能な強度の蛍光色素なし)の集団を区別する。ゲートは、蛍光色素の強度に基づいて、全ての試料で同じ様式で適用する。単一染色は以下の通りであった。
IgD-PE
IgM-FITC
B220-APC
側方散乱(SSC)および前方散乱(FSC)を使用して生きた脾臓細胞をゲーティングした。SSCおよびFSCでゲーティングした集団のうち、APC蛍光色素を使用してB220/CD45R陽性細胞(マウスB細胞)の部分集団を検出した。単一の陽性B220/CD45R集団を、mκ FITC蛍光色素と併せてIgMフルオレセインイソチオシアネート(FITC)またはIgD蛍光色素のどちらかを保有する細胞へとさらに細分した。ゲーティングシステムを使用して各集団のパーセンテージを計算した。本発明のマウス中の脾臓B細胞区画は正常である(すなわち、マウス抗体鎖のみを発現するマウスの区画と等価である)。
(b)骨髄B前駆体の解析
それぞれのマウスについて骨髄からの単細胞懸濁液を得るために、大腿骨および脛骨を、3%熱失活ウシ胎児血清(FCS)を添加したリン酸緩衝生理食塩水(PBS)でフラッシュした。細胞を30μmの細胞濾過器にさらに通して骨片または細胞塊を除去した。細胞を、3%血清を添加した冷PBS中に再懸濁させた。2×106個の細胞を個々のチューブに加え、遠心沈殿させて過剰の緩衝液を除去し、新鮮な100μlのPBS+3%FCS中に再懸濁させた。個々のチューブのそれぞれに以下の抗体を加えた:抗ロイコシアリン(CD43)フルオレセインイソチオシアネート(FITC)(eBioscience、クローンeBioR2/60)、および抗B220/CD45R(eBioscience、クローンRA3-6B2)アロフィコシアニン(APC)。細胞を暗所、6℃で15分間インキュベーションし、続いて、未結合の抗体を除去するために新鮮なPBS+3%FCSで数回洗浄した。細胞を、Miltenyi Biotech社の蛍光活性化細胞分取(FACS)解析機器を使用して解析した。側方散乱(SSC)および前方散乱(FSC)を使用して生きた骨髄細胞をゲーティングした。本発明者らは、対数スケールを用いてプロット上の細胞集団の部分組を同定および定義するためにゲートを使用した。ゲートを適用する前に、それぞれの蛍光色素について単一染色抗体を使用して、陽性(高強度の蛍光色素)と陰性(検出可能な強度の蛍光色素なし)の集団を区別する。ゲートは、蛍光色素の強度に基づいて、全ての試料で同じ様式で適用する。単一染色は以下の通りであった。
B220-APC
CD43-FITC
生きた集団内で、B220/CD45RおよびCD43陽性細胞の二重の集団をプレB、プロBおよびプレプロB細胞と同定した。本発明のマウス中の脾臓B細胞区画は正常である(すなわち、マウス抗体鎖のみを発現するマウスの区画と等価である)。
本発明のトランスジェニックマウスは正常なIg発現を発生する
血清IgMおよびIgGの定量
最初に、96ウェルNUNCプレートを、補足抗体(ヤギ抗マウスFab抗体、1μg/ml)を用いて終夜、4℃でコーティングした。IgGプレートには抗Fab(M4155、Sigma)を使用し、IgMプレートには抗Fab(OBT1527、AbD Serotec)を使用した。0.1%v/vのTween20を含有するリン酸緩衝生理食塩水(PBS)で3回洗浄した後、プレートを、1%w/vのウシ血清アルブミン(BSA)を含有する200μlのPBSで1時間、室温(RT)で遮断した。プレートを上述のように3回洗浄し、その後、50μlの標準試料(対照マウスアイソタイプ抗体、IgG1(M9269、Sigma)、IgG2a(M9144、Sigma)、IgG2b(M8894、sigma)、IgM(M3795、Sigma))または0.1%BSAを含むPBSで希釈した血清試料を各ウェルに加え、1時間、RTでインキュベーションした。上述のように3回洗浄した後、100μlの検出抗体(ヤギ抗マウスアイソタイプ特異的抗体-西洋ワサビペルオキシダーゼとコンジュゲート、PBS中に1/10000、0.1%Tweenを含む)(抗マウスIgG1(STAR132P AbD Serotec)、抗マウスIgG2a(STAR133P AdD Serotec)、抗マウスIgG2b(STAR134P AbD Serotec)、および抗マウスIgM(ab97230Abcam)を各ウェルに加え、1時間、RTでインキュベーションした。プレートを上述のように3回洗浄し、テトラメチルベンジジン基質(TMB、Sigma)を使用して4〜5分間、暗所、RTで展開した。展開は50μl/ウェルの1M硫酸を加えることによって停止させた。Biotek Synergy HTプレートリーダーを用いて450nmでプレートを読み取った。
結論
ヒトIGH BACの挿入後の内在性VH-D-JHの反転は、内在性VHから挿入されたヒトD-JHへの再編成の不活性化をもたらす。しかし、本発明者らは、驚くべきことに、内在性重鎖の発現の不活性化は脾臓区画(図66)または骨髄B前駆体区画(図67)中のB細胞の比を変化させず、また、血清中の免疫グロブリンレベルは正常であり、正しいIgサブタイプが発現されることを観察した(図68)。このことは、マウス軽鎖を有するヒト重鎖可変領域を発現するマウス(図66Aおよび図67A)ならびにヒト重鎖可変領域およびヒト軽鎖可変領域をどちらも発現するマウス(図66Bおよび図67B)において示された。これらのデータは、挿入されたヒトIGH遺伝子セグメント(少なくともヒトVH遺伝子セグメントVH2-5、7-4-1、4-4、1-3、1-2、6-1、全てのヒトDおよびJH遺伝子セグメントD1-1、2-2、3-3、4-4、5-5、6-6、1-7、2-8、3-9、5-12、6-13、2-15、3-16、4-17、6-19、1-20、2-21、3-22、6-25、1-26、および7-27、ならびにJ1、J2、J3、J4、J5、およびJ6の挿入)が再編成、BCRシグナル伝達およびB細胞成熟の側面において完全に機能的であることを実証している。機能性は、K2対立遺伝子を作製するために使用する挿入に従ってヒト軽鎖VJ遺伝子セグメントを挿入してトランスジェニック軽鎖を提供する場合にも保持される。この挿入は、ヒト遺伝子セグメントVκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、Vκ4-1、Jκ1、Jκ2、Jκ3、Jκ4、およびJκ5を含む挿入である。S1F/HA、K2/KAマウスによって発現される90%を超える抗体がヒト重鎖可変領域およびヒトカッパ軽鎖可変領域を含んでいた。したがって、これらのマウスは、マウスをヒト抗原で免疫化した後に、そのように抗原と特異的に結合するヒト可変領域を有する抗体を選択するために非常に有用である。そのような抗体を単離した後、当業者は、慣用技術を使用してマウス定常領域をヒト定常領域で置き換えて、(任意選択で、例えばFc増強もしくは不活性化を用いて突然変異もしくは適応を行ってさらなる誘導体を生成した後、または毒性のペイロードもしくはレポーターもしくは標識もしくは他の活性部分とコンジュゲーションさせた後)、ヒトに投与するための薬物候補として有用な完全にヒトである抗体を得ることができる。
ヒト重鎖および軽鎖(カッパ)可変領域を有する抗体を発現する本発明のトランスジェニックマウス(S1F/HA、K2/KAマウス、n=15匹)におけるIgGおよびIgMのレベルおよび相対割合を評価するために、さらなる実験を実施した。これらを、マウス抗体鎖のみを発現する12匹のマウス(+/HA、+/KA(n=6匹)および野生型マウス(WT、n=6匹))に対して比較した。結果を以下に作表し(Table 6(表6))、図69に示す。
本質的に全ての重鎖可変領域がヒト重鎖可変領域である本発明のマウスは正常な割合のIgMおよびIgGサブタイプを発現し、また、IgMに対する全IgGも正常であったことを見ることができる。
Figure 2015512634
Figure 2015512634
(実施例17)
本発明のトランスジェニックマウスにおけるカッパ:ラムダ比および脾臓B細胞区画の評価
以下のゲノムを含むマウスを得た。
WT/WT=野生型、
KA/KA=それぞれの内在性カッパ対立遺伝子は不活性化されており、内在性ラムダ遺伝子座は無処置のまま残されている、
K3F/K3F=それぞれの内在性カッパ対立遺伝子は、最も3'側の内在性JκとマウスCκとの間に3つのカッパ鎖遺伝子座DNAの挿入を有しており、ヒトV遺伝子セグメントVK2-40、VK1-39、Vκ1-33、Vκ2-30、Vκ2-29、Vκ2-28、Vκ1-27、Vκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、およびVκ4-1、ならびにヒトJ遺伝子セグメントJκ1、Jκ2、Jκ3、Jκ4、およびJκ5(ヒトV遺伝子セグメントはヒトJ遺伝子セグメントの5'側である)の挿入を提供しており、それぞれの内在性カッパVJは反転および染色体上での上流への移動によって不活性化されており、内在性ラムダ遺伝子座は無処置のまま残されている、
L2/L2=実施例15に記載の通りである(ヒトラムダ可変領域DNAが内在性ラムダ遺伝子座内に挿入されており、内在性カッパ遺伝子座は無処置のまま残されているL2ホモ接合体)、
L2/L2、KA/KA=L2/L2と同様であるが、内在性カッパ対立遺伝子は不活性化されている(内在性妨害配列=KAの挿入による)、
L3/L3、KA/KA=L2/L2、KA/KAと同様であるが、内在性ラムダ遺伝子座中の第2のラムダDNAの挿入の5'側に第3のヒトラムダ可変領域DNAの挿入によって補足されて、以下のヒトラムダ遺伝子セグメントが最も3'側の内在性JλとマウスCλとの間に挿入されている:ヒトV遺伝子セグメントVλ3-27、Vλ3-25、Vλ2-23、Vλ3-22、Vλ3-21、Vλ3-19、Vλ2-18、Vλ3-16、Vλ2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3、およびVλ3-1、ヒトJおよびC遺伝子セグメントJλ1-Cλ1、Jλ2-Cλ2、Jλ3-Cλ3、Jλ6-Cλ6、およびJλ7-Cλ7(非機能的セグメントJλ4-Cλ4、Jλ5-Cλ5も含まれていた)、したがって、マウス第16染色体上の位置19047551の直後に挿入された、ヒト第22染色体の座標22886217〜23327884に対応する挿入を提供する、
S3F/HA、KA/KA、L3/L3=第1の内在性重鎖対立遺伝子が最も3'側の内在性JHとEμとの間に3つのヒト重鎖可変領域DNAの挿入を有して、ヒト遺伝子セグメントVH2-26、VH1-24、VH3-23、VH3-21、VH3-20、VH1-18、VH3-15、VH3-13、VH3-11、VH3-9、VH1-8、VH3-7、VH2-5、VH7-4-1、VH4-4、VH1-3、VH1-2、VH6-1、D1-1、D2-2、D3-9、D3-10、D4-11、D5-12、D6-13、D1-14、D2-15、D3-16、D4-17、D5-18、D6-19、D1-20、D2-21、D3-22、D4-23、D5-24、D6-25、D1-26、D7-27、JH1、JH2、JH3、JH4、JH5、およびJH6(ヒトV遺伝子セグメント、ヒトD遺伝子セグメント、およびヒトJ遺伝子セグメントの順)の挿入を提供し、内在性重鎖VDJ配列は反転および染色体上での上流への移動によって不活性化されており、内在性ラムダ遺伝子座は無処置のまま残されており、第2の内在性重鎖対立遺伝子は不活性化されており(内在性妨害配列=HAの挿入による)、内在性カッパ対立遺伝子は不活性化されており(=KA/KA)、内在性ラムダ対立遺伝子はヒトラムダ可変領域DNAの挿入によって修飾されている(=L3/L3)、
P2/WT=一方の内在性カッパ遺伝子座にP2対立遺伝子(実施例14に記載のヒトラムダ可変領域DNA)があり、他方の内在性カッパ遺伝子座は無処置のまま残されており、どちらの内在性ラムダ遺伝子座も無処置のまま残されている、
P2/P2=実施例14を参照、どちらの内在性ラムダ遺伝子座も無処置のまま残されている、
P2/K2=一方の内在性カッパ遺伝子座にP2対立遺伝子があり、他方の内在性カッパ遺伝子座は、最も3'側の内在性JκとマウスCκとの間に2つのDNAの挿入を有して、ヒトV遺伝子セグメントVκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2、およびVκ4-1、ならびにヒトJ遺伝子セグメントJκ1、Jκ2、Jκ3、Jκ4、およびJκ5(ヒトV遺伝子セグメントはヒトJ遺伝子セグメントの5'側である)の挿入を提供し、どちらの内在性ラムダ遺伝子座も無処置のまま残されている、
P3/K3F=以下のヒトラムダ遺伝子セグメント間に挿入を有する一方の内在性カッパ遺伝子座は、最も3'側の内在性JκとマウスCκとの間に挿入されて、ヒトV遺伝子セグメントVλ3-27、Vλ3-25、Vλ2-23、Vλ3-22、Vλ3-21、Vλ3-19、Vλ2-18、Vλ3-16、Vλ2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3、およびVλ3-1、ヒトJおよびC遺伝子セグメントJλ1-Cλ1、Jλ2-Cλ2、Jλ3-Cλ3、Jλ6-Cλ6、およびJλ7-Cλ7(非機能的セグメントJλ4-Cλ4、Jλ5-Cλ5も含まれていた)の挿入を提供し、したがって、マウス第6染色体上の位置70674755の直後に挿入されたヒト第22染色体の座標22886217〜23327884に対応する挿入を提供する、他方の内在性カッパ遺伝子座は上述のK3F対立遺伝子(ヒトVおよびJカッパ遺伝子セグメントが挿入されている)を有しており、どちらの内在性ラムダ遺伝子座も無処置のまま残されている、
P2/P2、L2/WT=P2/P2と同様であるが、一方の内在性ラムダ遺伝子座はL2対立遺伝子を有しており(ヒトラムダVおよびJ遺伝子セグメントが挿入されている)、他方の内在性ラムダ遺伝子座は野生型である、ならびに
P2/P2、L2/L2=それぞれ内在性カッパおよびラムダ遺伝子座でP2およびL2対立遺伝子についてホモ接合性である。
脾臓B細胞のFACS解析(上述)を実施し、軽鎖の発現の割合を決定した。また、トランスジェニックマウスにおいて正常な脾臓B細胞区画が得られたかどうかを評価するために、本発明者らは、T1、T2および成熟(M)脾臓B細胞の割合も決定し、野生型マウスと比較した。結果を表7(Table 7)および表8(Table 8)に示す。また、本発明者らは、脾臓細胞試料中のB細胞の割合の指標としてB220陽性細胞の割合も評価した。
Figure 2015512634
Figure 2015512634
結論
L2/L2、KA/KAおよびL3/L3、KA/KAによって実証されたように、内在性ラムダ遺伝子座(内在性カッパノックアウトを有する)でのヒトラムダ可変領域DNAの挿入は、ヒトラムダ可変領域を保有する軽鎖の優勢発現を表示した(約93%でのCλ陽性鎖の発現によって示される)。驚くべきことに、このことは、内在性マウスラムダ可変領域DNAが依然として存在するにもかかわらず起こり、挿入されたヒトラムダ可変領域DNAは内在性IGλの再編成に競合で打ち勝つことができることを示している。
さらに、ホモ接合性のL3挿入中にヒトVおよびJ遺伝子セグメントが存在するマウスは、野生型に類似の割合でB細胞(B220陽性細胞)を生じ、さらに、正常な割合またはパーセンテージの成熟脾臓B細胞(すなわち野生型に類似)を生じる。このことは、L3/L3、KA/KAマウスのみで確認されただけでなく、キメラ(ヒト-マウス)IgH遺伝子座も含むS3F/HA、KA/KA、L3/L3でも観察された。
また、本発明者らは、ホモ接合性のK3F挿入中にヒトVおよびJ遺伝子セグメントが存在するマウスは、野生型に類似の割合でB細胞(B220陽性細胞)を生じ、さらに、正常な割合またはパーセンテージの成熟脾臓B細胞(すなわち野生型に類似)を生じることを観察した。
ホモ接合性のP2挿入中、内在性カッパ遺伝子座にヒトVおよびJ遺伝子セグメントが存在するマウスは、ヒトラムダ可変領域を含む軽鎖の高い発現を示した(76%の観察された割合によって示される)。内在性カッパおよびラムダ遺伝子座の両方でのヒトラムダVおよびJ遺伝子セグメントの挿入を合わせることによって、全体的なパーセンテージをさらに高くへと歪める(skew)ことができた(P2/P2、L2/WTの約94%およびP2/P2、L2/L2の約95%を参照)。さらに、P2/P2、L2/L2のヒトVおよびJ遺伝子セグメントの配置を含むマウスは、正常な割合またはパーセンテージの成熟脾臓B細胞(すなわち野生型に類似)を生じる。
ヒトラムダのVおよびJ遺伝子セグメントを一方の内在性カッパ遺伝子座に挿入し、他方の内在性カッパ遺伝子座がヒトカッパVおよびJ遺伝子セグメントの挿入を含んでいた場合、ラムダ可変領域を含む軽鎖およびカッパ可変領域を含む軽鎖も発現し得るマウスを得ることができた。驚くべきことに、ラムダ可変領域を含む軽鎖の割合を、5%以下の軽鎖のみが典型的にラムダ可変領域を含む野生型マウスで見られるよりも高く上げることができたことが観察された。P2/K2遺伝子型では約22%、P3/K3F遺伝子型では約31%の割合が観察された。後者の遺伝子型で観察された割合は、典型的には軽鎖の約60%がカッパ可変領域を含み、軽鎖の約40%がラムダ可変領域を含むヒトで見られるものに近似している。また、P2/K2およびP3/K3Fの事例では、マウスは野生型マウスと比較して正常な割合のB細胞を生じた。さらに、P3/K3FのヒトVおよびJ遺伝子セグメントの配置を含むマウスは、正常な割合またはパーセンテージの成熟脾臓B細胞(すなわち野生型と類似)を生じる。
他の実施形態
前述の説明から、本明細書に記載された本発明に、それを様々な利用および状態に採用するために、バリエーションおよび改変がなされ得ることは明らかであろう。そのような実施形態もまた、以下の特許請求の範囲の範囲内にある。
本明細書での変数の任意の定義における要素のリストの列挙は、リストに挙げられた要素の任意の単一の要素またはコンビネーション(またはサブコンビネーション)としてのその変数の定義を含む。本明細書における実施形態の列挙は、任意の単一の実施形態として、または任意の他の実施形態もしくはその部分との組合せとしてのその実施形態を含む。
本明細書において言及された全ての刊行物および特許出願は、当業者の技術のレベルを示している。全ての刊行物および特許出願は、各個々の刊行物または特許出願が具体的かつ個々に示されて、参照により組み入れられているかのようなのと同じ程度で、参照により本明細書に組み入れられている。

Claims (62)

  1. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、ヒトVλおよびJλ遺伝子セグメントが、脊椎動物の内因性軽鎖遺伝子座への挿入によって供給されており、脊椎動物が、ラムダ可変領域(ラムダ軽鎖)を含む免疫グロブリン軽鎖を発現し、ラムダ軽鎖が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するラムダ可変領域を含む免疫グロブリン軽鎖を含む、非ヒト脊椎動物。
  2. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物ES細胞(例えば、マウスES細胞またはラットES細胞)であって、ゲノムが、定常領域の上流にヒトVλおよびJλ遺伝子セグメントを含み、ヒトVλおよびJλ遺伝子セグメントが、脊椎動物細胞の内因性軽鎖遺伝子座への挿入によって供給されており、細胞が、ラムダ可変領域(ラムダ軽鎖)を含む免疫グロブリン軽鎖を発現する脊椎動物に発生することができ、ラムダ軽鎖が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するラムダ可変領域を含む免疫グロブリン軽鎖を含む、非ヒト脊椎動物ES細胞。
  3. ラムダ軽鎖の可変領域の少なくとも70%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する、請求項1または2に記載の脊椎動物または細胞。
  4. 脊椎動物によって発現した軽鎖の少なくとも60%、70%、80%、90%、93%、94%または95%が、ヒトVλおよびJλ遺伝子セグメントの組換えに由来するラムダ可変領域を含む前記軽鎖によって供給される、請求項1から3のいずれか一項に記載の脊椎動物または細胞。
  5. ゲノムが、定常領域の上流にカッパV遺伝子セグメントを含む、請求項1から4のいずれか一項に記載の脊椎動物または細胞。
  6. ヒトVλおよびJλ挿入が、Vλ2-18からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメントを含む、請求項1から5のいずれか一項に記載の脊椎動物または細胞。
  7. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)であって、ゲノムが、ヒトVJC軽鎖の発現のために、内因性非ヒト脊椎動物カッパまたはラムダ定常領域の上流での内因性非ヒト脊椎動物カッパまたはラムダ軽鎖遺伝子座へのヒト免疫グロブリンVλ、JλおよびCλ遺伝子のターゲッティング挿入を含む、非ヒト脊椎動物または非ヒト脊椎動物細胞。
  8. ヒト免疫グロブリンVλ、JλおよびCλ挿入が、Vλ3-1からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトV、JおよびC遺伝子セグメントを含む、請求項7に記載の脊椎動物または細胞。
  9. 組換え免疫グロブリン軽鎖遺伝子座を含むゲノムを有する非ヒト脊椎動物または細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)であって、前記遺伝子座が、ヒト免疫グロブリンVλおよびJλ遺伝子セグメントを含むターゲッティング挿入断片を含み、前記ヒトVλおよびJλ遺伝子セグメントが軽鎖定常領域の上流に位置し、かつヒトラムダ軽鎖遺伝子座のVλ2-18からCλ7までの少なくとも機能的VおよびJ遺伝子セグメントを含み、前記脊椎動物または細胞が、ヒトラムダ可変領域を含む免疫グロブリン軽鎖を発現する、非ヒト脊椎動物または細胞。
  10. 内因性カッパ鎖発現が実質的に不活性である、請求項1から9のいずれか一項に記載の脊椎動物または細胞。
  11. 内因性ラムダ鎖発現が実質的に不活性である、請求項1から10のいずれか一項に記載の脊椎動物または細胞。
  12. ゲノムが、ヒトVλおよびJλ遺伝子セグメント挿入についてホモ接合である、請求項1から11のいずれか一項に記載の脊椎動物または細胞。
  13. 内因性遺伝子座が内因性カッパ遺伝子座である、請求項1から12のいずれか一項に記載の脊椎動物または細胞。
  14. 内因性遺伝子座が内因性ラムダ遺伝子座である、請求項1から13のいずれか一項に記載の脊椎動物または細胞。
  15. ヒトVλおよびJλが内因性VLおよびJL遺伝子セグメントの下流にある、請求項1から14のいずれか一項に記載の脊椎動物または細胞。
  16. ターゲッティング挿入断片が、内因性軽鎖遺伝子座エンハンサー配列の100kb以内に位置する、請求項1から15のいずれか一項に記載の脊椎動物または細胞。
  17. ターゲッティング挿入断片がヒト軽鎖エンハンサーを含む、請求項1から16のいずれか一項に記載の脊椎動物または細胞。
  18. ヒト軽鎖エンハンサーがEλ配列であり、Eλ配列が、ヒトJλ遺伝子セグメントと内因性軽鎖定常領域の間に位置する、請求項17に記載の脊椎動物または細胞。
  19. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ軽鎖を発現し、ヒトVλがVλ3-1、および場合により、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8およびVλ4-3のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲッティング挿入断片内に含まれる、請求項1から18のいずれか一項に記載の脊椎動物または細胞。
  20. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ軽鎖を発現し、ヒトVλがVλ2-14および、場合により、Vλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3、およびVλ3-1のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲット化挿入断片内に含まれる、請求項1から19のいずれか一項に記載の脊椎動物または細胞。
  21. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ軽鎖を発現し、ヒトVλがVλ2-8、および場合により、Vλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ4-3およびVλ3-1のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲッティング挿入断片内に含まれる、請求項1から20のいずれか一項に記載の脊椎動物または細胞。
  22. 脊椎動物または細胞が、ヒトVλおよびJλ遺伝子セグメントによってコードされるヒトラムダ可変領域のレパートリーを含むラムダ軽鎖を発現し、ヒトVλがVλ3-10および、場合により、Vλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3、およびVλ3-1のうちの1つまたは複数を含み、ヒトVλおよびJλ遺伝子セグメントがターゲット化挿入断片内に含まれる、請求項1から21のいずれか一項に記載の脊椎動物または細胞。
  23. 少なくともVλ2-18、Vλ3-16、V2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1がターゲッティング挿入断片内に含まれる、請求項1から22のいずれか一項に記載の脊椎動物または細胞。
  24. 内因性カッパエンハンサーが存在し、場合により、内因性エンハンサーがiEκおよび/または3'Eκ配列である、請求項1から23のいずれか一項に記載の脊椎動物または細胞。
  25. 前記脊椎動物または細胞によって発現した免疫グロブリン軽鎖の10%未満が内因性カッパ可変領域を含む、請求項1から24のいずれか一項に記載の脊椎動物または細胞。
  26. 前記遺伝子座がターゲッティング挿入断片の上流に内因性VκおよびJκ遺伝子セグメントを含み、ターゲッティング挿入断片がヒトラムダ軽鎖免疫グロブリン遺伝子座のVλ3-1からCλ7までの少なくとも機能的VλおよびJλ遺伝子セグメントを含み、内因性VκおよびJκ遺伝子セグメントの組換えに由来する内因性カッパ可変領域を含む軽鎖の発現が、実質的に不活性である、請求項1から25のいずれか一項に記載の脊椎動物または細胞。
  27. ゲノムにおいて、マウスIgK-VJがマウスEκエンハンサーから離されており、それにより、内因性IgK-VJ領域を不活性化する、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞)。
  28. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入によって生成されたIg遺伝子セグメントレパートリーを含み、ゲノムが以下の軽鎖遺伝子座構成を含む、非ヒト脊椎動物または非ヒト脊椎動物細胞(例えば、マウス、ラット、マウス細胞またはラット細胞):
    (a)一方の内因性カッパ鎖対立遺伝子におけるL、および他方の内因性カッパ鎖対立遺伝子におけるK;または
    (b)一方の内因性ラムダ鎖対立遺伝子におけるL、および他方の内因性ラムダ鎖対立遺伝子におけるK;または
    (c)両方の内因性カッパ鎖対立遺伝子におけるL;
    (d)両方の内因性ラムダ鎖対立遺伝子におけるL;
    (e)一方の内因性カッパ鎖対立遺伝子におけるL、および他方の内因性カッパ鎖対立遺伝子が不活性化されている;または
    (f)一方の内因性ラムダ鎖対立遺伝子におけるL、および他方の内因性ラムダ鎖対立遺伝子が不活性化されている;
    ただし、Lは、Vλ3-1からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVλおよびJλ(場合により、Cλ遺伝子セグメントも)のヒトラムダ遺伝子セグメント挿入を表し;および
    Kは、ヒトVκおよびJκ挿入を表し;
    ゲノムにおいて、ヒト遺伝子セグメントが、ヒトVおよびJ遺伝子セグメントの組換えに由来する可変領域を含む軽鎖の発現のために、定常領域の上流に挿入されている。
  29. ヒト可変領域を含む免疫グロブリン重鎖を発現する非ヒト脊椎動物細胞(例えば、マウスまたはラット)であって、マウスによって発現した重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、前記ヒト可変領域を含む重鎖がマウスにおいて血清IgG1、IgG2bおよびIgM(および場合により、IgG2a)抗体の部分として発現し、脊椎動物が、脊椎動物定常領域の上流にヒトVH、DHおよびJH遺伝子セグメントを含む免疫グロブリン重鎖遺伝子座を含む、非ヒト脊椎動物。
  30. 正常な相対的割合の血清IgG1、IgG2a、IgG2bおよびIgM抗体を発現する、請求項29に記載の脊椎動物。
  31. プレート上でのIg捕捉、続いて、抗非ヒト脊椎動物(例えば、抗マウス)アイソタイプ特異的標識抗体とのインキュベーション、および標識を使用するIgの定量により決定される場合、
    (i)約25〜350μg/mlの濃度の血清IgG1;
    (ii)約0〜200μg/mlの濃度の血清IgG2a;
    (iii)約30〜800μg/mlの濃度の血清IgG2b;および
    (iv)約50〜300μg/mlの濃度の血清IgM;
    または
    (i)約10〜600μg/mlの濃度の血清IgG1;
    (ii)約0〜500μg/mlの濃度の血清IgG2a;
    (iii)約20〜700μg/mlの濃度の血清IgG2b;および
    (iv)約50〜700μg/mlの濃度の血清IgM
    を発現する、請求項29または30に記載の脊椎動物。
  32. 正常な割合もしくはパーセンテージの成熟脾臓B細胞および/または正常な割合もしくはパーセンテージの骨髄B細胞前駆細胞を産生する、請求項1から31のいずれか一項に記載の脊椎動物。
  33. ヒト可変領域を含む免疫グロブリン重鎖を発現するための請求項29から32のいずれか一項に記載の脊椎動物の使用であって、脊椎動物によって発現した重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、前記ヒト可変領域を含む重鎖が脊椎動物において血清IgG1、IgG2bおよびIgM(および場合により、IgG2a)抗体の部分として発現する、使用。
  34. ヒト可変領域を含む免疫グロブリン軽鎖を発現するための請求項1から28のいずれか一項に記載の脊椎動物の使用であって、脊椎動物によって発現した軽鎖が、本質的にもっぱら、ヒトVλおよびJλ遺伝子セグメントの組換えに由来する、前記ヒトラムダ可変領域を含む軽鎖であり、かつ正常な割合もしくはパーセンテージの成熟脾臓B細胞および/または正常な割合もしくはパーセンテージの骨髄B細胞前駆細胞を産生する脊椎動物において発現する、使用。
  35. ヒト可変領域を含む免疫グロブリン重鎖を発現するための請求項29から32のいずれか一項に記載の脊椎動物の使用であって、脊椎動物によって発現した重鎖が、本質的にもっぱら、前記ヒト可変領域を含む重鎖のみであり、かつ正常な割合もしくはパーセンテージの成熟脾臓B細胞および/または正常な割合もしくはパーセンテージの骨髄B細胞前駆細胞を産生する脊椎動物において発現する、使用。
  36. ゲノムが
    (i)内因性ラムダ対立遺伝子におけるL;および
    (ii)内因性カッパ対立遺伝子におけるL
    を含む、請求項28に記載の脊椎動物または細胞。
  37. ゲノムが両方の内因性カッパ対立遺伝子におけるL、および/または両方の内因性ラムダ対立遺伝子におけるLを含む、請求項36に記載の脊椎動物または細胞。
  38. 内因性カッパ軽鎖発現が実質的に不活性である、請求項36または37に記載の脊椎動物または細胞。
  39. 内因性ラムダ軽鎖発現が実質的に不活性である、請求項36または37に記載の脊椎動物または細胞。
  40. Lが、少なくともヒトV遺伝子セグメントVλ3-27、Vλ3-25、Vλ2-23、Vλ3-22、Vλ3-21、Vλ3-19、Vλ2-18、Vλ3-16、Vλ2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1を含むヒトラムダ遺伝子セグメント挿入を表す、請求項36から39のいずれか一項に記載の脊椎動物または細胞。
  41. Lが、少なくともヒトJ遺伝子セグメントJλ1、Jλ2、Jλ3、Jλ6およびJλ7を含むヒトラムダ遺伝子セグメント挿入を表す、請求項36から40のいずれか一項に記載の脊椎動物または細胞。
  42. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入により生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖への挿入により供給されるヒトVλおよびJλ遺伝子セグメントを含み、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖への挿入により供給されるヒトVκおよびJκ遺伝子セグメントを含み、脊椎動物が、カッパ軽鎖可変領域を含む免疫グロブリン軽鎖、およびラムダ軽鎖可変領域を含む免疫グロブリン軽鎖を発現し、脊椎動物によって発現した軽鎖の20%より多くがラムダ可変領域を含む、非ヒト脊椎動物。
  43. ゲノムが、1つまたは複数の内因性Ig遺伝子座へのヒトIg遺伝子セグメントのターゲッティング挿入により生成されたIg遺伝子セグメントレパートリーを含む、非ヒト脊椎動物(例えば、マウスまたはラット)であって、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖への挿入により供給されるヒトVλおよびJλ遺伝子セグメントを含み、ゲノムが、定常領域の上流での脊椎動物の内因性軽鎖への挿入により供給されるヒトVκおよびJκ遺伝子セグメントを含み、脊椎動物が、カッパ軽鎖可変領域を含む免疫グロブリン軽鎖、およびラムダ軽鎖可変領域を含む免疫グロブリン軽鎖を発現し、脊椎動物が、正常な割合またはパーセンテージの成熟脾臓B細胞を産生する、非ヒト脊椎動物。
  44. ヒトVλおよびJλ挿入が、Vλ3-27からCλ7までのヒトラムダ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメントを含む、請求項42または43に記載の脊椎動物。
  45. ヒトVλおよびJλ挿入が、少なくともヒトV遺伝子セグメントVλ3-27、Vλ3-25、Vλ2-23、Vλ3-22、Vλ3-21、Vλ3-19、Vλ2-18、Vλ3-16、Vλ2-14、Vλ3-12、Vλ2-11、Vλ3-10、Vλ3-9、Vλ2-8、Vλ4-3およびVλ3-1を含む、請求項42から44のいずれか一項に記載の脊椎動物。
  46. ヒトVλおよびJλ挿入が、ヒトJ遺伝子セグメントJλ1、Jλ2、Jλ3、Jλ6およびJλ7のうちの1つ、複数または全部を含む、請求項42から45のいずれか一項に記載の脊椎動物。
  47. ヒトVκおよびJκ挿入が、Vκ1-33からJκ5までのヒトカッパ鎖Ig遺伝子座によって含まれる少なくとも機能的ヒトVおよびJ遺伝子セグメントを含む、請求項42から46のいずれか一項に記載の脊椎動物。
  48. ヒトVκおよびJκ挿入が、少なくともヒトV遺伝子セグメントVκ1-33、Vκ2-30、Vκ2-29、Vκ2-28、Vκ1-27、Vκ2-24、Vκ3-20、Vκ1-17、Vκ1-16、Vκ3-15、Vκ1-13、Vκ1-12、Vκ3-11、Vκ1-9、Vκ1-8、Vκ1-6、Vκ1-5、Vκ5-2およびVκ4-1を含む、請求項42から47のいずれか一項に記載の脊椎動物。
  49. ヒトVκおよびJκ挿入が、ヒトJ遺伝子セグメントJκ1、Jκ2、Jκ3、Jκ4およびJκ5のうちの1つ、複数または全部を含む、請求項42から48のいずれか一項に記載の脊椎動物。
  50. 脊椎動物によって発現した軽鎖の30%より多くが、ラムダ抗体可変領域を含み、場合により、脊椎動物によって発現した軽鎖の30%から50%の間がラムダ抗体可変領域を含む、請求項42から49のいずれか一項に記載の脊椎動物。
  51. 前記カッパ軽鎖可変領域が、ヒトカッパ軽鎖可変領域である、請求項42から50のいずれか一項に記載の脊椎動物。
  52. ヒトVκおよびJκ遺伝子セグメントが、脊椎動物の内因性カッパ軽鎖遺伝子座においてカッパ定常領域の上流にある、請求項42から51のいずれか一項に記載の脊椎動物。
  53. ヒトVλおよびJλ遺伝子セグメントが、脊椎動物の内因性カッパ軽鎖遺伝子座内にある、請求項42から52のいずれか一項に記載の脊椎動物。
  54. ヒトVλおよびJλ遺伝子セグメントが、脊椎動物の内因性ラムダ軽鎖遺伝子座内にある、請求項42から52のいずれか一項に記載の脊椎動物。
  55. ヒトカッパ可変領域を含む軽鎖を発現し、かつヒトラムダ可変領域を含む軽鎖を発現する、請求項42から54のいずれか一項に記載の脊椎動物。
  56. 正常な割合またはパーセンテージの成熟脾臓B細胞を産生する、請求項42から55のいずれか一項に記載の脊椎動物。
  57. 正常な比率のT1、T2、および成熟脾臓B細胞を産生する、請求項42から56のいずれか一項に記載の脊椎動物。
  58. 脊椎動物によって産生された総脾臓B細胞の少なくとも40%、50%、60%または70%が成熟B細胞である、請求項42から57のいずれか一項に記載の脊椎動物。
  59. 所望の抗原に特異的なラムダ可変領域を含む抗体または軽鎖を生成するための方法であって、請求項1から32および36から58のいずれか一項に記載の脊椎動物を、所望の抗原で免疫化する工程、ならびに抗体もしくは軽鎖を回収する工程、または抗体または軽鎖を産生する細胞を回収する工程を含む、方法。
  60. 前記抗体または軽鎖を得るために請求項59に記載の方法を実行する工程、および場合により抗体または軽鎖をコードする核酸の操作により、非ヒト脊椎動物定常領域をヒト定常領域で置換する工程を含む、完全ヒト化抗体または抗体軽鎖を生成するための方法。
  61. 場合により医学に使用される、請求項60に従って作製されるヒト化抗体もしくは抗体軽鎖、またはその誘導体。
  62. 請求項60に従って生成されるヒト化抗体もしくは鎖またはその誘導体の医学における使用。
JP2015502439A 2012-03-28 2013-03-18 動物モデルおよび治療用分子 Active JP6336435B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/433,084 US9445581B2 (en) 2012-03-28 2012-03-28 Animal models and therapeutic molecules
US13/433,084 2012-03-28
US13/434,361 US9253965B2 (en) 2012-03-28 2012-03-29 Animal models and therapeutic molecules
US13/434,361 2012-03-29
PCT/GB2013/050682 WO2013144566A2 (en) 2012-03-28 2013-03-18 Animal models and therapeutic molecules

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018088749A Division JP2018119012A (ja) 2012-03-28 2018-05-02 動物モデルおよび治療用分子

Publications (3)

Publication Number Publication Date
JP2015512634A true JP2015512634A (ja) 2015-04-30
JP2015512634A5 JP2015512634A5 (ja) 2016-05-19
JP6336435B2 JP6336435B2 (ja) 2018-06-06

Family

ID=47913490

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015502439A Active JP6336435B2 (ja) 2012-03-28 2013-03-18 動物モデルおよび治療用分子
JP2018088749A Pending JP2018119012A (ja) 2012-03-28 2018-05-02 動物モデルおよび治療用分子
JP2020129123A Pending JP2020176140A (ja) 2012-03-28 2020-07-30 動物モデルおよび治療用分子
JP2022177513A Active JP7475415B2 (ja) 2012-03-28 2022-11-04 動物モデルおよび治療用分子

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018088749A Pending JP2018119012A (ja) 2012-03-28 2018-05-02 動物モデルおよび治療用分子
JP2020129123A Pending JP2020176140A (ja) 2012-03-28 2020-07-30 動物モデルおよび治療用分子
JP2022177513A Active JP7475415B2 (ja) 2012-03-28 2022-11-04 動物モデルおよび治療用分子

Country Status (13)

Country Link
US (7) US9253965B2 (ja)
EP (3) EP2785845A2 (ja)
JP (4) JP6336435B2 (ja)
CN (1) CN104334732B (ja)
AU (1) AU2013239501B2 (ja)
CA (1) CA2867530A1 (ja)
DK (1) DK2831244T3 (ja)
ES (1) ES2979344T3 (ja)
HK (1) HK1200872A1 (ja)
IN (1) IN2014MN01879A (ja)
NZ (1) NZ629202A (ja)
SG (1) SG11201405058WA (ja)
WO (2) WO2013061098A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190076024A (ko) * 2016-11-04 2019-07-01 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
JP2020530760A (ja) * 2017-07-07 2020-10-29 カイマブ・リミテッド 細胞、脊椎動物、集団及び方法
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG174053A1 (en) 2006-09-01 2011-09-29 Therapeutic Human Polyclonals Inc Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
EP3028564B2 (en) 2009-07-08 2024-01-24 Kymab Limited Animal models and therapeutic molecules
US10662256B2 (en) 2010-07-26 2020-05-26 Trianni, Inc. Transgenic mammals and methods of use thereof
JP6482757B2 (ja) 2010-07-26 2019-03-13 トリアンニ インコーポレイテッドTrianni,Inc. トランスジェニック動物および使用方法
US10793829B2 (en) 2010-07-26 2020-10-06 Trianni, Inc. Transgenic mammals and methods of use thereof
EP3960865A1 (en) 2010-08-02 2022-03-02 Regeneron Pharmaceuticals, Inc. Mice that make binding proteins comprising vl domains
PT4067496T (pt) 2011-02-25 2023-06-07 Regeneron Pharma Ratinhos adam6
HUE047278T2 (hu) 2011-08-05 2020-04-28 Regeneron Pharma Humanizált univerzális könnyûláncú egerek
ES2612935T3 (es) 2011-09-19 2017-05-19 Kymab Limited Anticuerpos, dominios variables y cadenas adaptados para su uso en seres humanos
EP2761008A1 (en) 2011-09-26 2014-08-06 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
SG10201602904VA (en) 2011-10-17 2016-05-30 Regeneron Pharma Restricted immunoglobulin heavy chain mice
US9253965B2 (en) * 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
ES2720186T3 (es) 2011-12-20 2019-07-18 Regeneron Pharma Ratones con cadenas ligeras humanizadas
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
ME03551B (me) 2012-06-12 2020-07-20 Regeneron Pharma Humanizovane nehumane živoтinje sa ograničenim lokusima imunoglobulinskog тeškog lanca
CA2897963A1 (en) 2013-02-20 2014-08-28 Regeneron Pharmaceuticals, Inc. Non-human animals with modified immunoglobulin heavy chain sequences
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
JP7133902B2 (ja) 2013-10-01 2022-09-09 カイマブ・リミテッド 動物モデル及び治療用分子
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
KR20160131118A (ko) 2014-03-21 2016-11-15 리제너론 파마슈티칼스 인코포레이티드 상이한 결합 특징을 전시하는 vl 항원 결합 단백질
CN106255410B (zh) 2014-03-21 2020-01-10 瑞泽恩制药公司 产生单结构域结合蛋白的非人动物
NZ725568A (en) 2014-04-03 2022-10-28 Igm Biosciences Inc Modified j-chain
PL3265575T3 (pl) 2015-03-04 2021-11-29 Igm Biosciences, Inc. Cząsteczki wiążące CD20 i ich zastosowania
CN107438622A (zh) 2015-03-19 2017-12-05 瑞泽恩制药公司 选择结合抗原的轻链可变区的非人动物
AU2016329197B2 (en) 2015-09-30 2021-01-21 Igm Biosciences, Inc. Binding molecules with modified J-chain
JP7058213B2 (ja) 2015-09-30 2022-04-21 アイジーエム バイオサイエンシズ インコーポレイテッド 改変j鎖を有する結合分子
EP3384030A4 (en) 2015-12-03 2019-07-03 Trianni, Inc. IMPROVED IMMUNOGLULINIVITY
US11098310B2 (en) 2016-01-27 2021-08-24 Just-Evotec Biologics, Inc. Expression from transposon-based vectors and uses
ES2823173T3 (es) 2016-01-27 2021-05-06 Just Biotherapeutics Inc Promotor híbrido y usos del mismo
US11261462B2 (en) 2016-01-27 2022-03-01 Just-Evotec Biologics, Inc. Inducible expression from transposon-based vectors and uses
CA3012833A1 (en) 2016-02-04 2017-08-10 Trianni, Inc. Enhanced production of immunoglobulins
GB2550114A (en) 2016-05-03 2017-11-15 Kymab Ltd Methods, regimens, combinations & antagonists
WO2018029474A2 (en) 2016-08-09 2018-02-15 Kymab Limited Anti-icos antibodies
US9567399B1 (en) 2016-06-20 2017-02-14 Kymab Limited Antibodies and immunocytokines
SG11201810509PA (en) 2016-06-20 2018-12-28 Kymab Ltd Anti-pd-l1 antibodies
BR112019002529A2 (pt) 2016-08-09 2019-05-28 Kymab Ltd anticorpo isolado, composição, método para modular o equilíbrio de células t, método para tratar uma doença ou afecção tratável com terapia, método para tratar câncer, combinação de anticorpo igg1, anticorpo anti-icos, mamífero não humano transgênico, e método para produzir um anticorpo
EP3534947A1 (en) 2016-11-03 2019-09-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
WO2018144097A1 (en) * 2016-11-04 2018-08-09 Akeagen Llc Genetically modified non-human animals and methods for producing heavy chain-only antibodies
US11793833B2 (en) 2016-12-02 2023-10-24 Juno Therapeutics, Inc. Engineered B cells and related compositions and methods
EP3574017A1 (en) 2017-01-27 2019-12-04 Kymab Limited Anti-opg antibodies
GB201709808D0 (en) 2017-06-20 2017-08-02 Kymab Ltd Antibodies
GB201709970D0 (en) 2017-06-22 2017-08-09 Kymab Ltd Bispecific antigen-binding molecules
AU2018302668B2 (en) * 2017-07-21 2024-11-07 I'rom Group Co., Ltd. Polynucleotide for modifying target sequence and use thereof
WO2019037099A1 (en) * 2017-08-25 2019-02-28 Wenning Qin LARGE SCALE MODIFICATION OF GENOME EUCARYOTE
RS63772B1 (sr) * 2017-12-05 2022-12-30 Regeneron Pharma Miševi koji imaju modifikovani lambda laki lanac imunoglobulina i njihove upotrebe
WO2019122882A1 (en) 2017-12-19 2019-06-27 Kymab Limited Bispecific antibody for icos and pd-l1
GB201721338D0 (en) 2017-12-19 2018-01-31 Kymab Ltd Anti-icos Antibodies
CN108486126A (zh) * 2018-03-27 2018-09-04 重庆金迈博生物科技有限公司 一种核酸分子及其在人源化抗体中的应用
GB201815629D0 (en) 2018-09-25 2018-11-07 Kymab Ltd Antagonists
CN112400022B (zh) * 2019-02-18 2023-06-30 百奥赛图(北京)医药科技股份有限公司 具有人源化免疫球蛋白基因座的经遗传修饰的非人动物
EP3952999A4 (en) 2019-04-09 2023-01-25 Abcuro, Inc. ANTIBODIES WITH DEPLETIVE ACTION ON THE KLRG1 RECEPTOR (KILLER CELL LECTIN-LIKE RECEPTOR SUBFAMILY G MEMBER 1)
WO2021003149A1 (en) * 2019-07-01 2021-01-07 Trianni, Inc. Transgenic mammals and methods of use
US20230025129A1 (en) 2019-11-29 2023-01-26 Kymab Limited Treatment for physiological iron overload
AU2021283564A1 (en) 2020-06-02 2022-12-08 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animals with common light chain immunoglobulin locus
WO2021261620A1 (ko) 2020-06-25 2021-12-30 주식회사 휴맵 이형접합성 형질전환 동물
WO2022026775A1 (en) * 2020-07-30 2022-02-03 Prellis Biologics, Inc Compositions and methods for targeting coronavirus
EP4211155A1 (en) 2020-09-11 2023-07-19 Regeneron Pharmaceuticals, Inc. Identification and production of antigen-specific antibodies
CA3199879A1 (en) 2020-12-16 2022-06-23 Regeneron Pharmaceuticals, Inc. Mice expressing humanized fc alpha receptors
EP4377346A1 (en) 2021-07-26 2024-06-05 Abcuro, Inc. Killer cell lectin-like receptor subfamily g member 1 (klrg1) depleting antibodies
TW202430028A (zh) * 2023-01-18 2024-08-01 美商基利科學股份有限公司 具有經改變重鏈基因座之嵌合基因轉殖免疫球蛋白小鼠及其製造及使用方法
US20240294651A1 (en) 2023-01-30 2024-09-05 Kymab Limited Antibodies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020088016A1 (en) * 1998-11-03 2002-07-04 Marianne Bruggemann Murine expression of a human IgA lambda locus
JP2004524841A (ja) * 2001-02-16 2004-08-19 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 真核生物細胞を改変する方法
JP2005510253A (ja) * 2001-11-30 2005-04-21 アブジェニックス インコーポレイテッド ヒトIgλ軽鎖遺伝子を保有するトランスジェニック動物
WO2010039900A2 (en) * 2008-09-30 2010-04-08 Aliva Biopharmaceuticals, Inc. Non-human mammals for the production of chimeric antibodies
WO2011004192A1 (en) * 2009-07-08 2011-01-13 Genome Research Limited Animal models and therapeutic molecules
WO2011163314A1 (en) * 2010-06-22 2011-12-29 Regeneron Pharmaceuticals, Inc. Hybrid light chain mice

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
US5169939A (en) 1985-05-21 1992-12-08 Massachusetts Institute Of Technology & Pres. & Fellows Of Harvard College Chimeric antibodies
US4720449A (en) 1985-06-03 1988-01-19 Polaroid Corporation Thermal imaging method
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
WO1991000906A1 (en) 1989-07-12 1991-01-24 Genetics Institute, Inc. Chimeric and transgenic animals capable of producing human antibodies
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
DE69120146T2 (de) 1990-01-12 1996-12-12 Cell Genesys Inc Erzeugung xenogener antikörper
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US7084260B1 (en) 1996-10-10 2006-08-01 Genpharm International, Inc. High affinity human antibodies and human antibodies against human antigens
EP0546073B1 (en) * 1990-08-29 1997-09-10 GenPharm International, Inc. production and use of transgenic non-human animals capable of producing heterologous antibodies
US7041871B1 (en) 1995-10-10 2006-05-09 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
WO1993004169A1 (en) 1991-08-20 1993-03-04 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
EP0746609A4 (en) 1991-12-17 1997-12-17 Genpharm Int NON-HUMAN TRANSGENIC ANIMALS CAPABLE OF PRODUCING HETEROLOGOUS ANTIBODIES
US5859307A (en) 1992-02-04 1999-01-12 Massachusetts Institute Of Technology Mutant RAG-1 deficient animals having no mature B and T lymphocytes
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
DE4228162C1 (de) 1992-08-25 1994-01-13 Rajewsky Klaus Dr Verfahren zum Ersetzen homologer Genabschnitte aus Säugern in der Keimbahn von nicht-menschlichen Säugern
US5565321A (en) 1993-01-22 1996-10-15 Immunex Corporation Detection of mutations in a CD40 ligand gene
AU6819494A (en) 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
DE4331162A1 (de) 1993-09-14 1995-03-16 Bayer Ag Verfahren zur Herstellung von Cyaninfarbstoffen
US7119248B1 (en) 1994-04-12 2006-10-10 Miltenyi Biotec Gmbh Antibodies against epitopes with homology to self antigens, methods of preparation and applications thereof
US6130364A (en) 1995-03-29 2000-10-10 Abgenix, Inc. Production of antibodies using Cre-mediated site-specific recombination
WO1997049804A1 (en) 1996-06-26 1997-12-31 Baylor College Of Medicine Chromosomal rearrangement by insertion of two recombination substrates
AU740043B2 (en) 1996-06-27 2001-10-25 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Recognition molecules interacting specifically with the active site or cleft of a target molecule
KR20080059467A (ko) 1996-12-03 2008-06-27 아브게닉스, 인크. 복수의 vh 및 vk 부위를 함유하는 사람 면역글로불린유전자좌를 갖는 형질전환된 포유류 및 이로부터 생성된항체
US6319906B1 (en) 1996-12-31 2001-11-20 Isis Pharmaceuticals Oligonucleotide compositions and methods for the modulation of the expression of B7 protein
WO1999025854A1 (en) 1997-11-18 1999-05-27 Pioneer Hi-Bred International, Inc. A method for directional stable transformation of eukaryotic cells
PT1034260E (pt) 1997-12-05 2003-10-31 Europ Lab Molekularbiolog Novo metodo de clonagem de adn baseado no sistema de recombinacao rece/rect de e. coli
EP0939120A1 (en) 1998-02-27 1999-09-01 Gesellschaft für biotechnologische Forschung mbH (GBF) Method for marker-free repetitive DNA expression cassette exchange in the genome of cells or parts of cells
US6914128B1 (en) 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
US6355412B1 (en) 1999-07-09 2002-03-12 The European Molecular Biology Laboratory Methods and compositions for directed cloning and subcloning using homologous recombination
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
CA2307503A1 (en) 2000-05-02 2001-11-02 Carlos F. Barbas Iii Peptides for use as a vaccine or treatment for hiv infection
AU2001277076A1 (en) 2000-07-21 2002-02-05 The United States Of America As Represented By The Secretary Of Agriculture Methods for the replacement, translocation and stacking of DNA in eukaryotic genomes
US6586251B2 (en) 2000-10-31 2003-07-01 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US7105348B2 (en) 2000-10-31 2006-09-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
CN1486365B (zh) 2000-11-17 2010-05-12 协和发酵麒麟株式会社 异种(人类)免疫球蛋白在克隆转基因有蹄类动物中的表达
MXPA03004793A (es) 2000-11-30 2004-12-03 Medarex Inc Roedores transgenicos transcromosomales para elaborar anticuerpos humnanos.
ES2389251T3 (es) 2000-12-19 2012-10-24 Altor Bioscience Corporation Animales transgénicos que comprenden un sistema inmunitario humanizado
AR032028A1 (es) 2001-01-05 2003-10-22 Pfizer Anticuerpos contra el receptor del factor de crecimiento similar a insulina
FR2827302B1 (fr) 2001-07-13 2003-10-10 Genoway Cellule et animal transgenique modelisant la presentation antigenique humaine et leurs utilisations
US20060199204A1 (en) 2001-10-05 2006-09-07 U.S. Epa Genetic testing for male factor infertility
WO2003031656A1 (en) 2001-10-05 2003-04-17 United States Environmental Protection Agency Genetic testing for male factor infertility
US20050095712A1 (en) 2002-01-17 2005-05-05 Alberto Martin Mutations caused by activation-induced cytidine deaminase
US8877901B2 (en) 2002-12-13 2014-11-04 Immunomedics, Inc. Camptothecin-binding moiety conjugates
US20040128703A1 (en) 2002-09-09 2004-07-01 Hiroaki Shizuya Methods and compositions for the generation of humanized mice
US7700356B2 (en) 2002-11-08 2010-04-20 The United States Of America As Represented By The Secretary Of Agriculture System for gene targeting and producing stable genomic transgene insertions
DE10251918A1 (de) 2002-11-08 2004-05-19 Horn, Carsten, Dipl.-Biochem. Dr. Systeme zur Erzeugung stabiler genomischer Transgen-Insertionen
AR042145A1 (es) 2002-11-27 2005-06-08 Dow Agrociences Llc Produccion de inmunoglobulinas en plantas con una fucocilacion reducida
GB2398784B (en) 2003-02-26 2005-07-27 Babraham Inst Removal and modification of the immunoglobulin constant region gene cluster of a non-human mammal
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
WO2005001087A2 (en) 2003-06-11 2005-01-06 Regeneron Pharmaceuticals, Inc. Methods of modifying genes in eukaryotic cells
GB2403475B (en) 2003-07-01 2008-02-06 Oxitec Ltd Stable integrands
JP2005042792A (ja) 2003-07-28 2005-02-17 Nsk Ltd ローラクラッチ及びローラクラッチ内蔵型プーリ装置
US7663017B2 (en) 2003-07-30 2010-02-16 Institut Pasteur Transgenic mice having a human major histocompatability complex (MHC) phenotype, experimental uses and applications
WO2005019463A1 (en) 2003-08-11 2005-03-03 Therapeutic Human Polyclonals, Inc. Improved transgenesis with humanized immunoglobulin loci
US7604994B2 (en) 2003-09-03 2009-10-20 Morphotek, Inc. Genetically altered antibody-producing cell lines with improved antibody characteristics
US7205140B2 (en) 2003-10-20 2007-04-17 Campusgen Gmbh Nucleotide sequence for creatinine deiminase and method of use
ES2388435T3 (es) 2003-12-10 2012-10-15 Medarex, Inc. Anticuerpos de IP-10 y sus usos
MXPA06010673A (es) 2004-03-19 2007-06-20 Amgen Inc Reduccion del riesgo de anticuerpos humanos anti-humano a traves de manipulacion del gen v.
US7625549B2 (en) 2004-03-19 2009-12-01 Amgen Fremont Inc. Determining the risk of human anti-human antibodies in transgenic mice
SI2311874T1 (sl) 2004-07-22 2017-12-29 Erasmus University Medical Center Rotterdam Department of Cell Biology and Genetics Vezavne molekule
FR2875239B1 (fr) 2004-09-10 2007-07-20 Inst Necker Ass Loi De 1901 Procede pour l'acceleration des mutations somatiques et son application en proteomique
WO2006044492A2 (en) 2004-10-14 2006-04-27 Ingenious Targeting Laboratory, Inc. Methods for generating rat embryo-derived cell lines and genetic modification of rat genome
EP1802193B1 (en) 2004-10-19 2014-04-30 Regeneron Pharmaceuticals, Inc. Method for generating a mouse homozygous for a genetic modification
WO2006055704A2 (en) 2004-11-17 2006-05-26 Curagen Corporation Antibodies directed to ten-m proteins and uses thereof
NZ556029A (en) 2004-12-21 2010-04-30 Astrazeneca Ab Antibodies directed to angiopoietin-2 and uses thereof
EP1896578A4 (en) 2005-05-14 2008-11-05 Univ Fudan PIGGYBAC AS A TOOL FOR GENETIC HANDLING AND ANALYSIS IN VERTEBRATES
EP1780272A1 (en) 2005-10-27 2007-05-02 GSF-Forschungszentrum für Umwelt und Gesundheit GmbH Method for enhancing somatic hypermutation, gene conversion and class switch recombination
GB0601513D0 (en) 2006-01-25 2006-03-08 Univ Erasmus Medical Ct Binding molecules 3
BRPI0706750A2 (pt) 2006-01-25 2011-04-05 Univ Erasmus Medical Ct geração de anticorpos de cadeia pesada em animais transgênicos
US7462759B2 (en) 2006-02-03 2008-12-09 Pioneer Hi-Bred International, Inc. Brittle stalk 2 gene family and related methods and uses
CA2638774C (en) * 2006-03-31 2015-11-24 Medarex, Inc. Transgenic animals expressing chimeric antibodies for use in preparing human antibodies
SI2374818T1 (sl) 2006-06-02 2013-03-29 Regeneron Pharmaceuticals, Inc. Visokoafinitetna protitelesa za humani IL-6 receptor
ATE525093T1 (de) 2006-06-27 2011-10-15 Sanofi Pasteur Vaxdesign Corp Modelle für die bewertung von impfstoffen
EP1878342A1 (en) 2006-07-13 2008-01-16 Institut Pasteur Immunodeficient mice transgenic for HLA class I and HLA class II molecules and their uses
CN101501073A (zh) 2006-08-22 2009-08-05 G2英弗勒美欣私人有限公司 抗体制备方法
EP2069403B1 (en) 2006-10-02 2014-05-07 Regeneron Pharmaceuticals, Inc. High affinity human antibodies to human il-4 receptor
US7732195B2 (en) 2006-11-01 2010-06-08 Facet Biotech Corporation Tethered vectors for cell surface immunoglobulin display
NO347649B1 (no) 2006-12-14 2024-02-12 Regeneron Pharma Humant antistoff eller antistoff fragment som spesifikt binder human deltaliknende ligand 4 (hDII4), nukleinsyremolekyl som koder for slike og vektor og vert-vektorsystemer, samt fremgangsmåte for fremstilling, sammensetning og anvendelse.
GB0700194D0 (en) 2007-01-05 2007-02-14 Univ Edinburgh Humanisation of animals
AU2008218925A1 (en) 2007-02-20 2008-08-28 Anaptysbio, Inc. Somatic hypermutation systems
WO2008118970A2 (en) 2007-03-27 2008-10-02 Sea Lane Biotechnologies, Llc Constructs and libraries comprising antibody surrogate light chain sequences
GB0706628D0 (en) 2007-04-04 2007-05-16 Univ Erasmus Germ-line manipulation 1
PL2336329T3 (pl) 2007-06-01 2013-04-30 Omt Inc Kompozycje i sposoby hamowania endogennych genów immunoglobulin i wytwarzanie transgenicznych ludzkich idiotypowych przeciwciał
WO2009013620A2 (en) 2007-06-11 2009-01-29 Erasmus University Medical Center Rotterdam Homologous recombination
MX2010000970A (es) 2007-07-31 2010-03-09 Regeneron Pharma Anticuerpos humanos contra cd20 humano y metodo para utilizarlos.
EP3255144A1 (en) 2007-08-10 2017-12-13 E. R. Squibb & Sons, L.L.C. Recombineering construct for preparing transgenic mice capable of producing human immunoglobulin
ME00977B (me) 2007-08-10 2012-06-20 Regeneron Pharma Humana antitijela visokog afiniteta prema humanom nervnom faktoru rasta
JP2009122383A (ja) * 2007-11-14 2009-06-04 Canon Inc 揺動体装置の製造方法、該製造方法により製造された揺動体装置によって構成される光偏向器及び光学機器
WO2009076464A2 (en) 2007-12-10 2009-06-18 Aliva Biopharmaceuticals, Inc. Methods for sequential replacement of targeted region by homologous recombination
US8227577B2 (en) 2007-12-21 2012-07-24 Hoffman-La Roche Inc. Bivalent, bispecific antibodies
BRPI0906711A2 (pt) 2008-01-25 2015-06-30 Cabot Corp Médoto para preparação de pigmento coloridos modificados
KR101409375B1 (ko) 2008-01-31 2014-06-18 삼성전자주식회사 반도체 메모리장치의 블록 디코딩 회로
US20110107445A1 (en) 2008-03-26 2011-05-05 Iti Scotland Limited Efficient Insertion of DNA Into Embryonic Stem Cells
EP2271758B1 (en) 2008-04-14 2018-09-12 Innovative Targeting Solutions Inc. Sequence diversity generation in immunoglobulins
WO2009143472A2 (en) 2008-05-23 2009-11-26 Aliva Biopharmaceuticals, Inc. Method of generating single vl domain antibodies in transgenic animals
EP3456191A1 (en) 2008-06-27 2019-03-20 Merus N.V. Antibody producing non-human mammals
JO3672B1 (ar) 2008-12-15 2020-08-27 Regeneron Pharma أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9).
MX2011007660A (es) 2008-12-18 2011-08-17 Kingdon Craig R Animales transgenicos no humanos que expresan anticuerpos humanizados y usos de los mismos.
EP2394159B1 (en) 2009-02-04 2018-09-26 Molecular Innovations Assays for detecting prorenin, and antibodies used therein
EP2401298A1 (en) 2009-02-24 2012-01-04 Glaxo Group Limited Antigen-binding constructs
GB0905023D0 (en) 2009-03-24 2009-05-06 Univ Erasmus Medical Ct Binding molecules
ES2498765T3 (es) 2009-04-03 2014-09-25 Medical Research Council Mutantes de la citidina desaminasa inducida por activación (AID) y procedimientos de uso
BRPI1015916A2 (pt) 2009-06-26 2015-09-01 Sea Lane Biotechnologies Llc Molécula de ácido nucleico, vetor de expressão, célula hospedeira, bem como método para expressão de um construto de cadeia leve substituta (slc) ou de um polipeptídeo de slc
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
DK2454283T3 (en) 2009-07-15 2018-05-07 Aimm Therapeutics Bv METHODS AND PROCEDURES FOR MANUFACTURING HIGH EFFICIENCY ANTIBODIES
JO3182B1 (ar) 2009-07-29 2018-03-08 Regeneron Pharma مضادات حيوية بشرية عالية الالفة مع تولد الاوعية البشرية - 2
WO2011019844A1 (en) 2009-08-13 2011-02-17 Crystal Bioscience Inc. Transgenic animal for production of antibodies having minimal cdrs
WO2011056864A1 (en) 2009-11-05 2011-05-12 Anaptysbio, Inc. Methods of generating improved antigen-binding agents using chain shuffling and optionally somatic hypermutation
AU2010320130B2 (en) 2009-11-17 2015-03-12 Sab, Llc Human artificial chromosome vector
US20120269830A1 (en) 2009-12-07 2012-10-25 Lawrence Horowitz Conjugates with improved pharmacokinetic properties
LT2509409T (lt) 2009-12-10 2016-12-12 Regeneron Pharmaceuticals, Inc. Pelė, kuri gamina sunkiosios grandinės antikūnus
US20120021409A1 (en) 2010-02-08 2012-01-26 Regeneron Pharmaceuticals, Inc. Common Light Chain Mouse
PL2501817T5 (pl) 2010-02-08 2021-08-16 Regeneron Pharmaceuticals, Inc. Mysz o wspólnym łańcuchu lekkim
EP2571512B1 (en) 2010-05-17 2017-08-23 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
EP2582230A1 (en) 2010-06-17 2013-04-24 Kymab Limited Animal models and therapeutic molecules
EP3960865A1 (en) 2010-08-02 2022-03-02 Regeneron Pharmaceuticals, Inc. Mice that make binding proteins comprising vl domains
JP5997154B2 (ja) 2010-08-16 2016-09-28 ノビミューン エスアー 多重特異性多価抗体の生成方法
JO3375B1 (ar) 2010-11-08 2019-03-13 Regeneron Pharma أجسام مضادة بشرية للجين a1 الشبيه بعامل النخر الورمي (tl1a)
CN103261230A (zh) 2010-12-22 2013-08-21 霍夫曼-拉罗奇有限公司 抗pcsk9抗体及使用方法
PT4067496T (pt) 2011-02-25 2023-06-07 Regeneron Pharma Ratinhos adam6
HUE047278T2 (hu) 2011-08-05 2020-04-28 Regeneron Pharma Humanizált univerzális könnyûláncú egerek
EP2758534B1 (en) 2011-09-19 2020-04-29 Kymab Limited Animals, repertoires & methods for the production of human antibodies
ES2612935T3 (es) 2011-09-19 2017-05-19 Kymab Limited Anticuerpos, dominios variables y cadenas adaptados para su uso en seres humanos
EP2761008A1 (en) 2011-09-26 2014-08-06 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
SG10201602904VA (en) 2011-10-17 2016-05-30 Regeneron Pharma Restricted immunoglobulin heavy chain mice
US20130102031A1 (en) 2011-10-25 2013-04-25 Anaptysbio, Inc. Use of somatic hypermutation to create insertion and deletion mutations in vitro
GB2496375A (en) 2011-10-28 2013-05-15 Kymab Ltd A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof
GB201122047D0 (en) 2011-12-21 2012-02-01 Kymab Ltd Transgenic animals
US9253965B2 (en) 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
ES2720186T3 (es) 2011-12-20 2019-07-18 Regeneron Pharma Ratones con cadenas ligeras humanizadas
ES2870703T3 (es) 2012-02-01 2021-10-27 Regeneron Pharma Roedores humanizados que expresan cadenas pesadas que contienen dominios VL
BR112014021251A2 (pt) 2012-03-02 2017-06-27 Regeneron Pharma anticorpos humanos para toxinas de clostridium difficile
CN104244709B (zh) 2012-03-06 2017-03-08 瑞泽恩制药公司 共同轻链小鼠
SG11201405164QA (en) 2012-03-16 2014-10-30 Regeneron Pharma Mice that produce antigen-binding proteins with ph-dependent binding characteristics
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
JO3820B1 (ar) 2012-05-03 2021-01-31 Regeneron Pharma أجسام مضادة بشرية لـ fel d1وطرق لاستخدامها
JP6343605B2 (ja) 2012-05-25 2018-06-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Rna依存性標的dna修飾およびrna依存性転写調節のための方法および組成物
ME03551B (me) 2012-06-12 2020-07-20 Regeneron Pharma Humanizovane nehumane živoтinje sa ograničenim lokusima imunoglobulinskog тeškog lanca
DK2931897T3 (en) 2012-12-12 2018-02-05 Broad Inst Inc CONSTRUCTION, MODIFICATION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTICAL APPLICATIONS
CA2897963A1 (en) 2013-02-20 2014-08-28 Regeneron Pharmaceuticals, Inc. Non-human animals with modified immunoglobulin heavy chain sequences
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
US20150033372A1 (en) 2013-05-01 2015-01-29 Kymab Limited Human VpreB & Chimaeric Surrogate Light Chains in Transgenic Non-Human Vertebrates
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
US20140331344A1 (en) 2013-05-03 2014-11-06 Kymab Ltd. Transgenic Animals
US20140331339A1 (en) 2013-05-03 2014-11-06 Kymab Limited Transgenic Non-Human Assay Vertebrates, Assays and Kits
JP7133902B2 (ja) 2013-10-01 2022-09-09 カイマブ・リミテッド 動物モデル及び治療用分子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020088016A1 (en) * 1998-11-03 2002-07-04 Marianne Bruggemann Murine expression of a human IgA lambda locus
JP2004524841A (ja) * 2001-02-16 2004-08-19 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 真核生物細胞を改変する方法
JP2005510253A (ja) * 2001-11-30 2005-04-21 アブジェニックス インコーポレイテッド ヒトIgλ軽鎖遺伝子を保有するトランスジェニック動物
WO2010039900A2 (en) * 2008-09-30 2010-04-08 Aliva Biopharmaceuticals, Inc. Non-human mammals for the production of chimeric antibodies
WO2011004192A1 (en) * 2009-07-08 2011-01-13 Genome Research Limited Animal models and therapeutic molecules
WO2011163314A1 (en) * 2010-06-22 2011-12-29 Regeneron Pharmaceuticals, Inc. Hybrid light chain mice

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDREW MURPHY: "VELOCLMMUNE: IMMUNOGLOBULIN VARIABLE REGION HUMANIZED MICE", RECOMBINANT ANTIBODIES FOR IMMUNOTHERAPY, JPN5015005963, 1 January 2009 (2009-01-01), GB, pages 100 - 107, XP055304492, ISSN: 0003633211, DOI: 10.1017/CBO9780511596773.011 *
EUR. J. IMMUNOL. (1995) VOL.25, PP.2154-2162, JPN6017000448, ISSN: 0003633213 *
EUR. J. IMMUNOL. (1998) VOL.28, PP.2289-2299, JPN6017000445, ISSN: 0003633212 *
J. IMMUNOL. (1999) VOL.163, PP.6898-6906, JPN6017000450, ISSN: 0003633214 *
MURPHY D., "BAC-BASED MODIFICATIONS OF THE MOUSE GENOME: THE BIG AND THE BACKWARD", WELLCOME TRUST A, JPN7016002559, 3 November 2009 (2009-11-03), ISSN: 0003633215 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
KR20190076024A (ko) * 2016-11-04 2019-07-01 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
KR102319069B1 (ko) 2016-11-04 2021-11-01 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
KR20210134059A (ko) * 2016-11-04 2021-11-08 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
KR102492433B1 (ko) 2016-11-04 2023-01-30 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
KR20230020550A (ko) * 2016-11-04 2023-02-10 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
KR102658529B1 (ko) 2016-11-04 2024-04-19 리제너론 파마슈티칼스 인코포레이티드 조작된 면역글로불린 람다 경쇄 유전자좌를 갖는 비인간 동물
JP2020530760A (ja) * 2017-07-07 2020-10-29 カイマブ・リミテッド 細胞、脊椎動物、集団及び方法
JP7288892B2 (ja) 2017-07-07 2023-06-08 カイマブ・リミテッド 細胞、脊椎動物、集団及び方法

Also Published As

Publication number Publication date
EP3366126C0 (en) 2024-05-15
SG11201405058WA (en) 2014-09-26
US9253965B2 (en) 2016-02-09
CN104334732A (zh) 2015-02-04
WO2013144566A2 (en) 2013-10-03
IN2014MN01879A (ja) 2015-07-03
JP6336435B2 (ja) 2018-06-06
JP2020176140A (ja) 2020-10-29
ES2979344T3 (es) 2024-09-25
EP2831244B1 (en) 2018-01-31
US20130263292A1 (en) 2013-10-03
EP3366126A1 (en) 2018-08-29
JP2018119012A (ja) 2018-08-02
US9924705B2 (en) 2018-03-27
JP2023009136A (ja) 2023-01-19
CN104334732B (zh) 2018-03-30
WO2013061098A2 (en) 2013-05-02
US20210079118A1 (en) 2021-03-18
HK1200872A1 (en) 2015-08-14
EP2831244A2 (en) 2015-02-04
US20230159660A1 (en) 2023-05-25
NZ629202A (en) 2016-08-26
US10774155B2 (en) 2020-09-15
AU2013239501A1 (en) 2014-09-18
JP7475415B2 (ja) 2024-04-26
US20170101483A1 (en) 2017-04-13
US9938357B2 (en) 2018-04-10
US20170096498A1 (en) 2017-04-06
WO2013061098A3 (en) 2013-06-20
CA2867530A1 (en) 2013-10-03
US20160219846A1 (en) 2016-08-04
US9938358B2 (en) 2018-04-10
AU2013239501B2 (en) 2018-08-02
WO2013144566A3 (en) 2013-11-21
EP2785845A2 (en) 2014-10-08
EP3366126B1 (en) 2024-05-15
DK2831244T3 (en) 2018-03-19
US20180298112A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP7475415B2 (ja) 動物モデルおよび治療用分子
US20220287283A1 (en) Animal models and therapeutic molecules
US20230263143A1 (en) Animal Models and Therapeutic Molecules
US9896516B2 (en) Animal models and therapeutic molecules

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180502

R150 Certificate of patent or registration of utility model

Ref document number: 6336435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250