Nothing Special   »   [go: up one dir, main page]

WO2016104169A1 - Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device - Google Patents

Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device Download PDF

Info

Publication number
WO2016104169A1
WO2016104169A1 PCT/JP2015/084665 JP2015084665W WO2016104169A1 WO 2016104169 A1 WO2016104169 A1 WO 2016104169A1 JP 2015084665 W JP2015084665 W JP 2015084665W WO 2016104169 A1 WO2016104169 A1 WO 2016104169A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
sheet
heat
conductive sheet
molded body
Prior art date
Application number
PCT/JP2015/084665
Other languages
French (fr)
Japanese (ja)
Inventor
荒巻 慶輔
麻紗子 菅原
俊介 内田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015239317A external-priority patent/JP6178389B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201580067250.XA priority Critical patent/CN107004651B/en
Publication of WO2016104169A1 publication Critical patent/WO2016104169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a heat conductive sheet disposed between a heat source such as a semiconductor element and a heat radiating member such as a heat sink, a heat conductive sheet, and a semiconductor device including the heat conductive sheet.
  • a heat conduction sheet is provided between the semiconductor device and the heat sink in order to efficiently release the heat of the semiconductor device.
  • a heat conductive sheet a material in which a filler such as a heat conductive filler [scale-like particles (boron nitride (BN), graphite, etc.), carbon fiber, etc.] is dispersed in silicone resin is widely used (for example, , See Patent Document 1).
  • heat conductive fillers have anisotropy of heat conduction.
  • a heat of about 600 W / m ⁇ K to 1200 W / m ⁇ K in the fiber direction.
  • boron nitride when used, it has a thermal conductivity of about 110 W / m ⁇ K in the plane direction and about 2 W / m ⁇ K in the direction perpendicular to the plane direction. It is known to have.
  • the thermal resistance which is an index indicating the difficulty of transferring heat.
  • it is effective to improve the adhesion to an electronic component as a heat source and a heat radiating member such as a heat sink.
  • the sheet surface has low adhesiveness (tackiness) and cannot be temporarily fixed to a heat source or a heat radiating member. Therefore, when mounting a heat conductive sheet between a heat source and a heat radiating member, it becomes necessary to temporarily fix it separately using an adhesive sheet or an adhesive. However, when such an adhesive sheet or adhesive is interposed, the mounting process becomes complicated.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention improves the adhesion to a heat source and a heat radiating member, is excellent in thermal conductivity, can be temporarily fixed without using an adhesive, etc., and is manufactured as a heat conductive sheet excellent in mountability. It is an object to provide a method, a heat conductive sheet, and a semiconductor device using the same.
  • the binder resin contains a liquid silicone gel main ingredient and a curing agent
  • the heat conductive sheet manufacturing method according to ⁇ 1>, wherein a mixing ratio of the main agent and the curing agent is, as a mass ratio, main agent: curing agent 35: 65 to 65:35.
  • the molded body preparation step is performed by filling the thermally conductive resin composition in a hollow mold and thermosetting the thermally conductive resin composition.
  • the thermally conductive filler contains carbon fiber and an inorganic filler, The method for producing a heat conductive sheet according to any one of ⁇ 1> to ⁇ 2>, wherein the carbon fibers are randomly oriented in the heat conductive sheet.
  • ⁇ 4> The method for producing a heat conductive sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the pressing step is performed using a spacer for compressing the molded body sheet to a predetermined thickness.
  • the pressing step is performed by pressing a plurality of the molded body sheets adjacently and collectively to obtain a heat conductive sheet in which the plurality of molded body sheets are integrated.
  • a heat conductive sheet having a sheet body formed by curing a heat conductive resin composition containing a binder resin and a heat conductive filler The heat conductive sheet is characterized in that the surface of the sheet body is covered with an exuding component that has exuded from the sheet main body so as to follow the protruding shape of the protruding heat conductive filler.
  • the inorganic filler is attached to a surface of the carbon fiber in a protruding shape formed of the protruding heat conductive filler.
  • ⁇ 10> having a heat source, a heat radiating member, and a heat conductive sheet sandwiched between the heat source and the heat radiating member,
  • the heat conductive sheet is the heat conductive sheet according to any one of ⁇ 6> to ⁇ 9>.
  • the conventional problems can be solved, the object can be achieved, adhesion to a heat source and a heat radiating member is improved, heat conductivity is excellent, and an adhesive is not used.
  • a method of manufacturing a heat conductive sheet that can be temporarily fixed and is excellent in mountability, a heat conductive sheet, and a semiconductor device using the same can be provided.
  • FIG. 1 is a perspective view showing a state in which a molded body sheet is pressed through a spacer.
  • FIG. 2: A is a perspective view which shows the process of obtaining the large-sized heat conductive sheet by adjoining a some molded object sheet
  • FIG. 2B is a perspective view showing a process of obtaining a large heat conductive sheet by pressing a plurality of molded sheets adjacent to each other and collectively (No. 2).
  • FIG. 3 is a schematic cross-sectional view of an example of the semiconductor device of the present invention.
  • 4A is a SEM (scanning electron microscope) photograph of the surface of the heat conductive sheet sample of Example 4.
  • FIG. 4B is a SEM photograph of the surface of the heat conductive sheet sample of Example 4.
  • FIG. 5A is an SEM photograph of the surface of the heat conductive sheet sample of Example 5.
  • FIG. 5B is an SEM photograph of the surface of the heat conductive sheet sample of Example 5.
  • FIG. 6A is an SEM photograph of the surface of the heat conductive sheet sample of Example 6.
  • FIG. 6B is a SEM photograph of the surface of the heat conductive sheet sample of Example 6.
  • FIG. 7A is an SEM photograph of the surface of the heat conductive sheet sample of Example 7.
  • FIG. 7B is an SEM photograph of the surface of the heat conductive sheet sample of Example 7.
  • FIG. 8A is an SEM photograph of the surface of the heat conductive sheet sample of Comparative Example 2.
  • FIG. 8B is a SEM photograph of the surface of the heat conductive sheet sample of Comparative Example 2.
  • FIG. 8B is a SEM photograph of the surface of the heat conductive sheet sample of Comparative Example 2.
  • FIG. 8B
  • the manufacturing method of the heat conductive sheet of this invention contains a molded object preparation process, a molded object sheet preparation process, and a press process at least, and also includes another process as needed.
  • the heat conductive sheet of the present invention is a heat conductive sheet having a sheet body formed by curing a heat conductive resin composition containing a binder resin and a heat conductive filler, and the surface of the sheet main body protrudes from the above It is covered with an exuding component that has exuded from the sheet body so as to follow the convex shape of the thermally conductive filler.
  • the said heat conductive sheet of this invention can be suitably manufactured with the manufacturing method of the said heat conductive sheet of this invention.
  • molded body manufacturing step a process of obtaining a molded body of the thermally conductive resin composition by molding and curing a thermally conductive resin composition containing a binder resin and a thermally conductive filler into a predetermined shape. If it is, there will be no restriction
  • Thermal conductive resin composition contains binder resin and a heat conductive filler at least, and also contains another component as needed.
  • the said heat conductive resin composition can be prepared with a well-known method.
  • binder resin- There is no restriction
  • thermosetting polymer examples include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting type.
  • examples thereof include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used individually by 1 type and may use 2 or more types together.
  • crosslinked rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, Examples thereof include urethane rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type and may use 2 or more types together.
  • thermosetting polymer is a silicone resin from the viewpoints of excellent moldability and weather resistance, and adhesion and followability to electronic components.
  • the silicone resin is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably contains a liquid silicone gel main component and a curing agent.
  • a silicone resin include an addition reaction type liquid silicone resin, a heat vulcanization type millable type silicone resin using a peroxide for vulcanization, and the like.
  • an addition reaction type liquid silicone resin is particularly preferable as a heat radiating member of an electronic device because adhesion between a heat generating surface of an electronic component and a heat sink surface is required.
  • the addition reaction type liquid silicone resin is preferably a two-component addition reaction type silicone resin containing a polyorganosiloxane having a vinyl group as a main ingredient and a polyorganosiloxane having a Si—H group as a curing agent.
  • the exuding component that has exuded from the molded body sheet in the pressing step can easily impart moderate fine tackiness to the obtained heat conductive sheet.
  • the content of the binder resin in the heat conductive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by mass to 50% by mass, and more preferably 15% by mass to 40% by mass. % Is more preferable.
  • the thermally conductive filler is for efficiently conducting heat from a heat source to the heat radiating member.
  • the heat conductive filler carbon fiber and inorganic filler are preferable.
  • Carbon fiber--- There is no restriction
  • carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are particularly preferable from the viewpoint of thermal conductivity.
  • the carbon fiber can be used after partially or entirely surface-treating as necessary.
  • the surface treatment include oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching a metal, a metal compound, an organic compound, or the like to the surface of a functional group or carbon fiber introduced to the surface by these treatments.
  • the process etc. which combine are mentioned.
  • the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
  • the average fiber length (average major axis length) of the carbon fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 ⁇ m to 250 ⁇ m, more preferably 75 ⁇ m to 200 ⁇ m, and more preferably 90 ⁇ m to 170 ⁇ m. Is particularly preferred.
  • the average fiber diameter (average minor axis length) of the carbon fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 ⁇ m to 20 ⁇ m, more preferably 5 ⁇ m to 14 ⁇ m.
  • the aspect ratio (average major axis length / average minor axis length) of the carbon fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 8 or more, more preferably 9 to 30. . When the aspect ratio is less than 8, since the fiber length (major axis length) of the carbon fiber is short, the thermal conductivity may be lowered.
  • the average major axis length and the average minor axis length of the carbon fiber can be measured, for example, with a microscope, a scanning electron microscope (SEM), or the like.
  • the carbon fiber content in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by volume to 40% by volume, more preferably 12% by volume to 38% by volume. 15 vol% to 35 vol% is particularly preferable.
  • the content is less than 10% by volume, it may be difficult to obtain a sufficiently low thermal resistance.
  • the content exceeds 40% by volume, the moldability of the heat conductive sheet and the orientation of the carbon fibers may be obtained. May be affected.
  • Inorganic filler-- There is no restriction
  • the inorganic filler examples include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, aluminum oxide, and metal. And particles. These may be used individually by 1 type and may use 2 or more types together. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and alumina and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
  • the inorganic filler may be subjected to a surface treatment.
  • the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet is improved.
  • the average particle size of the said inorganic filler is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m, and particularly preferably 4 ⁇ m to 5 ⁇ m.
  • the average particle size is less than 1 ⁇ m, the viscosity increases and mixing may become difficult.
  • the average particle size exceeds 10 ⁇ m, the thermal resistance of the heat conductive sheet may increase.
  • the average particle size is preferably 0.3 ⁇ m to 6.0 ⁇ m, more preferably 0.3 ⁇ m to 2.0 ⁇ m, and particularly preferably 0.5 ⁇ m to 1.5 ⁇ m. If the average particle size is less than 0.3 ⁇ m, the viscosity may increase and mixing may be difficult, and if it exceeds 6.0 ⁇ m, the thermal resistance of the heat conductive sheet may increase.
  • the average particle diameter of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
  • the content of the inorganic filler in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25% by volume to 65% by volume, more preferably 30% by volume to 60% by volume. preferable. When the content is less than 25% by volume, the thermal resistance of the heat conductive sheet may increase, and when it exceeds 60% by volume, the flexibility of the heat conductive sheet may decrease.
  • the other components in the thermally conductive resin composition are not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include thixotropic agents, dispersants, curing accelerators, retarders, and slight adhesion.
  • examples include an imparting agent, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant.
  • the molded body preparation step is performed by filling the heat conductive resin composition in a hollow mold and thermosetting the heat conductive resin composition.
  • the thermally conductive filler for example, carbon fiber
  • the thermally conductive filler can be randomly oriented.
  • the carbon fibers are randomly oriented, the entanglement between the carbon fibers increases, so that the carbon fibers are heated more than in the case where they are oriented in a certain direction. Conductivity increases.
  • the thermally conductive filler contains the carbon fiber and the spherical inorganic filler
  • the carbon fibers are randomly oriented, Since the number of contact points between the carbon fiber and the spherical inorganic filler also increases, the thermal conductivity is further increased as compared with the case where the carbon fiber is oriented in a certain direction.
  • the extrusion molding method and the mold molding method are not particularly limited, and the viscosity of the heat conductive resin composition and the obtained heat conduction can be selected from various known extrusion molding methods and mold molding methods. It can be appropriately employed depending on the characteristics required for the sheet.
  • the binder resin flows.
  • Some carbon fibers are oriented along the flow direction, but many are randomly oriented.
  • the carbon fiber tends to be easily oriented at the center with respect to the width direction of the extruded molded body block.
  • the carbon fiber tends to be randomly oriented in the peripheral portion with respect to the width direction of the molded body block due to the influence of the slit wall.
  • the size and shape of the molded body can be determined according to the required size of the heat conductive sheet. For example, there is a rectangular parallelepiped having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as necessary.
  • the molded body sheet production step is not particularly limited as long as it is a process of cutting the molded body into a sheet shape and obtaining a molded body sheet with the thermally conductive filler protruding on the surface, and is appropriately selected depending on the purpose. For example, it can be performed by a slicing apparatus.
  • the molded body is cut into a sheet shape to obtain a molded body sheet.
  • the thermally conductive filler protrudes from the surface of the obtained molded body sheet. This is because when the molded body is cut into a sheet shape by a slicing device or the like, the cured component of the binder resin is cut by a slicing device or the like due to a difference in hardness between the cured component of the binder resin and the thermally conductive filler. This is considered to be because the cured component of the binder resin is removed from the surface of the thermally conductive filler on the surface of the molded body sheet.
  • the slicing apparatus is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an ultrasonic cutter and a planer.
  • the cutting direction of the molded body is preferably 60 ° to 120 ° with respect to the extrusion direction because some are oriented in the extrusion direction, and preferably 70 ° to 100 °. The degree is more preferable, and 90 degrees (vertical) is particularly preferable.
  • the pressure at the time of pressing is not particularly limited and can be appropriately selected according to the purpose. However, if it is too low, the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet is stretched. Since there is a tendency, 0.1 MPa to 100 MPa is preferable, and 0.5 MPa to 95 MPa is more preferable.
  • the position in the vertical axis (z-axis) direction indicating brightness is indicated by L *.
  • the value of the lightness L * is a positive number. The smaller the number, the lower the lightness and the darker the tendency. Specifically, the value of L * varies from 0 corresponding to black to 100 corresponding to white.
  • the two-component addition reaction type liquid silicone resin is a mixture of 35% by mass of silicone A liquid (main agent) and 65% by mass of silicone B liquid (curing agent).
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold (50 mm ⁇ 50 mm) with a PET film peel-treated on the inner wall to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
  • Example 2 As a two-component addition reaction type liquid silicone resin, except for using a mixture of 40% by mass of a silicone A solution and 60% by mass of a silicone B solution, the same conditions as in Example 1, A heat conductive sheet sample was prepared.
  • Comparative Example 3 the two-component addition reaction type liquid silicone resin was the same as in Example 1 except that a mixture of 70% by mass of silicone A solution and 30% by mass of silicone B solution was used. A heat conductive sheet sample was prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A method for producing a heat-conducive sheet, comprising: a molded article production step of molding a heat-conductive resin composition comprising a binder resin and a heat-conductive filler into a desired shape and then curing the molded product to produce a molded article made from the heat-conductive resin composition; a molded article sheet production step of cutting the molded article into a sheet-like shape to produce a molded article sheet in which the heat-conducive filler is protruded on the surface of the sheet; and a pressing step of pressing the molded article sheet so that the surface of the molded article sheet is coated with an oozed component that is oozed from the molded article sheet in such a manner that the oozed component can follow the protruded shape formed by the protruded heat-conductive filler on the surface of the molded article sheet.

Description

熱伝導シートの製造方法、熱伝導シート、及び半導体装置Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device
 本発明は、半導体素子等の熱源とヒートシンク等の放熱部材との間に配置される熱伝導シートの製造方法、熱伝導シート、及び熱伝導シートを備えた半導体装置に関する。 The present invention relates to a method for manufacturing a heat conductive sheet disposed between a heat source such as a semiconductor element and a heat radiating member such as a heat sink, a heat conductive sheet, and a semiconductor device including the heat conductive sheet.
 従来、パーソナルコンピュータ等の各種電気機器やその他の機器に搭載されている半導体素子においては、駆動により熱が発生し、発生した熱が蓄積されると半導体素子の駆動や周辺機器へ悪影響が生じることから、各種冷却手段が用いられている。半導体素子等の電子部品の冷却方法としては、当該機器にファンを取り付け、機器筐体内の空気を冷却する方式や、その冷却すべき半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法等が知られている。 Conventionally, in semiconductor devices mounted on various electric devices such as personal computers and other devices, heat is generated by driving, and when the generated heat is accumulated, driving of the semiconductor devices and peripheral devices are adversely affected. Therefore, various cooling means are used. As a method for cooling electronic components such as semiconductor elements, there are a method in which a fan is attached to the device and the air in the device casing is cooled, a method in which a heat sink such as a heat radiating fin or a heat radiating plate is attached to the semiconductor element to be cooled, Are known.
 半導体素子にヒートシンクを取り付けて冷却する場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に熱伝導シートが設けられている。熱伝導シートとしては、シリコーン樹脂に熱伝導性フィラー〔鱗片状粒子(窒化ホウ素(BN)、黒鉛等)、炭素繊維等〕等の充填剤を分散含有させたものが広く用いられている(例えば、特許文献1参照)。 When a semiconductor device is cooled by attaching a heat sink, a heat conduction sheet is provided between the semiconductor device and the heat sink in order to efficiently release the heat of the semiconductor device. As the heat conductive sheet, a material in which a filler such as a heat conductive filler [scale-like particles (boron nitride (BN), graphite, etc.), carbon fiber, etc.] is dispersed in silicone resin is widely used (for example, , See Patent Document 1).
 これら熱伝導性フィラーは、熱伝導の異方性を有しており、例えば熱伝導性フィラーとして炭素繊維を用いた場合、繊維方向には約600W/m・K~1200W/m・Kの熱伝導率を有し、窒化ホウ素を用いた場合には、面方向では約110W/m・K、面方向に垂直な方向では約2W/m・Kの熱伝導率を有し、異方性を有することが知られている。 These heat conductive fillers have anisotropy of heat conduction. For example, when carbon fiber is used as the heat conductive filler, a heat of about 600 W / m · K to 1200 W / m · K in the fiber direction. When boron nitride is used, it has a thermal conductivity of about 110 W / m · K in the plane direction and about 2 W / m · K in the direction perpendicular to the plane direction. It is known to have.
 ここで、パーソナルコンピュータのCPUなどの電子部品は、その高速化、高性能化に伴って、その放熱量は年々増大する傾向にある。しかしながら、反対にプロセッサ等のチップサイズは微細シリコン回路技術の進歩によって、従来と同等サイズかより小さいサイズとなり、単位面積あたりの熱流速は高くなっている。したがって、その温度上昇による不具合などを回避するために、CPUなどの電子部品をより効率的に放熱、冷却することが求められている。 Here, electronic parts such as CPUs of personal computers tend to increase in heat dissipation year by year as their speed and performance become higher. However, on the contrary, the chip size of a processor or the like has become equal to or smaller than the conventional size due to the advancement of fine silicon circuit technology, and the heat flow rate per unit area is high. Therefore, in order to avoid problems caused by the temperature rise, it is required to more efficiently dissipate and cool electronic components such as CPUs.
 熱伝導シートの放熱特性を向上するためには、熱の伝わりにくさを示す指標である熱抵抗を下げることが求められる。熱抵抗を下げるためには、熱源である電子部品や、ヒートシンク等の放熱部材に対する密着性を向上させることが有効となる。 In order to improve the heat dissipation characteristics of the heat conductive sheet, it is required to lower the thermal resistance, which is an index indicating the difficulty of transferring heat. In order to reduce the thermal resistance, it is effective to improve the adhesion to an electronic component as a heat source and a heat radiating member such as a heat sink.
 しかし、炭素繊維等の熱伝導性フィラーがシート表面に露出している(例えば、特許文献2参照)と、熱源や放熱部材に対する追従性、密着性が悪く、熱抵抗を十分に下げることができない。また、熱伝導性フィラーをシート内に没入させるために、熱伝導シートを熱源と放熱部材との間で高い荷重で挟持させる方法も提案されている(例えば、特許文献3参照)が、低荷重が求められる熱源に用いる場合には、熱伝導性フィラーが没入せず、熱抵抗を下げることができない。 However, if a thermally conductive filler such as carbon fiber is exposed on the sheet surface (see, for example, Patent Document 2), the followability and adhesion to the heat source and the heat radiating member are poor, and the thermal resistance cannot be lowered sufficiently. . Moreover, in order to immerse the thermally conductive filler in the sheet, a method of sandwiching the thermally conductive sheet with a high load between the heat source and the heat radiating member has been proposed (see, for example, Patent Document 3). When it is used for a heat source for which heat resistance is required, the heat conductive filler is not immersed and the thermal resistance cannot be lowered.
 また、炭素繊維等の熱伝導性フィラーがシート表面に露出していると、シート表面の微粘着性(タック性)が低く、熱源や放熱部材に仮固定することができない。そのため、熱伝導シートを熱源と放熱部材との間に実装する際に、別途粘着シートや粘着剤を用いて仮固定する必要が生じる。しかし、このような粘着シートや粘着剤を介在させると、実装工程が煩雑となる。 Also, if a thermally conductive filler such as carbon fiber is exposed on the sheet surface, the sheet surface has low adhesiveness (tackiness) and cannot be temporarily fixed to a heat source or a heat radiating member. Therefore, when mounting a heat conductive sheet between a heat source and a heat radiating member, it becomes necessary to temporarily fix it separately using an adhesive sheet or an adhesive. However, when such an adhesive sheet or adhesive is interposed, the mounting process becomes complicated.
特開2012-23335号公報JP 2012-23335 A 特開2014-1388号公報JP 2014-1388 A 特開2006-335958号公報JP 2006-335958 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、熱源や放熱部材に対する密着性を向上させ、熱伝導性に優れ、また、粘着剤等を用いることなく仮固定を行うことができ、実装性に優れた熱伝導シートの製造方法、熱伝導シート、及びこれを用いた半導体装置を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention improves the adhesion to a heat source and a heat radiating member, is excellent in thermal conductivity, can be temporarily fixed without using an adhesive, etc., and is manufactured as a heat conductive sheet excellent in mountability. It is an object to provide a method, a heat conductive sheet, and a semiconductor device using the same.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> バインダ樹脂及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を所定の形状に成型して硬化することにより、前記熱伝導性樹脂組成物の成型体を得る成型体作製工程と、
 前記成型体をシート状に切断して、表面において前記熱伝導性フィラーが突出した成型体シートを得る成型体シート作製工程と、
 前記成型体シートをプレスして、前記成型体シートの表面を、突出した前記熱伝導性フィラーによる凸形状を追従するように、前記成型体シートから滲み出した滲出成分により覆う、プレス工程とを含むことを特徴とする熱伝導シートの製造方法である。
 <2> 前記バインダ樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有し、
 前記主剤と前記硬化剤との配合割合が、質量比で主剤:硬化剤=35:65~65:35である前記<1>に記載の熱伝導シートの製造方法である。
 <3> 前記成型体作製工程が、中空状の型内に、前記熱伝導性樹脂組成物を充填し、前記熱伝導性樹脂組成物を熱硬化することにより行われ、
 前記熱伝導性フィラーが、炭素繊維、及び無機物フィラーを含有し、
 前記熱伝導シートにおいて、前記炭素繊維が、ランダムに配向している、前記<1>から<2>のいずれかに記載の熱伝導シートの製造方法である。
 <4> 前記プレス工程が、前記成型体シートを所定の厚みに圧縮するためのスペーサを用いて行われる前記<1>から<3>のいずれかに記載の熱伝導シートの製造方法である。
 <5> 前記プレス工程が、複数の前記成型体シートを隣接し、一括してプレスすることにより行われ、前記複数の成型体シートが一体化された熱伝導シートを得る前記<1>から<4>のいずれかに記載の熱伝導シートの製造方法である。
 <6> バインダ樹脂及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を硬化してなるシート本体を有する熱伝導シートであって、
 前記シート本体の表面が、突出した前記熱伝導性フィラーによる凸形状を追従するように、前記シート本体から滲み出した滲出成分で覆われていることを特徴とする熱伝導シートである。
 <7> 前記熱伝導性フィラーが、炭素繊維、及び無機物フィラーを含有する前記<6>に記載の熱伝導シートである。
<8> 突出した前記熱伝導性フィラーによる凸形状において、前記炭素繊維の表面に前記無機物フィラーが付着している前記<7>に記載の熱伝導シートである。
 <9> 前記<1>から<5>のいずれかに記載の熱伝導シートの製造方法により製造されたことを特徴とする熱伝導シートである。
 <10> 熱源と、放熱部材と、前記熱源と前記放熱部材との間に挟持される熱伝導シートとを有し、
 前記熱伝導シートが、前記<6>から<9>のいずれかに記載の熱伝導シートであることを特徴とする半導体装置である。
Means for solving the problems are as follows. That is,
<1> A molded body preparation step of obtaining a molded body of the heat conductive resin composition by molding and curing a heat conductive resin composition containing a binder resin and a heat conductive filler into a predetermined shape;
Cutting the molded body into a sheet shape, and a molded body sheet manufacturing step for obtaining a molded body sheet with the thermally conductive filler protruding on the surface;
Pressing the molded body sheet, and covering the surface of the molded body sheet with an exuding component that has exuded from the molded body sheet so as to follow the convex shape of the protruding thermal conductive filler. It is a manufacturing method of the heat conductive sheet characterized by including.
<2> The binder resin contains a liquid silicone gel main ingredient and a curing agent,
The heat conductive sheet manufacturing method according to <1>, wherein a mixing ratio of the main agent and the curing agent is, as a mass ratio, main agent: curing agent = 35: 65 to 65:35.
<3> The molded body preparation step is performed by filling the thermally conductive resin composition in a hollow mold and thermosetting the thermally conductive resin composition.
The thermally conductive filler contains carbon fiber and an inorganic filler,
The method for producing a heat conductive sheet according to any one of <1> to <2>, wherein the carbon fibers are randomly oriented in the heat conductive sheet.
<4> The method for producing a heat conductive sheet according to any one of <1> to <3>, wherein the pressing step is performed using a spacer for compressing the molded body sheet to a predetermined thickness.
<5> The pressing step is performed by pressing a plurality of the molded body sheets adjacently and collectively to obtain a heat conductive sheet in which the plurality of molded body sheets are integrated. 4>. The method for producing a heat conductive sheet according to any one of 4>.
<6> A heat conductive sheet having a sheet body formed by curing a heat conductive resin composition containing a binder resin and a heat conductive filler,
The heat conductive sheet is characterized in that the surface of the sheet body is covered with an exuding component that has exuded from the sheet main body so as to follow the protruding shape of the protruding heat conductive filler.
<7> The heat conductive sheet according to <6>, wherein the heat conductive filler contains carbon fiber and an inorganic filler.
<8> The heat conductive sheet according to <7>, wherein the inorganic filler is attached to a surface of the carbon fiber in a protruding shape formed of the protruding heat conductive filler.
<9> A heat conductive sheet produced by the method for producing a heat conductive sheet according to any one of <1> to <5>.
<10> having a heat source, a heat radiating member, and a heat conductive sheet sandwiched between the heat source and the heat radiating member,
The heat conductive sheet is the heat conductive sheet according to any one of <6> to <9>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、熱源や放熱部材に対する密着性を向上させ、熱伝導性に優れ、また、粘着剤等を用いることなく仮固定を行うことができ、実装性に優れた熱伝導シートの製造方法、熱伝導シート、及びこれを用いた半導体装置を提供することができる。 According to the present invention, the conventional problems can be solved, the object can be achieved, adhesion to a heat source and a heat radiating member is improved, heat conductivity is excellent, and an adhesive is not used. A method of manufacturing a heat conductive sheet that can be temporarily fixed and is excellent in mountability, a heat conductive sheet, and a semiconductor device using the same can be provided.
図1は、成型体シートがスペーサを介してプレスされる状態を示す斜視図である。FIG. 1 is a perspective view showing a state in which a molded body sheet is pressed through a spacer. 図2Aは、複数の成型体シートを隣接し、一括してプレスすることにより、大判の熱伝導シートを得る工程を示す斜視図である(その1)。FIG. 2: A is a perspective view which shows the process of obtaining the large-sized heat conductive sheet by adjoining a some molded object sheet | seat and pressing collectively (the 1). 図2Bは、複数の成型体シートを隣接し、一括してプレスすることにより、大判の熱伝導シートを得る工程を示す斜視図である(その2)。FIG. 2B is a perspective view showing a process of obtaining a large heat conductive sheet by pressing a plurality of molded sheets adjacent to each other and collectively (No. 2). 図3は、本発明の半導体装置の一例の断面模式図である。FIG. 3 is a schematic cross-sectional view of an example of the semiconductor device of the present invention. 図4Aは、実施例4の熱伝導シートサンプルの表面のSEM(走査型電子顕微鏡)写真である。4A is a SEM (scanning electron microscope) photograph of the surface of the heat conductive sheet sample of Example 4. FIG. 図4Bは、実施例4の熱伝導シートサンプルの表面のSEM写真である。4B is a SEM photograph of the surface of the heat conductive sheet sample of Example 4. FIG. 図5Aは、実施例5の熱伝導シートサンプルの表面のSEM写真である。5A is an SEM photograph of the surface of the heat conductive sheet sample of Example 5. FIG. 図5Bは、実施例5の熱伝導シートサンプルの表面のSEM写真である。5B is an SEM photograph of the surface of the heat conductive sheet sample of Example 5. FIG. 図6Aは、実施例6の熱伝導シートサンプルの表面のSEM写真である。6A is an SEM photograph of the surface of the heat conductive sheet sample of Example 6. FIG. 図6Bは、実施例6の熱伝導シートサンプルの表面のSEM写真である。6B is a SEM photograph of the surface of the heat conductive sheet sample of Example 6. FIG. 図7Aは、実施例7の熱伝導シートサンプルの表面のSEM写真である。7A is an SEM photograph of the surface of the heat conductive sheet sample of Example 7. FIG. 図7Bは、実施例7の熱伝導シートサンプルの表面のSEM写真である。7B is an SEM photograph of the surface of the heat conductive sheet sample of Example 7. FIG. 図8Aは、比較例2の熱伝導シートサンプルの表面のSEM写真である。8A is an SEM photograph of the surface of the heat conductive sheet sample of Comparative Example 2. FIG. 図8Bは、比較例2の熱伝導シートサンプルの表面のSEM写真である。8B is a SEM photograph of the surface of the heat conductive sheet sample of Comparative Example 2. FIG.
(熱伝導シートの製造方法、及び熱伝導シート)
 本発明の熱伝導シートの製造方法は、成型体作製工程と、成型体シート作製工程と、プレス工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 本発明の熱伝導シートは、バインダ樹脂及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を硬化してなるシート本体を有する熱伝導シートであって、前記シート本体の表面は、突出した前記熱伝導性フィラーによる凸形状を追従するように、前記シート本体から滲み出した滲出成分で覆われている。
 本発明の前記熱伝導シートは、本発明の前記熱伝導シートの製造方法により好適に製造することができる。
(The manufacturing method of a heat conductive sheet, and a heat conductive sheet)
The manufacturing method of the heat conductive sheet of this invention contains a molded object preparation process, a molded object sheet preparation process, and a press process at least, and also includes another process as needed.
The heat conductive sheet of the present invention is a heat conductive sheet having a sheet body formed by curing a heat conductive resin composition containing a binder resin and a heat conductive filler, and the surface of the sheet main body protrudes from the above It is covered with an exuding component that has exuded from the sheet body so as to follow the convex shape of the thermally conductive filler.
The said heat conductive sheet of this invention can be suitably manufactured with the manufacturing method of the said heat conductive sheet of this invention.
<成型体作製工程>
 前記成型体作製工程としては、バインダ樹脂及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を所定の形状に成型して硬化することにより、前記熱伝導性樹脂組成物の成型体を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Molded body production process>
As the molded body manufacturing step, a process of obtaining a molded body of the thermally conductive resin composition by molding and curing a thermally conductive resin composition containing a binder resin and a thermally conductive filler into a predetermined shape. If it is, there will be no restriction | limiting in particular, According to the objective, it can select suitably.
<<熱伝導性樹脂組成物>>
 前記熱伝導性樹脂組成物は、バインダ樹脂と、熱伝導性フィラーとを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記熱伝導性樹脂組成物は、公知の手法により調製できる。
<< Thermal conductive resin composition >>
The said heat conductive resin composition contains binder resin and a heat conductive filler at least, and also contains another component as needed.
The said heat conductive resin composition can be prepared with a well-known method.
-バインダ樹脂-
 前記バインダ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱硬化性ポリマーなどが挙げられる。
-Binder resin-
There is no restriction | limiting in particular as said binder resin, According to the objective, it can select suitably, For example, a thermosetting polymer etc. are mentioned.
 前記熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the thermosetting polymer include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting type. Examples thereof include polyphenylene ether and thermosetting modified polyphenylene ether. These may be used individually by 1 type and may use 2 or more types together.
 前記架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, fluorine rubber, Examples thereof include urethane rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type and may use 2 or more types together.
 これらの中でも、成形加工性、耐候性に優れると共に、電子部品に対する密着性及び追従性の点から、前記熱硬化性ポリマーは、シリコーン樹脂であることが特に好ましい。 Among these, it is particularly preferable that the thermosetting polymer is a silicone resin from the viewpoints of excellent moldability and weather resistance, and adhesion and followability to electronic components.
 前記シリコーン樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、液状シリコーンゲルの主剤と、硬化剤とを含有することが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂などが挙げられる。これらの中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。 The silicone resin is not particularly limited and may be appropriately selected depending on the intended purpose, but preferably contains a liquid silicone gel main component and a curing agent. Examples of such a silicone resin include an addition reaction type liquid silicone resin, a heat vulcanization type millable type silicone resin using a peroxide for vulcanization, and the like. Among these, an addition reaction type liquid silicone resin is particularly preferable as a heat radiating member of an electronic device because adhesion between a heat generating surface of an electronic component and a heat sink surface is required.
 前記付加反応型液状シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂が好ましい。 The addition reaction type liquid silicone resin is preferably a two-component addition reaction type silicone resin containing a polyorganosiloxane having a vinyl group as a main ingredient and a polyorganosiloxane having a Si—H group as a curing agent.
 前記液状シリコーンゲルの主剤と、硬化剤との組合せにおいて、前記主剤と前記硬化剤との配合割合としては、質量比で主剤:硬化剤=35:65~65:35であることが好ましい。
 配合比率が前記好ましい範囲内であることにより、プレス工程において、成型体シートから滲み出た滲出成分が、得られる熱伝導シートに適度な微粘着性を付与しやすくなる。
In the combination of the main agent of the liquid silicone gel and the curing agent, the mixing ratio of the main agent and the curing agent is preferably main agent: curing agent = 35: 65 to 65:35 by mass ratio.
When the blending ratio is within the preferred range, the exuding component that has exuded from the molded body sheet in the pressing step can easily impart moderate fine tackiness to the obtained heat conductive sheet.
 前記熱伝導性樹脂組成物における前記バインダ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量%~50質量%が好ましく、15質量%~40質量%がより好ましい。 The content of the binder resin in the heat conductive resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by mass to 50% by mass, and more preferably 15% by mass to 40% by mass. % Is more preferable.
-熱伝導性フィラー-
 前記熱伝導性フィラーは、熱源からの熱を効率良く放熱部材に伝導させるためのものである。
 前記熱伝導性フィラーとしては、炭素繊維、無機物フィラーが好ましい。
-Thermally conductive filler-
The thermally conductive filler is for efficiently conducting heat from a heat source to the heat radiating member.
As the heat conductive filler, carbon fiber and inorganic filler are preferable.
--炭素繊維--
 前記炭素繊維としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成されたものを用いることができる。これらの中でも、熱伝導性の点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維が特に好ましい。
--Carbon fiber--
There is no restriction | limiting in particular as said carbon fiber, According to the objective, it can select suitably, For example, what pitched, a PAN system, what graphitized PBO fiber, an arc discharge method, a laser evaporation method, CVD method (chemical) A compound synthesized by a vapor deposition method), a CCVD method (catalytic chemical vapor deposition method), or the like can be used. Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are particularly preferable from the viewpoint of thermal conductivity.
 前記炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。前記表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、あるいはこれらの処理によって表面に導入された官能基若しくは炭素繊維の表面に、金属、金属化合物、有機化合物等を付着あるいは結合させる処理などが挙げられる。前記官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基などが挙げられる。 The carbon fiber can be used after partially or entirely surface-treating as necessary. Examples of the surface treatment include oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching a metal, a metal compound, an organic compound, or the like to the surface of a functional group or carbon fiber introduced to the surface by these treatments. The process etc. which combine are mentioned. Examples of the functional group include a hydroxyl group, a carboxyl group, a carbonyl group, a nitro group, and an amino group.
 前記炭素繊維の平均繊維長(平均長軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、50μm~250μmが好ましく、75μm~200μmよりが好ましく、90μm~170μmが特に好ましい。 The average fiber length (average major axis length) of the carbon fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 μm to 250 μm, more preferably 75 μm to 200 μm, and more preferably 90 μm to 170 μm. Is particularly preferred.
 前記炭素繊維の平均繊維径(平均短軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、4μm~20μmが好ましく、5μm~14μmがより好ましい。 The average fiber diameter (average minor axis length) of the carbon fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 μm to 20 μm, more preferably 5 μm to 14 μm.
 前記炭素繊維のアスペクト比(平均長軸長さ/平均短軸長さ)としては、特に制限はなく、目的に応じて適宜選択することができるが、8以上が好ましく、9~30がより好ましい。前記アスペクト比が、8未満であると、炭素繊維の繊維長(長軸長さ)が短いため、熱伝導率が低下してしまうことがある。
 ここで、前記炭素繊維の平均長軸長さ、及び平均短軸長さは、例えばマイクロスコープ、走査型電子顕微鏡(SEM)などにより測定することができる。
The aspect ratio (average major axis length / average minor axis length) of the carbon fiber is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 8 or more, more preferably 9 to 30. . When the aspect ratio is less than 8, since the fiber length (major axis length) of the carbon fiber is short, the thermal conductivity may be lowered.
Here, the average major axis length and the average minor axis length of the carbon fiber can be measured, for example, with a microscope, a scanning electron microscope (SEM), or the like.
 前記熱伝導シートにおける前記炭素繊維の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10体積%~40体積%が好ましく、12体積%~38体積%がより好ましく、15体積%~35体積%が特に好ましい。前記含有量が、10体積%未満であると、十分に低い熱抵抗を得ることが困難になることがあり、40体積%を超えると、前記熱伝導シートの成型性及び前記炭素繊維の配向性に影響を与えてしまうことがある。 The carbon fiber content in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by volume to 40% by volume, more preferably 12% by volume to 38% by volume. 15 vol% to 35 vol% is particularly preferable. When the content is less than 10% by volume, it may be difficult to obtain a sufficiently low thermal resistance. When the content exceeds 40% by volume, the moldability of the heat conductive sheet and the orientation of the carbon fibers may be obtained. May be affected.
--無機物フィラー--
 前記無機物フィラーとしては、その形状、材質、平均粒径などについては特に制限はなく、目的に応じて適宜選択することができる。前記形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、楕円球状、塊状、粒状、扁平状、針状などが挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。
 なお、本明細書において、前記無機物フィラーは、前記炭素繊維とは異なる。
--- Inorganic filler--
There is no restriction | limiting in particular about the shape, material, average particle diameter, etc. as said inorganic filler, According to the objective, it can select suitably. There is no restriction | limiting in particular as said shape, According to the objective, it can select suitably, For example, spherical shape, elliptical spherical shape, lump shape, granular form, flat shape, needle shape etc. are mentioned. Among these, spherical and elliptical shapes are preferable from the viewpoint of filling properties, and spherical shapes are particularly preferable.
In the present specification, the inorganic filler is different from the carbon fiber.
 前記無機物フィラーとしては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、酸化アルミニウム、金属粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムが特に好ましい。 Examples of the inorganic filler include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, aluminum oxide, and metal. And particles. These may be used individually by 1 type and may use 2 or more types together. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and alumina and aluminum nitride are particularly preferable from the viewpoint of thermal conductivity.
 なお、前記無機物フィラーは、表面処理が施されていてもよい。前記表面処理としてカップリング剤で前記無機物フィラーを処理すると、前記無機物フィラーの分散性が向上し、熱伝導シートの柔軟性が向上する。 The inorganic filler may be subjected to a surface treatment. When the inorganic filler is treated with a coupling agent as the surface treatment, the dispersibility of the inorganic filler is improved and the flexibility of the heat conductive sheet is improved.
 前記無機物フィラーの平均粒径としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記無機物フィラーがアルミナの場合、その平均粒径は、1μm~10μmが好ましく、1μm~5μmがより好ましく、4μm~5μmが特に好ましい。前記平均粒径が、1μm未満であると、粘度が大きくなり、混合しにくくなることがあり、10μmを超えると、前記熱伝導シートの熱抵抗が大きくなることがある。
 前記無機物フィラーが窒化アルミニウムの場合、その平均粒径は、0.3μm~6.0μmが好ましく、0.3μm~2.0μmがより好ましく、0.5μm~1.5μmが特に好ましい。前記平均粒径が、0.3μm未満であると、粘度が大きくなり、混合しにくくなることがあり、6.0μmを超えると、前記熱伝導シートの熱抵抗が大きくなることがある。
 前記無機物フィラーの平均粒径は、例えば、粒度分布計、走査型電子顕微鏡(SEM)により測定することができる。
There is no restriction | limiting in particular as an average particle diameter of the said inorganic filler, According to the objective, it can select suitably.
When the inorganic filler is alumina, the average particle size is preferably 1 μm to 10 μm, more preferably 1 μm to 5 μm, and particularly preferably 4 μm to 5 μm. When the average particle size is less than 1 μm, the viscosity increases and mixing may become difficult. When the average particle size exceeds 10 μm, the thermal resistance of the heat conductive sheet may increase.
When the inorganic filler is aluminum nitride, the average particle size is preferably 0.3 μm to 6.0 μm, more preferably 0.3 μm to 2.0 μm, and particularly preferably 0.5 μm to 1.5 μm. If the average particle size is less than 0.3 μm, the viscosity may increase and mixing may be difficult, and if it exceeds 6.0 μm, the thermal resistance of the heat conductive sheet may increase.
The average particle diameter of the inorganic filler can be measured by, for example, a particle size distribution meter or a scanning electron microscope (SEM).
 前記熱伝導シートにおける前記無機物フィラーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、25体積%~65体積%が好ましく、30体積%~60体積%がより好ましい。前記含有量が、25体積%未満であると、前記熱伝導シートの熱抵抗が大きくなることがあり、60体積%を超えると、前記熱伝導シートの柔軟性が低下することがある。 The content of the inorganic filler in the heat conductive sheet is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25% by volume to 65% by volume, more preferably 30% by volume to 60% by volume. preferable. When the content is less than 25% by volume, the thermal resistance of the heat conductive sheet may increase, and when it exceeds 60% by volume, the flexibility of the heat conductive sheet may decrease.
-その他の成分-
 前記熱伝導性樹脂組成物における前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤などが挙げられる。
-Other ingredients-
The other components in the thermally conductive resin composition are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include thixotropic agents, dispersants, curing accelerators, retarders, and slight adhesion. Examples include an imparting agent, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant.
 前記成型体作製工程において、前記熱伝導性樹脂組成物を所定の形状に成型する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、押出し成型法、金型成型法などが挙げられる。 There is no restriction | limiting in particular as a method of shape | molding the said heat conductive resin composition in a predetermined shape in the said molded object preparation process, According to the objective, it can select suitably, For example, an extrusion molding method, die molding Law.
 前記成型体作製工程は、中空状の型内に、前記熱伝導性樹脂組成物を充填し、前記熱伝導性樹脂組成物を熱硬化することにより行われることが、得られる前記熱伝導シートにおいて前記熱伝導性フィラー(例えば、炭素繊維)をランダムに配向できる点で、好ましい。
 得られる前記熱伝導シートにおいては、前記炭素繊維が、ランダムに配向していることにより、前記炭素繊維同士の交絡が増えるため、前記炭素繊維が、一定方向に配向している場合よりも、熱伝導率が大きくなる。また、前記熱伝導性フィラーが、前記炭素繊維と、球状の前記無機物フィラーとを含有する場合には、前記炭素繊維がランダムに配向していることにより、前記炭素繊維同士の交絡に加え、前記炭素繊維と球状の前記無機物フィラーとの接点も増えるため、前記炭素繊維が、一定方向に配向している場合よりも、更に熱伝導率が大きくなる。
In the obtained heat conductive sheet, the molded body preparation step is performed by filling the heat conductive resin composition in a hollow mold and thermosetting the heat conductive resin composition. This is preferable in that the thermally conductive filler (for example, carbon fiber) can be randomly oriented.
In the obtained heat conductive sheet, since the carbon fibers are randomly oriented, the entanglement between the carbon fibers increases, so that the carbon fibers are heated more than in the case where they are oriented in a certain direction. Conductivity increases. Moreover, in the case where the thermally conductive filler contains the carbon fiber and the spherical inorganic filler, in addition to the entanglement of the carbon fibers, the carbon fibers are randomly oriented, Since the number of contact points between the carbon fiber and the spherical inorganic filler also increases, the thermal conductivity is further increased as compared with the case where the carbon fiber is oriented in a certain direction.
 前記押出し成型法、及び前記金型成型法としては、特に制限されず、公知の各種押出し成型法、及び金型成型法の中から、前記熱伝導性樹脂組成物の粘度や、得られる熱伝導シートに要求される特性等に応じて適宜採用することができる。 The extrusion molding method and the mold molding method are not particularly limited, and the viscosity of the heat conductive resin composition and the obtained heat conduction can be selected from various known extrusion molding methods and mold molding methods. It can be appropriately employed depending on the characteristics required for the sheet.
 前記押出し成型法において、前記熱伝導性樹脂組成物をダイより押し出す際、あるいは前記金型成型法において、前記熱伝導性樹脂組成物を金型へ圧入する際、例えば、前記バインダ樹脂が流動し、その流動方向に沿って一部の炭素繊維が配向するが、多くは配向がランダムになっている。 When extruding the thermally conductive resin composition from a die in the extrusion molding method, or when pressing the thermally conductive resin composition into a mold in the mold molding method, for example, the binder resin flows. Some carbon fibers are oriented along the flow direction, but many are randomly oriented.
 なお、ダイの先端にスリットを取り付けた場合、押し出された成型体ブロックの幅方向に対して中央部は、炭素繊維が配向しやすい傾向がある。その一方、成型体ブロックの幅方向に対して周辺部は、スリット壁の影響を受けて炭素繊維がランダムに配向されやすい。 In addition, when a slit is attached to the tip of the die, the carbon fiber tends to be easily oriented at the center with respect to the width direction of the extruded molded body block. On the other hand, the carbon fiber tends to be randomly oriented in the peripheral portion with respect to the width direction of the molded body block due to the influence of the slit wall.
 成型体(ブロック状の成型体)の大きさ及び形状は、求められる熱伝導シートの大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5cm~15cmで横の大きさが0.5cm~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。 The size and shape of the molded body (block-shaped molded body) can be determined according to the required size of the heat conductive sheet. For example, there is a rectangular parallelepiped having a vertical size of 0.5 cm to 15 cm and a horizontal size of 0.5 cm to 15 cm. The length of the rectangular parallelepiped may be determined as necessary.
 前記成型体作製工程における前記熱伝導性樹脂組成物の硬化は熱硬化であることが好ましい。前記熱硬化における硬化温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記バインダ樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有する場合、80℃~120℃が好ましい。前記熱硬化における硬化時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1時間~10時間などが挙げられる。 The curing of the thermally conductive resin composition in the molded body production step is preferably thermosetting. The curing temperature in the thermosetting is not particularly limited and may be appropriately selected depending on the intended purpose. For example, when the binder resin contains a liquid silicone gel main component and a curing agent, 80 ° C. to 120 ° C. is preferred. There is no restriction | limiting in particular as the curing time in the said thermosetting, According to the objective, it can select suitably, For example, 1 to 10 hours etc. are mentioned.
<成型体シート作製工程>
 前記成型体シート作製工程としては、前記成型体をシート状に切断して、表面において前記熱伝導性フィラーが突出した成型体シートを得る工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、スライス装置により行うことができる。
<Molded sheet production process>
The molded body sheet production step is not particularly limited as long as it is a process of cutting the molded body into a sheet shape and obtaining a molded body sheet with the thermally conductive filler protruding on the surface, and is appropriately selected depending on the purpose. For example, it can be performed by a slicing apparatus.
 前記成型体シート作製工程においては、前記成型体をシート状に切断して、成型体シートを得る。得られる前記成型体シートの表面においては、前記熱伝導性フィラーが突出している。これは、前記成型体をスライス装置等によりシート状に切断する際に、前記バインダ樹脂の硬化成分と、前記熱伝導性フィラーとの硬度差により、前記バインダ樹脂の硬化成分がスライス装置等の切断部材に引っ張られて伸長し、前記成型体シート表面において、前記熱伝導性フィラー表面から前記バインダ樹脂の硬化成分が除去されるためと考えられる。 In the molded body sheet manufacturing step, the molded body is cut into a sheet shape to obtain a molded body sheet. The thermally conductive filler protrudes from the surface of the obtained molded body sheet. This is because when the molded body is cut into a sheet shape by a slicing device or the like, the cured component of the binder resin is cut by a slicing device or the like due to a difference in hardness between the cured component of the binder resin and the thermally conductive filler. This is considered to be because the cured component of the binder resin is removed from the surface of the thermally conductive filler on the surface of the molded body sheet.
 前記スライス装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超音波カッター、かんな(鉋)などが挙げられる。前記成型体の切断方向としては、成型方法が押出し成型法である場合には、押出し方向に配向しているものもあるために押出し方向に対して60度~120度が好ましく、70度~100度がより好ましく、90度(垂直)が特に好ましい。 The slicing apparatus is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an ultrasonic cutter and a planer. When the molding method is an extrusion molding method, the cutting direction of the molded body is preferably 60 ° to 120 ° with respect to the extrusion direction because some are oriented in the extrusion direction, and preferably 70 ° to 100 °. The degree is more preferable, and 90 degrees (vertical) is particularly preferable.
 前記成型体シートの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができる、例えば、1mm~5mmなどが挙げられる。 The average thickness of the molded sheet is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 1 mm to 5 mm.
<プレス工程>
 前記プレス工程としては、前記成型体シートをプレスして、前記成型体シートの表面を、突出した前記熱伝導性フィラーによる凸形状を追従するように、前記成型体シートから滲み出した滲出成分により覆う工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 ここで、「滲出成分」とは、前記熱伝導性樹脂組成物に含まれるが、硬化に寄与しなかった成分であって、非硬化性成分、及びバインダ樹脂のうちの硬化しなかった成分などを意味する。
<Pressing process>
In the pressing step, the molded body sheet is pressed, and the surface of the molded body sheet is caused by an exuding component that has exuded from the molded body sheet so as to follow the convex shape of the protruding thermal conductive filler. If it is the process of covering, there will be no restriction | limiting in particular, According to the objective, it can select suitably.
Here, the “exudation component” is a component that is included in the thermally conductive resin composition but does not contribute to curing, such as a non-curable component and a component that is not cured among the binder resin. Means.
 前記プレスは、例えば、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用して行うことができる。また、ピンチロールを使用して行ってもよい。 The pressing can be performed by using, for example, a pair of pressing devices including a flat plate and a press head having a flat surface. Moreover, you may carry out using a pinch roll.
 前記プレスの際の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、低すぎるとプレスをしない場合と熱抵抗が変わらない傾向があり、高すぎるとシートが延伸する傾向があるので、0.1MPa~100MPaが好ましく、0.5MPa~95MPaがより好ましい。 The pressure at the time of pressing is not particularly limited and can be appropriately selected according to the purpose. However, if it is too low, the thermal resistance tends to be the same as when not pressing, and if it is too high, the sheet is stretched. Since there is a tendency, 0.1 MPa to 100 MPa is preferable, and 0.5 MPa to 95 MPa is more preferable.
 前記プレスの時間としては、特に制限はなく、バインダ樹脂の成分、プレス圧力、シート面積、滲出成分の滲み出し量等に応じて、適宜選択することができる。 The pressing time is not particularly limited, and can be appropriately selected according to the binder resin component, the pressing pressure, the sheet area, the amount of the exuded component exuded, and the like.
 前記プレス工程においては、滲出成分の滲み出し、シート本体表面の被覆の効果をより促進させるために、ヒータを内蔵したプレスヘッドを用いて、加熱しながら行ってもよい。このような効果を高めるため、加熱温度はバインダ樹脂のガラス転移温度以上で行うことが好ましい。これにより、プレス時間を短縮することができる。 The pressing step may be performed while heating using a press head with a built-in heater in order to further promote the effect of exudation of the exuding component and the coating of the sheet body surface. In order to enhance such an effect, the heating temperature is preferably higher than the glass transition temperature of the binder resin. Thereby, press time can be shortened.
 前記プレス工程においては、前記成型体シートをプレスすることにより、シート本体より滲出成分を滲み出させ、前記滲出成分によって表面を被覆する。得られる熱伝導シートは、表面に、前記滲出成分に由来する微粘着性(タック性)が発現する。したがって、得られる熱伝導シートは、熱源や放熱部材の表面に対する追従性、密着性が向上し、熱抵抗を低減させることができる。また、前記滲出成分による被覆がシート表面の熱伝導性フィラーの形状を反映する程度の厚みであることで、熱抵抗の上昇を回避できる。 In the pressing step, the extruding component is exuded from the sheet body by pressing the molded sheet, and the surface is covered with the exuding component. The obtained heat conductive sheet exhibits fine tackiness (tackiness) derived from the exudation component on the surface. Therefore, the obtained heat conductive sheet can improve followability and adhesion to the surface of the heat source and the heat radiating member, and can reduce thermal resistance. Moreover, the increase in thermal resistance can be avoided because the coating with the exuding component has a thickness that reflects the shape of the thermally conductive filler on the sheet surface.
 また、熱伝導シートは、シート本体の表面が前記滲出成分によって被覆され、表面に微粘着性が発現することにより、放熱部材の主面への接着、あるいは、熱源の上面への仮固定が可能となる。したがって、熱伝導シートは、別途接着剤を用いる必要がなく、製造工程の省力化、低コスト化を実現することができる。 In addition, the surface of the heat conductive sheet is covered with the exuding component, and the adhesive surface is exposed to the main surface of the heat radiating member or temporarily fixed to the upper surface of the heat source. It becomes. Therefore, it is not necessary to use a separate adhesive for the heat conductive sheet, and it is possible to realize labor saving and cost reduction of the manufacturing process.
 さらに、熱伝導シートは、取扱い中に表面の微粘着性を喪失した場合にも、プレスを行うと、再度シート本体より前記滲出成分が滲み出し、前記滲出成分によって表面が被覆される。したがって、熱伝導シートは、放熱部材への接着位置や、熱源への仮固定位置がずれた場合にも、リペアが可能となる。 Furthermore, even when the surface of the heat conductive sheet loses its slight adhesiveness during handling, when the pressing is performed, the exuding component exudes from the sheet body again, and the surface is covered with the exuding component. Therefore, the heat conductive sheet can be repaired even when the position of adhesion to the heat radiating member or the position of temporary fixing to the heat source is shifted.
 また、熱伝導シートは、前記滲出成分がシート本体の全面から滲み出し、シート本体の表裏面のみならず側面も被覆される。前記滲出成分は絶縁性を有するため、熱伝導シートは、側面に絶縁性が付与される。したがって、熱伝導シートは、熱源と放熱部材とに挟持されて周辺に膨出し、周辺に配置された導電性の部材と接触した場合にも、熱伝導シートを介して熱源やヒートシンクと当該導電性部材とが短絡することを防止することができる Further, in the heat conductive sheet, the exudation component oozes out from the entire surface of the sheet body, and the side surface as well as the front and back surfaces of the sheet body are covered. Since the exuding component has an insulating property, the heat conductive sheet is provided with an insulating property on the side surface. Therefore, even when the heat conductive sheet is sandwiched between the heat source and the heat radiating member and bulges out to the periphery and comes into contact with the conductive member disposed in the periphery, the heat source and the heat sink and the conductive material are interposed via the heat conductive sheet. It is possible to prevent the member from being short-circuited.
 なお、熱伝導シートは、プレスされることにより厚み方向に圧縮され、熱伝導性フィラー同士の接触の頻度を増大させることができる。これにより、熱伝導シートの熱抵抗を低減させることが可能となる。 The heat conductive sheet is compressed in the thickness direction by being pressed, and the frequency of contact between the heat conductive fillers can be increased. Thereby, it becomes possible to reduce the thermal resistance of a heat conductive sheet.
 前記プレス工程は、前記成型体シートを所定の厚みに圧縮するためのスペーサを用いて行われることが好ましい。即ち、熱伝導シートは、図1に示すように、プレスヘッドと対峙する載置面にスペーサ10を配置して成型体シート11がプレスされることにより、スペーサ10の高さに応じた所定のシート厚に形成することができる。 The pressing step is preferably performed using a spacer for compressing the molded body sheet to a predetermined thickness. That is, as shown in FIG. 1, the heat conductive sheet is arranged at a predetermined surface corresponding to the height of the spacer 10 by placing the spacer 10 on the mounting surface facing the press head and pressing the molded body sheet 11. It can be formed to a sheet thickness.
 また、図2Aに示すように、スペーサ10を配置せずに、複数(例えば4枚)の成型体シート11を隣接させ、プレスヘッドによって一括して熱プレスすることにより、複数の成型体シート11が一体化された、図2Bに示す大判の熱伝導シート1を製造することができる。この場合、各成型体シート11は、同一寸法、同一厚みで形成された略矩形状をなし、一辺を隣接する成型体シート11の一辺にそろえて均等間隔で隣接させることが好ましい。これにより、継ぎ目や凹凸のない均一の厚さの熱伝導シート1を製造できる。また、大判の熱伝導シート1は、複数の成型体シート11が一体化されるとともに、プレスにより滲出成分が滲み出し、シート本体の表面全体が被覆される。 Further, as shown in FIG. 2A, a plurality of (for example, four) molded body sheets 11 are adjacent to each other without arranging the spacers 10, and are heat-pressed collectively by a press head, whereby a plurality of molded body sheets 11 are disposed. Can be manufactured as shown in FIG. 2B. In this case, each molded body sheet 11 has a substantially rectangular shape formed with the same dimensions and the same thickness, and it is preferable that one side is aligned with one side of the adjacent molded body sheet 11 at equal intervals. Thereby, the heat conductive sheet 1 of the uniform thickness without a joint line and an unevenness | corrugation can be manufactured. Further, in the large heat conductive sheet 1, a plurality of molded sheets 11 are integrated, and exuded components are exuded by pressing, so that the entire surface of the sheet main body is covered.
<L*a*b*表色系における明度L*について>
 物体の色は、一般に、明度(明るさ)、色相(色合い)及び彩度(鮮やかさ)の3つの要素からなる。これらを正確に測定し、表現するには、これらを客観的に数値化して表現する表色系が必要となる。このような表色系としては、例えば、L*a*b*表色系が挙げられる。L*a*b*表色系は、例えば、市販されている分光測色計などの測定器によって、容易に測定を行うことができる。
<Lightness L * in L * a * b * color system>
The color of an object generally consists of three elements: lightness (brightness), hue (hue), and saturation (brightness). In order to accurately measure and express these, a color system that expresses these numerically objectively is necessary. An example of such a color system is the L * a * b * color system. The L * a * b * color system can be easily measured by a measuring instrument such as a commercially available spectrocolorimeter.
 L*a*b*表色系は、例えば、「JIS Z 8781-4」及び「JIS Z 8730」に記載されている表色系であって、各色を球形の色空間に配置して示される。L*a*b*表色系においては、明度を縦軸(z軸)方向の位置で示し、色相を外周方向の位置で示し、彩度を中心軸からの距離で示す。 The L * a * b * color system is a color system described in, for example, “JIS Z 8781-4” and “JIS Z 8730”, and is shown by arranging each color in a spherical color space. . In the L * a * b * color system, lightness is indicated by a position in the vertical axis (z-axis) direction, hue is indicated by a position in the outer peripheral direction, and saturation is indicated by a distance from the central axis.
 明度を示す縦軸(z軸)方向の位置は、L*で示される。明度L*の値は正の数であり、その数字が小さいほど明度が低いことになり、暗くなる傾向を持つ。具体的に、L*の値は黒に相当する0から白に相当する100まで変化する。 The position in the vertical axis (z-axis) direction indicating brightness is indicated by L *. The value of the lightness L * is a positive number. The smaller the number, the lower the lightness and the darker the tendency. Specifically, the value of L * varies from 0 corresponding to black to 100 corresponding to white.
 また、球形の色空間をL*=50の位置で水平に切断した断面図において、x軸の正方向が赤方向、y軸の正方向が黄方向、x軸の負方向が緑方向、y軸の負方向が青方向である。x軸方向の位置は、-60~+60の値をとるa*によって表される。y軸方向の位置は、-60~+60の値をとるb*によって表される。このように、a*と、b*は、色度を表す正負の数字であり、0に近づくほど黒くなる。色相及び彩度は、これらのa*の値及びb*の値によって表される。 Further, in a cross-sectional view obtained by horizontally cutting a spherical color space at a position of L * = 50, the positive direction of the x axis is the red direction, the positive direction of the y axis is the yellow direction, the negative direction of the x axis is the green direction, y The negative direction of the axis is the blue direction. The position in the x-axis direction is represented by a * taking a value from −60 to +60. The position in the y-axis direction is represented by b * taking values from −60 to +60. Thus, a * and b * are positive and negative numbers representing chromaticity, and the closer to 0, the blacker the color becomes. Hue and saturation are represented by these a * and b * values.
 L*a*b*表色系においては、明度L*が大きくなると白っぽくなり、明度L*が小さくなると黒っぽくなる。また、L*a*b*表色系においては、a*が-1未満になると緑っぽくなり、a*が-1以上となると赤っぽくなる。また、b*が-1未満になると青っぽくなり、b*が+1を超えると黄色っぽくなる。 In the L * a * b * color system, the lightness L * becomes whitish and the lightness L * becomes darker. In the L * a * b * color system, the color becomes green when a * is less than −1 and the color becomes red when a * is −1 or more. When b * is less than -1, the color becomes bluish, and when b * exceeds +1, the color becomes yellow.
 熱伝導シートは、例えば、熱伝導性フィラーとしての炭素繊維と、球状の無機物フィラーとを含有し、炭素繊維の体積%を大きくすると、表面の明度L*が小さくなる傾向にあり、球状の無機物フィラーの体積%を大きくすると明度L*が大きくなる傾向にある。具体的には、炭素繊維と、球状の無機物フィラーとを含有し、球状の無機物フィラーが、アルミナ、窒化アルミニウム、及び水酸化アルミニウムのうち、少なくともアルミナを含む1種以上である熱伝導シートの表面を観察した場合において、炭素繊維の面積が多く、表面に露出される白色のアルミナや窒化アルミニウムが少ない場合、明度L*が小さくなる傾向にあり、炭素繊維の面積が少なく、表面に露出される白色のアルミナや窒化アルミニウムが多い場合、明度L*が大きくなる傾向にある。 The heat conductive sheet contains, for example, carbon fiber as a heat conductive filler and a spherical inorganic filler. When the volume percentage of the carbon fiber is increased, the lightness L * of the surface tends to decrease, and the spherical inorganic substance. When the volume percentage of the filler is increased, the lightness L * tends to increase. Specifically, the surface of the heat conductive sheet containing carbon fibers and a spherical inorganic filler, and the spherical inorganic filler is at least one of alumina, aluminum nitride, and aluminum hydroxide containing at least alumina. When the surface area of the carbon fiber is large and the amount of white alumina or aluminum nitride exposed on the surface is small, the lightness L * tends to be small and the area of the carbon fiber is small and exposed on the surface. When there is much white alumina or aluminum nitride, the lightness L * tends to increase.
 高い熱伝導率を有する熱伝導シートを得るためには、熱伝導率の高い炭素繊維の含有量を単純に増やすのではなく、形状を保持するために球状の無機物フィラーを添加しなければならない。また、押出し時の熱伝導性樹脂組成物の粘度を下げるために、炭素繊維及び球状の無機物フィラーの配合を適量にしなければならない。 In order to obtain a heat conductive sheet having a high heat conductivity, a spherical inorganic filler must be added to maintain the shape rather than simply increasing the content of carbon fiber having a high heat conductivity. Moreover, in order to reduce the viscosity of the heat conductive resin composition at the time of extrusion, the blending of carbon fibers and spherical inorganic fillers must be made to an appropriate amount.
 明度L*の値が、所定の範囲内であることにより、良好な熱伝導率が得られることを見出した。すなわち、本実施の形態に係る熱伝導シートは、熱伝導性フィラーを含有し、熱伝導シートの表面のL*a*b*表色系におけるL*値が、25以上70以下であることが好ましい。熱伝導性フィラーは、炭素繊維と、球状の無機物フィラーとを含有することがより好ましい。これにより、熱伝導シートの厚み方向の熱伝導性を良好にすることができる。シートの表面がまだら模様、または筋状のラインが入っていても上記のL*の範囲に入っていれば良い。シートの表面がまだら模様、または筋状のラインが入っている場合は、厚み方向に炭素繊維が一定方向に配向しておらずランダムに配向している。ランダムに配向していることで炭素繊維同士の交絡と球状の無機物フィラーの接点が増え、一定方向に配向しているよりも熱伝導率が大きくなる。中空状の型の内部に熱伝導性樹脂組成物を押出しする工程において、スリットを通って出た熱伝導性樹脂組成物どうしが中空状の型の内部で密着する。その過程において表面に色の濃淡ができる。また、混合時間や撹拌速度などを調整することで熱伝導シートの表面のL*a*b*表色系におけるL*値を調整できる。混合時間を長くしたり、撹拌速度を大きくすると繊維状フィラーが小さくなり、L*値が小さくなる。また、混合時間を短くしたり、撹拌速度を小さくすると繊維状フィラーが小さくならないので、L*を大きくすることができる。また、シートの表面に光沢がある場合はL*値が大きくなる傾向にある。オイルを混合したり、液状シリコーンゲルの主剤と、硬化剤との比率を変えることでシート表面の光沢度合いを調整することもできる。 It was found that good thermal conductivity can be obtained when the value of the lightness L * is within a predetermined range. That is, the heat conductive sheet according to the present embodiment contains a heat conductive filler, and the L * value in the L * a * b * color system on the surface of the heat conductive sheet is 25 or more and 70 or less. preferable. It is more preferable that the thermally conductive filler contains carbon fiber and a spherical inorganic filler. Thereby, the heat conductivity of the thickness direction of a heat conductive sheet can be made favorable. Even if the surface of the sheet has a mottled pattern or a streak line, it is sufficient that it is within the range of the above L *. When the surface of the sheet has a mottled pattern or a streak line, the carbon fibers are not oriented in a certain direction in the thickness direction but are oriented randomly. The random orientation increases the number of entanglements between the carbon fibers and the contact point of the spherical inorganic filler, and the thermal conductivity is higher than that in the fixed direction. In the step of extruding the thermally conductive resin composition into the hollow mold, the thermally conductive resin compositions that have come out through the slits adhere to each other inside the hollow mold. In the process, color shades are formed on the surface. Moreover, L * value in the L * a * b * color system of the surface of a heat conductive sheet can be adjusted by adjusting mixing time, stirring speed, etc. If the mixing time is increased or the stirring speed is increased, the fibrous filler becomes smaller and the L * value becomes smaller. Further, if the mixing time is shortened or the stirring speed is decreased, the fibrous filler does not become small, so that L * can be increased. Further, when the surface of the sheet is glossy, the L * value tends to increase. The glossiness of the sheet surface can be adjusted by mixing oil or changing the ratio of the main component of the liquid silicone gel and the curing agent.
(半導体装置)
 本発明の半導体装置は、熱源と、放熱部材と、熱伝導シートとを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記熱伝導シートは、前記熱源と前記放熱部材との間に挟持されている。
(Semiconductor device)
The semiconductor device of the present invention includes at least a heat source, a heat radiating member, and a heat conductive sheet, and further includes other members as necessary.
The heat conductive sheet is sandwiched between the heat source and the heat radiating member.
<熱源>
 前記熱源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子部品などが挙げられる。前記電子部品としては、例えば、CPU、MPU、グラフィック演算素子などが挙げられる。
<Heat source>
There is no restriction | limiting in particular as said heat source, According to the objective, it can select suitably, For example, an electronic component etc. are mentioned. Examples of the electronic component include a CPU, MPU, graphic arithmetic element, and the like.
<放熱部材>
 前記放熱部材としては、前記熱源から発生する熱を伝導して外部に放散させるものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、放熱器、冷却器、ヒートシンク、ヒートスプレッダ、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、筐体などが挙げられる。
<Heat dissipation member>
The heat radiating member is not particularly limited as long as the heat generated from the heat source is conducted and dissipated to the outside, and can be appropriately selected according to the purpose. For example, a heat radiating device, a cooler, a heat sink , Heat spreader, die pad, printed circuit board, cooling fan, Peltier element, heat pipe, housing, and the like.
<熱伝導シート>
 前記熱伝導シートは、本発明の前記熱伝導シートである。
<Heat conduction sheet>
The heat conductive sheet is the heat conductive sheet of the present invention.
 本発明の半導体装置の一例を図を用いて説明する。 An example of the semiconductor device of the present invention will be described with reference to the drawings.
 図3は、本発明の半導体装置の一例を示す断面模式図である。
 半導体装置は、熱伝導シート1と、ヒートスプレッダ2と、電子部品3と、ヒートシンク5と、配線基板6とを有する。
FIG. 3 is a schematic cross-sectional view showing an example of the semiconductor device of the present invention.
The semiconductor device includes a heat conductive sheet 1, a heat spreader 2, an electronic component 3, a heat sink 5, and a wiring substrate 6.
 熱伝導シート1は、電子部品3の発する熱を放熱するものであり、図1に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、熱伝導シート1は、ヒートスプレッダ2とヒートシンク5との間に挟持される。そして、熱伝導シート1は、ヒートスプレッダ2とともに、電子部品3の熱を放熱する。
 熱伝導シート1は、シート本体7より滲出成分8が滲み出し、滲出成分8によって表面が被覆されている。
The heat conductive sheet 1 radiates heat generated by the electronic component 3, and is fixed to the main surface 2 a facing the electronic component 3 of the heat spreader 2, as shown in FIG. 1, and the electronic component 3, the heat spreader 2, It is sandwiched between the two. Further, the heat conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5. The heat conductive sheet 1 radiates heat of the electronic component 3 together with the heat spreader 2.
The heat conductive sheet 1 has an exuded component 8 that has exuded from the sheet body 7 and is covered with the exuded component 8.
 ヒートスプレッダ2は、例えば、方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに熱伝導シート1が設けられ、また主面2aと反対側の他面2cに熱伝導シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品3の熱を吸熱することから、例えば、熱伝導性の良い銅やアルミニウムを用いて形成することができる。 The heat spreader 2 is formed in, for example, a rectangular plate shape, and has a main surface 2a facing the electronic component 3 and a side wall 2b erected along the outer periphery of the main surface 2a. In the heat spreader 2, a heat conductive sheet 1 is provided on a main surface 2a surrounded by a side wall 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1. The heat spreader 2 has a higher thermal conductivity, so that the thermal resistance is reduced and the heat of the electronic component 3 such as a semiconductor element is efficiently absorbed. Therefore, the heat spreader 2 is formed using, for example, copper or aluminum having good thermal conductivity. be able to.
 電子部品3は、例えば、BGA等の半導体パッケージであり、配線基板6へ実装される。また、ヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。 The electronic component 3 is a semiconductor package such as BGA, for example, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, and thereby surrounds the electronic component 3 at a predetermined distance by the side wall 2b.
 そして、ヒートスプレッダ2の主面2aに、熱伝導シート1が接着されることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する。ヒートスプレッダ2と熱伝導シート1との接着は、熱伝導シート1自身の粘着力によって行うことができる。 Then, the heat conductive sheet 1 is adhered to the main surface 2 a of the heat spreader 2, thereby absorbing heat generated by the electronic component 3 and dissipating it from the heat sink 5. Adhesion between the heat spreader 2 and the heat conductive sheet 1 can be performed by the adhesive force of the heat conductive sheet 1 itself.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
 実施例1では、2液性の付加反応型液状シリコーン樹脂に、シランカップリング剤でカップリング処理した平均粒径4μmのアルミナ粒子(熱伝導性粒子:電気化学工業株式会社製)と、平均繊維長150μm、平均繊維径9μmのピッチ系炭素繊維(熱伝導性繊維:日本グラファイトファイバー株式会社製)と、シランカップリング剤でカップリング処理した平均粒径1μmの窒化アルミ(熱伝導性粒子:株式会社トクヤマ製)とを、体積比で、2液性の付加反応型液状シリコーン樹脂:アルミナ粒子:ピッチ系炭素繊維:窒化アルミ=34vol%:20vol%:22vol%:24vol%となるように分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(主剤)35質量%、シリコーンB液(硬化剤)65質量%の比率で混合したものである。得られたシリコーン樹脂組成物を、内壁に剥離処理したPETフィルムを貼った直方体状の金型(50mm×50mm)の中に押し出してシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で6時間硬化してシリコーン硬化物とした。
(Example 1)
In Example 1, alumina particles (thermal conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4 μm, which are coupled to a two-component addition reaction type liquid silicone resin with a silane coupling agent, and average fibers Pitch-based carbon fiber with a length of 150 μm and an average fiber diameter of 9 μm (thermal conductive fiber: manufactured by Nippon Graphite Fiber Co., Ltd.) and aluminum nitride with an average particle diameter of 1 μm coupled with a silane coupling agent (thermal conductive particles: stock) (Manufactured by Tokuyama Co., Ltd.) is dispersed in a volume ratio such that the two-component addition reaction type liquid silicone resin: alumina particles: pitch-based carbon fiber: aluminum nitride = 34 vol%: 20 vol%: 22 vol%: 24 vol% Thus, a silicone resin composition (thermally conductive resin composition) was prepared. The two-component addition reaction type liquid silicone resin is a mixture of 35% by mass of silicone A liquid (main agent) and 65% by mass of silicone B liquid (curing agent). The obtained silicone resin composition was extruded into a rectangular parallelepiped mold (50 mm × 50 mm) with a PET film peel-treated on the inner wall to mold a silicone molded body. The obtained silicone molding was cured in an oven at 100 ° C. for 6 hours to obtain a silicone cured product.
 得られたシリコーン硬化物を、オーブンにて100℃、1時間加熱した後、超音波カッターで切断し、厚み3.05mmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。 The obtained silicone cured product was heated in an oven at 100 ° C. for 1 hour and then cut with an ultrasonic cutter to obtain a molded body sheet having a thickness of 3.05 mm. The slice speed of the ultrasonic cutter was 50 mm per second. The ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
 得られた成型体シートを剥離処理をしたPETフィルムで挟んだ後、厚み2.98mmのスペーサを入れてプレスすることにより、厚み3.00mmの熱伝導シートサンプルを得た。プレス条件は、50℃、0.5MPa設定で、3minとした。スライス直後の表面に見えるフィラーはバインダで被覆されていないが、プレスによってフィラーがシートに押し付けられ、シート内に没入することでバインダ成分が表面に出てくるのでシート表面のフィラー形状を反映してバインダで被覆されている。プレス後にシートと接触していた剥離PET面にはバインダ成分が確認できる。 After sandwiching the obtained molded sheet with a peeled PET film, a spacer with a thickness of 2.98 mm was inserted and pressed to obtain a heat conductive sheet sample with a thickness of 3.00 mm. The pressing conditions were 3 min at 50 ° C. and 0.5 MPa setting. The filler visible on the surface immediately after slicing is not covered with the binder, but the filler is pressed against the sheet by the press, and the binder component emerges on the surface by immersing in the sheet, so it reflects the filler shape on the sheet surface Covered with a binder. A binder component can be confirmed on the peeled PET surface that was in contact with the sheet after pressing.
(実施例2)
 実施例2では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液40質量%と、シリコーンB液60質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
(Example 2)
In Example 2, as a two-component addition reaction type liquid silicone resin, except for using a mixture of 40% by mass of a silicone A solution and 60% by mass of a silicone B solution, the same conditions as in Example 1, A heat conductive sheet sample was prepared.
(実施例3)
 実施例3では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液45質量%と、シリコーンB液55質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
(Example 3)
In Example 3, as a two-component addition reaction type liquid silicone resin, except that a mixture of 45% by mass of silicone A solution and 55% by mass of silicone B solution was used, the same conditions as in Example 1, A heat conductive sheet sample was prepared.
(実施例4)
 実施例4では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液50質量%と、シリコーンB液50質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
 得られた熱伝導シートサンプルの表面のSEM写真を図4A及び図4Bに示した。
Example 4
In Example 4, as the two-component addition reaction type liquid silicone resin, except that a mixture of 50% by mass of silicone A solution and 50% by mass of silicone B solution was used, the same conditions as in Example 1 A heat conductive sheet sample was prepared.
The SEM photograph of the surface of the obtained heat conductive sheet sample was shown to FIG. 4A and FIG. 4B.
(実施例5)
 実施例5では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液55質量%と、シリコーンB液45質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
 得られた熱伝導シートサンプルの表面のSEM写真を図5A及び図5Bに示した。
(Example 5)
In Example 5, as the two-component addition reaction type liquid silicone resin, except that a mixture of 55% by mass of silicone A solution and 45% by mass of silicone B solution was used, the same conditions as in Example 1, A heat conductive sheet sample was prepared.
The SEM photograph of the surface of the obtained heat conductive sheet sample was shown to FIG. 5A and 5B.
(実施例6)
 実施例6では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液60質量%と、シリコーンB液40質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
 得られた熱伝導シートサンプルの表面のSEM写真を図6A及び図6Bに示した。
(Example 6)
In Example 6, as a two-component addition reaction type liquid silicone resin, except that a mixture of 60% by mass of silicone A solution and 40% by mass of silicone B solution was used, the same conditions as in Example 1, A heat conductive sheet sample was prepared.
The SEM photograph of the surface of the obtained heat conductive sheet sample is shown in FIGS. 6A and 6B.
(実施例7)
 実施例7では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液65質量%と、シリコーンB液35質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
 得られた熱伝導シートサンプルの表面のSEM写真を図7A及び図7Bに示した。
(Example 7)
In Example 7, as a two-component addition reaction type liquid silicone resin, except that a mixture of 65% by mass of silicone A solution and 35% by mass of silicone B solution was used, the same conditions as in Example 1, A heat conductive sheet sample was prepared.
The SEM photograph of the surface of the obtained heat conductive sheet sample is shown in FIGS. 7A and 7B.
(比較例1)
 比較例1では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液25質量%と、シリコーンB液75質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
(Comparative Example 1)
In Comparative Example 1, as the two-component addition reaction type liquid silicone resin, except that a mixture of 25% by mass of silicone A solution and 75% by mass of silicone B solution was used, the same conditions as in Example 1 A heat conductive sheet sample was prepared.
(比較例2)
 比較例2では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液30質量%と、シリコーンB液70質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
 得られた熱伝導シートサンプルの表面のSEM写真を図8A及び図8Bに示した。
(Comparative Example 2)
In Comparative Example 2, the two-component addition reaction type liquid silicone resin was the same as in Example 1 except that a mixture of 30% by mass of silicone A solution and 70% by mass of silicone B solution was used. A heat conductive sheet sample was prepared.
The SEM photograph of the surface of the obtained heat conductive sheet sample was shown to FIG. 8A and 8B.
(比較例3)
 比較例3では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液70質量%と、シリコーンB液30質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
(Comparative Example 3)
In Comparative Example 3, the two-component addition reaction type liquid silicone resin was the same as in Example 1 except that a mixture of 70% by mass of silicone A solution and 30% by mass of silicone B solution was used. A heat conductive sheet sample was prepared.
(比較例4)
 比較例4では、2液性の付加反応型液状シリコーン樹脂として、シリコーンA液75質量%と、シリコーンB液25質量%とを混合したものを用いた他は、実施例1と同じ条件で、熱伝導シートサンプルを作製した。
(Comparative Example 4)
In Comparative Example 4, the two-component addition reaction type liquid silicone resin was the same as in Example 1 except that a mixture of 75% by mass of silicone A solution and 25% by mass of silicone B solution was used. A heat conductive sheet sample was prepared.
<作業性の評価>
 各熱伝導シートサンプルについて、シート状への切り出しや、剥離フィルムから剥離して貼り付けを行う際の作業性について評価をした。評価基準としては、超音波カッターによりシリコーン硬化物から厚み2.00mmの成型体シートを切り出すことができ、かつ熱伝導シートサンプルからPETを剥離する際にシート本体の変形もなく、所定のタック性を発現した状態で貼着可能である場合を良好(〇)、切り出し後のシートの剥離・貼付作業には支障はないが、微粘着性が不足していた場合を可(△)、切り出し作業や剥離・貼着作業に支障が出た場合を不良(×)とした。結果を表1-1及び表1-2に示した。
<Evaluation of workability>
About each heat conductive sheet sample, the workability | operativity at the time of cutting out to a sheet form and peeling and sticking from a peeling film was evaluated. As an evaluation standard, a molded sheet having a thickness of 2.00 mm can be cut out from a cured silicone with an ultrasonic cutter, and there is no deformation of the sheet main body when the PET is peeled from the heat conductive sheet sample. Good when it can be stuck in a state where it has developed (○), there is no hindrance to the peeling and sticking work of the sheet after cutting, but it is possible when the adhesive is insufficient (△), cutting work And the case where trouble occurred in the peeling / sticking work was judged as defective (x). The results are shown in Table 1-1 and Table 1-2.
<引張破断伸び、及び引張破断強度>
 各実施例、及び各比較例のシリコーン硬化物を、厚み2.00mmとなるように切断して成型体シートを得た後、実施例1と同じ条件でプレスし、さらに50mm×10mmに切断した。しかる後、引張圧縮試験機((株)エーアンドデー製、テンシロンRTG1225)を用いて、引張速度100mm/minで長手方向に引張り、破断するまでの伸び率と破断時の強度を測定した。結果を表1-1及び表1-2に示した。
<Tensile breaking elongation and tensile breaking strength>
The silicone cured product of each example and each comparative example was cut to a thickness of 2.00 mm to obtain a molded body sheet, then pressed under the same conditions as in Example 1, and further cut to 50 mm × 10 mm. . Thereafter, using a tensile and compression tester (manufactured by A & D Co., Ltd., Tensilon RTG1225), the sample was pulled in the longitudinal direction at a tensile speed of 100 mm / min, and the elongation rate until breaking and the strength at break were measured. The results are shown in Table 1-1 and Table 1-2.
<微粘着性>
 各熱伝導シートサンプルについての微粘着性の評価は、シリコーン硬化物をスライスして得られた成型体シートを剥離処理していないPETフィルムで挟んだ後、厚み2.98mmのスペーサを入れて80℃、2.45MPa設定で、3minプレスした後、常温まで冷却することにより、微粘着性評価用熱伝導シートサンプルを得た。
 この微粘着性評価用熱伝導シートサンプルのPETフィルムの端部を手で剥離し、試験機で当該端部を挟持した後、90°上方に50mm/minの速度で引っ張り、荷重を測定し、剥離力(荷重)に応じて微粘着性(タック性)について評価した。各サンプルの剥離力は所定の幅を持って計測される。
 評価基準は、以下のとおりである。結果を表1-1及び表1-2に示した。
 ◎(最適):剥離力が0.05(N/cm)~0.25(N/cm)の範囲で振れた場合
 ○(良好):剥離力が0.02(N/cm)~0.05(N/cm)、又は0.20(N/cm)~0.30(N/cm)の範囲で振れた場合
 △(普通):剥離力が0(N/cm)~0.04(N/cm)の範囲で振れた場合
 ×(不良):シートの一部でも微粘着性が発現しない箇所が認められた場合
<Slight adhesion>
The evaluation of the slight adhesiveness of each heat conductive sheet sample was carried out by sandwiching a molded body sheet obtained by slicing a cured silicone product with a PET film not subjected to release treatment, and then inserting a spacer having a thickness of 2.98 mm. After pressing for 3 min at 2 ° C. at a setting of 2.45 MPa, a heat conductive sheet sample for evaluating slight adhesion was obtained by cooling to room temperature.
After peeling the end of the PET film of the heat-conducting sheet sample for slightly tacky evaluation by hand and sandwiching the end with a tester, pulling it at a speed of 50 mm / min 90 ° upward, measuring the load, The slight adhesion (tackiness) was evaluated according to the peeling force (load). The peeling force of each sample is measured with a predetermined width.
The evaluation criteria are as follows. The results are shown in Table 1-1 and Table 1-2.
A (optimal): When the peel force fluctuates in the range of 0.05 (N / cm) to 0.25 (N / cm) ○ (Good): The peel force is 0.02 (N / cm) to 0. 05 (N / cm), or in the range of 0.20 (N / cm) to 0.30 (N / cm) Δ (normal): peeling force is 0 (N / cm) to 0.04 ( N / cm) In the case of swinging in the range × (defect): In the case where a part of the sheet that does not exhibit slight adhesiveness is observed
<L*値>
 熱伝導シートの表面について、L*a*b*表色系に於けるL*値を測定した。測定には、色彩色差計(コニカミノルタ(株)製、CR-221)を用いた。結果を表1-1及び表1-2に示した。
<L * value>
The L * value in the L * a * b * color system was measured for the surface of the heat conductive sheet. For the measurement, a color difference meter (manufactured by Konica Minolta Co., Ltd., CR-221) was used. The results are shown in Table 1-1 and Table 1-2.
<熱抵抗>
 各熱伝導シートの熱抵抗は、ASTM D 5470に準拠して、熱伝導率測定装置(ソニー株式会社製)を用い、荷重1kgf/cmをかけて測定した。結果を表1-1及び表1-2に示した。
<Thermal resistance>
The thermal resistance of each thermal conductive sheet was measured using a thermal conductivity measuring device (manufactured by Sony Corporation) in accordance with ASTM D 5470 and applying a load of 1 kgf / cm 2 . The results are shown in Table 1-1 and Table 1-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~7に係る熱伝導シートサンプルでは、シートの全表面にわたって表面のフィラーの形状を反映してバインダ樹脂の未硬化成分(滲出成分)が滲み出し、被覆されることにより、適度な微粘着性が発現されている。したがって、実施例1~7に係る熱伝導シートサンプルは、貼り付け対象の表面に対する追従性、密着性が向上し、熱抵抗を低減させることができた。 In the heat conductive sheet samples according to Examples 1 to 7, the uncured component (exuded component) of the binder resin exudes and is coated to reflect the shape of the surface filler over the entire surface of the sheet. Adhesiveness is expressed. Therefore, the heat conductive sheet samples according to Examples 1 to 7 have improved followability and adhesion to the surface to be pasted, and were able to reduce thermal resistance.
 また、実施例1~7に係る熱伝導シートサンプルは、表面がバインダ樹脂の未硬化成分(滲出成分)によって被覆され、表面に微粘着性が付与されることにより、仮固定が可能となり、別途接着剤を用いる必要がなく、製造工程の省力化、低コスト化を実現することができる。 In addition, the heat conductive sheet samples according to Examples 1 to 7 can be temporarily fixed by coating the surface with an uncured component (exudation component) of the binder resin and imparting slight adhesiveness to the surface. There is no need to use an adhesive, and labor saving and cost reduction of the manufacturing process can be realized.
 一方、比較例1、2に係る熱伝導シートサンプルでは、シリコーンA液の構成比率が低く、30質量%以下であったため、未硬化成分(滲出成分)が十分に残っておらず、プレスすることによってもシートの全表面を被覆するに至らず、微粘着性は発現しなかった。また、比較例1、2に係る熱伝導シートサンプルは、柔軟性に欠けるとともに、炭素繊維が表面に露出しているため、接着対象への追従性、密着性が悪く、熱抵抗が上昇した。 On the other hand, in the heat conductive sheet samples according to Comparative Examples 1 and 2, since the composition ratio of the silicone A liquid was low and 30% by mass or less, the uncured component (exudation component) did not remain sufficiently and was pressed. As a result, the entire surface of the sheet was not covered, and no slight tackiness was exhibited. Moreover, since the heat conductive sheet sample which concerns on the comparative examples 1 and 2 lacked a softness | flexibility, and the carbon fiber was exposed to the surface, the followable | trackability and adhesiveness to the adhesion | attachment object were bad, and heat resistance raised.
 また、比較例3、4に係る熱伝導シートサンプルでは、シリコーンA液の構成比率が高く、70質量%以上であったため、シート本体に形状を維持できる程度の硬さがなく、PETフィルムを剥離しようとするとシート形状が維持できず、取扱いが困難である。また、比較例3、4に係る熱伝導シートサンプルは、プレスにより、炭素繊維が面方向に傾倒し、熱伝導シート表面が平滑になり、熱抵抗が上昇した。また、シリコーン硬化物の硬さが足りず、薄いシート状に切り出す工程も困難であった。 Moreover, in the heat conductive sheet sample which concerns on the comparative examples 3 and 4, since the composition ratio of the silicone A liquid was high and it was 70 mass% or more, there was no hardness which can maintain a shape in a sheet | seat main body, and it peeled PET film Attempts to maintain the sheet shape are difficult and handling is difficult. Further, in the heat conductive sheet samples according to Comparative Examples 3 and 4, the carbon fibers were tilted in the surface direction by pressing, the surface of the heat conductive sheet became smooth, and the thermal resistance increased. Moreover, the hardness of the silicone cured product was insufficient, and the process of cutting out into a thin sheet was difficult.
 本発明の熱伝導シートの製造方法は、熱源や放熱部材に対する密着性を向上させ、熱伝導性に優れ、また、粘着剤等を用いることなく仮固定を行うことができ、実装性に優れた熱伝導シートを製造できることから、熱源と放熱部材との間に挟持される熱伝導シートの製造に好適に用いることができる。 The method for producing a heat conductive sheet of the present invention improves adhesion to a heat source and a heat radiating member, is excellent in heat conductivity, can be temporarily fixed without using an adhesive, etc., and is excellent in mountability. Since a heat conductive sheet can be manufactured, it can be used suitably for manufacture of the heat conductive sheet clamped between a heat source and a heat radiating member.
 1  熱伝導シート
 2  ヒートスプレッダ
 2a 主面
 2b 側壁
 2c 
 3  電子部品
 3a 上面
 5  ヒートシンク
 6  配線基板
 7  シート本体
 8  滲出成分
 10 スペーサ
 11 成型体シート
DESCRIPTION OF SYMBOLS 1 Thermal conductive sheet 2 Heat spreader 2a Main surface 2b Side wall 2c
DESCRIPTION OF SYMBOLS 3 Electronic component 3a Upper surface 5 Heat sink 6 Wiring board 7 Sheet body 8 Exudation component 10 Spacer 11 Molded body sheet

Claims (10)

  1.  バインダ樹脂及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を所定の形状に成型して硬化することにより、前記熱伝導性樹脂組成物の成型体を得る成型体作製工程と、
     前記成型体をシート状に切断して、表面において前記熱伝導性フィラーが突出した成型体シートを得る成型体シート作製工程と、
     前記成型体シートをプレスして、前記成型体シートの表面を、突出した前記熱伝導性フィラーによる凸形状を追従するように、前記成型体シートから滲み出した滲出成分により覆う、プレス工程とを含むことを特徴とする熱伝導シートの製造方法。
    Molding a heat conductive resin composition containing a binder resin and a heat conductive filler into a predetermined shape and curing the molded body to obtain a molded body of the heat conductive resin composition; and
    Cutting the molded body into a sheet shape, and a molded body sheet manufacturing step for obtaining a molded body sheet with the thermally conductive filler protruding on the surface;
    Pressing the molded body sheet, and covering the surface of the molded body sheet with an exuding component that has exuded from the molded body sheet so as to follow the convex shape of the protruding thermal conductive filler. The manufacturing method of the heat conductive sheet characterized by including.
  2.  前記バインダ樹脂が、液状シリコーンゲルの主剤と、硬化剤とを含有し、
     前記主剤と前記硬化剤との配合割合が、質量比で主剤:硬化剤=35:65~65:35である請求項1に記載の熱伝導シートの製造方法。
    The binder resin contains a liquid silicone gel main ingredient and a curing agent,
    The method for producing a heat conductive sheet according to claim 1, wherein a mixing ratio of the main agent and the curing agent is, as a mass ratio, main agent: curing agent = 35: 65 to 65:35.
  3.  前記成型体作製工程が、中空状の型内に、前記熱伝導性樹脂組成物を充填し、前記熱伝導性樹脂組成物を熱硬化することにより行われ、
     前記熱伝導性フィラーが、炭素繊維、及び無機物フィラーを含有し、
     前記熱伝導シートにおいて、前記炭素繊維が、ランダムに配向している、請求項1から2のいずれかに記載の熱伝導シートの製造方法。
    The molded body preparation step is performed by filling the thermally conductive resin composition in a hollow mold and thermally curing the thermally conductive resin composition,
    The thermally conductive filler contains carbon fiber and an inorganic filler,
    The method for producing a heat conductive sheet according to claim 1, wherein the carbon fibers are randomly oriented in the heat conductive sheet.
  4.  前記プレス工程が、前記成型体シートを所定の厚みに圧縮するためのスペーサを用いて行われる請求項1から3のいずれかに記載の熱伝導シートの製造方法。 The method for producing a heat conductive sheet according to any one of claims 1 to 3, wherein the pressing step is performed using a spacer for compressing the molded body sheet to a predetermined thickness.
  5.  前記プレス工程が、複数の前記成型体シートを隣接し、一括してプレスすることにより行われ、前記複数の成型体シートが一体化された熱伝導シートを得る請求項1から4のいずれかに記載の熱伝導シートの製造方法。 5. The heat pressing sheet according to claim 1, wherein the pressing step is performed by pressing the plurality of molded body sheets adjacent to each other and collectively pressing to obtain a heat conductive sheet in which the plurality of molded body sheets are integrated. The manufacturing method of the heat conductive sheet of description.
  6.  バインダ樹脂及び熱伝導性フィラーを含有する熱伝導性樹脂組成物を硬化してなるシート本体を有する熱伝導シートであって、
     前記シート本体の表面が、突出した前記熱伝導性フィラーによる凸形状を追従するように、前記シート本体から滲み出した滲出成分で覆われていることを特徴とする熱伝導シート。
    A heat conductive sheet having a sheet body formed by curing a heat conductive resin composition containing a binder resin and a heat conductive filler,
    The heat conductive sheet, wherein the surface of the sheet main body is covered with an exuding component that has exuded from the sheet main body so as to follow the convex shape of the protruding heat conductive filler.
  7.  前記熱伝導性フィラーが、炭素繊維、及び無機物フィラーを含有する請求項6に記載の熱伝導シート。 The heat conductive sheet according to claim 6, wherein the heat conductive filler contains carbon fiber and an inorganic filler.
  8.  突出した前記熱伝導性フィラーによる凸形状において、前記炭素繊維の表面に前記無機物フィラーが付着している請求項7に記載の熱伝導シート。 The heat conductive sheet according to claim 7, wherein the inorganic filler is attached to the surface of the carbon fiber in a protruding shape formed by the protruding heat conductive filler.
  9.  請求項1から5のいずれかに記載の熱伝導シートの製造方法により製造されたことを特徴とする熱伝導シート。 A heat conductive sheet manufactured by the method for manufacturing a heat conductive sheet according to any one of claims 1 to 5.
  10.  熱源と、放熱部材と、前記熱源と前記放熱部材との間に挟持される熱伝導シートとを有し、
     前記熱伝導シートが、請求項6から9のいずれかに記載の熱伝導シートであることを特徴とする半導体装置。
    A heat source, a heat radiating member, and a heat conductive sheet sandwiched between the heat source and the heat radiating member,
    The semiconductor device according to claim 6, wherein the heat conductive sheet is the heat conductive sheet according to claim 6.
PCT/JP2015/084665 2014-12-25 2015-12-10 Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device WO2016104169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580067250.XA CN107004651B (en) 2014-12-25 2015-12-10 Manufacturing method, thermally conductive sheet and the semiconductor device of thermally conductive sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-262740 2014-12-25
JP2014262740 2014-12-25
JP2015-239317 2015-12-08
JP2015239317A JP6178389B2 (en) 2014-12-25 2015-12-08 Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2016104169A1 true WO2016104169A1 (en) 2016-06-30

Family

ID=56150199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084665 WO2016104169A1 (en) 2014-12-25 2015-12-10 Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device

Country Status (1)

Country Link
WO (1) WO2016104169A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739223A (en) * 2018-07-18 2020-01-31 迪睿合株式会社 Method for manufacturing thermally conductive sheet
CN110739224A (en) * 2018-07-18 2020-01-31 迪睿合株式会社 Method for manufacturing thermally conductive sheet
JP6960554B1 (en) * 2021-06-16 2021-11-05 デクセリアルズ株式会社 Method of manufacturing heat conductive sheet and heat conductive sheet
JP7093902B1 (en) 2021-05-12 2022-06-30 広東思泉新材料股▲フン▼有限公司 Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device
US11615999B1 (en) 2022-07-22 2023-03-28 GuangDong Suqun New Material Co., Ltd Oriented heat conducting sheet and preparation method thereof, and semiconductor heat dissipating device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215404A (en) * 2008-03-10 2009-09-24 Teijin Ltd Sheet-shaped thermally conductive molded product
JP2011074303A (en) * 2009-10-01 2011-04-14 Hitachi Chem Co Ltd Resin sheet, method for producing the same and thermal module using the same
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
JP2012038763A (en) * 2010-08-03 2012-02-23 Hitachi Chem Co Ltd Heat conducting sheet, method of producing the same, and heat radiator utilizing heat conducting sheet
JP5752299B2 (en) * 2013-07-01 2015-07-22 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5766335B2 (en) * 2013-07-01 2015-08-19 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215404A (en) * 2008-03-10 2009-09-24 Teijin Ltd Sheet-shaped thermally conductive molded product
JP2011074303A (en) * 2009-10-01 2011-04-14 Hitachi Chem Co Ltd Resin sheet, method for producing the same and thermal module using the same
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet
JP2012038763A (en) * 2010-08-03 2012-02-23 Hitachi Chem Co Ltd Heat conducting sheet, method of producing the same, and heat radiator utilizing heat conducting sheet
JP5752299B2 (en) * 2013-07-01 2015-07-22 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5766335B2 (en) * 2013-07-01 2015-08-19 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739223A (en) * 2018-07-18 2020-01-31 迪睿合株式会社 Method for manufacturing thermally conductive sheet
CN110739224A (en) * 2018-07-18 2020-01-31 迪睿合株式会社 Method for manufacturing thermally conductive sheet
JP7093902B1 (en) 2021-05-12 2022-06-30 広東思泉新材料股▲フン▼有限公司 Directional heat conduction sheet and its manufacturing method, and semiconductor heat dissipation device
JP2022176076A (en) * 2021-05-12 2022-11-25 広東思泉新材料股▲フン▼有限公司 Directional thermal conductive sheet, its manufacturing method, and semiconductor heat dissipation device
JP6960554B1 (en) * 2021-06-16 2021-11-05 デクセリアルズ株式会社 Method of manufacturing heat conductive sheet and heat conductive sheet
WO2022264790A1 (en) * 2021-06-16 2022-12-22 デクセリアルズ株式会社 Thermally-conductive sheet and thermally-conductive sheet production method
JP2022191599A (en) * 2021-06-16 2022-12-28 デクセリアルズ株式会社 Thermally conductive sheet and thermally conductive sheet production method
US11615999B1 (en) 2022-07-22 2023-03-28 GuangDong Suqun New Material Co., Ltd Oriented heat conducting sheet and preparation method thereof, and semiconductor heat dissipating device

Similar Documents

Publication Publication Date Title
JP6178389B2 (en) Method for manufacturing thermal conductive sheet, thermal conductive sheet, and semiconductor device
JP5752299B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5766335B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
WO2014203875A1 (en) Thermally conductive sheet and process for manufacturing thermally conductive sheet
WO2016104169A1 (en) Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device
KR20200070435A (en) Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
JP6807355B2 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP6739478B2 (en) Method for manufacturing heat conductive sheet
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
CN113348077A (en) Method for producing thermal conductive sheet
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
JP2017092345A (en) Heat conduction sheet and method of manufacturing the same, and semiconductor device
JP6862601B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
CN113348076A (en) Thermal conductive sheet and method for producing thermal conductive sheet
WO2016068157A1 (en) Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872738

Country of ref document: EP

Kind code of ref document: A1