JP2009185364A - Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member - Google Patents
Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member Download PDFInfo
- Publication number
- JP2009185364A JP2009185364A JP2008028735A JP2008028735A JP2009185364A JP 2009185364 A JP2009185364 A JP 2009185364A JP 2008028735 A JP2008028735 A JP 2008028735A JP 2008028735 A JP2008028735 A JP 2008028735A JP 2009185364 A JP2009185364 A JP 2009185364A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled copper
- flexible printed
- printed wiring
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
本発明は、優れた耐屈曲特性を有する、フレキシブルプリント配線板用圧延銅箔および可撓性が要求される各種の導電部材用圧延銅箔に関するものである。 The present invention relates to a rolled copper foil for flexible printed wiring boards having excellent bending resistance and various rolled copper foils for conductive members that require flexibility.
フレキシブルプリント配線板(Flexible Printed Circuit;以下、FPCとも呼ぶ)は、厚みが薄く可撓性に優れているという特性を有していることから、電子機器等への実装形態における自由度が高い。このため、FPCは、折り畳み式携帯電話機の折り曲げ部、スライド式の携帯電話機のスライド部、デジタルカメラの制御部、プリンタヘッド等の可動部や、HDD(Hard Disk Drive)、DVD (Digital Versatile Disc)、CD(Compact Disk)などのようなディスク関連機器における光ピックアップ部等の配線材料として、広く用いられている。
FPC用の導電体としては、種々の表面処理が施された純銅箔または銅合金箔(以下、単に「銅箔」とも呼ぶ)が一般的に用いられている。
A flexible printed circuit board (hereinafter also referred to as an FPC) has a characteristic that it is thin and excellent in flexibility, and thus has a high degree of freedom in a mounting form on an electronic device or the like. For this reason, the FPC is a folding part of a folding cellular phone, a sliding part of a sliding cellular phone, a control part of a digital camera, a movable part such as a printer head, an HDD (Hard Disk Drive), a DVD (Digital Versatile Disc). It is widely used as a wiring material for optical pickups in disk-related equipment such as CD (Compact Disk).
As a conductor for FPC, pure copper foil or copper alloy foil (hereinafter also simply referred to as “copper foil”) subjected to various surface treatments is generally used.
FPCの主要な製造工程は、FPC用銅箔と、ポリイミドなどの樹脂からなるベースフィルム(基材)を貼り合わせてCCL(Copper Cladded Laminate;以下、CCLとも呼
ぶ)を形成する工程(CCL工程)、そのCCLにエッチング等の手法により回路配線を形成する工程、その回路上に配線保護のための表面処理を行う工程、等から構成されている。
CCL工程は、接着剤を介して銅箔と基材を積層した後、加熱処理により接着剤を硬化して密着させる方法(3層型CCL)と、表面処理が施された銅箔を、接着剤を介すことなく基材に直接的に張り合わせた後、加熱・加圧によって一体化する方法(2層材CCL)との、2種類に大別される。
The main manufacturing process of FPC is a process of forming CCL (Copper Cladded Laminate; hereinafter also referred to as CCL) by bonding a copper foil for FPC and a base film (base material) made of a resin such as polyimide (CCL process). , A circuit wiring is formed on the CCL by a technique such as etching, and a surface treatment for wiring protection is performed on the circuit.
In the CCL process, after laminating a copper foil and a base material via an adhesive, the adhesive is cured by heat treatment (three-layer CCL) and the surface-treated copper foil is bonded. It is roughly classified into two types: a method (two-layer material CCL) in which the substrate is directly bonded to the substrate without using an agent and then integrated by heating and pressing.
FPC用の圧延銅箔は、CCL工程において最初は製造の容易性の観点から冷間圧延加工上がりの加工硬化した硬質な状態で用いられることが多い。これは、この段階で圧延銅箔が加熱処理されて軟化した状態にあると、その圧延銅箔の裁断の際や基材との積層の際に変形(例えば、伸び、しわ、折れ等)が生じ易く、製品不良が発生しやすいためである。 In the CCL process, the rolled copper foil for FPC is often used in a hard state that is hardened after cold rolling from the viewpoint of ease of manufacture. This is because when the rolled copper foil is in a softened state at this stage, deformation (for example, elongation, wrinkle, folding, etc.) occurs when the rolled copper foil is cut or laminated with the base material. This is because it tends to occur and product defects are likely to occur.
圧延銅箔の耐屈曲特性は、加熱処理を行うことによって圧延銅箔が軟化するので、圧延加工上がりの場合よりも顕著に向上する。そこで、上述のCCL工程における基材と銅箔を密着・一体化させるための加熱処理で、圧延銅箔を軟化させることを兼ねる製造方法が一般的に行われている。
従来、屈曲特性に優れた圧延銅箔として、最終圧延加工度を高くすること(例えば90%以上)によって立方体集合組織を発達させる方法や、再結晶焼鈍後の立方体集合組織の発達度合を規定した銅箔(例えば、圧延面のX線回折で求めた{200}面の強度が、粉末X線回折で求めた{200}面の強度の20倍より大きい)、銅箔板厚方向の貫通結晶粒の割合を規定した銅箔(例えば、断面面積率で40%以上)、微量添加元素の添加により軟化温度を制御した銅箔(例えば、120℃以上〜150℃以下の半軟化温度に制御)、双晶境界の長さを規定した銅箔(例えば、長さ5μmを超える双晶境界が1mm2の面積あたり合計長さ20mm以下)、微量添加元素の添加により再結晶組織を制御した銅箔(例えば、Snを0.01〜0.2質量%添加し、平均結晶粒径を5μm以下、最大結晶粒径を15μm以下に制御)などが提案されている(以上、特許文献1〜7参照)。
Since the rolled copper foil is softened by performing the heat treatment, the bending resistance characteristics of the rolled copper foil are remarkably improved as compared with the case of rolling up. Therefore, a manufacturing method that also serves to soften the rolled copper foil is generally performed by heat treatment for closely attaching and integrating the base material and the copper foil in the CCL process described above.
Conventionally, as a rolled copper foil having excellent bending characteristics, a method of developing a cube texture by increasing the degree of final rolling (for example, 90% or more) and the degree of development of the cube texture after recrystallization annealing have been defined. Copper foil (for example, the strength of the {200} plane determined by X-ray diffraction of the rolled surface is greater than 20 times the strength of the {200} plane determined by powder X-ray diffraction), through crystal in the thickness direction of the copper foil plate Copper foil with a specified grain ratio (for example, 40% or more in cross-sectional area ratio), copper foil whose softening temperature is controlled by addition of a trace amount of added elements (for example, controlled to a semi-softening temperature of 120 ° C. to 150 ° C.) , Copper foil with a defined twin boundary length (for example, a twin boundary exceeding 5 μm in length has a total length of 20 mm or less per 1 mm 2 area), a copper foil whose recrystallized structure is controlled by addition of a trace amount of additive elements (For example, Sn is 0.01-0. It was added 2 wt%, an average grain size of 5μm or less, control the maximum crystal grain size 15μm or less) have been proposed (above, see Patent Document 1-7).
しかしながら、近年の電子機器類の小型化、高集積化(高密度実装化)の急激な進展に伴って、FPCは、より狭いスペースで用いられることとなるので、さらに優れた耐屈曲特性が要求されることとなる。FPCの耐屈曲特性は、実質的に銅箔のそれによって決まるので、FPCの優れた耐屈曲特性を実現するためには、それに用いられる圧延銅箔の耐屈曲特性のさらなる向上が必須の課題となっている。
本発明は、このような課題を解決するために成されたもので、その目的は、従来のものよりも格段に優れた耐屈曲特性を有するフレキシブルプリント配線板用圧延銅箔および導電部材用圧延銅箔を提供することにある。
However, with the recent rapid progress in downsizing and high integration (high density mounting) of electronic devices, FPC is used in a narrower space, and therefore more excellent bending resistance is required. Will be. Since the bending resistance of FPC is substantially determined by that of copper foil, in order to realize the excellent bending resistance of FPC, further improvement of the bending resistance of the rolled copper foil used for it is an essential issue. It has become.
The present invention has been made to solve such problems, and its purpose is to provide a rolled copper foil for a flexible printed wiring board and a rolled material for a conductive member, which have significantly superior bending resistance than conventional ones. To provide copper foil.
本発明のフレキシブルプリント配線板用圧延銅箔は、当該フレキシブルプリント配線板用圧延銅箔の圧延仕上がり状態でのX線回折の2θ/θ測定による{220}面の回折強度Aと、{200}面の回折強度Bとの比が、A/B≧4であり、かつ、当該フレキシブルプリント配線板用圧延銅箔の圧延仕上がり状態と、当該圧延仕上がり状態のフレキシブルプリント配線板用圧延銅箔を300℃で加熱処理した状態とでの、各々についてJIS規格C 5016−8.7に準拠した疲労破壊試験を曲げ半径R=0.5mmで実施したときの、当該フレキシブルプリント配線板用圧延銅箔の圧延仕上がり状態での破断回数Cと、当該圧延仕上がり状態のフレキシブルプリント配線板用圧延銅箔を300℃で加熱処理した状態での破断回数Dとの比が、C/D≧5であることを特徴としている。
本発明の導電部材用圧延銅箔は、当該導電部材用圧延銅箔の圧延仕上がり状態でのX線回折の2θ/θ測定による{220}面の回折強度Aと{200}面の回折強度Bとの比が、A/B≧4であり、かつ、当該導電部材用圧延銅箔の圧延仕上がり状態と、当該圧延仕上がり状態の導電部材用圧延銅箔を300℃で加熱処理した状態とでの、各々についてJIS規格C 5016−8.7に準拠した疲労破壊試験を曲げ半径R=0.5mmで実施したときの、当該導電部材用圧延銅箔の圧延仕上がり状態での破断回数Cと、当該圧延仕上がり状態の導電部材用圧延銅箔を300℃で加熱処理した状態での破断回数Dとの比が、C/D≧5であることを特徴としている。
The rolled copper foil for a flexible printed wiring board of the present invention has a {220} plane diffraction intensity A measured by 2θ / θ measurement of X-ray diffraction of the rolled copper foil for a flexible printed wiring board, and {200}. The ratio of the diffraction intensity B of the surface is A / B ≧ 4, and the rolled copper foil for flexible printed wiring board in the rolled finished state and the rolled copper foil for flexible printed wiring board in the rolled finished state is 300 Each of the rolled copper foils for flexible printed wiring boards when a fatigue fracture test in accordance with JIS C 5016-8.7 was performed at a bending radius R = 0.5 mm for each of the heat-treated states at ° C. Ratio between the number of breaks C in the rolled finish state and the number of breaks D in the state where the rolled copper foil for flexible printed wiring boards in the rolled finish state is heated at 300 ° C. It is characterized in that a C / D ≧ 5.
The rolled copper foil for a conductive member of the present invention has a diffraction intensity A of {220} plane and a diffraction intensity B of {200} plane measured by 2θ / θ measurement of X-ray diffraction in the rolled finished state of the rolled copper foil for conductive member. And the ratio of A / B ≧ 4, and the rolled finish of the rolled copper foil for a conductive member and the rolled copper foil for a conductive member in the rolled finish at a temperature of 300 ° C. In each case, when the fatigue fracture test according to JIS standard C 5016-8.7 was carried out at a bending radius R = 0.5 mm, the number of fractures C in the rolled finish of the rolled copper foil for conductive members, A ratio of the number of fractures D in a state where the rolled copper foil for a conductive member in a finished state is heat-treated at 300 ° C. is C / D ≧ 5.
本発明によれば、従来のものよりも格段に優れた耐屈曲特性を有するフレキシブルプリント配線板用圧延銅箔および導電部材用圧延銅箔を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the rolled copper foil for flexible printed wiring boards and the rolled copper foil for electrically-conductive members which have the bending-proof characteristic far superior to the conventional thing are realizable.
以下、本発明の実施の形態に係るフレキシブルプリント配線板用圧延銅箔および導電部材用圧延銅箔について、図面を参照して説明する。
図1は、本発明の実施の形態に係るフレキシブルプリント配線板用圧延銅箔(または導電部材用圧延銅箔としても使用可能;以下、それらを代表してフレキシブルプリント配線板用圧延銅箔と呼ぶ)における耐屈曲特性を確認するためのJIS規格に準拠した疲労破壊試験(a)およびIPC規格に準拠した疲労破壊試験(b)を示す図である。
Hereinafter, a rolled copper foil for a flexible printed wiring board and a rolled copper foil for a conductive member according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a rolled copper foil for a flexible printed wiring board according to an embodiment of the present invention (or can also be used as a rolled copper foil for a conductive member; FIG. 2 is a diagram showing a fatigue fracture test (a) based on JIS standards and a fatigue fracture test (b) based on IPC standards for confirming bending resistance characteristics in FIG.
本発明者らは、結晶学的観点と力学的(機械的)観点の両方から詳細な検討を行った結
果、フレキシブルプリント配線板に最適な銅箔を見出した。
このフレキシブルプリント配線板用圧延銅箔1は、圧延仕上がり状態でのX線回折の2θ/θ測定による{220}面の回折強度Aと{200}面の回折強度Bとの比がA/B≧4である。かつ、このフレキシブルプリント配線板用圧延銅箔1の圧延仕上がり状態と、圧延仕上がり状態のフレキシブルプリント配線板用圧延銅箔1を300℃で加熱処理した状態とでの、各々についてJIS規格C5016−8.7に準拠した疲労破壊試験を曲げ半径R=0.5mmで実施したときの、圧延仕上がり状態での破断回数Cと加熱処理した状態での破断回数Dとの比がC/D≧5である。
このフレキシブルプリント配線板用圧延銅箔1の厚さは、7μm以上〜20μm以下となっている。
As a result of detailed studies from both a crystallographic viewpoint and a mechanical (mechanical) viewpoint, the present inventors have found a copper foil optimal for a flexible printed wiring board.
This rolled copper foil 1 for flexible printed wiring board has a ratio of the diffraction intensity A on the {220} plane and the diffraction intensity B on the {200} plane as measured by 2θ / θ measurement of X-ray diffraction in the rolled state as A / B. ≧ 4. And each in the rolling finishing state of this rolled copper foil 1 for flexible printed wiring boards, and the state which heat-processed the rolled copper foil 1 for flexible printed wiring boards in the rolling finishing state at 300 degreeC, JIS specification C5016-8 The ratio of the number of fractures C in the rolled finished state to the number of fractures D in the heat-treated state when the fatigue fracture test according to .7 is performed at a bending radius R = 0.5 mm is C / D ≧ 5 is there.
The thickness of this rolled copper foil 1 for flexible printed wiring boards is 7 μm or more and 20 μm or less.
本実施の形態に係るフレキシブルプリント配線板用圧延銅箔1では、加熱処理前と加熱処理後の状態それぞれに関して、JIS規格(日本規格協会;Japanese Industrial Standards)の“C 5016−8.7”に準拠した疲労破壊試験結果(破断回数)の比を規
定している。
In the rolled copper foil 1 for a flexible printed wiring board according to the present embodiment, the state before the heat treatment and the state after the heat treatment are set to “C 5016-8.7” of the JIS standard (Japanese Industrial Standards). Specifies the ratio of conforming fatigue fracture test results (number of fractures).
実際のフレキシブルプリント配線板の使われ方、すなわちアプリケーションの中に組み込まれた状態でのフレキシブルプリント配線板の動作は、むしろIPC規格(アメリカプリント回路工業会;Institute for Interconnecting and Packaging Electronics Circuits)の“TM−650−2.4.2.1”に準拠した疲労破壊試験の動作に極めて近い(類似している)。このため、フレキシブルプリント配線板用圧延銅箔1の繰り返し曲げ試験・評価は、IPC規格“TM−650−2.4.2.1”に準拠した疲労破壊試験による破断回数から耐屈曲特性を評価するのが一般的となっている。
しかし、本発明者らは、結晶学的観点から、「圧延仕上がり後の状態における{220}面と、{200}面のX線回折2θ/θ測定における回折強度比」と、「300℃の加熱処理前後の状態におけるそれぞれの銅箔において、JIS規格C 5016−8.7に準拠した疲労破壊試験による力学的(機械的)要因での破断の回数比」とに基づいて、この種の圧延銅箔がフレキシブルプリント配線板に用いられ、そのフレキシブルプリント配線板が組み込まれた各種電子機器が使用される際の屈曲動作に近い疲労破壊試験(上記のIPC規格TM−650−2.4.2.1に準拠した疲労破壊試験)によって確認される、より実際に即した耐屈曲特性が、顕著に向上する条件を見出した。
The actual usage of the flexible printed wiring board, that is, the operation of the flexible printed wiring board when it is incorporated in the application, is rather the IPC standard (Institute for Interconnecting and Packaging Electronics Circuits) It is very close (similar) to the behavior of a fatigue fracture test according to TM-650-2.4.2.1 ". For this reason, the repeated bending test / evaluation of the rolled copper foil 1 for a flexible printed wiring board is evaluated for the bending resistance from the number of breaks by a fatigue fracture test in accordance with the IPC standard “TM-650-2.4.2.1”. It has become common to do.
However, from the crystallographic point of view, the present inventors have found that “the diffraction intensity ratio in the X-ray diffraction 2θ / θ measurement of the {220} plane after the rolling finish and the {200} plane” is “300 ° C. This kind of rolling is based on the ratio of the number of times of breakage due to mechanical (mechanical) factors according to the fatigue fracture test in accordance with JIS C 5016-8.7 in each copper foil before and after heat treatment. Fatigue failure test close to bending motion when copper foil is used for flexible printed wiring boards and various electronic devices incorporating the flexible printed wiring boards are used (the above-mentioned IPC standard TM-650-2.4.2) The fatigue resistance test according to .1) was found to be a condition in which the bending resistance characteristics more realistically improved remarkably.
この条件による耐屈曲特性の向上についてのメカニズム(作用)的なことについては検討中であるが、圧延仕上がり状態における結晶学的観点からの調査検討と、加熱処理前後の力学的(機械的)特性の観点からの調査検討の併用によって、圧延銅箔という材料を総合的に調査・検討した結果、本実施の形態で説明するような条件を備えたフレキシブルプリント配線板用圧延銅箔1(および導電部材用圧延銅箔)は、より実際に即した耐屈曲特性が向上するということが確認できた(その具体的な実験・実証等については実施例で詳述する)。 Although the mechanism (action) for improving the bending resistance under these conditions is under investigation, investigation and examination from the crystallographic viewpoint in the finished state of rolling and mechanical (mechanical) characteristics before and after heat treatment As a result of comprehensive investigation and examination of a material called rolled copper foil through the combined use of investigation and examination from the viewpoint of the above, rolled copper foil 1 for flexible printed wiring boards (and conductive) having the conditions described in the present embodiment It has been confirmed that the rolled copper foil for members is improved in bending resistance characteristics that are more practical (specific experiments and demonstrations will be described in detail in Examples).
ここで、JIS規格 C 5016−8.7に準拠した疲労破壊試験とIPC規格TM−650−2.4.2.1に準拠した疲労破壊試験について補足する。
両者は共に疲労破壊試験であるが、その具体的な方法は実質的に極めて異なったものである。すなわち、IPC規格TM−650−2.4.2.1による疲労破壊試験は、図1(a)に示したように、荷重負荷の無い状態での弾性変形を主とした疲労破壊試験である。さらに具体的には、フレキシブルプリント配線板用圧延銅箔1を、発振モータ2、振動伝達部3、試料固定板4、ねじ5、試料スライド板6を供えた試験装置にセットし、フレキシブルプリント配線板用圧延銅箔1を屈曲した状態でねじ5により試料固定板4に固定させておき、振動伝達部3および試料スライド板6を介して発振モータ2による振幅運動をフレキシブルプリント配線板用圧延銅箔1に伝達することにより、疲労破壊試験を行う
ものである。
これに対し、JIS規格C 5016−8.7による疲労破壊試験は、図1(b)に示したように、所定の曲げ半径Rで例えば左右135°に亘る繰り返し屈曲を行うものであり、荷重の掛かった状態での塑性変形の繰り返し曲げを行う方式の疲労破壊試験である。
Here, it supplements about the fatigue fracture test based on JIS standard C5016-8.7, and the fatigue fracture test based on IPC standard TM-650-2.4.2.1.
Both are fatigue fracture tests, but their specific methods are substantially different. That is, the fatigue fracture test according to the IPC standard TM-650-2.4.2.1 is a fatigue fracture test mainly based on elastic deformation without a load as shown in FIG. . More specifically, the rolled copper foil 1 for a flexible printed wiring board is set in a test apparatus provided with an
On the other hand, as shown in FIG. 1B, the fatigue fracture test according to JIS standard C 5016-8.7 performs repeated bending over a predetermined bending radius R, for example, 135 ° to the left and right. It is a fatigue fracture test of a method of repeatedly bending plastic deformation in the state where it is applied.
フレキシブルプリント配線板の使われ方は、例えば折り畳み式の携帯電話機のヒンジ部の場合にはα(アルファ)曲げの状態で使われるのが一般的であり、折り畳んだり開いたりしたときに、フレキシブルプリント配線板用圧延銅箔1が受ける応力作用は、IPC規格TM−650−2.4.2.1に準拠した疲労破壊試験に非常に近い。また、最近普及してきているスライド式の携帯電話機のスライド部に用いられるものの場合には、その動作によってフレキシブルプリント配線板用圧延銅箔1が受ける応力作用だけでなく、その動作自体についても、IPC規格TM−650−2.4.2.1に準拠した疲労破壊試験に極めて合致している。 For example, in the case of a hinge part of a foldable mobile phone, the flexible printed wiring board is generally used in an α (alpha) bent state. When the flexible printed wiring board is folded or opened, the flexible printed wiring board is used. The stress action which the rolled copper foil 1 for wiring boards receives is very close to the fatigue fracture test based on IPC standard TM-650-2.4.2.1. In addition, in the case of the one used for the slide part of the slide type mobile phone which has been widely used recently, not only the stress effect which the rolled copper foil 1 for flexible printed wiring board receives by the operation but also the operation itself is IPC. The fatigue fracture test conforming to the standard TM-650-2.4.2.1 is very consistent.
ここで、このフレキシブルプリント配線板用圧延銅箔1に対する加熱処理は、一般的なCCL工程で行われる加熱処理でもよいし、別工程で行われるようにしてもよい。
また、本発明は、フレキシブルプリント配線板用圧延銅箔のみには留まらず、高い耐屈曲特性が要求される他の各種導電部材にも本発明は適用可能である。
以上のような本実施の形態に係るフレキシブルプリント配線板用圧延銅箔および導電部材用圧延銅箔によれば、従来のものよりも格段に優れた耐屈曲特性(最低約3倍〜最高約8倍;後述の実施例参照)を実現することができる。
また、本実施の形態に係るフレキシブルプリント配線板用圧延銅箔を用いて、従来のものよりも格段に優れた耐屈曲特性を有するフレキシブルプリント配線板や導電部材を実現することができる。
Here, the heat treatment for the rolled copper foil 1 for flexible printed wiring board may be a heat treatment performed in a general CCL process or may be performed in a separate process.
Further, the present invention is not limited to the rolled copper foil for flexible printed wiring boards, but can be applied to other various conductive members that require high bending resistance.
According to the rolled copper foil for a flexible printed wiring board and the rolled copper foil for a conductive member according to the present embodiment as described above, the bending resistance properties (minimum of about 3 times to the maximum of about 8) are much superior to those of the conventional one. Double; see the example below).
Moreover, using the rolled copper foil for flexible printed wiring boards according to the present embodiment, it is possible to realize a flexible printed wiring board or a conductive member having a bending resistance that is significantly better than the conventional one.
本発明の実施例に係るフレキシブルプリント配線板用圧延銅箔1と、比較例として従来の技術に係るフレキシブルプリント配線板用圧延銅箔1とを作製し、その耐屈曲特性を疲労破壊試験によって確認した。 The rolled copper foil 1 for flexible printed wiring boards according to the examples of the present invention and the rolled copper foil 1 for flexible printed wiring boards according to the prior art are produced as comparative examples, and their bending resistance is confirmed by a fatigue fracture test. did.
図2は、実施例1のフレキシブルプリント配線板用圧延銅箔についてのX線回折の2θ/θ測定の結果をグラフとして示す図である。図3は、実施例2のフレキシブルプリント配線板用圧延銅箔についてのX線回折の2θ/θ測定の結果をグラフとして示す図である。図4は、比較例1のフレキシブルプリント配線板用圧延銅箔についてのX線回折の2θ/θ測定の結果をグラフとして示す図である。図5は、比較例2のフレキシブルプリント配線板用圧延銅箔についてのX線回折の2θ/θ測定の結果をグラフとして示す図である。
また、表1は、各実施例および各比較例のフレキシブルプリント配線板用圧延銅箔のそれぞれについての回折強度A,Bおよびその回折強度比A/Bを纏めて一覧表として示したものである。表2は、各実施例および各比較例のフレキシブルプリント配線板用圧延銅箔のそれぞれについての回折強度比A/BおよびJIS準拠の曲げ半径R=0.5mmでの疲労破壊試験を行って得られた破断回数比C/Dを纏めて一覧表として示したものである。表3は、各実施例および各比較例のフレキシブルプリント配線板用圧延銅箔のそれぞれについての実際の使用状態に即したIPC規格(TM−650−2.4.2.1)に準拠して疲労破壊試験を行って得られた破断回数を纏めて一覧表として示したものである。
FIG. 2 is a graph showing the results of 2θ / θ measurement of X-ray diffraction of the rolled copper foil for flexible printed wiring board of Example 1 as a graph. FIG. 3 is a graph showing the results of 2θ / θ measurement of X-ray diffraction on the rolled copper foil for flexible printed wiring board of Example 2. FIG. 4 is a graph showing the result of 2θ / θ measurement of X-ray diffraction for the rolled copper foil for flexible printed wiring board of Comparative Example 1 as a graph. FIG. 5 is a graph showing the results of 2θ / θ measurement of X-ray diffraction of the rolled copper foil for flexible printed wiring board of Comparative Example 2 as a graph.
Table 1 summarizes the diffraction intensities A and B and the diffraction intensity ratio A / B for each of the rolled copper foils for flexible printed wiring boards of each example and each comparative example. . Table 2 is obtained by conducting a fatigue fracture test at a diffraction intensity ratio A / B and a JIS-compliant bending radius R = 0.5 mm for each of the rolled copper foils for flexible printed wiring boards of each example and each comparative example. The obtained fracture frequency ratio C / D is collectively shown as a list. Table 3 is based on the IPC standard (TM-650-2.4.2.1) according to the actual use state about each of the rolled copper foil for flexible printed wiring boards of each Example and each comparative example. The number of fractures obtained by conducting the fatigue fracture test is summarized and shown as a list.
JIS規格C 5016−8.7に準拠した疲労破壊試験は、東洋精機製作所製(型式
:DA)の疲労破壊試験機を用い、一方、IPC規格TM−650−2.4.2.1に準拠した疲労破壊試験は、信越エンジニアリング製(型式:型式:SEK−31B2S)の疲労破壊試験機を用いた。
圧延仕上がり状態の銅箔のX線回折2θ/θ測定には、株式会社リガク製(型式:RAD−B)の装置を用い、対陰極(ターゲット)にはCuを用い、管電圧および管電流はそ
れぞれ40kV、30mAとした。また、X線回折2θ/θ測定に供する試料の大きさは、約15mm×約15mmとした。
圧延銅箔の製造プロセスとしては、鋳造した銅のインゴットを熱間圧延した後、冷間圧延と中間焼鈍を繰り返して、目的の厚さまで加工した。
The fatigue fracture test conforming to JIS C 5016-8.7 uses a fatigue fracture tester manufactured by Toyo Seiki Seisakusho (model: DA), while conforming to IPC standard TM-650-2.4.2.1. The fatigue fracture test used was a fatigue fracture tester manufactured by Shin-Etsu Engineering (model: model: SEK-31B2S).
For X-ray diffraction 2θ / θ measurement of copper foil in a rolled state, a device manufactured by Rigaku Corporation (model: RAD-B) is used, Cu is used for the counter cathode (target), and the tube voltage and tube current are They were 40 kV and 30 mA, respectively. The size of the sample used for X-ray diffraction 2θ / θ measurement was about 15 mm × about 15 mm.
As a manufacturing process of the rolled copper foil, a cast copper ingot was hot-rolled, and then cold-rolling and intermediate annealing were repeated and processed to a target thickness.
実施例1、2のフレキシブルプリント配線板用圧延銅箔は、冷間圧延と中間焼鈍のバランスを詳細に検討し、圧延仕上がり状態での、X線回折の2θ/θ測定による{220}面の回折強度Aと{200}面の回折強度Bとの比が、A/B≧4となるようにした。このような回折強度比A/Bを有する実施例1、2のフレキシブルプリント配線板用圧延銅箔についての加熱処理前の状態と加熱処理後の状態とでの疲労破壊試験を、JIS規格準拠とIPC規格準拠との2種類それぞれ実施した。
また、上記の実施例との比較のため、比較例1、2のフレキシブルプリント配線板用圧延銅箔として、回折強度比をA/B<4としたものを用いて、その各々についての加熱処理前の状態と加熱処理後の状態とでの疲労破壊試験を、JIS規格準拠とIPC規格準拠との2種類それぞれ実施した。
The rolled copper foil for flexible printed wiring boards of Examples 1 and 2 was examined in detail for the balance between cold rolling and intermediate annealing, and the {220} plane was measured by X-ray diffraction 2θ / θ measurement in the rolled state. The ratio of the diffraction intensity A to the diffraction intensity B of the {200} plane was set so that A / B ≧ 4. The fatigue fracture test in the state before the heat treatment and the state after the heat treatment of the rolled copper foil for flexible printed wiring board of Examples 1 and 2 having such a diffraction intensity ratio A / B is compliant with JIS standard. Two types of compliance with the IPC standard were implemented.
In addition, for comparison with the above examples, as the rolled copper foils for flexible printed wiring boards of Comparative Examples 1 and 2, using those having a diffraction intensity ratio of A / B <4, the heat treatment for each of them Two types of fatigue fracture tests were performed in the previous state and the state after the heat treatment: JIS standard compliant and IPC standard compliant.
表1に示したように、実施例1および実施例2では、A/B≧4の条件を満たしているが、比較例1および比較例2のフレキシブルプリント配線板用圧延銅箔では、A/B<4となっている。 As shown in Table 1, in Example 1 and Example 2, the condition of A / B ≧ 4 is satisfied, but in the rolled copper foil for flexible printed wiring boards of Comparative Example 1 and Comparative Example 2, A / B B <4.
また、表2に示したように、実施例1および実施例2では、C/D≧5の条件を満たし、比較例1および比較例2では、C/D<5となっている。 Further, as shown in Table 2, in Example 1 and Example 2, the condition of C / D ≧ 5 is satisfied, and in Comparative Example 1 and Comparative Example 2, C / D <5.
このように、圧延仕上がり状態のX線回折2θ/θ測定の回折強度比条件と、300℃の加熱処理前後の状態における“JIS規格C 5016−8.7”に準拠した疲労破壊
試験による破断回数比条件との、両方を満たしている実施例1のフレキシブルプリント配線板用圧延銅箔および実施例2のフレキシブルプリント配線板用圧延銅箔と、斯様な条件を満たさない比較例1のフレキシブルプリント配線板用圧延銅箔および比較例2のフレキシブルプリント配線板用圧延銅箔とでの、各々について、IPC規格TM−650−2.4.2.1に準拠した疲労破壊試験、すなわち実際のFPCの使われ方に極めて合致している耐屈曲特性を確認可能な疲労破壊試験)を実施した。
このときの主な試験条件としては、長さ220mm、幅=12.5mmに切り出した試験片を用い、信越エンジニアリング製の高速FPC用摺動屈曲試験機(型式:SEK−31B2S)により、曲げ半径=2.5mm、振幅ストローク=10mm、振幅速度=1500回/分で行った。
As described above, the number of fractures by the fatigue fracture test in accordance with the diffraction intensity ratio condition of the X-ray diffraction 2θ / θ measurement in the finished rolling state and the state before and after the heat treatment at 300 ° C. according to “JIS standard C 5016-8.7”. The rolled copper foil for flexible printed wiring board of Example 1 and the rolled copper foil for flexible printed wiring board of Example 2 that satisfy both of the specific conditions, and the flexible print of Comparative Example 1 that does not satisfy such conditions For each of the rolled copper foil for wiring board and the rolled copper foil for flexible printed wiring board of Comparative Example 2, a fatigue fracture test in accordance with IPC standard TM-650-2.4.2.1, that is, actual FPC Fatigue fracture test that can confirm the bending resistance that is in good agreement with the usage of
As main test conditions at this time, a test piece cut into a length of 220 mm and a width of 12.5 mm was used, and a bending radius was measured with a sliding bending tester for high-speed FPC (model: SEK-31B2S) manufactured by Shin-Etsu Engineering. = 2.5 mm, amplitude stroke = 10 mm, amplitude speed = 1500 times / min.
その結果、各実施例および各比較例のフレキシブルプリント配線板用圧延銅箔の耐屈曲特性を比較すると、表3に明らかなように、実施例1、2のフレキシブルプリント配線板用圧延銅箔の耐屈曲特性は、比較例1、2のフレキシブルプリント配線板用圧延銅箔と比較して、少なくとも約3倍から最高で約8倍と、顕著に向上したものとなることが確認された。 As a result, when the bending resistance characteristics of the rolled copper foil for flexible printed wiring board of each example and each comparative example were compared, as shown in Table 3, the rolled copper foil for flexible printed wiring board of Examples 1 and 2 Compared to the rolled copper foil for flexible printed wiring boards of Comparative Examples 1 and 2, it was confirmed that the bending resistance is significantly improved from at least about 3 times to about 8 times at the maximum.
次に、厚さ10.5μmの銅箔についても上記と同様の実験を実施したところ、上記の
結果と同様に耐屈曲特性の顕著な向上が達成できることが確認された。
Next, an experiment similar to the above was performed on a copper foil having a thickness of 10.5 μm, and it was confirmed that a remarkable improvement in bending resistance could be achieved as in the above results.
なお、上記の実施の形態および実施例に係るフレキシブルプリント配線板用圧延銅箔の厚さは7μm〜20μmとしているが、現在のフレキブルプリント配線板に用いられる圧延銅箔の一般的な仕様は9μmと12μmと18μmが主流であることから、本発明を適用可能なフレキシブルプリント配線板用圧延銅箔の厚さは9μm〜18μmとすることが、さらに望ましい。 In addition, although the thickness of the rolled copper foil for flexible printed wiring boards which concerns on said embodiment and Example is 7 micrometers-20 micrometers, the general specification of the rolled copper foil used for the present flexible printed wiring board is Since 9 μm, 12 μm, and 18 μm are mainstream, it is more desirable that the thickness of the rolled copper foil for flexible printed wiring boards to which the present invention is applicable be 9 μm to 18 μm.
また、上記の実施の形態および実施例に係るフレキシブルプリント配線板用圧延銅箔の加熱処理条件は、300℃としたが、結晶学的な条件の「圧延仕上がり状態のX線回折2θ/θ測定による回折強度比{220}面の回折強度/{200}面の回折強度=A/B≧4」という条件を満たしており、かつ「力学的(機械的)特性(JIS規格 C 50
16−8.7に準拠した疲労破壊試験による破断回数)が加熱処理前後でC/D≧5」という条件を満たしていれば、本発明の効果は発揮されるものと考えられる。従って、温度条件の最適値は限定できるものではないが、敢えて適格条件を設定するならば、FPC製造工程で行われているCCL形成時の一般的な加熱処理温度条件であることが望ましい。
In addition, although the heat treatment condition of the rolled copper foil for flexible printed wiring boards according to the above-described embodiments and examples was 300 ° C., the crystallographic condition “X-ray diffraction 2θ / θ measurement in the finished rolling state” The diffraction intensity ratio {220} plane diffraction intensity / {200} plane diffraction intensity = A / B ≧ 4 ”is satisfied, and“ mechanical (mechanical) characteristics (JIS standard C 50
The effect of the present invention is considered to be exhibited if the number of fractures by a fatigue fracture test in accordance with 16-8.7 satisfies the condition C / D ≧ 5 before and after the heat treatment. Therefore, the optimum value of the temperature condition is not limited. However, if an appropriate condition is set, it is preferable that the temperature condition is a general heat treatment temperature condition at the time of CCL formation performed in the FPC manufacturing process.
また、加熱処理時間についても、結晶学的観点からの条件A/B≧4を満たしていることを前提として、加熱処理前後の機械特性C/D≧5を満たしていれば、本発明の効果は十分に発揮されるものと考えられるので、加熱処理時間についてもその最適値については限定できるものではないが、あえて適格条件を設定するならば、前述のようにFPC製造工程で行われているCCL形成時の一般的な加熱処理条件の時間と同程度とすることが望ましい。しかし、時間条件は各温度条件によって決まるもの、すなわち温度条件に付随するものなので、時間条件を単独で数値限定できるものではない。 In addition, regarding the heat treatment time, the effect of the present invention can be obtained as long as the mechanical properties C / D ≧ 5 before and after the heat treatment are satisfied on the premise that the condition A / B ≧ 4 from the crystallographic viewpoint is satisfied. Therefore, the optimum value of the heat treatment time is not limited, but if qualified conditions are set, it is performed in the FPC manufacturing process as described above. It is desirable that the time is the same as the time of general heat treatment conditions during CCL formation. However, since the time condition is determined by each temperature condition, that is, accompanying the temperature condition, the time condition cannot be numerically limited independently.
また、A/B≧4の上限値は、今回用いたX線回折装置においては、{220}の回折強度を100とした場合の、{200}の回折強度の最小検出限界は1であるため、測定装置としては、A/B=100まで評価が可能である。しかし、現時点では、実施例1の場合のA/B=25が、現在までに製造できたフレキシブルプリント配線板用圧延銅箔の最大値である。蓋しA/Bが大きい値になるほど本発明の効果はより発揮されるものと推測されるので、上限値の設定はなく、A/Bがさらに大きい値で実際に製造できるものであれば全て適用範囲である。 The upper limit of A / B ≧ 4 is 1 because the minimum detection limit of the diffraction intensity of {200} is 1 when the diffraction intensity of {220} is 100 in the X-ray diffraction apparatus used this time. As a measuring device, evaluation up to A / B = 100 is possible. However, at present, A / B = 25 in the case of Example 1 is the maximum value of the rolled copper foil for flexible printed wiring boards that has been manufactured so far. Since it is estimated that the effect of the present invention is more exhibited as the A / B is larger, the upper limit value is not set, and any A / B that can be actually manufactured with a larger value is used. Scope of application.
また、C/D≧5の上限値は、実施例1の場合のC/D=11.9が、現在までに製造できたフレキシブルプリント配線板用圧延銅箔の最大値である。また、上記実施例での結果により、C/Dの値が大きいほど、IPC規格TM−650−2.4.2.1に準拠した疲労破壊試験によって確認される、実際のFPCの使われ方に対応した耐屈曲特性が優れていることから、A/B≧4を満たしているという前提で、C/Dの値がさらに大きくなるにつれて、本発明の効果はさらに大きく発揮されるものと推定される。従って、C/D≧5の条件で現実に製造できる全ての銅箔に当てはまるので、その上限値は限定されるものではない。 Moreover, the upper limit of C / D ≧ 5 is the maximum value of the rolled copper foil for flexible printed wiring boards that C / D = 11.9 in the case of Example 1 can be manufactured so far. In addition, according to the results in the above examples, the larger the value of C / D, the more practical use of FPC is confirmed by the fatigue fracture test in accordance with IPC standard TM-650-2.4.2.1. It is presumed that the effect of the present invention will be further exerted as the value of C / D is further increased on the premise that A / B ≧ 4 is satisfied because the bending resistance characteristics corresponding to the above are excellent. Is done. Therefore, since it applies to all the copper foils that can be actually manufactured under the condition of C / D ≧ 5, the upper limit value is not limited.
すなわち、A/Bの値も、C/Dの値も、現在製造可能な最大値よりもさらに大きな値を有するフレキシブルプリント配線板用圧延銅箔が製造できた場合、そのフレキシブルプリント配線板用圧延銅箔は、本発明の効果が現状以上に発揮されると推定されるので、A/B、C/Dには上限値の設定はない。 That is, when a rolled copper foil for a flexible printed wiring board having both a value of A / B and a value of C / D larger than the maximum value that can be produced at present can be produced, the rolling for the flexible printed wiring board Since it is estimated that the effect of this invention is exhibited more than the present condition, there is no upper limit setting for A / B and C / D.
本発明は、フレキシブルプリント配線板用に限らず、可撓性を必要とされる各種配線板全般に適用可能である。さらには、配線板に限らず、可撓性が要求される各種導電部材にも広く適用可能である。 The present invention is not limited to use for flexible printed wiring boards, but can be applied to various wiring boards that require flexibility. Furthermore, the present invention can be widely applied not only to a wiring board but also to various conductive members that require flexibility.
1 フレキシブルプリント配線板用圧延銅箔
2 発振モータ(フォースモータ)
3 振動伝達部
4 試料固定板
5 ねじ
6 試料スライド板
1 Rolled copper foil for flexible printed
3
Claims (3)
当該フレキシブルプリント配線板用圧延銅箔の圧延仕上がり状態でのX線回折の2θ/θ測定による{220}面の回折強度Aと、{200}面の回折強度Bとの比が、A/B≧4であり、
かつ、当該フレキシブルプリント配線板用圧延銅箔の圧延仕上がり状態と、当該圧延仕上がり状態のフレキシブルプリント配線板用圧延銅箔を300℃で加熱処理した状態とでの、各々についてJIS規格C 5016−8.7に準拠した疲労破壊試験を曲げ半径R=0.5mmで実施したときの、当該フレキシブルプリント配線板用圧延銅箔の圧延仕上がり状態での破断回数Cと、当該圧延仕上がり状態のフレキシブルプリント配線板用圧延銅箔を300℃で加熱処理した状態での破断回数Dとの比が、C/D≧5である
ことを特徴とするフレキシブルプリント配線板用圧延銅箔。 Rolled copper foil for flexible printed wiring boards,
The ratio of the diffraction intensity A on the {220} plane and the diffraction intensity B on the {200} plane as measured by 2θ / θ measurement of X-ray diffraction in the rolled finish of the rolled copper foil for flexible printed wiring board is A / B ≧ 4,
And each in the rolling finishing state of the said rolled copper foil for flexible printed wiring boards, and the state which heat-processed the rolled copper foil for flexible printed wiring boards in the said rolling finishing state at 300 degreeC, each JIS standard C 5016-8 .7 when the fatigue fracture test is conducted with a bending radius of R = 0.5 mm and the number of times C of the rolled copper foil for a flexible printed wiring board is rolled, and the flexible printed wiring is in the rolled state. The rolled copper foil for flexible printed wiring boards, wherein the ratio of the number of fractures D in a state where the rolled copper foil for board is heat-treated at 300 ° C. is C / D ≧ 5.
当該フレキシブルプリント配線板用圧延銅箔の厚さが7μm以上〜20μm以下であることを特徴とするフレキシブルプリント配線板用圧延銅箔。 In the rolled copper foil for flexible printed wiring boards according to claim 1,
The rolled copper foil for flexible printed wiring boards, wherein the rolled copper foil for flexible printed wiring boards has a thickness of 7 µm to 20 µm.
当該導電部材用圧延銅箔の圧延仕上がり状態でのX線回折の2θ/θ測定による{220}面の回折強度Aと{200}面の回折強度Bとの比が、A/B≧4であり、
かつ、当該導電部材用圧延銅箔の圧延仕上がり状態と、当該圧延仕上がり状態の導電部材用圧延銅箔を300℃で加熱処理した状態とでの、各々についてJIS規格C 5016−8.7に準拠した疲労破壊試験を曲げ半径R=0.5mmで実施したときの、当該導電部材用圧延銅箔の圧延仕上がり状態での破断回数Cと、当該圧延仕上がり状態の導電部材用圧延銅箔を300℃で加熱処理した状態での破断回数Dとの比が、C/D≧5であることを特徴とする導電部材用圧延銅箔。 It is a rolled copper foil for conductive members,
The ratio of the diffraction intensity A on the {220} plane and the diffraction intensity B on the {200} plane measured by 2θ / θ measurement of X-ray diffraction in the rolled finish of the rolled copper foil for conductive member is A / B ≧ 4 Yes,
And according to JIS standard C 5016-8.7 about each in the rolling finish state of the said rolled copper foil for electrically conductive members, and the state which heat-processed the rolled copper foil for electrically conductive members of the said rolled finish state at 300 degreeC. When the fatigue fracture test was performed with a bending radius R = 0.5 mm, the number of breaks C in the rolled finished state of the rolled copper foil for conductive members and the rolled copper foil for conductive members in the rolled finished state were 300 ° C. A rolled copper foil for a conductive member, characterized in that the ratio of the number of fractures D in the heat-treated state is C / D ≧ 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008028735A JP2009185364A (en) | 2008-02-08 | 2008-02-08 | Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008028735A JP2009185364A (en) | 2008-02-08 | 2008-02-08 | Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009185364A true JP2009185364A (en) | 2009-08-20 |
Family
ID=41068887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008028735A Pending JP2009185364A (en) | 2008-02-08 | 2008-02-08 | Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009185364A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195192A (en) * | 2011-03-17 | 2012-10-11 | Hitachi Cable Ltd | Rolled copper foil for lithium ion secondary battery collector |
JP2012246556A (en) * | 2011-05-30 | 2012-12-13 | Jx Nippon Mining & Metals Corp | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment |
JP2014214376A (en) * | 2013-04-30 | 2014-11-17 | 株式会社Shカッパープロダクツ | Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board |
CN109805672A (en) * | 2019-03-25 | 2019-05-28 | 云谷(固安)科技有限公司 | A kind of Display Rack |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328159A (en) * | 1999-05-19 | 2000-11-28 | Kobe Steel Ltd | Copper alloy foil |
JP2001144391A (en) * | 1999-11-16 | 2001-05-25 | Nippon Mining & Metals Co Ltd | Rolled copper foil for printed circuit board and manufacturing method therefor |
JP2005244004A (en) * | 2004-02-27 | 2005-09-08 | Nitto Denko Corp | Multilayer flexible wiring circuit board |
JP2006307288A (en) * | 2005-04-28 | 2006-11-09 | Nikko Kinzoku Kk | Rolled copper foil with low gloss for copper-laminated substrate |
JP2006326684A (en) * | 2005-04-28 | 2006-12-07 | Nikko Kinzoku Kk | High-gloss rolled copper foil for copper-clad laminate substrate |
-
2008
- 2008-02-08 JP JP2008028735A patent/JP2009185364A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328159A (en) * | 1999-05-19 | 2000-11-28 | Kobe Steel Ltd | Copper alloy foil |
JP2001144391A (en) * | 1999-11-16 | 2001-05-25 | Nippon Mining & Metals Co Ltd | Rolled copper foil for printed circuit board and manufacturing method therefor |
JP2005244004A (en) * | 2004-02-27 | 2005-09-08 | Nitto Denko Corp | Multilayer flexible wiring circuit board |
JP2006307288A (en) * | 2005-04-28 | 2006-11-09 | Nikko Kinzoku Kk | Rolled copper foil with low gloss for copper-laminated substrate |
JP2006326684A (en) * | 2005-04-28 | 2006-12-07 | Nikko Kinzoku Kk | High-gloss rolled copper foil for copper-clad laminate substrate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195192A (en) * | 2011-03-17 | 2012-10-11 | Hitachi Cable Ltd | Rolled copper foil for lithium ion secondary battery collector |
JP2012246556A (en) * | 2011-05-30 | 2012-12-13 | Jx Nippon Mining & Metals Corp | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment |
JP2014214376A (en) * | 2013-04-30 | 2014-11-17 | 株式会社Shカッパープロダクツ | Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board |
CN109805672A (en) * | 2019-03-25 | 2019-05-28 | 云谷(固安)科技有限公司 | A kind of Display Rack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9060432B2 (en) | Flexible circuit board and method for producing same and bend structure of flexible circuit board | |
JP4285526B2 (en) | Rolled copper foil and method for producing the same | |
JP5826160B2 (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof | |
JP2009019232A (en) | Rolled copper foil | |
KR101935128B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
JP2009185376A (en) | Rolled copper foil and manufacturing method therefor | |
JP6294376B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
JP2010034541A (en) | Flexible circuit board, manufacturing method therefor, and bend structure of flexible circuit board | |
JP2009185364A (en) | Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member | |
JP6663712B2 (en) | Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
WO2013031911A1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device | |
JP2015175005A (en) | Rolled copper foil, copper-clad laminate sheet and flexible printed wiring board and electronic equipment | |
JP2009280855A (en) | Rolled copper foil and method for producing the same | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5865759B2 (en) | Copper foil, copper-clad laminate, flexible circuit board, and method for producing copper-clad laminate | |
JP2011153360A (en) | Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same | |
JP2019029606A (en) | Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device | |
JP5177268B2 (en) | Rolled copper foil | |
JP4059150B2 (en) | Copper alloy foil for printed wiring and manufacturing method thereof | |
JP5625188B2 (en) | Rolled copper foil and method for producing the same | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JPWO2004049336A1 (en) | Laminate for HDD suspension using thin copper foil and manufacturing method thereof | |
JP6712561B2 (en) | Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device | |
JP2012001783A (en) | Rolled copper foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20100615 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Written amendment |
Effective date: 20100825 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20110510 Free format text: JAPANESE INTERMEDIATE CODE: A02 |