JP2012001638A - Heat-conductive sheet and process for producing heat-conductive sheet - Google Patents
Heat-conductive sheet and process for producing heat-conductive sheet Download PDFInfo
- Publication number
- JP2012001638A JP2012001638A JP2010138334A JP2010138334A JP2012001638A JP 2012001638 A JP2012001638 A JP 2012001638A JP 2010138334 A JP2010138334 A JP 2010138334A JP 2010138334 A JP2010138334 A JP 2010138334A JP 2012001638 A JP2012001638 A JP 2012001638A
- Authority
- JP
- Japan
- Prior art keywords
- conductive sheet
- heat
- heat conductive
- thermally conductive
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 59
- 239000004917 carbon fiber Substances 0.000 claims abstract description 59
- 229920002050 silicone resin Polymers 0.000 claims abstract description 34
- 239000011231 conductive filler Substances 0.000 claims abstract description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 37
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 230000006835 compression Effects 0.000 claims description 17
- 238000007906 compression Methods 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 239000011863 silicon-based powder Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 53
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 21
- 238000002156 mixing Methods 0.000 description 21
- 239000011295 pitch Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 229920002379 silicone rubber Polymers 0.000 description 7
- 239000004945 silicone rubber Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003607 modifier Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011302 mesophase pitch Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000011337 anisotropic pitch Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、発熱性電子部品等の放熱を促す熱伝導性シート及び熱伝導性シートの製造方法に関する。 The present invention relates to a heat conductive sheet that promotes heat dissipation from a heat-generating electronic component and the like, and a method for manufacturing the heat conductive sheet.
近年の電子機器においては、高性能化、小型化及び軽量化に伴う半導体パッケージの高密度実装化、LSIの高集積化及び高速化などによって、各種の電子部品にて発生する熱を効果的に外部へ放散させる熱対策が非常に重要な課題になっている。そのため、電気機器の各種電子部品、例えばトランジスタやサイリスタなどの発熱性電子部品等に、熱伝導性の良好なシート材料(以下、「熱伝導性シート」という)を介してヒートシンク等の放熱部材を取り付けるという対策が一般的に採られている。 In recent electronic devices, heat generated in various electronic components has been effectively reduced by high-density mounting of semiconductor packages, high integration and high-speed of LSIs due to higher performance, smaller size and lighter weight. Measures to dissipate heat to the outside are a very important issue. Therefore, heat dissipation members such as heat sinks are attached to various electronic components of electrical equipment, such as heat-generating electronic components such as transistors and thyristors, through a sheet material having good thermal conductivity (hereinafter referred to as “thermal conductive sheet”). The measure of mounting is generally taken.
この種の熱伝導性シートは、一般に、発熱源となる発熱性電子部品等の被装着部位の凹凸に対して柔軟に追従させて、発熱性電子部品等に密着した状態で取り付けられる。そして、かかる熱伝導性シートは、発熱性電子部品等と放熱部材との接触熱抵抗を低減させ、発熱性電子部品等にて発生する熱を効率良く放熱部材に伝導させる機能を果たす。 In general, this type of heat conductive sheet is attached in a state of being in close contact with the heat generating electronic component or the like by flexibly following the unevenness of the mounted portion of the heat generating electronic component or the like serving as a heat generation source. Such a heat conductive sheet functions to reduce the contact thermal resistance between the heat-generating electronic component and the like and the heat radiating member, and efficiently conduct heat generated in the heat-generating electronic component and the like to the heat radiating member.
また、熱伝導性シートは、放熱部材を発熱性電子部品等に圧着させる際において、放熱部材と発熱性電子部品とを密着させるとともに、これらの変形や損傷を防ぐ保護材としての機能をも果たす。そのため、この熱伝導性シートにおいては、高い熱伝導性のみならず、柔軟性及び形状追従性に優れることが要求される。さらに、熱伝導性シートは、発熱性電子部品や電子機器筐体の小型化に応じて、薄型に形成されることが要求されている。このような要求に対して、高い熱伝導率を有する炭素繊維を熱伝導材として配合した熱伝導性シートも提案されている(特許文献1参照)。 The heat conductive sheet also serves as a protective material for preventing the deformation and damage of the heat radiating member and the heat generating electronic component when the heat radiating member is pressure-bonded to the heat generating electronic component. . Therefore, this heat conductive sheet is required not only to have high heat conductivity but also to be excellent in flexibility and shape followability. Furthermore, the heat conductive sheet is required to be formed thin in accordance with miniaturization of the heat generating electronic component and the electronic device casing. In response to such a demand, a heat conductive sheet in which carbon fiber having high heat conductivity is blended as a heat conductive material has also been proposed (see Patent Document 1).
この種の熱伝導性シートは、シリコーンゴムなどの高分子材料中に、炭素繊維や酸化アルミニウム等の熱伝導材料を配合したシート母材を形成し、所定の厚さにスライスすることにより製造される。ここで、熱伝導性シートは、シートのスライス厚さが個々の製品の熱伝導率に大きく影響することから、厚さを均一にスライスすることが重要となる。また、熱伝導性シートは、炭素繊維がシートの厚さ方向に配向されることで、高い熱伝導特性を発揮することから、スライス工程において炭素繊維がシートの厚さ方向に配向されている状態を保つことが重要となる。 This type of heat conductive sheet is manufactured by forming a sheet base material in which a heat conductive material such as carbon fiber or aluminum oxide is blended in a polymer material such as silicone rubber and slicing it to a predetermined thickness. The Here, in the heat conductive sheet, since the slice thickness of the sheet greatly affects the thermal conductivity of each product, it is important to slice the thickness uniformly. In addition, since the heat conductive sheet exhibits high heat conduction characteristics because the carbon fiber is oriented in the thickness direction of the sheet, the carbon fiber is oriented in the thickness direction of the sheet in the slicing step. It is important to keep
従来のシリコーン系ゴムブロックのスライス方法としては、切断刃の刃先角度や表面粗さを規定するとともに非回転のまま直線的に移動させる方法(特許文献2)や、切断刃とゴムブロックの相対的な移動方向及び刃先の角度を規定する方法(特許文献3)が提案されている。 As a conventional method for slicing a silicone rubber block, the cutting edge angle and surface roughness of the cutting blade are regulated and moved linearly without rotation (Patent Document 2), or the relative relationship between the cutting blade and the rubber block. A method (Patent Document 3) has been proposed that defines a specific moving direction and blade angle.
しかし、熱伝導性シートは、上述したように高い柔軟性、形状追従性が求められることから、従来のスライス方法ではシート母材が変形しやすく、薄く均一な厚さにスライスすることが困難であった。また、従来の熱伝導性シートは、スライスされた表面が切断刃との摩擦抵抗によって擦られることにより、炭素繊維の配向が乱れてしまい、熱伝導特性の低下を招いていた。 However, since the heat conductive sheet is required to have high flexibility and shape followability as described above, the sheet base material is easily deformed by the conventional slicing method, and it is difficult to slice into a thin and uniform thickness. there were. Further, in the conventional heat conductive sheet, the sliced surface is rubbed by the frictional resistance with the cutting blade, so that the orientation of the carbon fibers is disturbed and the heat conduction characteristics are deteriorated.
本発明は上述した課題を解決するためになされたものであり、その目的は、熱伝導特性、厚さの均一性、柔軟性及び形状追従性に優れた熱伝導性シート及び熱伝導性シートの製造方法を提供することにある。 The present invention has been made in order to solve the above-described problems, and the object of the present invention is to provide a heat conductive sheet and a heat conductive sheet excellent in heat conduction characteristics, thickness uniformity, flexibility, and shape followability. It is to provide a manufacturing method.
上述した課題を解決するために、本発明に係る熱伝導性シートは、シリコーン樹脂と、熱伝導性フィラと、炭素繊維とを含有し、上記炭素繊維が厚み方向に配向されている熱伝導性シートにおいて、上記熱伝導性フィラが、40〜55体積%の範囲で含有され、上記炭素繊維が、10〜25体積%の範囲で含有されてなるものである。 In order to solve the above-described problem, a thermally conductive sheet according to the present invention contains a silicone resin, a thermally conductive filler, and carbon fibers, and the carbon fibers are oriented in the thickness direction. In the sheet, the thermally conductive filler is contained in a range of 40 to 55% by volume, and the carbon fiber is contained in a range of 10 to 25% by volume.
また、本発明に係る熱伝導性シートの製造方法は、シリコーン樹脂と、熱伝導性フィラと、炭素繊維とを含有する混合組成物を作成する工程と、上記混合組成物を柱状に形成するとともに、上記炭素繊維を該柱状の長手方向に配向させる工程と、上記柱状の混合組成物を、スライス方向に超音波振動が付与されたカッターによって該柱状の長手方向と直交する方向にスライスする工程とを有するものである。 Moreover, the manufacturing method of the heat conductive sheet which concerns on this invention is the process of creating the mixed composition containing a silicone resin, a heat conductive filler, and carbon fiber, and forming the said mixed composition in column shape. , Orienting the carbon fibers in the columnar longitudinal direction, and slicing the columnar mixed composition in a direction perpendicular to the columnar longitudinal direction by a cutter provided with ultrasonic vibration in the slicing direction; It is what has.
本発明に係る熱伝導性シートによれば、熱伝導特性及び圧縮性に優れた熱伝導性シートを得ることができる。また、本発明に係る熱伝導性シートの製造方法によれば、熱伝導特性及び圧縮性に優れた熱伝導性シートを、均一な厚さで製造することができる。 According to the heat conductive sheet which concerns on this invention, the heat conductive sheet excellent in the heat conductive characteristic and the compressibility can be obtained. Moreover, according to the manufacturing method of the heat conductive sheet which concerns on this invention, the heat conductive sheet excellent in heat conductive characteristics and compressibility can be manufactured by uniform thickness.
以下、本発明が適用された熱伝導性シート及び熱伝導性シートの製造方法について、図面を参照しながら詳細に説明する。 Hereinafter, a thermal conductive sheet to which the present invention is applied and a method for manufacturing the thermal conductive sheet will be described in detail with reference to the drawings.
<熱伝導性シート>
本発明が適用された熱伝導性シート1は、IC等の発熱性電子部品とヒートシンク等の放熱部品との間に配設され、発熱性電子部品の熱をヒートシンク側に伝達させるものである。この熱伝導性シート1を介在させることにより、ヒートシンクに効率よく熱を伝えることができる。
<Thermal conductive sheet>
The heat
熱伝導性シート1は、シリコーン樹脂に熱伝導材料としてピッチ系の炭素繊維と熱伝導性フィラとして球状の酸化アルミニウム(以下、単にアルミナという)とが配合されたシート状物であり、炭素繊維がシートの厚さ方向に配向されることにより、該厚さ方向に熱を効率よく伝達する。この熱伝導性シート1は、シリコーン樹脂、炭素繊維及びアルミナを混合した混合組成物を、柱状に成形するとともに炭素繊維をその長手方向に配向させることによりシート母材2を形成し、このシート母材2を長手方向と直交する方向にシート状にスライスすることにより形成される。また、熱伝導性シート1は、炭素繊維が10〜25体積%、アルミナが40〜55体積%で配合されていることを特徴としている。
The heat
シリコーン樹脂は、柔軟性、形状追従性、耐熱性等に優れた物性を有するもので、第1のシリコーン樹脂と第2のシリコーン樹脂とが混合されて構成される。第1のシリコーン樹脂としては、ポリアルケニルアルキルシロキサンであり、第2のシリコーン樹脂は当該ポリアルケニルアルキルシロキサンの硬化剤として働くポリアルキル水素シロキサンである。 The silicone resin has physical properties excellent in flexibility, shape followability, heat resistance, and the like, and is configured by mixing a first silicone resin and a second silicone resin. The first silicone resin is a polyalkenylalkylsiloxane, and the second silicone resin is a polyalkylhydrogensiloxane that acts as a curing agent for the polyalkenylalkylsiloxane.
なお、商業的には、第1のシリコーン樹脂は、上記反応の触媒として働く白金触媒を混合した状態で入手することが可能である。また、商業的には、第2のシリコーン樹脂は、ポリアルキル水素シロキサンに加え、上記のポリアルケニルアルキルシロキサンや反応調整剤を混合した状態で入手することが可能である。 In addition, commercially, the 1st silicone resin can be obtained in the state which mixed the platinum catalyst which acts as a catalyst of the said reaction. In addition, commercially, the second silicone resin can be obtained in a state where the above-mentioned polyalkenylalkylsiloxane and reaction modifier are mixed in addition to the polyalkylhydrogensiloxane.
第1のシリコーン樹脂と第2のシリコーン樹脂が上記のように混合物である場合は、これら両樹脂を重量比により等量配合するだけで、相対的に第1のシリコーン樹脂の配合比率を高く、硬化剤としての第2のシリコーン樹脂の配合比率を下げることができる。 When the first silicone resin and the second silicone resin are a mixture as described above, the blending ratio of the first silicone resin is relatively high by simply blending these two resins in equal amounts by weight ratio, The blending ratio of the second silicone resin as the curing agent can be lowered.
その結果、熱伝導性シート1を過度に硬化させることがなく、これにより一定の圧縮率を発生させることができるようになる。熱伝導性シート1は、発熱性電子部品とヒートシンクとの間に介在されることから、これらを密着させるために厚さ方向に所定の圧縮率を備えることが必要となり、少なくとも3%以上の圧縮率、好ましくは6%以上、より好ましくは10%以上の圧縮率を備えることが好ましい。
As a result, the heat
そして、図1に示すように、熱伝導性シート1は、第1のシリコーン樹脂と第2のシリコーン樹脂との配合比を55:45〜50:50とする。これにより、熱伝導性シート1は、初期厚みが0.5mmと薄くスライスした場合にも3%以上(3.82%)の圧縮率を有する。さらに熱伝導性シート1は、52:48では初期厚み1.0mmで10.49%の圧縮率を有し、さらにまた55:45〜52:48の間では初期厚み1.0mmで13.21%と、いずれも10%以上の圧縮率を有する。
And as shown in FIG. 1, the heat
このように、熱伝導性シート1は、厚さ方向に炭素繊維が配向されているにもかかわらず、厚さ方向へ3%以上の圧縮率を有するため、柔軟性、形状追従性に優れ、発熱性電子部品とヒートシンクとをより密着させ、効率よく放熱させることができる。
Thus, since the heat
ピッチ系の炭素繊維は、ピッチを主原料とし、溶融紡糸、不融化及び炭化などの各処理工程後に2000〜3000℃或いは3000℃を超える高温で熱処理して黒鉛化させたものである。原料ピッチは、光学的に無秩序で偏向を示さない等方性ピッチと、構成分子が液晶状に配列し、光学的異方性を示す異方性ピッチ(メソフェーズピッチ)に分けられるが、異方性ピッチから製造された炭素繊維は等方性ピッチから製造された炭素繊維より、機械特性に優れ、電気および熱の伝導性が高くなることから、このメソフェーズピッチ系の黒鉛化炭素繊維を用いることが好ましい。 Pitch-based carbon fiber is made from pitch as a main raw material and graphitized by heat treatment at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after each processing step such as melt spinning, infusibilization, and carbonization. The raw material pitch is divided into an isotropic pitch that is optically disordered and exhibits no deflection, and an anisotropic pitch (mesophase pitch) in which the constituent molecules are arranged in a liquid crystal form and exhibits optical anisotropy. Carbon fiber manufactured from an isotropic pitch has better mechanical properties and higher electrical and thermal conductivity than carbon fiber manufactured from an isotropic pitch. Use this mesophase pitch graphitized carbon fiber. Is preferred.
なお、アルミナは炭素繊維よりも小さく、かつ熱伝導性材料として十分に機能しうる粒径を有し、炭素繊維と相互に緊密に充填される。これにより熱伝導性シートは、十分な熱伝導の経路を得ることができる。アルミナとしてはDAW03(電気化学工業株式会社製)を用いることができる。 Alumina is smaller than carbon fiber and has a particle size that can sufficiently function as a heat conductive material, and is closely packed with carbon fiber. Thereby, the heat conductive sheet can obtain a sufficient heat conduction path. DAW03 (manufactured by Denki Kagaku Kogyo Co., Ltd.) can be used as the alumina.
<アルミナと炭素繊維との配合比>
熱伝導性シート1は、炭素繊維及びアルミナの配合割合に応じて、燃焼試験における評価、及び熱伝導性シート1が切り出されるシート母材2の製造時において第1、第2のシリコーン樹脂、炭素繊維、アルミナを混合した混合組成物をシリンジより角柱状に押し出す際の押出しやすさの評価が変化する。なお、シート母材2は、シリンジ内部に設けられたスリットを通過することにより炭素繊維が長手方向に配向され、スリットを通過した後、再度角柱状に成形される。
<Combination ratio of alumina and carbon fiber>
The thermal
図2にアルミナ50gに対する炭素繊維の配合割合を変化させたときの、熱伝導性シート1の燃焼試験(UL94V)における評価、及びシート母材2を角柱状に押し出す際の押出しやすさの評価を示す。なお、熱伝導性シート1は、シリコーン樹脂として、第1のシリコーン樹脂(ポリアルケニルアルキルシロキサンと白金触媒との混合物)を5.4g、第2のシリコーン樹脂(ポリアルキル水素シロキサン、ポリアルケニルアルキルシロキサン及び反応調整剤の混合物)を5.4g配合している。
FIG. 2 shows the evaluation in the combustion test (UL94V) of the heat
図2に示すように、アルミナ50gに対して炭素繊維を14g以上配合することにより、厚さ1mm及び2mmの熱伝導性シート1のいずれも、燃焼試験(UL94V)におけるV0相当の評価を得た。また、厚さ2mmの熱伝導性シート1によれば、アルミナ50gに対して炭素繊維を8g以上配合することにより燃焼試験(UL94V)におけるV0相当の評価を得た。このとき、熱伝導性シート1におけるアルミナ50gの体積比は45.8体積%であり、炭素繊維8gの体積比は13.3体積%である。
As shown in FIG. 2, by blending 14 g or more of carbon fiber with 50 g of alumina, both the 1 mm thick and 2 mm thick thermal
また、熱伝導性シート1は、アルミナ50gに対して炭素繊維を8g、10g配合することにより、シート母材2の製造工程において押し出しやすさを良好に維持することができる。すなわち、シート母材2は、シリンジ内に設けられたスリットをスムーズに通過し、且つ角柱状を維持することができる。
Moreover, the heat
同様に、熱伝導性シート1は、アルミナ50gに対して炭素繊維を12g、14g配合することによっても、シート母材2の製造工程において押し出しやすさを維持することができる。すなわち、シート母材2は、シリンジ内に設けられたスリットをスムーズに通過し、且つ角柱状を維持することができる。なお、このシート母材2の硬度は上記炭素繊維8g、10g配合したものよりも硬い。
Similarly, the heat
また、熱伝導性シート1は、アルミナ50gに対して炭素繊維を16g配合することにより、シート母材2の製造工程において押出しやすさが若干損なわれた。すなわち、シート母材2が硬いため、シリンジ内に設けられたスリットを固定する治具から一部の母材が漏れ出すケースがあった。しかし、スリットを通過した母材は角柱状を維持することができる。このとき、熱伝導性シート1におけるアルミナ50gの体積比は40.4体積%であり、炭素繊維16gの体積比は、23.5体積%である。
Moreover, the heat
さらに、熱伝導性シート1は、炭素繊維を17g配合した場合には、シート母材2の製造工程において押し出すことができなかった。すなわち、シート母材2が硬いため、シリンジ内に設けられたスリットを固定する治具から一部の母材が漏れ出すケースがあった。そして、スリットを通過した母材同士が結合せず角柱状を維持できなかった。
Furthermore, the heat
以上より、アルミナ50gに対する炭素繊維の配合量は、特に、燃焼試験UL94VにおいてV0相当という高い難燃性が要求される場合には、シート厚さ1mmで14g、シート厚さ2mmで8g〜16gが好ましいことがわかる。 From the above, the blending amount of the carbon fiber with respect to 50 g of alumina is 14 g at a sheet thickness of 1 mm and 8 g to 16 g at a sheet thickness of 2 mm, particularly when high flame resistance equivalent to V0 is required in the combustion test UL94V. It turns out that it is preferable.
また、図3に示すように、炭素繊維の配合量と熱抵抗値とは相関がある。図3に示すように、炭素繊維の配合量を増やすほど熱抵抗(K/W)は下がるが、約10g以上で熱抵抗値は安定することがわかる。一方、炭素繊維を17g以上配合すると、上述したようにシート母材2の押出しが困難となることから、熱伝導性シート1は、炭素繊維の配合量を、10g以上、16g以下とすることが好ましい。ここで、厚さ1mmの熱伝導性シート1では、熱伝導性シート1の難燃性、及びシート母材2の押し出しやすさの観点から炭素繊維の配合量をアルミナ50gに対して14gとしたが、この配合量においては、図3に示すように、熱抵抗の値が低く安定している。
Moreover, as shown in FIG. 3, the compounding quantity of carbon fiber and a thermal resistance value have a correlation. As shown in FIG. 3, the thermal resistance (K / W) decreases as the blending amount of the carbon fiber increases, but it can be seen that the thermal resistance value becomes stable at about 10 g or more. On the other hand, when 17 g or more of carbon fiber is blended, it becomes difficult to extrude the
以上より、実施例として、図4に、最適な配合比率(重量比)によって製造された厚さ1mmの熱伝導性シート1の配合を示す。図4に示すように、第1のシリコーン樹脂としてポリアルケニルアルキルシロキサンと白金触媒との混合物を5.4g(7.219重量%)、第2のシリコーン樹脂としてポリアルキル水素シロキサン、ポリアルケニルアルキルシロキサン及び反応調整剤の混合物を5.4g(7.219重量%)、アルミナとして商品名DAW03を50g(66.8449重量%)、ピッチ系炭素繊維として商品名R−A301(帝人株式会社製)を14g(18.7166重量%)用いた。
From the above, as an example, FIG. 4 shows the blending of the thermally
<スライス装置>
次いで、図4に示す配合からなる熱伝導性シート1を得るためにシート母材2を個々の熱伝導性シート1にスライスするスライス装置10の構成について説明する。図5に示すように、スライス装置10は、シート母材2を超音波カッターによってスライスすることにより、炭素繊維の配向を保った状態で熱伝導性シート1を形成することができる。したがって、スライス装置10によれば、炭素繊維の配向が厚さ方向に維持された熱伝導特性が良好な熱伝導性シート1を得ることができる。
<Slicing device>
Next, the configuration of the slicing
ここで、シート母材2は、第1、第2のシリコーン樹脂、アルミナ及び炭素繊維をミキサーに投入、混合した後、ミキサーに設けられたシリンジより、所定寸法の角柱状に押し出されることにより形成される。このとき、シート母材2は、シリンジ内に設けられたスリットを通過することで炭素繊維が長手方向に配向される。シート母材2は、角柱状に押し出された後、型ごとオーブンに入れて熱硬化され、完成する。
Here, the
スライス装置10は、図6に示すように、角柱状のシート母材が載置されるワークテーブル11と、ワークテーブル11上のシート母材2を超音波振動を加えながらスライスする超音波カッター12とを備える。
As shown in FIG. 6, the slicing
ワークテーブル11は、金属製の移動台20上にシリコーンラバー21が配設されている。移動台20は、移動機構22によって所定の方向に移動可能とされ、シート母材2を超音波カッター12の下部へ、順次、送り操作する。シリコーンラバー21は、超音波カッター12の刃先を受けるに足りる厚さを有する。ワークテーブル11は、シリコーンラバー21上にシート母材2が載置されると、超音波カッター12のスライス操作に応じて移動台20が所定方向へ移動され、順次シート母材2を超音波カッター12の下部へ送る。
The work table 11 is provided with a silicone rubber 21 on a metal moving table 20. The moving table 20 can be moved in a predetermined direction by the moving mechanism 22 and sequentially feeds the
超音波カッター12は、シート母材2をスライスするナイフ30と、ナイフ30に超音波振動を付与する超音波発振機構31と、ナイフ30を昇降操作する昇降機構32とを有する。ナイフ30はワークテーブル11に対して刃先が向けられ、昇降機構32によって昇降操作されることによりワークテーブル11上に載置されたシート母材2をスライスしていく。ナイフ30の寸法や材質は、シート母材2の大きさや組成等に応じて決定されるものであり、例えば幅40mm、厚さ1.5mm、刃先角度10°の鋼からなる。
The
超音波発振機構31は、ナイフ30に対してシート母材2のスライス方向に超音波振動を付与するものであり、例えば、発信周波数が20.5kHzで、振幅を50μm、60μm、70μmの3段階に調整可能とされている。
The
このようなスライス装置10は、超音波カッター12に超音波振動を付与しながらシート母材2をスライスしていくことにより、熱伝導性シート1の炭素繊維の配向を厚さ方向に保つことができる。
Such a
図7に、超音波振動を付与せずにスライスした熱伝導性シートと、スライス装置10によって超音波振動を付与しながらスライスした熱伝導性シート1との、熱抵抗値(K/W)を示す。図7に示すように、超音波振動を付与せずにスライスした熱伝導性シートに比べて、スライス装置10によって超音波振動を付与しながらスライスした熱伝導性シート1は、熱抵抗(K/W)が低く抑えられていることがわかる。
FIG. 7 shows the thermal resistance values (K / W) of the thermally conductive sheet sliced without applying ultrasonic vibration and the thermally
これは、スライス装置10は、超音波カッター12にスライス方向への超音波振動を付与していることから、界面熱抵抗が低く、熱伝導性シート1の厚さ方向に配向されている炭素繊維がナイフ30によって横倒しされ難いことによる。一方、超音波振動を付与せずにスライスした熱伝導性シートでは、ナイフの摩擦抵抗によって熱伝導性材料である炭素繊維の配向が乱れ、切断面への露出が減少してしまい、そのため、熱抵抗が上昇してしまう。したがって、スライス装置10によれば、熱伝導特性に優れる熱伝導性シート1を得ることができる。
This is because the
<スライス速度とスライス厚みによる均一性>
次いで、スライス装置10によるシート母材2のスライス速度とスライスされる熱伝導性シート1の厚さとの関係について検討した。上述した実施例に示す配合割合で、一辺が20mmの角柱状のシート母材2を形成し、このシート母材2を0.05mm〜0.50mmまで0.05mm毎に厚さの異なる熱伝導性シート1を、超音波カッター12のスライス速度を毎秒5mm、10mm、50mm、100mmに変更してスライスすることにより形成し、各熱伝導性シート1の外観を観察した。なお、超音波カッター12に付与する超音波振動は、発信周波数を20.5kHzとし、振幅を60μmとした。
<Uniformity depending on slice speed and slice thickness>
Next, the relationship between the slicing speed of the
観察結果を図8に示す。図8に示すように、0.15mm以下の厚さでは、スライス速度に拘わらず変形が生じた。一方、0.20mm以上の厚さでは、スライス速度を速めても熱伝導性シート1に変形は見られなかった。すなわち、スライス装置10によれば、上記図4に示す配合割合のシート母材2を、厚さ0.20mm以上の厚さで均一的にスライスすることができる。
The observation results are shown in FIG. As shown in FIG. 8, when the thickness was 0.15 mm or less, deformation occurred regardless of the slice speed. On the other hand, at a thickness of 0.20 mm or more, no deformation was observed in the heat
<スライス速度とスライス厚みによる熱伝導率・圧縮率>
次いで、スライス装置10によるシート母材2のスライス速度と熱伝導率及び厚さ方向への圧縮率との関係について検討した。上記スライス速度及びシート厚さの検討において変形が見られなかった厚さ0.20mm、0.25mm、0.30mm、0.50mmでスライス速度が毎秒5mm、10mm、50mm、100mmの各熱伝導性シート1につき、それぞれ熱伝導率及び圧縮率を測定した。測定結果を図9に示す。
<Thermal conductivity and compressibility depending on slice speed and slice thickness>
Next, the relationship between the slicing speed of the
図9に示すように、各熱伝導性シート1のうち、0.50mmのシート厚さのサンプルを除いた熱伝導性シート1は、超音波カッター12の速度が毎秒5mm、10mm、50mmのいずれの速度でスライスされた場合でも、良好な熱伝導特性を備えるとともに、10%以上の圧縮率を有し、柔軟性、形状追従性に優れる。また、超音波カッター12の速度が毎秒100mmでスライスされた場合でも、シート厚さが0.25mm及び0.20mmの熱伝導性シート1は、良好な熱伝導特性を備えるとともに、10%以上の圧縮率を有し、柔軟性、形状追従性に優れる。
As shown in FIG. 9, among the thermal
一方、シート厚さが0.30mmの熱伝導性シート1は、超音波カッター12の速度が毎秒100mmでスライスされた場合には、熱伝導特性に優れるものの、圧縮率が3.72%とやや落ちた。
On the other hand, the heat
また、シート厚さが0.50mmの熱伝導性シート1は、超音波カッター12の速度が毎秒5mm、10mm、50mmのいずれの速度でスライスされた場合には、良好な熱伝導特性を備えるとともに、5%以上の圧縮率を有し良好な柔軟性、形状追従性を有する。一方、シート厚さが0.50mmの熱伝導性シート1は、超音波カッター12の速度が毎秒100mmでスライスされた場合には、良好な熱伝導特性を備えるものの、圧縮率が2.18%と3%より低く、柔軟性、形状追従性が落ちる。
In addition, the thermally
<振幅と圧縮率>
なお、図10に超音波カッター12に付与する超音波振動の振幅を50μm、60μm、70μmの3段階に変えてスライスした熱伝導性シート1の各特性を示す。熱伝導性シート1は、図4に示す配合割合で形成し、測定荷重を1kgf/cm2とした。図10に示すように、振幅を70μmとした場合には、熱伝導性シート1は、圧縮率が2.18%と、従来と同様3%より低く、柔軟性、形状追従性に劣る。一方、振幅を50μm、60μmとした場合には、熱伝導性シート1は、3%以上の圧縮率を有し、良好な柔軟性、形状追従性を備える。
<Amplitude and compression ratio>
FIG. 10 shows the characteristics of the thermally
<その他>
なお、シート母材2は、角柱状に限定されず、円柱状など、熱伝導性シート1の形状に応じた各種断面形状を有する柱状に形成することができる。また、熱伝導性フィラとして球状アルミナを用いたが、本発明はこれ以外にも球状の窒化アルミニウム、酸化亜鉛、シリコーン粉、金属粉末のいずれか、あるいはこれらの混合物を用いることができる。
<Others>
In addition, the sheet |
1 熱伝導性シート、2 シート母材、10 スライス装置、11 ワークテーブル、12 超音波カッター、20 移動台、21 シリコーンラバー、30 ナイフ、31 超音波発振機構、32 昇降機構
DESCRIPTION OF
1 熱伝導性シート、2 シート母材、10 スライス装置、11 ワークテーブル、12 超音波カッター、20 移動台、21 シリコーンラバー、22 移動機構、30 ナイフ、31 超音波発振機構、32 昇降機構
DESCRIPTION OF
Claims (14)
上記熱伝導性フィラが、40〜55体積%の範囲で含有され、
上記炭素繊維が、10〜25体積%の範囲で含有されてなる熱伝導性シート。 In a thermally conductive sheet containing a silicone resin, a thermally conductive filler, and carbon fibers, the carbon fibers are oriented in the thickness direction,
The thermally conductive filler is contained in the range of 40 to 55% by volume,
The heat conductive sheet in which the said carbon fiber is contained in 10-25 volume%.
上記炭素繊維は、13.3〜23.5体積%含有されている請求項1記載の熱伝導性シート。 The thermally conductive filler is contained in an amount of 40.4 to 45.8% by volume,
The heat conductive sheet according to claim 1, wherein the carbon fiber is contained in an amount of 13.3 to 23.5% by volume.
上記混合組成物を柱状に形成するとともに、上記炭素繊維を該柱状の長手方向に配向させる工程と、
上記柱状の混合組成物を、スライス方向に超音波振動が付与されたカッターによって該柱状の長手方向と直交する方向にスライスする工程とを有する熱伝導性シートの製造方法。 Creating a mixed composition comprising a silicone resin, a thermally conductive filler, and carbon fibers;
Forming the mixed composition into a columnar shape, and orienting the carbon fibers in the columnar longitudinal direction;
A method for producing a thermally conductive sheet, comprising: slicing the columnar mixed composition in a direction perpendicular to the columnar longitudinal direction with a cutter provided with ultrasonic vibration in a slicing direction.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010138334A JP5671266B2 (en) | 2010-06-17 | 2010-06-17 | Thermally conductive sheet |
EP11795844.7A EP2583993B1 (en) | 2010-06-17 | 2011-06-17 | Thermally conductive sheet and process for producing same |
TW100121190A TWI610407B (en) | 2010-06-17 | 2011-06-17 | Thermal conductive sheet and manufacturing method thereof |
US13/702,438 US8808607B2 (en) | 2010-06-17 | 2011-06-17 | Thermally conductive sheet and process for producing same |
CN201180029804.9A CN102971365B (en) | 2010-06-17 | 2011-06-17 | Thermally conductive sheet and process for producing same |
KR1020137001192A KR101715988B1 (en) | 2010-06-17 | 2011-06-17 | Thermally conductive sheet and process for producing same |
PCT/JP2011/063955 WO2011158942A1 (en) | 2010-06-17 | 2011-06-17 | Thermally conductive sheet and process for producing same |
HK13107065.0A HK1179999A1 (en) | 2010-06-17 | 2013-06-17 | Thermally conductive sheet and process for producing same |
US14/323,423 US9365001B2 (en) | 2010-06-17 | 2014-07-03 | Thermally conductive sheet and process for producing same |
US14/323,313 US9308695B2 (en) | 2010-06-17 | 2014-07-03 | Thermally conductive sheet and process for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010138334A JP5671266B2 (en) | 2010-06-17 | 2010-06-17 | Thermally conductive sheet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014224965A Division JP6034844B2 (en) | 2014-11-05 | 2014-11-05 | Manufacturing method of heat conductive sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012001638A true JP2012001638A (en) | 2012-01-05 |
JP5671266B2 JP5671266B2 (en) | 2015-02-18 |
Family
ID=45533987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010138334A Active JP5671266B2 (en) | 2010-06-17 | 2010-06-17 | Thermally conductive sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5671266B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015003953A (en) * | 2013-06-19 | 2015-01-08 | デクセリアルズ株式会社 | Heat conductive sheet and method for manufacturing heat conductive sheet |
WO2015002084A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
WO2015002085A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
JP2015015360A (en) * | 2013-07-04 | 2015-01-22 | デクセリアルズ株式会社 | Method for producing heat conductive sheet, device for producing heat conductive sheet and method for cutting heat conductive sheet |
US20160104657A1 (en) * | 2013-06-27 | 2016-04-14 | Dexerials Corporation | Thermally Conductive Sheet, Method for Producing Same, and Semiconductor Device |
WO2016104169A1 (en) * | 2014-12-25 | 2016-06-30 | デクセリアルズ株式会社 | Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device |
WO2017122817A1 (en) * | 2016-01-14 | 2017-07-20 | デクセリアルズ株式会社 | Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device |
WO2017130755A1 (en) * | 2016-01-26 | 2017-08-03 | デクセリアルズ株式会社 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
KR20180004831A (en) | 2015-08-07 | 2018-01-12 | 데쿠세리아루즈 가부시키가이샤 | Insulated coated carbon fiber, method of producing insulated coated carbon fiber, carbon fiber containing composition and thermally conductive sheet |
JP2018022923A (en) * | 2017-10-13 | 2018-02-08 | デクセリアルズ株式会社 | Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device |
KR20180016610A (en) | 2016-01-14 | 2018-02-14 | 데쿠세리아루즈 가부시키가이샤 | Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device |
WO2018079468A1 (en) * | 2016-10-28 | 2018-05-03 | デンカ株式会社 | Manufacturing method for continuous alumina fiber sheet, and continuous alumina fiber sheet |
JP2018089733A (en) * | 2016-12-01 | 2018-06-14 | 日本ゼオン株式会社 | Slicing method of laminate and manufacturing method of composite sheet |
KR20180067966A (en) * | 2016-12-13 | 2018-06-21 | 비엔비머티리얼 주식회사 | Silicone composite composition comprising natural graphite, alumina and aluminum nitride, and preparation method of thermal conductive grease comprising the same |
KR101902727B1 (en) * | 2018-01-02 | 2018-09-28 | 동의대학교 산학협력단 | Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same |
KR101923341B1 (en) * | 2018-03-09 | 2018-11-28 | 동의대학교 산학협력단 | Silicone composite composition comprising natural graphite and alumina, and preparation method of thermal conductive grease comprising the same |
JP2020138991A (en) * | 2019-02-26 | 2020-09-03 | 日本ゼオン株式会社 | Thermoconductive sheet and method for producing the same |
CN111971789A (en) * | 2018-03-28 | 2020-11-20 | 株式会社钟化 | Anisotropic graphite, anisotropic graphite composite, and method for producing same |
CN115505266A (en) * | 2021-06-23 | 2022-12-23 | 嘉兴超维新材料科技有限公司 | Silicone rubber gasket and preparation method and application thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6294951B2 (en) | 2016-01-26 | 2018-03-14 | デクセリアルズ株式会社 | HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE |
WO2017130740A1 (en) | 2016-01-26 | 2017-08-03 | デクセリアルズ株式会社 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
CN112154106A (en) | 2018-05-25 | 2020-12-29 | 迪睿合株式会社 | Electronic component supply body and electronic component supply reel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000191987A (en) * | 1998-12-28 | 2000-07-11 | Polymatech Co Ltd | Thermally conductive adhesive film and semiconductive device |
JP2000195998A (en) * | 1998-12-28 | 2000-07-14 | Polymatech Co Ltd | Heat conductive sheet, its manufacture, and semiconductor device |
JP2001139833A (en) * | 1999-11-16 | 2001-05-22 | Jsr Corp | Composition for highly thermal conductive sheet, highly thermal conductive sheet, preparation method of highly thermal conductive sheet and radiating structure using highly thermal conductive sheet |
JP2001160607A (en) * | 1999-12-02 | 2001-06-12 | Polymatech Co Ltd | Anisotropic heat conducting sheet |
JP2010056299A (en) * | 2008-08-28 | 2010-03-11 | Teijin Ltd | Method of producing thermally-conductive rubber sheet |
-
2010
- 2010-06-17 JP JP2010138334A patent/JP5671266B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000191987A (en) * | 1998-12-28 | 2000-07-11 | Polymatech Co Ltd | Thermally conductive adhesive film and semiconductive device |
JP2000195998A (en) * | 1998-12-28 | 2000-07-14 | Polymatech Co Ltd | Heat conductive sheet, its manufacture, and semiconductor device |
JP2001139833A (en) * | 1999-11-16 | 2001-05-22 | Jsr Corp | Composition for highly thermal conductive sheet, highly thermal conductive sheet, preparation method of highly thermal conductive sheet and radiating structure using highly thermal conductive sheet |
JP2001160607A (en) * | 1999-12-02 | 2001-06-12 | Polymatech Co Ltd | Anisotropic heat conducting sheet |
JP2010056299A (en) * | 2008-08-28 | 2010-03-11 | Teijin Ltd | Method of producing thermally-conductive rubber sheet |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10012453B2 (en) | 2013-06-19 | 2018-07-03 | Dexerials Corporation | Thermally conductive sheet and method for producing thermally conductive sheet |
JP2015003953A (en) * | 2013-06-19 | 2015-01-08 | デクセリアルズ株式会社 | Heat conductive sheet and method for manufacturing heat conductive sheet |
US9966324B2 (en) * | 2013-06-27 | 2018-05-08 | Dexerials Corporation | Thermally conductive sheet, method for producing same, and semiconductor device |
US20160104657A1 (en) * | 2013-06-27 | 2016-04-14 | Dexerials Corporation | Thermally Conductive Sheet, Method for Producing Same, and Semiconductor Device |
JP2015029075A (en) * | 2013-07-01 | 2015-02-12 | デクセリアルズ株式会社 | Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member |
JP2015029076A (en) * | 2013-07-01 | 2015-02-12 | デクセリアルズ株式会社 | Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member |
KR20160009693A (en) * | 2013-07-01 | 2016-01-26 | 데쿠세리아루즈 가부시키가이샤 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
KR20160011215A (en) * | 2013-07-01 | 2016-01-29 | 데쿠세리아루즈 가부시키가이샤 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
WO2015002085A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
KR101682328B1 (en) * | 2013-07-01 | 2016-12-05 | 데쿠세리아루즈 가부시키가이샤 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
KR101681861B1 (en) * | 2013-07-01 | 2016-12-12 | 데쿠세리아루즈 가부시키가이샤 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
US9536804B2 (en) | 2013-07-01 | 2017-01-03 | Dexerials Corporation | Method of manufacturing heat conductive sheet |
US9560791B2 (en) | 2013-07-01 | 2017-01-31 | Dexerials Corporation | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
EP3018708A4 (en) * | 2013-07-01 | 2017-04-12 | Dexerials Corporation | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
WO2015002084A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
JP2015015360A (en) * | 2013-07-04 | 2015-01-22 | デクセリアルズ株式会社 | Method for producing heat conductive sheet, device for producing heat conductive sheet and method for cutting heat conductive sheet |
WO2016104169A1 (en) * | 2014-12-25 | 2016-06-30 | デクセリアルズ株式会社 | Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device |
KR20180004831A (en) | 2015-08-07 | 2018-01-12 | 데쿠세리아루즈 가부시키가이샤 | Insulated coated carbon fiber, method of producing insulated coated carbon fiber, carbon fiber containing composition and thermally conductive sheet |
WO2017122817A1 (en) * | 2016-01-14 | 2017-07-20 | デクセリアルズ株式会社 | Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device |
US11296007B2 (en) | 2016-01-14 | 2022-04-05 | Dexerials Corporation | Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device |
KR20180016610A (en) | 2016-01-14 | 2018-02-14 | 데쿠세리아루즈 가부시키가이샤 | Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device |
WO2017130755A1 (en) * | 2016-01-26 | 2017-08-03 | デクセリアルズ株式会社 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
US10526519B2 (en) | 2016-01-26 | 2020-01-07 | Dexerials Corporation | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
KR20180050392A (en) * | 2016-01-26 | 2018-05-14 | 데쿠세리아루즈 가부시키가이샤 | HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THERMAL CONDUCTIVE SHEET |
KR102075893B1 (en) * | 2016-01-26 | 2020-02-11 | 데쿠세리아루즈 가부시키가이샤 | Thermally conductive sheet, manufacturing method of thermally conductive sheet, heat dissipation member and semiconductor device |
JP2017135211A (en) * | 2016-01-26 | 2017-08-03 | デクセリアルズ株式会社 | Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device |
WO2018079468A1 (en) * | 2016-10-28 | 2018-05-03 | デンカ株式会社 | Manufacturing method for continuous alumina fiber sheet, and continuous alumina fiber sheet |
JP2018089733A (en) * | 2016-12-01 | 2018-06-14 | 日本ゼオン株式会社 | Slicing method of laminate and manufacturing method of composite sheet |
KR101872199B1 (en) * | 2016-12-13 | 2018-06-28 | 비엔비머티리얼 주식회사 | Silicone composite composition comprising natural graphite, alumina and aluminum nitride, and preparation method of thermal conductive grease comprising the same |
KR20180067966A (en) * | 2016-12-13 | 2018-06-21 | 비엔비머티리얼 주식회사 | Silicone composite composition comprising natural graphite, alumina and aluminum nitride, and preparation method of thermal conductive grease comprising the same |
JP2018022923A (en) * | 2017-10-13 | 2018-02-08 | デクセリアルズ株式会社 | Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device |
KR101902727B1 (en) * | 2018-01-02 | 2018-09-28 | 동의대학교 산학협력단 | Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same |
KR101923341B1 (en) * | 2018-03-09 | 2018-11-28 | 동의대학교 산학협력단 | Silicone composite composition comprising natural graphite and alumina, and preparation method of thermal conductive grease comprising the same |
CN111971789A (en) * | 2018-03-28 | 2020-11-20 | 株式会社钟化 | Anisotropic graphite, anisotropic graphite composite, and method for producing same |
CN111971789B (en) * | 2018-03-28 | 2024-03-01 | 株式会社钟化 | Anisotropic graphite, anisotropic graphite composite, and method for producing same |
JP2020138991A (en) * | 2019-02-26 | 2020-09-03 | 日本ゼオン株式会社 | Thermoconductive sheet and method for producing the same |
JP7363051B2 (en) | 2019-02-26 | 2023-10-18 | 日本ゼオン株式会社 | Thermal conductive sheet and its manufacturing method |
CN115505266A (en) * | 2021-06-23 | 2022-12-23 | 嘉兴超维新材料科技有限公司 | Silicone rubber gasket and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5671266B2 (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5671266B2 (en) | Thermally conductive sheet | |
KR101715988B1 (en) | Thermally conductive sheet and process for producing same | |
US9437521B2 (en) | Thermally conductive sheet | |
JP6219624B2 (en) | Manufacturing method of thermal conductive sheet, manufacturing apparatus of thermal conductive sheet, cutting method of resin molded body | |
JP6178389B2 (en) | Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device | |
CN114555714B (en) | Heat conductive sheet and method for manufacturing the same | |
JPH11302545A (en) | Silicone rubber composite | |
JP7096723B2 (en) | Method for manufacturing a heat conductive sheet | |
TW201505841A (en) | Thermally conductive sheet and process for manufacturing thermally conductive sheet | |
KR102614679B1 (en) | thermal conductive sheet | |
JP2021080472A (en) | Thermally conductive composition, thermally conductive member, manufacturing method of thermally conductive member, heat dissipation structure, exothermic composite member, heat dissipation composite member | |
JP6034844B2 (en) | Manufacturing method of heat conductive sheet | |
WO2020149335A1 (en) | Heat-conductive sheet | |
CN112602189A (en) | Method for manufacturing semiconductor device, thermally conductive sheet, and method for manufacturing thermally conductive sheet | |
JP2013131564A (en) | Heat conductive sheet, semiconductor device using the heat conductive sheet, and method of manufacturing semiconductor device | |
JP2013131562A (en) | Heat conductive sheet manufacturing method | |
JPWO2019244890A1 (en) | Thermal conductive sheet | |
EP0937744A1 (en) | Silicone rubber composite | |
JP7076871B1 (en) | Thermal conductivity sheet | |
WO2022181171A1 (en) | Heat-conductive sheet and heat-conductive sheet production method | |
JP2022129325A (en) | Thermally conductive sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5671266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |