Nothing Special   »   [go: up one dir, main page]

JP2000195998A - Heat conductive sheet, its manufacture, and semiconductor device - Google Patents

Heat conductive sheet, its manufacture, and semiconductor device

Info

Publication number
JP2000195998A
JP2000195998A JP10371810A JP37181098A JP2000195998A JP 2000195998 A JP2000195998 A JP 2000195998A JP 10371810 A JP10371810 A JP 10371810A JP 37181098 A JP37181098 A JP 37181098A JP 2000195998 A JP2000195998 A JP 2000195998A
Authority
JP
Japan
Prior art keywords
pitch
heat
based carbon
conductive sheet
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10371810A
Other languages
Japanese (ja)
Inventor
Masayuki Hida
雅之 飛田
Kikuo Fujiwara
紀久夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
NE Chemcat Corp
Original Assignee
Polymatech Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd, NE Chemcat Corp filed Critical Polymatech Co Ltd
Priority to JP10371810A priority Critical patent/JP2000195998A/en
Publication of JP2000195998A publication Critical patent/JP2000195998A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Landscapes

  • Powder Metallurgy (AREA)
  • Inorganic Fibers (AREA)
  • Hard Magnetic Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat radiating characteristic of a semiconductor device by interposing between a semiconductor element and a heat conducting member a silicon-rubber based heat conducting sheet, wherein pitch-based carbon fibers coated with ferromagnetic films are oriented in a fixed direction. SOLUTION: As heat conductive members, there are ordinary radiators, coolers, heat sinks, heat spreaders, die pads, printed boards, cooling fans, heat pipes, and housings, etc. As pitch-based carbon fibers coated with ferromagnetic materials, the pitch-based carbon fibers made into graphites and having an average diameter of 10 μm, average length of 100 μm, and the thermal conductivity of 400 W/mK in their fibered direction are coated by an electroless plating with nickel films, having a film thickness of 0.2 μm to form the same. The 15 vol.% pitch-based carbon fibers coated with the nickel films and a 85 vol.% addition-type liquid-silicon rubber raw material are mixed distributedly with each other to obtain a vacuum degassed composition. Therefore, between a plurality of different height bearing semiconductor elements 6 mounted on a printed board 1 and a housing 10 of a heat conductive member, a heat conductive sheet 3 is interposed to be assembled in a semiconductor device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高い熱伝導性が要求
される熱伝導性シートおよびその製造方法ならびに半導
体装置に関する。さらに詳しくは、電気製品に使用され
る半導体素子や電源、光源などの部品から発生する熱を
効果的に放散させる熱伝導性シートおよびその製造方法
ならびに放熱性に優れる半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive sheet requiring high heat conductivity, a method for manufacturing the same, and a semiconductor device. More specifically, the present invention relates to a heat conductive sheet that effectively dissipates heat generated from components such as a semiconductor element, a power supply, and a light source used in an electric product, a method for manufacturing the same, and a semiconductor device having excellent heat dissipation.

【0002】[0002]

【従来の技術】従来より、発熱する半導体素子や電子部
品と放熱させる伝熱部材との伝熱を目的にシリコーンゴ
ム等の柔軟な熱伝導性シートが使用されている。これら
の熱伝導性シートには、熱伝導性を高めるために、銀、
銅、金、アルミニウム、ニッケルなどの熱伝導率の大き
い金属や合金、化合物、あるいは酸化アルミニウム、酸
化マグネシウム、酸化ケイ素、窒化ホウ素、窒化アルミ
ニウム、窒化ケイ素、炭化ケイ素などのセラミックス製
の粉末状の充填剤、カーボンブラックやダイヤモンドな
どの粉粒体形状や繊維形状の熱伝導性充填剤が配合され
ている。
2. Description of the Related Art Heretofore, a flexible heat conductive sheet such as silicone rubber has been used for the purpose of transferring heat between a semiconductor element or an electronic component that generates heat and a heat transfer member that dissipates heat. These heat conductive sheets include silver,
Metals, alloys, and compounds with high thermal conductivity such as copper, gold, aluminum, and nickel, or powdered ceramics such as aluminum oxide, magnesium oxide, silicon oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide And a thermally conductive filler in the form of powder or granules such as carbon black and diamond.

【0003】熱伝導性充填材として炭素繊維をシリコー
ンゴムなどに配合する熱伝導性シートは公知である。ま
た、特開平9−283955号公報によれば、平均アス
ペクト比が3未満の黒鉛質炭素繊維をシリコーンゴムな
どのマトリックス中に分散した放熱シートが提案されて
いる。この発明では、通常の炭素繊維は異方性があるの
で炭素繊維のアスペクト比を小さく特定することによっ
てその繊維方向をランダム方向に分散させ、厚み方向と
面方向で熱伝導率の異方性が生じる欠点を解消してい
る。しかしながら、この方法によって異方性は少なくな
るけれども、厚み方向の熱伝導性が不足していた。ま
た、原料として用いるアスペクト比が3未満の黒鉛質炭
素繊維を安価で製造することは必ずしも容易ではなかっ
た。
[0003] A heat conductive sheet in which carbon fiber is mixed with silicone rubber or the like as a heat conductive filler is known. Further, according to Japanese Patent Application Laid-Open No. 9-283955, a heat radiation sheet is proposed in which graphitic carbon fibers having an average aspect ratio of less than 3 are dispersed in a matrix such as silicone rubber. In the present invention, since ordinary carbon fibers have anisotropy, the fiber direction is dispersed in a random direction by specifying the aspect ratio of the carbon fibers to be small, and the anisotropy of the thermal conductivity in the thickness direction and the plane direction is reduced. The resulting disadvantages have been eliminated. However, although the anisotropy is reduced by this method, the thermal conductivity in the thickness direction is insufficient. Also, it has not always been easy to produce inexpensively graphitic carbon fibers having an aspect ratio of less than 3 used as a raw material.

【0004】一方、磁性体粒子と高分子材料からなる高
分子複合材料を磁場雰囲気で加熱成形する製造方法およ
びシート状成形品は公知である。たとえば、特開昭49
−51593号公報には、導電性磁性体粉末と絶縁材料
の混合物を流動状態で外部磁場を加えながら硬化させる
基本的製法が開示されている。特開昭53−53796
号公報によれば、磁性線状体をシートの厚み方向に磁場
配向させる製法で異方導電性シートを得ている。特公平
4−74804号公報は、特定粒径の導電性磁性体粒子
と絶縁性高分子弾性体を主成分とする未硬化複合体を磁
場処理して架橋させた特定硬度、特定厚さの異方性導電
性ゴムシートである。
[0004] On the other hand, a production method and a sheet-like molded product in which a polymer composite material composed of magnetic particles and a polymer material is heated in a magnetic field atmosphere are known. For example, JP
Japanese Patent Application Laid-Open No. 51593/1993 discloses a basic production method of curing a mixture of a conductive magnetic powder and an insulating material while applying an external magnetic field in a fluid state. JP-A-53-53796
According to the publication, an anisotropic conductive sheet is obtained by a manufacturing method in which a magnetic linear body is magnetically oriented in the thickness direction of the sheet. Japanese Patent Publication No. 74804/1992 discloses a method in which an uncured composite mainly composed of conductive magnetic particles having a specific particle diameter and an insulating polymer elastic material is subjected to a magnetic field treatment to crosslink the specific hardness and the specific thickness. It is an isotropic conductive rubber sheet.

【0005】[0005]

【発明が解決しようとする課題】しかし、これら従来の
磁場を応用した製造方法によって得られる成形体は、い
ずれも熱伝導率の向上を目的としたものではなく、用途
においても異方性導電性部品あるいは感圧導電性部品が
主体であった。すなわち、特に厚み方向に良好な熱伝導
特性を有する熱伝導性シートが開発されないために、半
導体素子などの電子部品からの多大な発熱によって、電
気化学的なマイグレーションが加速されたり、配線やパ
ッド部の腐食が促進されたり、発生する熱応力によって
構成材料にクラックが生じたり、破壊したり、構成材料
の接合部の界面が剥離して電子部品の信頼性や寿命を損
なう様々なトラブルが発生していた。
However, none of the molded articles obtained by these conventional manufacturing methods using a magnetic field is intended to improve the thermal conductivity, and the molded articles obtained by using the anisotropic conductive Parts or pressure-sensitive conductive parts were the main components. In other words, since a heat conductive sheet having good heat conductive properties particularly in the thickness direction has not been developed, a large amount of heat generated from an electronic component such as a semiconductor element accelerates electrochemical migration or causes a problem in wiring or a pad portion. Corrosion, accelerated thermal stress, cracks or breaks the component material, and the interface at the joint of the component material peels off, causing various troubles that impair the reliability and life of the electronic components. I was

【0006】[0006]

【課題を解決するための手段】本発明は、上述の課題を
解決する目的で、電気製品に使用される半導体素子や電
源、光源などの部品から発生する熱を効果的に放散させ
る熱伝導性シートおよびその製造方法ならびに放熱特性
に優れる半導体装置を提供するものである。すなわち、
本発明は、強磁性体を被覆したピッチ系炭素繊維をシリ
コーンゴム中に一定方向に配向してなることを特徴とす
る熱伝導性シートである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heat conductive material for effectively dissipating heat generated from components such as a semiconductor element, a power supply, and a light source used in electric appliances. An object of the present invention is to provide a sheet, a manufacturing method thereof, and a semiconductor device having excellent heat radiation characteristics. That is,
The present invention is a heat conductive sheet characterized in that a pitch-based carbon fiber coated with a ferromagnetic material is oriented in a certain direction in silicone rubber.

【0007】さらに、強磁性体を被覆したピッチ系炭素
繊維と液状シリコーンゴムからなる組成物に磁場を与
え、組成物中の強磁性体を被覆したピッチ系炭素繊維を
一定方向に配向させて硬化させることを特徴とする熱伝
導性シートの製造方法である。
Further, a magnetic field is applied to a composition comprising the pitch-based carbon fiber coated with the ferromagnetic material and the liquid silicone rubber, and the ferromagnetic-coated pitch-based carbon fiber in the composition is oriented in a certain direction and cured. A method for producing a thermally conductive sheet.

【0008】さらにもうひとつの発明は、半導体素子と
伝熱部材間に、強磁性体を被覆したピッチ系炭素繊維を
一定方向に配向したシリコーンゴム系の熱伝導性シート
を介在させた放熱性が優れることを特徴とする半導体装
置である。
Still another aspect of the present invention is a heat-dissipating property in which a silicon rubber-based heat conductive sheet in which a pitch-based carbon fiber coated with a ferromagnetic material is oriented in a certain direction is interposed between a semiconductor element and a heat transfer member. A semiconductor device characterized by being excellent.

【0009】本発明で使用する強磁性体を被覆したピッ
チ系炭素繊維は、ピッチ系炭素繊維に強磁性体を無電解
メッキ法、電解メッキ法、真空蒸着やスパッタリングな
どによる物理的蒸着法、化学的蒸着法、塗装、浸漬、微
細粒子を機械的にピッチ系炭素繊維表面に固着させるメ
カノケミカル法などの方法によって調製することができ
る。
The pitch-based carbon fiber coated with a ferromagnetic material used in the present invention is obtained by subjecting the ferromagnetic material to the pitch-based carbon fiber by an electroless plating method, an electrolytic plating method, a physical vapor deposition method such as vacuum vapor deposition or sputtering, or a chemical vapor deposition method. It can be prepared by a method such as a mechanical vapor deposition method, painting, dipping, or a mechanochemical method of mechanically fixing fine particles to the pitch-based carbon fiber surface.

【0010】強磁性体としては、ニッケル系およびニッ
ケル系合金、鉄系合金、窒化鉄系、フェライト系、バリ
ウムフェライト系、コバルト系合金、マンガン系合金、
ネオジウム/鉄/ホウ素系やサマリウム/コバルト系な
どの希土類系合金が用いられる。なかでもニッケル系、
鉄系、フェライト系、クロム系、コバルト系、マンガン
系あるいは希土類系より選ばれる少なくとも1種の金
属、合金、化合物よりなる強磁性体が好ましい。
[0010] Ferromagnetic materials include nickel-based and nickel-based alloys, iron-based alloys, iron nitride-based, ferrite-based, barium ferrite-based, cobalt-based alloys, manganese-based alloys, and the like.
Rare earth alloys such as neodymium / iron / boron and samarium / cobalt are used. Among them, nickel-based,
A ferromagnetic material composed of at least one metal, alloy or compound selected from iron, ferrite, chromium, cobalt, manganese and rare earths is preferred.

【0011】被覆する強磁性体の膜厚については限定す
るものではないけれども、0.01μm〜5μmの範囲
が好ましい。0.01μmよりも薄いと外部磁場の磁力
で強磁性体を被覆したピッチ系炭素繊維を配向させる場
合に磁性が不十分で繊維が配向しにくい。5μmを越え
ると磁力で配向しやすくなるけれども、熱伝導性シート
として熱伝導率が低下してしまうので好ましくない。さ
らに好ましい強磁性体の膜厚は、0.05μm〜2μm
の範囲である。
The thickness of the ferromagnetic material to be coated is not limited, but is preferably in the range of 0.01 μm to 5 μm. When the thickness is less than 0.01 μm, when the pitch-based carbon fiber coated with the ferromagnetic material is oriented by the magnetic force of the external magnetic field, the magnetic property is insufficient and the fiber is hardly oriented. If it exceeds 5 μm, although it is easy to orient by magnetic force, it is not preferable because the thermal conductivity of the heat conductive sheet decreases. A more preferable thickness of the ferromagnetic material is 0.05 μm to 2 μm.
Range.

【0012】また、ピッチ系炭素繊維に強磁性体を被覆
する前工程として、あるいは強磁性体を被覆した後の繊
維表面に、銀、銅、金、酸化アルミニウム、酸化マグネ
シウム、窒化アルミニウム、炭化ケイ素などの熱伝導率
が大きい公知の金属、合金、セラミックスなどを被覆し
て熱伝導性を向上することもできる。被覆する強磁性体
がニッケルなどの電気伝導性の場合には、酸化アルミニ
ウム、酸化マグネシウム、窒化アルミニウムあるいは炭
化ケイ素などの電気絶縁性のセラミックスや絶縁性高分
子を最表面に被覆することによって、本発明の熱伝導性
シートを電気絶縁性にすることが可能である。
In addition, as a pre-process for coating the pitch-based carbon fiber with a ferromagnetic material, or on the fiber surface after the ferromagnetic material is coated, silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, It is also possible to improve thermal conductivity by coating a known metal, alloy, ceramics or the like having a large thermal conductivity such as. If the ferromagnetic material to be coated is electrically conductive, such as nickel, the outermost surface is coated with an electrically insulating ceramic or insulating polymer such as aluminum oxide, magnesium oxide, aluminum nitride, or silicon carbide to form It is possible to make the thermally conductive sheet of the invention electrically insulating.

【0013】ピッチ炭素繊維の種類や大きさ、形状につ
いては特定するものではない。原料についてはピッチ系
やメソフェーズピッチ系を主原料として溶融紡糸、不融
化、炭化などの処理工程後に2000〜3000℃ある
いは3000℃を越える高温で熱処理したグラファイト
構造の発達したピッチ系炭素繊維の方が繊維長さ方向の
熱伝導率が大きくて好ましい。さらに気相成長法によっ
て得られるピッチ系炭素繊維も使用できる。このピッチ
系炭素繊維の繊維長さ方向の熱伝導率は200W/mK
以上が好適で、好ましくは400W/mK以上、さらに
好ましくは1000W/mK以上である。
The type, size and shape of the pitch carbon fiber are not specified. As for the raw material, pitch-based carbon fiber with a developed graphite structure which is heat-treated at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after a process such as melt spinning, infusibilization, and carbonization using a pitch system or a mesophase pitch system as a main material is preferred. It is preferable because the thermal conductivity in the fiber length direction is large. Further, pitch-based carbon fibers obtained by a vapor growth method can also be used. The thermal conductivity in the fiber length direction of this pitch-based carbon fiber is 200 W / mK.
The above is suitable, preferably 400 W / mK or more, more preferably 1000 W / mK or more.

【0014】ピッチ系炭素繊維の平均直径としては5〜
20μm、平均長さは20〜800μmの範囲がシリコ
ーンゴムへ容易に充填でき、得られる熱伝導性シートの
熱伝導率が大きくなるので好ましい。平均直径が5μm
よりも小さい場合や、平均長さが800μmよりも長い
場合は、シリコーンゴムに高濃度で配合することが困難
になる。また、平均直径が20μmを越えるピッチ系炭
素繊維は、その生産性が低下するので好ましくない。平
均長さが20μmよりも短いとかさ比重が小さくなり、
製造工程中の取扱い性や作業性に問題が生じることがあ
り好ましくない。なお、これらのピッチ系炭素繊維表面
は、あらかじめ電解酸化などによる公知の酸化処理を施
して差し支えない。強磁性体を被覆したピッチ系炭素繊
維を充填するマトリックスとなるシリコーンゴムとして
は、公知のオルガノポリシロキサンを硬化することによ
って得られる。
The average diameter of the pitch-based carbon fiber is 5 to 5.
A range of 20 μm and an average length of 20 to 800 μm is preferable because silicone rubber can be easily filled and the heat conductivity of the obtained heat conductive sheet increases. Average diameter is 5μm
If it is smaller than the above, or if the average length is longer than 800 μm, it becomes difficult to mix the silicone rubber with the silicone rubber at a high concentration. Further, pitch-based carbon fibers having an average diameter of more than 20 μm are not preferred because their productivity is reduced. When the average length is shorter than 20 μm, the bulk specific gravity decreases,
It is not preferable because problems may arise in handling and workability during the manufacturing process. The surface of these pitch-based carbon fibers may be subjected to a known oxidation treatment such as electrolytic oxidation in advance. The silicone rubber serving as a matrix for filling pitch-based carbon fibers coated with a ferromagnetic material can be obtained by curing a known organopolysiloxane.

【0015】硬化方法については限定するものではな
く、ビニル基を含むオルガノポリシロキサンとケイ素原
子にハイドロジェン基を含むオルガノポリシロキサンと
白金系触媒からなる付加反応タイプ、有機過酸化物によ
るラジカル反応タイプ、縮合反応タイプ、紫外線や電子
線による硬化タイプなどが挙げられる。なかでも、強磁
性体を被覆したピッチ系炭素繊維を充填しやすい液状の
付加反応タイプのオルガノポリシロキサンを用いること
が好ましい。また、公知の補強用のシリカや難燃剤、着
色剤、耐熱性向上剤、接着助剤、粘着剤、オイル、可塑
剤などを適宜配合することができる。
The curing method is not limited, and an addition reaction type comprising an organopolysiloxane containing a vinyl group, an organopolysiloxane containing a hydrogen group at a silicon atom and a platinum catalyst, a radical reaction type using an organic peroxide, and the like. , A condensation reaction type, and a curing type using an ultraviolet ray or an electron beam. Among them, it is preferable to use a liquid addition reaction type organopolysiloxane which is easy to fill the pitch-based carbon fiber coated with the ferromagnetic material. In addition, well-known reinforcing silica, a flame retardant, a colorant, a heat resistance improver, an adhesion aid, a pressure-sensitive adhesive, an oil, a plasticizer, and the like can be appropriately compounded.

【0016】繊維の表面処理を目的として、強磁性体を
被覆したピッチ系炭素繊維の表面を公知のカップリング
剤やサイジング剤で処理することによってシリコーンゴ
ムとの濡れ性や充填性を向上させたり界面の剥離強度を
改良することが可能である。
For the purpose of surface treatment of the fiber, the surface of the pitch-based carbon fiber coated with the ferromagnetic material is treated with a known coupling agent or sizing agent to improve the wettability with silicone rubber or the filling property. It is possible to improve the peel strength at the interface.

【0017】さらに、本発明の熱伝導性シートの原料組
成物には、粉末形状や繊維形状の金属やセラミックス、
具体的には、銀、銅、金、酸化アルミニウム、酸化マグ
ネシウム、窒化アルミニウム、炭化ケイ素などや金属被
覆樹脂などの従来の熱伝導性シートに使用されている充
填剤や、強磁性体を被覆していない通常のPAN系ある
いはピッチ系の炭素繊維などを併用することも可能であ
る。また、組成物の粘度を低下させるためには、揮発性
の有機溶剤や反応性可塑剤を添加すると効果的である。
Further, the raw material composition of the heat conductive sheet of the present invention includes powdered or fibrous metals or ceramics,
Specifically, the fillers used in conventional heat conductive sheets, such as silver, copper, gold, aluminum oxide, magnesium oxide, aluminum nitride, silicon carbide, and metal-coated resins, and ferromagnetic materials are coated. It is also possible to use ordinary PAN-based or pitch-based carbon fibers which are not used. In order to reduce the viscosity of the composition, it is effective to add a volatile organic solvent or a reactive plasticizer.

【0018】硬化させた熱伝導性シートの硬度について
は、使用する用途に応じて決定すれば良いけれども、使
用時の応力緩和性と追随性に関しては柔軟な低硬度ほど
有利である。具体的な硬度としては、ショァーA硬度で
90以下、好ましくは60以下の低硬度品が好適であ
る。さらに
The hardness of the cured heat conductive sheet may be determined according to the intended use, but the softer the lower the hardness, the better the stress relaxation property and the followability during use. As a specific hardness, a low hardness product having a Shore A hardness of 90 or less, preferably 60 or less is suitable. further

【図4】のような凹凸のある複数の半導体素子などの電
子部品と伝熱部材間に介在させて使用する際には、アス
カーC硬度が30以下のゲル状の低硬度品が望ましい。
FIG. 4 shows a gel-like low-hardness product having an Asker C hardness of 30 or less when used between electronic components such as a plurality of semiconductor elements having irregularities and a heat transfer member.

【0019】本発明の熱伝導性シートの製造方法は、強
磁性体を被覆したピッチ系炭素繊維と液状シリコーンゴ
ムからなる組成物に磁場を与え、組成物中の強磁性体を
被覆したピッチ系炭素繊維を一定方向に配向させること
を特徴とする。外部から磁場を与え、組成物中の強磁性
体を被覆したピッチ系炭素繊維を磁力線に沿って配向さ
せることによって、配向した繊維の長さ方向の熱伝導性
を生かして成形した熱伝導性シートの同方向の熱伝導率
を向上させることができる。
The method for producing a thermally conductive sheet according to the present invention is characterized in that a magnetic field is applied to a composition comprising a pitch-based carbon fiber coated with a ferromagnetic material and a liquid silicone rubber, and a pitch-based material coated with a ferromagnetic material in the composition. The carbon fibers are oriented in a certain direction. A thermally conductive sheet formed by applying a magnetic field from the outside and orienting the pitch-based carbon fibers coated with the ferromagnetic material in the composition along the lines of magnetic force, taking advantage of the thermal conductivity in the length direction of the oriented fibers. In the same direction can be improved.

【0020】熱伝導性シートの厚み方向に繊維を立てる
ように揃えて配向させるには、厚み方向に永久磁石や電
磁石のN極とS極を対向させ磁力線の向きが所望の繊維
の配向方向に対応するように設置する。
In order to align and orient the fibers in the thickness direction of the heat conductive sheet so that the N and S poles of the permanent magnet or the electromagnet face each other in the thickness direction, the direction of the line of magnetic force is oriented in the desired fiber orientation direction. Set up accordingly.

【0021】一方、熱伝導性シートの面内の縦方向と横
方向あるいは縦横の水平方向に一定方向の熱伝導性を向
上させる場合には、厚み方向に対して垂直の方向に磁石
のN極とS極を対向させれば繊維を面内の方向に揃えて
配向させることができる。あるいは、磁石のN極とN
極、またはS極とS極を厚み方向に対向させても繊維を
面内方向に揃えることができる。すなわち、任意の方向
に熱伝導性の異方性を付与させることが可能になる。ま
た、磁石については必ずしも両側に対向させる必要はな
く、片側のみに配置した磁石によっても原料組成物中の
強磁性体を被覆したピッチ系炭素繊維を配向させること
が可能である。外部磁場として使用する磁場発生手段と
しては永久磁石でも電磁石でも差し支えないけれども、
磁束密度としては200ガウス〜20000ガウスの範
囲が実用的で良好な配向が達成できる。
On the other hand, in order to improve the thermal conductivity in a certain direction in the longitudinal direction and the horizontal direction in the plane of the thermal conductive sheet or in the horizontal direction, the north pole of the magnet is perpendicular to the thickness direction. If the S poles are opposed to each other, the fibers can be aligned in the in-plane direction. Alternatively, the N pole of the magnet and the N
Even when the poles or the S poles and the S poles face each other in the thickness direction, the fibers can be aligned in the in-plane direction. That is, anisotropy of thermal conductivity can be imparted in any direction. Further, the magnets do not necessarily need to be opposed to both sides, and the pitch-based carbon fibers coated with the ferromagnetic material in the raw material composition can be oriented by the magnets arranged on only one side. Although a permanent magnet or an electromagnet may be used as a magnetic field generating means used as an external magnetic field,
As the magnetic flux density, a range of 200 Gauss to 20000 Gauss is practical and good orientation can be achieved.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0023】本発明の熱伝導性シートは、シリコーンゴ
ム中に所定量の強磁性体を被覆したピッチ系炭素繊維を
分散し一定方向に配向させることによって製造すること
ができる。混合分散するときには、減圧あるいは加圧し
て混入した気泡を除去する工程を加えることが好まし
い。
The heat conductive sheet of the present invention can be manufactured by dispersing pitch-based carbon fibers coated with a predetermined amount of ferromagnetic material in silicone rubber and orienting them in a certain direction. When mixing and dispersing, it is preferable to add a step of removing air bubbles by reducing or applying pressure.

【0024】強磁性体を被覆したピッチ系炭素繊維は、
シリコーンゴムに多量に充填して一定方向に配向させる
と熱伝導性シートのその繊維方向の熱伝導率が大きくな
る。けれども、実際には多量に充填すると組成物の粘度
が高くなりすぎたり混入した気泡が除去しにくいなどの
不具合を生じる場合がある。組成物の粘度が増加するに
ともなって繊維が配向しにくくなる。
The pitch-based carbon fiber coated with the ferromagnetic material is
When a large amount of silicone rubber is filled and oriented in a certain direction, the thermal conductivity of the thermally conductive sheet in the fiber direction increases. However, in practice, when the composition is filled in a large amount, there may be caused a problem that the viscosity of the composition becomes too high or the mixed air bubbles are difficult to remove. As the viscosity of the composition increases, the fibers are less likely to be oriented.

【0025】従って、使用する強磁性体を被覆したピッ
チ系炭素繊維およびシリコーンゴムや配合剤の種類、目
的とする最終製品の特性によって任意に決定することが
できるけれども、熱伝導性シート中の強磁性体を被覆し
たピッチ系炭素繊維の充填率は、5〜90体積%、さら
に好ましくは10〜60体積%の範囲が実用的である。
Accordingly, although it can be arbitrarily determined according to the type of the pitch-based carbon fiber and the silicone rubber coated with the ferromagnetic material to be used, the type of the compounding agent, and the characteristics of the intended final product, the strength of the heat conductive sheet is not limited. It is practical that the filling rate of the pitch-based carbon fiber coated with the magnetic material is in the range of 5 to 90% by volume, more preferably 10 to 60% by volume.

【0026】電気絶縁性が要求される用途の場合には、
先に述べたように強磁性体を被覆したピッチ系炭素繊維
の最表面にさらに電気絶縁性被覆層を製膜した繊維を使
用すれば良い。あるいは、熱伝導性シートの少なくとも
片面にポリイミドやシリコーン、ポリベンゾシクロブテ
ン、ポリブタジエンなどの高分子系の電気絶縁性層、あ
るいは酸化ケイ素や窒化ケイ素、酸化アルミニウム、窒
化アルミニウム、炭化ケイ素などのセラミックス系の電
気絶縁性層を積層させた構造にしても電気絶縁性を要求
される用途に適用できる。その際に形成する高分子系の
電気絶縁層については、酸化アルミニウム、酸化マグネ
シウム、窒化アルミニウム、炭化ケイ素などの熱伝導率
が大きい充填剤を含有させた高熱伝導率の電気絶縁層が
好ましい。
For applications requiring electrical insulation,
As described above, a fiber in which an electrically insulating coating layer is further formed on the outermost surface of the pitch-based carbon fiber coated with the ferromagnetic material may be used. Alternatively, at least one surface of the heat conductive sheet is a polymer-based electrically insulating layer such as polyimide, silicone, polybenzocyclobutene, or polybutadiene, or a ceramic-based material such as silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, or silicon carbide. Even when a structure in which the electrically insulating layers are laminated is applicable to applications requiring electrical insulation. As the polymer-based electrical insulating layer formed at that time, a high thermal conductivity electrical insulating layer containing a filler having high thermal conductivity such as aluminum oxide, magnesium oxide, aluminum nitride, or silicon carbide is preferable.

【0027】発熱する半導体素子2,6と伝熱部材4、
プリント基板1、ヒートシンク5、筐体7等の間に、本
発明の熱伝導性シート3を介在させて図1〜図4に例示
する本発明の放熱性に優れる半導体装置を製造すること
ができる。伝熱部材としては、通常の放熱器や冷却器、
ヒートシンク、ヒートスプレッダー、ダイパッド、プリ
ント基板、冷却ファン、ヒートパイプ、筐体などが挙げ
られる。
The heat generating semiconductor elements 2 and 6 and the heat transfer member 4
With the heat conductive sheet 3 of the present invention interposed between the printed board 1, the heat sink 5, the housing 7, and the like, the semiconductor device of the present invention having excellent heat dissipation as illustrated in FIGS. 1 to 4 can be manufactured. . As a heat transfer member, a normal radiator or cooler,
Examples include a heat sink, a heat spreader, a die pad, a printed circuit board, a cooling fan, a heat pipe, and a housing.

【0028】強磁性体を被覆したピッチ系炭素繊維とし
て、平均直径10μm、平均長さ100μm、繊維方向
の熱伝導率が400W/mKの黒鉛化したピッチ系炭素
繊維Dに、無電解メッキ法によってニッケルを膜厚0.
2μm被覆し、強磁性体を被覆したピッチ系炭素繊維A
を調製した。同様に、表1(図10)に記したピッチ系
炭素繊維に強磁性体としてニッケルあるいはコバルトを
無電解メッキ法で被覆して炭素繊維B、Cを調製した。
As pitch-based carbon fiber coated with a ferromagnetic material, graphitized pitch-based carbon fiber D having an average diameter of 10 μm, an average length of 100 μm, and a thermal conductivity in the fiber direction of 400 W / mK is electrolessly plated. Nickel with a film thickness of 0.
Pitch-based carbon fiber A coated with 2 μm and coated with a ferromagnetic material
Was prepared. Similarly, carbon fibers B and C were prepared by coating the pitch-based carbon fibers shown in Table 1 (FIG. 10) with nickel or cobalt as a ferromagnetic material by an electroless plating method.

【0029】[0029]

【実施例1】強磁性体としてニッケルを被覆したピッチ
系炭素繊維Aを15体積%と、付加型の液状シリコーゴ
ム原料85体積%を混合分散し真空脱泡した組成物aを
調製した。アルミニウム製の厚み0.5mm、縦20m
m、横20mmの板状の金型8内に調製した組成物aを
充填し図5-1〜図5-2、図5-3に示すように厚み方
向に磁束密度6000ガウスの磁石9のN極とS極が対
向する磁場雰囲気で加熱硬化させた。硬化物の厚み方向
および面方向の熱伝導率はそれぞれ2.8W/mK、
0.7W/mKであった。
Example 1 A composition a was prepared by mixing and dispersing 15% by volume of a pitch-based carbon fiber A coated with nickel as a ferromagnetic material and 85% by volume of an additional type liquid silicone rubber raw material and degassing in vacuo. Aluminum 0.5mm thick, 20m long
m, the prepared composition a is filled in a plate-shaped mold 8 having a width of 20 mm, and a magnet 9 having a magnetic flux density of 6000 gauss in the thickness direction as shown in FIGS. 5-1 to 5-2 and FIG. 5-3. Heat curing was performed in a magnetic field atmosphere in which the N pole and the S pole faced each other. The thermal conductivity in the thickness direction and the plane direction of the cured product is 2.8 W / mK, respectively.
0.7 W / mK.

【0030】[0030]

【実施例2】実施例1と同様の組成物aを調製し、アル
ミニウム製の厚み0.5mm、縦20mm、横20mm
の板状の金型8内に充填し図6-1〜図6-2、図6-3
に示すように厚みに対して垂直方向に磁石9のN極とS
極が対向する磁束密度6000の磁場雰囲気で加熱硬化
させた。硬化物の厚み方向および面方向の熱伝導率はそ
れぞれ0.8W/mK、2.9W/mKであった。
Example 2 The same composition a as in Example 1 was prepared, and was made of aluminum having a thickness of 0.5 mm, a length of 20 mm and a width of 20 mm.
6-1 to 6-2, and FIG. 6-3.
As shown in the figure, the N pole and S
It was cured by heating in a magnetic field atmosphere having a magnetic flux density of 6000 with the poles facing each other. The thermal conductivity of the cured product in the thickness direction and the plane direction was 0.8 W / mK and 2.9 W / mK, respectively.

【0031】[0031]

【実施例3〜8】実施例1あるいは実施例2と同様に、
表2(図10)に記す配合組成の強磁性体を被覆したピ
ッチ系炭素繊維B,Cおよび付加型の液状シリコーゴム
原料からなる各組成物を調製し、アルミニウム製の厚み
0.5mm、縦20mm、横20mmの板状の金型内に
充填し、厚み方向あるいはその垂直方向に磁石のN極と
S極が対向する表2の磁場で繊維を配向させて加熱硬化
させた。硬化物の厚み方向および面方向の熱伝導率を表
2(図10)に記した。
Embodiments 3 to 8 Similarly to Embodiments 1 and 2,
Each composition comprising pitch-based carbon fibers B and C coated with a ferromagnetic material having the composition shown in Table 2 (FIG. 10) and an additional liquid silicone rubber raw material was prepared, and was made of aluminum having a thickness of 0.5 mm and a length of 20 mm. A 20 mm wide plate-shaped mold was filled, and the fibers were oriented and heated and cured by a magnetic field shown in Table 2 in which the north pole and the south pole of the magnet face each other in the thickness direction or the vertical direction. Table 2 (FIG. 10) shows the thermal conductivity in the thickness direction and the plane direction of the cured product.

【0032】[0032]

【比較例1】表1(図10)の強磁性体を被覆していな
い炭素繊維Dを15体積%、付加型の液状シリコーゴム
原料85体積%を混合して組成物を調製した。アルミニ
ウム製の厚み0.5mm、縦20mm、横20mmの板
状の金型内に充填して加熱硬化させた。硬化物の厚み方
向および面方向の熱伝導率は0.7W/mK、2.4W
/mKであった。
Comparative Example 1 A composition was prepared by mixing 15% by volume of carbon fiber D not coated with a ferromagnetic material shown in Table 1 (FIG. 10) and 85% by volume of an additional liquid silicone rubber raw material. It was filled into a plate-shaped mold made of aluminum having a thickness of 0.5 mm, a length of 20 mm, and a width of 20 mm, and was cured by heating. The thermal conductivity in the thickness direction and plane direction of the cured product is 0.7 W / mK, 2.4 W
/ MK.

【0033】[0033]

【比較例2〜3】比較例1と同様に、表2(図10)に
記す配合組成の炭素繊維B,Cと付加型の液状シリコー
ゴム原料からなる組成物を調製し、アルミニウム製の厚
み0.5mm、縦20mm、横20mmの板状の金型内
に充填して加熱硬化させた。硬化物の厚み方向および面
方向の熱伝導率を表2に記した。
Comparative Examples 2 to 3 In the same manner as in Comparative Example 1, a composition composed of carbon fibers B and C having the composition shown in Table 2 (FIG. 10) and an additional liquid silicone rubber raw material was prepared. The mixture was filled in a plate-shaped mold having a size of 0.5 mm, a length of 20 mm and a width of 20 mm, and was cured by heating. Table 2 shows the thermal conductivity in the thickness direction and the plane direction of the cured product.

【0034】図4に記すプリント基板1に実装した高さ
が異なる複数の半導体素子6と伝熱部材となる筐体7の
間に本発明の実施例7と同様で厚みが2mmの熱伝導性
シート3を配置して半導体装置を組み立てた。通電10
分後の筐体7の中央部の温度は45℃であった。熱伝導
性シート中の磁性体を被覆したピッチ系炭素繊維は図7
のように厚み方向に揃って配向していた。同様に、比較
例3と同様で厚みが2mmの熱伝導性シートを配置して
半導体装置を組み立てた。通電10分後の筐体7の中央
部の温度は72℃であった。硬化した熱伝導性シート中
の炭素繊維は図8のようにランダムに分散していた。
A heat conductive member having a thickness of 2 mm similar to that of the seventh embodiment of the present invention is provided between a plurality of semiconductor elements 6 mounted on the printed circuit board 1 shown in FIG. The semiconductor device was assembled by disposing the sheet 3. Energizing 10
After a minute, the temperature at the center of the housing 7 was 45 ° C. FIG. 7 shows a pitch-based carbon fiber coated with a magnetic material in a heat conductive sheet.
And aligned in the thickness direction. Similarly, a semiconductor device was assembled by arranging a heat conductive sheet having a thickness of 2 mm as in Comparative Example 3. The temperature at the center of the housing 7 after 72 minutes of energization was 72 ° C. The carbon fibers in the cured thermally conductive sheet were randomly dispersed as shown in FIG.

【0035】[0035]

【発明の効果】表2(図10)に記したように本発明の
強磁性体を被覆したピッチ系炭素繊維をシリコーンゴム
中に一定方向に配向してなる熱伝導性シートは、熱伝導
率が大きくて放熱性が良好である。また、本発明の熱伝
導性シートの製造方法によって厚み方向あるいは面方向
それぞれに熱伝導性が優れる熱伝導性シートを任意に得
ることができる。なかでも、厚み方向に繊維を配向させ
た熱伝導性シートを使用した半導体装置は放熱特性が非
常に良好である。従って、発熱量が大きい半導体素子と
ヒートシンクや筐体などの放熱器との間隙、あるいは半
導体素子とプリント基板やダイパッドとの間隙に介在さ
せ、放熱特性に優れる有用な半導体装置を提供すること
ができる。
As shown in Table 2 (FIG. 10), the thermally conductive sheet according to the present invention in which the pitch-based carbon fiber coated with the ferromagnetic material is oriented in a certain direction in the silicone rubber has a thermal conductivity. Large and good heat dissipation. Further, a heat conductive sheet having excellent heat conductivity in the thickness direction or in the plane direction can be arbitrarily obtained by the method for producing a heat conductive sheet of the present invention. Above all, a semiconductor device using a heat conductive sheet in which fibers are oriented in the thickness direction has very good heat radiation characteristics. Therefore, a useful semiconductor device having excellent heat radiation characteristics can be provided by interposing the gap between the semiconductor element generating a large amount of heat and a radiator such as a heat sink or a housing or the gap between the semiconductor element and a printed board or a die pad. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱伝導性シートを使用した半導体装置
の例(ボールグリッドアレイ型半導体パッケージ2と放
熱器4の間隙に配置)
FIG. 1 shows an example of a semiconductor device using a heat conductive sheet of the present invention (disposed in a gap between a ball grid array type semiconductor package 2 and a radiator 4).

【図2】本発明の熱伝導性シートを使用した半導体装置
の例(チップサイズ半導体パッケージ2とプリント基板
1の間隙に配置)
FIG. 2 shows an example of a semiconductor device using the heat conductive sheet of the present invention (disposed in a gap between a chip size semiconductor package 2 and a printed board 1).

【図3】本発明の熱伝導性シートを使用した半導体装置
の例(ピングリッドアレイ型半導体パッケージ2とヒー
トシンク5の間隙に配置)
FIG. 3 shows an example of a semiconductor device using the heat conductive sheet of the present invention (disposed in a gap between a pin grid array type semiconductor package 2 and a heat sink 5).

【図4】本発明の熱伝導性シートを使用した半導体装置
の例(発熱する複数の半導体素子6と筐体7の間隙に配
置)
FIG. 4 shows an example of a semiconductor device using the heat conductive sheet of the present invention (disposed in a gap between a plurality of heat-generating semiconductor elements 6 and a housing 7).

【図5】本発明の熱伝導性シートの製造方法の例を示す
FIG. 5 is a diagram showing an example of a method for producing a heat conductive sheet of the present invention.

【図6】本発明の熱伝導性シートの他の製造方法の例を
示す図
FIG. 6 is a view showing an example of another method for producing the heat conductive sheet of the present invention.

【図7】本発明の熱伝導性シート中の強磁性体を被覆し
たピッチ炭素繊維の配向状態を示す概観図(厚み方向に
繊維が配向)
FIG. 7 is a schematic view showing an orientation state of a pitch carbon fiber coated with a ferromagnetic material in a heat conductive sheet of the present invention (fibers are oriented in a thickness direction).

【図8】本発明の熱伝導性シート中の強磁性体を被覆し
たピッチ炭素繊維の配向状態を示す概観図(面方向に繊
維が配向)
FIG. 8 is a schematic view showing an orientation state of a pitch carbon fiber coated with a ferromagnetic material in the heat conductive sheet of the present invention (fibers are oriented in a plane direction).

【図9】従来の炭素繊維を含む熱伝導性シート中の炭素
繊維の分散状態を示す概観図
FIG. 9 is a schematic view showing a dispersion state of carbon fibers in a conventional heat conductive sheet containing carbon fibers.

【図10】表1および表2FIG. 10 and Table 2

【符号の説明】[Explanation of symbols]

1 プリント基板 2 半導体素子 3 熱伝導性シート 4 放熱器 5 ヒートシンク 6 半導体素子 7 筐体 8 金型 9 磁石 10 強磁性体を被覆したピッチ系炭素繊維 11 従来の炭素繊維 12 従来の炭素繊維を含む熱伝導性シート REFERENCE SIGNS LIST 1 printed circuit board 2 semiconductor element 3 heat conductive sheet 4 radiator 5 heat sink 6 semiconductor element 7 housing 8 mold 9 magnet 10 pitch-based carbon fiber coated with ferromagnetic material 11 conventional carbon fiber 12 including conventional carbon fiber Thermal conductive sheet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 7/06 C08K 9/02 9/02 C08L 83/00 C08L 83/00 D01F 9/145 H01F 1/032 B22F 3/02 H // D01F 9/145 H01F 1/02 A (72)発明者 藤原 紀久夫 東京都港区浜松町2丁目4番1号世界貿易 センタービル エヌ・イーケムキャット株 式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 7/06 C08K 9/02 9/02 C08L 83/00 C08L 83/00 D01F 9/145 H01F 1/032 B22F 3/02 H // D01F 9/145 H01F 1/02 A (72) Inventor Kikuo Fujiwara 2-4-1, Hamamatsucho, Minato-ku, Tokyo World Trade Center Building N-Echemcat Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】強磁性体を被覆したピッチ系炭素繊維をシ
リコーンゴム中に一定方向に配向してなることを特徴と
する熱伝導性シート
1. A heat conductive sheet comprising a pitch-based carbon fiber coated with a ferromagnetic material and oriented in a certain direction in silicone rubber.
【請求項2】強磁性体がニッケル系、鉄系、フェライト
系、クロム系、コバルト系、マンガン系あるいは希土類
系より選ばれる少なくとも1種の金属、合金、化合物よ
りなる請求項1に記載の熱伝導性シート
2. The heat according to claim 1, wherein the ferromagnetic material comprises at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. Conductive sheet
【請求項3】ピッチ系炭素繊維の平均直径が5〜20μ
m、平均長さが20〜800μm、繊維長さ方向の熱伝
導率が200W/mK以上である請求項1あるいは2に
記載の熱伝導性シート
3. The pitch-based carbon fiber has an average diameter of 5 to 20 μm.
m, the average length is 20 to 800 μm, and the thermal conductivity in the fiber length direction is 200 W / mK or more.
【請求項4】強磁性体を被覆したピッチ系炭素繊維と液
状シリコーンゴムからなる組成物に磁場を与え、組成物
中の強磁性体を被覆したピッチ系炭素繊維を一定方向に
配向させて硬化させることを特徴とする熱伝導性シート
の製造方法
4. A magnetic field is applied to a composition comprising a pitch-based carbon fiber coated with a ferromagnetic material and a liquid silicone rubber, and the pitch-based carbon fiber coated with a ferromagnetic material in the composition is oriented in a certain direction and cured. A method for producing a thermally conductive sheet
【請求項5】強磁性体がニッケル系、鉄系、フェライト
系、クロム系、コバルト系、マンガン系あるいは希土類
系より選ばれる少なくとも1種の金属、合金、化合物よ
りなる請求項4に記載の熱伝導性シートの製造方法
5. The thermal method according to claim 4, wherein the ferromagnetic material is at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. Method for producing conductive sheet
【請求項6】ピッチ系炭素繊維の平均直径が5〜20μ
m、平均長さが20〜800μm、繊維長さ方向の熱伝
導率が200W/mK以上である請求項4あるいは5に
記載の熱伝導性シートの製造方法
6. The pitch-based carbon fiber has an average diameter of 5 to 20 μm.
m, the average length is 20 to 800 μm, and the thermal conductivity in the fiber length direction is 200 W / mK or more.
【請求項7】半導体素子と伝熱部材間に、強磁性体を被
覆したピッチ系炭素繊維を一定方向に配向したシリコー
ンゴム系の熱伝導性シートを介在させた放熱性が優れる
ことを特徴とする半導体装置
7. A heat-dissipating property in which a heat conductive sheet of a silicone rubber system in which pitch-based carbon fibers coated with a ferromagnetic material are oriented in a certain direction is interposed between the semiconductor element and the heat transfer member. Semiconductor device
【請求項8】強磁性体がニッケル系、鉄系、フェライト
系、クロム系、コバルト系、マンガン系あるいは希土類
系より選ばれる少なくとも1種の金属、合金、化合物よ
りなる請求項7に記載の半導体装置
8. The semiconductor according to claim 7, wherein the ferromagnetic material is at least one metal, alloy or compound selected from nickel, iron, ferrite, chromium, cobalt, manganese and rare earths. apparatus
【請求項9】ピッチ系炭素繊維の平均直径が5〜20μ
m、平均長さが20〜800μm、繊維長さ方向の熱伝
導率が200W/mK以上である請求項7あるいは8に
記載の半導体装置
9. The pitch-based carbon fiber has an average diameter of 5 to 20 μm.
9. The semiconductor device according to claim 7, wherein m, the average length is 20 to 800 [mu] m, and the thermal conductivity in the fiber length direction is 200 W / mK or more.
JP10371810A 1998-12-28 1998-12-28 Heat conductive sheet, its manufacture, and semiconductor device Pending JP2000195998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371810A JP2000195998A (en) 1998-12-28 1998-12-28 Heat conductive sheet, its manufacture, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371810A JP2000195998A (en) 1998-12-28 1998-12-28 Heat conductive sheet, its manufacture, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000195998A true JP2000195998A (en) 2000-07-14

Family

ID=18499349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371810A Pending JP2000195998A (en) 1998-12-28 1998-12-28 Heat conductive sheet, its manufacture, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000195998A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086464A (en) * 2000-09-12 2002-03-26 Polymatech Co Ltd Thermal conductive molded body and method for producing the same
JP2002088257A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive molded product and its manufacturing method
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2002280207A (en) * 2001-03-21 2002-09-27 Shin Etsu Chem Co Ltd Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method
JP2003090833A (en) * 2001-09-19 2003-03-28 Miyazaki Prefecture Method for extracting supercritical fluid
US6563198B1 (en) * 2001-08-01 2003-05-13 Lsi Logic Corporation Adhesive pad having EMC shielding characteristics
EP1265281A3 (en) * 2001-06-06 2004-05-12 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
KR100568129B1 (en) * 2001-02-06 2006-04-07 주식회사 성진케미칼 Conduction and generation of heat rubber
US7291381B2 (en) 2002-04-10 2007-11-06 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
WO2007126133A1 (en) * 2006-04-27 2007-11-08 Teijin Limited Composite carbon fiber sheet
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP2010186855A (en) * 2009-02-12 2010-08-26 Sony Chemical & Information Device Corp Heat conductive sheet and manufacturing method therefor
JP2011013364A (en) * 2009-06-30 2011-01-20 Kyocera Mita Corp Heating belt, fixing device including the same, image forming apparatus and method of manufacturing the heating belt
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
WO2012101988A1 (en) 2011-01-28 2012-08-02 日東電工株式会社 Heat-conductive film and production method therefor
KR20140075254A (en) 2012-12-11 2014-06-19 도레이첨단소재 주식회사 Thermal diffusion sheet and the manufacturing method thereof
KR20140075255A (en) 2012-12-11 2014-06-19 도레이첨단소재 주식회사 Thermal diffusion sheet and the manufacturing method thereof
KR20140089725A (en) 2013-01-07 2014-07-16 도레이첨단소재 주식회사 Thermal diffusion sheet and the manufacturing method thereof
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
CN106700957A (en) * 2017-01-22 2017-05-24 上海大学 Heat conduction material doped conductive adhesive and preparation method thereof and application
CN109295442A (en) * 2018-10-15 2019-02-01 河北工业大学 The method of electrocuprol activated carbon fiber and step preparation chemical plating copper-nickel bimetal layer
KR20190122354A (en) 2018-04-20 2019-10-30 나노팀 주식회사 A carbon seat having high heat-radiation property and manufacturing method thereof
CN112352476A (en) * 2018-07-12 2021-02-09 迪睿合株式会社 Pickup apparatus, mounting apparatus, pickup method, and mounting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951593A (en) * 1972-09-23 1974-05-18
JPS6015132A (en) * 1983-07-08 1985-01-25 Toyota Motor Corp Manufacture of composite material reinforced with fiber
JPH04173235A (en) * 1990-11-06 1992-06-19 Bando Chem Ind Ltd Heat conductive anisotropic structural body
JPH05248788A (en) * 1991-03-04 1993-09-24 Hitachi Ltd Heat transfer apparatus, electronic apparatus, semiconductor device and thermal conductive compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951593A (en) * 1972-09-23 1974-05-18
JPS6015132A (en) * 1983-07-08 1985-01-25 Toyota Motor Corp Manufacture of composite material reinforced with fiber
JPH04173235A (en) * 1990-11-06 1992-06-19 Bando Chem Ind Ltd Heat conductive anisotropic structural body
JPH05248788A (en) * 1991-03-04 1993-09-24 Hitachi Ltd Heat transfer apparatus, electronic apparatus, semiconductor device and thermal conductive compound

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086464A (en) * 2000-09-12 2002-03-26 Polymatech Co Ltd Thermal conductive molded body and method for producing the same
JP2002088257A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive molded product and its manufacturing method
US6652958B2 (en) 2000-10-19 2003-11-25 Polymatech Co., Ltd. Thermally conductive polymer sheet
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
EP1199328A1 (en) * 2000-10-19 2002-04-24 Polymatech Co., Ltd. Thermally conductive polymer sheet
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
KR100568129B1 (en) * 2001-02-06 2006-04-07 주식회사 성진케미칼 Conduction and generation of heat rubber
JP2002280207A (en) * 2001-03-21 2002-09-27 Shin Etsu Chem Co Ltd Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method
EP1265281A3 (en) * 2001-06-06 2004-05-12 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US7264869B2 (en) 2001-06-06 2007-09-04 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US6563198B1 (en) * 2001-08-01 2003-05-13 Lsi Logic Corporation Adhesive pad having EMC shielding characteristics
JP2003090833A (en) * 2001-09-19 2003-03-28 Miyazaki Prefecture Method for extracting supercritical fluid
US7291381B2 (en) 2002-04-10 2007-11-06 Polymatech Co., Ltd. Thermally conductive formed article and method of manufacturing the same
KR100954768B1 (en) * 2002-04-10 2010-04-28 폴리마테크 컴퍼니 리미티드 Thermally conductive formed article and method of manufacturing the same
WO2007126133A1 (en) * 2006-04-27 2007-11-08 Teijin Limited Composite carbon fiber sheet
US7947362B2 (en) 2006-04-27 2011-05-24 Teijin Limited Carbon fiber composite sheet
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP2010186855A (en) * 2009-02-12 2010-08-26 Sony Chemical & Information Device Corp Heat conductive sheet and manufacturing method therefor
JP2011013364A (en) * 2009-06-30 2011-01-20 Kyocera Mita Corp Heating belt, fixing device including the same, image forming apparatus and method of manufacturing the heating belt
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
WO2012101988A1 (en) 2011-01-28 2012-08-02 日東電工株式会社 Heat-conductive film and production method therefor
KR20140075254A (en) 2012-12-11 2014-06-19 도레이첨단소재 주식회사 Thermal diffusion sheet and the manufacturing method thereof
KR20140075255A (en) 2012-12-11 2014-06-19 도레이첨단소재 주식회사 Thermal diffusion sheet and the manufacturing method thereof
KR20140089725A (en) 2013-01-07 2014-07-16 도레이첨단소재 주식회사 Thermal diffusion sheet and the manufacturing method thereof
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
CN106700957A (en) * 2017-01-22 2017-05-24 上海大学 Heat conduction material doped conductive adhesive and preparation method thereof and application
KR20190122354A (en) 2018-04-20 2019-10-30 나노팀 주식회사 A carbon seat having high heat-radiation property and manufacturing method thereof
CN112352476A (en) * 2018-07-12 2021-02-09 迪睿合株式会社 Pickup apparatus, mounting apparatus, pickup method, and mounting method
CN109295442A (en) * 2018-10-15 2019-02-01 河北工业大学 The method of electrocuprol activated carbon fiber and step preparation chemical plating copper-nickel bimetal layer

Similar Documents

Publication Publication Date Title
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP4528397B2 (en) Bonding method and electronic component
JP2000281802A (en) Thermoconductive formed shape, its production, and semiconductor device
US6663969B2 (en) Heat conductive adhesive film and manufacturing method thereof and electronic component
JP2000281995A (en) Thermally conductive adhesive film and semiconductor device
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
JP2002121404A (en) Heat-conductive polymer sheet
JP4714371B2 (en) Thermally conductive molded body and method for producing the same
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
US20070001292A1 (en) Heat radiation member and production method for the same
JP2001172398A (en) Thermal conduction molded product and its production method
JP2002080617A (en) Thermoconductive sheet
JP4657816B2 (en) Method for producing thermally conductive molded body and thermally conductive molded body
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
JP2006335958A (en) Thermally conductive shaped article, and method for producing the same and method for fitting the same
JP2013254880A (en) Heat-conductive insulator sheet, metal based board and circuit board, and manufacturing method thereof
JP2007128986A (en) Thermally conductive member and method of manufacturing same
JP2012253167A (en) Thermally conductive insulation sheet, metal base substrate and circuit board
JP2002097372A (en) Heat-conductive polymer composition and heat-conductive molding
JP2000273426A (en) Thermal conductive adhesive, bonding and semiconductor device
JP2000191998A (en) Thermally conductive adhesive, method of adhesion and semiconductor device
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same
KR20210011899A (en) heat dissipation composite material and method of fabricating of the same
JP2001081418A (en) Heat conductive adhesive film and its production and electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417