JP4285526B2 - Rolled copper foil and method for producing the same - Google Patents
Rolled copper foil and method for producing the same Download PDFInfo
- Publication number
- JP4285526B2 JP4285526B2 JP2006290880A JP2006290880A JP4285526B2 JP 4285526 B2 JP4285526 B2 JP 4285526B2 JP 2006290880 A JP2006290880 A JP 2006290880A JP 2006290880 A JP2006290880 A JP 2006290880A JP 4285526 B2 JP4285526 B2 JP 4285526B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled copper
- rolled
- plane
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 200
- 239000011889 copper foil Substances 0.000 title claims description 170
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000010949 copper Substances 0.000 claims description 201
- 238000001953 recrystallisation Methods 0.000 claims description 72
- 238000000137 annealing Methods 0.000 claims description 70
- 238000005097 cold rolling Methods 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 57
- 239000013078 crystal Substances 0.000 claims description 51
- 238000005096 rolling process Methods 0.000 claims description 49
- 230000008569 process Effects 0.000 claims description 48
- 238000005259 measurement Methods 0.000 claims description 43
- 238000000984 pole figure measurement Methods 0.000 claims description 36
- 238000012545 processing Methods 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 28
- 238000002441 X-ray diffraction Methods 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 3
- 238000005452 bending Methods 0.000 description 49
- 230000000052 comparative effect Effects 0.000 description 41
- 238000010586 diagram Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 12
- 229910000881 Cu alloy Inorganic materials 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001028 reflection method Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003705 background correction Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Metal Rolling (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
本発明は、圧延銅箔に関し、特に、フレキシブルプリント配線板等の可撓性配線部材に好適な、優れた屈曲特性を有する圧延銅箔及びその製造方法に関するものである。 The present invention relates to a rolled copper foil, and more particularly to a rolled copper foil having excellent bending characteristics suitable for a flexible wiring member such as a flexible printed wiring board and a method for producing the same.
フレキシブルプリント配線板(Flexible Printed Circuit、以下、FPCと称す)は、厚みが薄く可撓性に優れる特徴から、電子機器等への実装形態における自由度が高い。そのため、現在では、折り畳み式携帯電話の折り曲げ部、デジタルカメラ、プリンターヘッドなどの可動部、ならびに、HDD(Hard Disk Drive)やDVD(Digital Versatile Disc),CD(Compact Disk)など、ディスク関連機器の可動部の配線等にFPCが広く用いられている。 A flexible printed circuit board (hereinafter referred to as FPC) has a high degree of freedom in mounting form on an electronic device or the like because of its thin thickness and excellent flexibility. For this reason, at present, folding parts of foldable mobile phones, movable parts such as digital cameras and printer heads, and disk-related equipment such as HDD (Hard Disk Drive), DVD (Digital Versatile Disc), CD (Compact Disk), etc. FPC is widely used for wiring of movable parts.
FPCの導電体としては、種々の表面処理が施された純銅箔または銅合金箔(以下、単に「銅箔」という)が一般的に用いられている。銅箔は、その製造方法の違いにより、電解銅箔と圧延銅箔に大別される。FPCは、前述のように繰り返し可動する部分の配線材として用いられることから優れた屈曲特性(例えば、100万回以上の屈曲特性)が要求され、銅箔として圧延銅箔が使用されることが多い。 As the FPC conductor, pure copper foil or copper alloy foil (hereinafter simply referred to as “copper foil”) subjected to various surface treatments is generally used. Copper foils are roughly classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method. Since FPC is used as a wiring material for a portion that can repeatedly move as described above, excellent bending characteristics (for example, bending characteristics of 100 million times or more) are required, and rolled copper foil is used as copper foil. Many.
一般的に、圧延銅箔は、原材料となるタフピッチ銅(JIS H3100 C1100)や無酸素銅(JIS H3100 C1020)の鋳塊に熱間圧延を施した後、所定の厚さまで冷間圧延と中間焼鈍を繰り返し施すことによって製造される。FPC用の圧延銅箔に要求される厚さは、通常、50μm以下であるが、最近では十数μm以下と更に薄くなる傾向にある。 Generally, a rolled copper foil is subjected to hot rolling on an ingot of tough pitch copper (JIS H3100 C1100) or oxygen-free copper (JIS H3100 C1020) as a raw material, and then cold rolling and intermediate annealing to a predetermined thickness. It is manufactured by repeatedly applying. The thickness required for the rolled copper foil for FPC is usually 50 μm or less, but recently, it tends to be further thinned to dozens of μm or less.
FPCの製造工程は、概略的に、「FPC用銅箔と、ポリイミドなどの樹脂からなるベースフィルム(基材)を貼り合わせてCCL(Copper Claded Laminate)を形成する工程(CCL工程)」、「該CCLにエッチング等の手法により回路配線を形成する工程」、「該回路上に配線保護のための表面処理を行う工程」などから構成されている。CCL工程には、接着剤を介して銅箔と基材を積層した後、熱処理により接着剤を硬化して密着させる(3層CCL)方法と、接着剤を介さず、表面処理の施された銅箔を基材に直接張り合わせた後、加熱・加圧により一体化する(2層CCL)方法の2種類がある。 The manufacturing process of FPC is roughly as follows: “Process for forming CCL (Copper Claded Laminate) by bonding a copper foil for FPC and a base film (base material) made of a resin such as polyimide” (CCL process), The process includes a process of forming a circuit wiring on the CCL by a technique such as etching, and a process of performing a surface treatment for protecting the wiring on the circuit. In the CCL process, after laminating the copper foil and the substrate via an adhesive, the adhesive was cured and adhered by heat treatment (three-layer CCL), and the surface treatment was performed without using the adhesive. There are two types of methods in which a copper foil is directly bonded to a substrate and then integrated by heating and pressing (two-layer CCL).
ここで、FPCの製造工程においては、製造の容易性の観点から冷間圧延加工上がり(加工硬化した硬質な状態)の銅箔が用いられることが多い。銅箔が焼鈍された(軟化した)状態にあると、銅箔の裁断や基材との積層時に、製品不良となる銅箔の変形(例えば、伸び、しわ、折れ、等)が生じ易いためである。 Here, in the manufacturing process of the FPC, a copper foil that has been cold-rolled (hardened by work hardening) is often used from the viewpoint of ease of manufacturing. When the copper foil is in an annealed (softened) state, the copper foil is likely to be deformed (for example, stretched, wrinkled, bent, etc.) when it is cut or laminated with the base material. It is.
一方、銅箔の屈曲特性は、再結晶焼鈍を行うことにより、圧延加工上がりよりも著しく向上する。そこで、上述のCCL工程における基材と銅箔を密着・一体化させるための熱処理で、銅箔の再結晶焼鈍を兼ねる製造方法が一般的に選択されている。なお、このときの熱処理条件は、180〜300℃で1〜60分間(代表的には200℃で30分間)であり、銅箔は再結晶組織に調質した状態となる。 On the other hand, the bending characteristics of the copper foil are remarkably improved as compared to the rolling process finish by performing recrystallization annealing. Therefore, a manufacturing method that also serves as recrystallization annealing of the copper foil in the heat treatment for bringing the base material and the copper foil into close contact and integration in the above-described CCL process is generally selected. In addition, the heat treatment conditions at this time are 1 to 60 minutes (typically 30 minutes at 200 ° C.) at 180 to 300 ° C., and the copper foil is tempered to a recrystallized structure.
FPCの屈曲特性を高めるためには、その素材となる圧延銅箔の屈曲特性を高めることが有効である。また、一般的に、再結晶焼鈍後の銅箔の屈曲特性は、立方体集合組織が発達するほど向上することが知られている。なお、一般に言われている「立方体集合組織が発達」とは、圧延面において{200}Cu面の占有率が高いこと(例えば、85%以上)のみを意味する。 In order to improve the bending characteristics of the FPC, it is effective to increase the bending characteristics of the rolled copper foil as the material. In general, it is known that the bending characteristics of a copper foil after recrystallization annealing improve as the cubic texture develops. Note that “cubic texture development” generally referred to only means that the occupancy of the {200} Cu surface is high (for example, 85% or more) on the rolled surface.
従来、屈曲特性に優れた圧延銅箔として、最終圧延加工度を高くすること(例えば、90%以上)によって立方体集合組織を発達させる方法や、再結晶焼鈍後の立方体集合組織の発達度合を規定した銅箔(例えば、圧延面のX線回折で求めた(200)面の強度が、粉末X線回折で求めた(200)面の強度の20倍より大きい)、銅箔板厚方向の貫通結晶粒の割合を規定した銅箔(例えば、断面面積率で40%以上)、微量添加元素の添加により軟化温度を制御した銅箔(例えば、120〜150℃の半軟化温度に制御)、双晶境界の長さを規定した銅箔(例えば、長さ5μmを超える双晶境界が1mm2の面積あたり合計長さ20mm以下)、微量添加元素の添加により再結晶組織を制御した銅箔(例えば、Snを0.01〜0.2質量%添加し、平均結晶粒径を5μm以下、最大結晶粒径を15μm以下に制御)などが報告されている(例えば、特許文献1乃至7参照)。
しかしながら、近年、電子機器類の小型化、高集積化(高密度実装化)や高性能化等の進展に伴い、FPCには従来よりも更なる高屈曲特性の要求が益々高まってきている。FPCの屈曲特性は実質的に銅箔のそれによって決まるため、要求を満たすためには銅箔の屈曲特性を更に向上させることが必須である。 However, in recent years, with the progress of downsizing, high integration (high density mounting), high performance, and the like of electronic devices, demands for higher bending characteristics than ever are increasing for FPCs. Since the bending characteristics of the FPC are substantially determined by that of the copper foil, it is essential to further improve the bending characteristics of the copper foil in order to satisfy the requirements.
従って、本発明の目的は、フレキシブルプリント配線板(FPC)等の可撓性配線部材に適しており、従来よりも優れた屈曲特性を有する圧延銅箔を提供することにある。さらには、従来よりも優れた屈曲特性を有する圧延銅箔を安定して製造できる製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a rolled copper foil that is suitable for a flexible wiring member such as a flexible printed wiring board (FPC) and has bending characteristics superior to those of the conventional art. Furthermore, it is providing the manufacturing method which can manufacture stably the rolled copper foil which has the bending characteristic superior to the past.
本発明者らは、圧延銅箔における再結晶焼鈍による立方体集合組織形成に関する金属結晶学的な詳細検討により、再結晶焼鈍前の結晶粒配向状態、再結晶焼鈍後の結晶粒配向状態および屈曲特性の間に特定の相関関係があることを解明したことに基づき、本発明を完成した。 The inventors of the present invention have conducted detailed metallographic studies on the formation of a cubic texture by recrystallization annealing in rolled copper foils, so that the grain orientation state before recrystallization annealing, the grain orientation state after recrystallization annealing, and the bending characteristics The present invention was completed based on the elucidation of a specific correlation between the two.
本発明は、上記目的を達成するため、最終冷間圧延工程の後に再結晶焼鈍を施した圧延銅箔において、圧延面を基準としたX線回折極点図測定により得られる結果で、前記圧延面の{200}Cu面に対する{111}Cu面の面内配向度Δβが10°以下であり、かつ前記X線回折極点図測定のα=35°におけるβ走査による前記{111}Cu面回折ピークの規格化平均強度[a]とα=74°におけるβ走査による前記{111}Cu面回折ピークの規格化平均強度[b]の比が、[a]/[b]≧3である結晶粒配向状態を有することを特徴とする圧延銅箔を提供する。 In order to achieve the above object, the present invention provides a rolled copper foil that has been subjected to recrystallization annealing after the final cold rolling step, and is a result obtained by X-ray diffraction pole figure measurement based on the rolled surface. of {200} plane orientation degree Δβ of {111} Cu plane to the Cu surface is 10 ° or less, and wherein by β scanning in the alpha = 35 ° in X-ray diffraction pole figure measurement {111} Cu plane diffraction peak A ratio of [a] / [b] ≧ 3 between the normalized average intensity [a] of [a] and the normalized average intensity [b] of the {111} Cu plane diffraction peak by β scanning at α = 74 ° Provided is a rolled copper foil characterized by having an orientation state.
また、本発明は、上記目的を達成するため、上記の本発明に係る最終冷間圧延工程の後に再結晶焼鈍を施した圧延銅箔において、前記圧延面に対するX線回折2θ/θ測定により得られる結果で、銅結晶の回折ピークの90%以上が{200}Cu面であり、かつ前記{200}Cu面のX線回折ロッキングカーブ測定により得られる結果で、該回折ピークの半価幅Δθが10°以下であることを特徴とする圧延銅箔を提供する。 Further, in order to achieve the above object, the present invention provides a rolled copper foil subjected to recrystallization annealing after the final cold rolling step according to the present invention, and obtained by X-ray diffraction 2θ / θ measurement on the rolled surface. results for a 90% or higher {200} Cu plane of the diffraction peak of the copper crystals, and the results obtained by X-ray diffraction rocking curve measurement of the {200} Cu plane, half width Δθ of the diffraction peak Is a rolled copper foil characterized by being 10 ° or less.
また、本発明は、上記目的を達成するため、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔において、圧延面を基準としたX線回折極点図測定により得られる結果で、各α角度におけるβ走査で得られる{111}Cu面回折ピークの規格化平均強度をプロットした際に、前記α角度が35〜75°の範囲における前記規格化平均強度が階段状になっていない、もしくは、極大領域が実質的に一つだけ存在する結晶粒配向状態を有することを特徴とする圧延銅箔を提供する。 Further, in order to achieve the above object, the present invention provides a result obtained by X-ray diffraction pole figure measurement based on the rolled surface in the rolled copper foil after the final cold rolling step and before recrystallization annealing. When the normalized average intensity of {111} Cu plane diffraction peaks obtained by β scanning at an α angle is plotted, the normalized average intensity in the range of the α angle of 35 to 75 ° is not stepped. Alternatively, the present invention provides a rolled copper foil characterized by having a grain orientation state in which only one maximum region exists.
また、本発明は、上記目的を達成するため、上記の本発明に係る圧延銅箔としてSnを0.001〜0.009質量%含み、残部がCu及び不可避不純物からなる銅合金であることを特徴とする圧延銅箔を提供する。 Moreover, in order to achieve the above-mentioned object, the present invention is a copper alloy containing 0.001 to 0.009% by mass of Sn as the rolled copper foil according to the present invention, with the balance being Cu and inevitable impurities. The featured rolled copper foil is provided.
また、本発明は、上記目的を達成するため、上記の本発明に係る最終冷間圧延工程の後に再結晶焼鈍を施した圧延銅箔において、圧延面で観察される当該再結晶粒の平均粒径が40μm以上であることを特徴とする圧延銅箔を提供する。 Further, in order to achieve the above object, the present invention provides a rolled copper foil subjected to recrystallization annealing after the final cold rolling process according to the present invention, and the average grain size of the recrystallized grains observed on the rolling surface. A rolled copper foil having a diameter of 40 μm or more is provided.
また、本発明は、上記目的を達成するため、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、各α角度におけるβ走査で得られる{111}Cu面回折ピークの規格化平均強度をプロットした際に、前記α角度が35〜75°の範囲における前記規格化平均強度が階段状になっていない、もしくは、極大領域が実質的に一つだけ存在する圧延銅箔の製造方法であって、再結晶焼鈍の前の最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15〜50%に制御することを特徴とする圧延銅箔の製造方法を提供する。 Further, in order to achieve the above object, the present invention is a result obtained by X-ray diffraction pole figure measurement based on the rolling surface in the rolled copper foil after the final cold rolling process and before recrystallization annealing, When the normalized average intensity of the {111} Cu surface diffraction peak obtained by β scanning at an angle is plotted, the normalized average intensity in the range of the α angle of 35 to 75 ° is not stepped, or A method for producing a rolled copper foil having substantially only one maximum region, wherein the total degree of work in the final cold rolling step before recrystallization annealing is 94% or more, and the degree of work per pass Is controlled to 15 to 50%, and the manufacturing method of the rolled copper foil characterized by the above-mentioned is provided.
また、本発明は、上記目的を達成するため、上記の本発明に係る圧延銅箔の製造方法であって、再結晶焼鈍の前の最終冷間圧延工程において、「1パス目の加工度」≧「2パス目の加工度」≧「3パス目の加工度」となるように制御するとともに、3パス目以降の加工度を15〜25%に制御することを特徴とする圧延銅箔の製造方法を提供する。 Further, the present invention is a method for producing a rolled copper foil according to the present invention described above in order to achieve the above object, and in the final cold rolling step before recrystallization annealing, the “degree of processing in the first pass” ≧ “working degree in the second pass” ≧ “working degree in the third pass” and the working degree after the third pass is controlled to 15 to 25%. A manufacturing method is provided.
本発明によれば、フレキシブルプリント配線板(FPC)等の可撓性配線部材に適しており、従来よりも優れた屈曲特性を有する圧延銅箔を提供することができる。また、従来よりも優れた屈曲特性を有する圧延銅箔を安定して製造する製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is suitable for flexible wiring members, such as a flexible printed wiring board (FPC), and can provide the rolled copper foil which has the bending characteristic superior to the past. Moreover, the manufacturing method which manufactures stably the rolled copper foil which has the bending characteristic superior to the past can be provided.
本発明に関係する銅結晶の主な結晶面を示す模式図を図1に示す。銅の結晶構造は立方晶であることから、各結晶面及び面方向は次のような関係にある。
{111}Cu面と{100}Cu面のなす角度は55°、
{111}Cu面と{110}Cu面のなす角度は35°、
{111}Cu面と{112}Cu面のなす角度は90°、
{111}Cu面と<112>Cu方向は平行
である。
なお、{ }は面を、< >は面方向を表すものとする。
A schematic diagram showing main crystal planes of a copper crystal related to the present invention is shown in FIG. Since the crystal structure of copper is cubic, each crystal plane and plane direction have the following relationship.
The angle between the {111} Cu surface and the {100} Cu surface is 55 °,
The angle between the {111} Cu surface and the {110} Cu surface is 35 °,
The angle between the {111} Cu surface and the {112} Cu surface is 90 °,
The {111} Cu plane and the <112> Cu direction are parallel.
In addition, {} represents a surface and <> represents a surface direction.
図2は、X線回折(以下、XRDと表記する場合もある)における入射X線、検出器、試料、走査軸の関係を示す概略図である。以下、図2を用いてXRDによる圧延銅箔の結晶粒配向状態に関する評価方法を説明する。なお、図2における3つの走査軸は、一般的に、θ軸が試料軸、α軸があおり軸、β軸が面内回転軸と呼ばれている。また、本発明におけるX線回折は、すべてCu Kα線によるものとする。 FIG. 2 is a schematic diagram showing the relationship among incident X-rays, detectors, samples, and scanning axes in X-ray diffraction (hereinafter sometimes referred to as XRD). Hereafter, the evaluation method regarding the crystal grain orientation state of the rolled copper foil by XRD is demonstrated using FIG. Note that the three scanning axes in FIG. 2 are generally called a sample axis, an α axis having a θ axis, and a β axis being an in-plane rotation axis. Further, all X-ray diffraction in the present invention is based on Cu Kα rays.
入射X線に対して、試料と検出器をθ軸で走査し、試料の走査角をθ、検出器の走査角を2θで走査する測定方法を2θ/θ測定という。2θ/θ測定によって、多結晶体である圧延銅箔の試料面(本発明では圧延面)において、どの結晶面が優勢であるのか(圧延面における占有率)が評価できる。 A measurement method in which a sample and a detector are scanned with respect to incident X-rays along the θ axis, the scanning angle of the sample is scanned with θ, and the scanning angle of the detector is scanned with 2θ is called 2θ / θ measurement. By measuring 2θ / θ, it is possible to evaluate which crystal plane is dominant (occupancy ratio on the rolled surface) on the sample surface (rolled surface in the present invention) of the rolled copper foil that is a polycrystalline body.
ある1つの回折面{hkl}Cuに着目して、着目した{hkl}Cu面の2θ値に対し(検出器の走査角2θを固定し)、試料のみをθ軸走査させる測定方法をロッキングカーブ測定という。この測定による{hkl}Cu面ピークの半価幅をΔθと定義すると、Δθで{hkl}Cu面の圧延面垂直方向の配向度が評価できる。このとき、Δθの値が小さいほど圧延面に垂直方向の結晶配向性に優れているといえる。言い換えると、銅の結晶構造は立方晶であることから、Δθは圧延面の垂直方向に対して立方体がどの程度のばらつきで傾いているかを表していると考えることができる。 Focusing on a certain diffractive surface {hkl} Cu , the rocking curve is a measurement method that scans only the sample with the θ-axis relative to the 2θ value of the focused {hkl} Cu surface (with the detector scanning angle 2θ fixed) This is called measurement. If the half width of the {hkl} Cu plane peak by this measurement is defined as Δθ, the orientation degree of the {hkl} Cu plane in the direction perpendicular to the rolling plane can be evaluated by Δθ. At this time, it can be said that the smaller the value of Δθ, the better the crystal orientation in the direction perpendicular to the rolling surface. In other words, since the crystal structure of copper is cubic, it can be considered that Δθ represents how much the cube is inclined with respect to the direction perpendicular to the rolling surface.
ある1つの回折面{hkl}Cuに着目して、着目した{hkl}Cu面の2θ値に対し(検出器の走査角2θを固定し)、α軸走査をステップで行い、各α値に対して試料をβ軸走査(0〜360°まで面内回転(自転))させる測定方法を極点図測定という。この測定により、着目した{hkl}Cu面が圧延面の垂直方向から傾いている程度を評価できる。 Focusing on a certain diffractive surface {hkl} Cu , α-axis scanning is performed in steps for the 2θ value of the focused {hkl} Cu surface (the detector scan angle 2θ is fixed), and each α value is On the other hand, a measurement method in which the sample is scanned on the β axis (in-plane rotation (rotation) from 0 to 360 °) is called pole figure measurement. By this measurement, it is possible to evaluate the degree to which the focused {hkl} Cu surface is inclined from the vertical direction of the rolling surface.
なお、本発明のXRD極点図測定では、試料面に垂直方向をα=90°と定義し、測定の基準とする。また、極点図測定には、反射法(α=15〜90°)と透過法(α=0〜15°)があるが、本発明における極点図測定は、反射法(α=15〜90°)のみの測定とする。 In the XRD pole figure measurement of the present invention, the direction perpendicular to the sample surface is defined as α = 90 °, which is used as a measurement reference. In addition, the pole figure measurement includes a reflection method (α = 15 to 90 °) and a transmission method (α = 0 to 15 °). The pole figure measurement in the present invention is performed using the reflection method (α = 15 to 90 °). ) Only.
極点図測定の特徴を利用した評価方法の1つに面内配向測定がある。これは、着目した{hkl}Cu面と幾何学的に対応する結晶面{h'k'l'}Cuが該{hkl}Cu面となす角度をα'とした場合、「α=90−α'」となるようにα軸走査し(試料を傾け)、{h'k'l'}Cu面の2θ値に対して(検出器の走査角2θを固定して)、試料をβ軸走査(0〜360°まで面内回転(自転))させる測定方法である。この測定による{h'k'l'}Cu面ピークの半価幅の平均をΔβと定義すると、Δβで{hkl}Cu面の圧延面内2軸方向の配向度が評価できる。このとき、Δβの値が小さいほど圧延面内方向の結晶配向性に優れているといえる。言い換えると、Δβは圧延面内において立方体がどの程度のばらつきで回転しているか(「碁盤の目」状からずれているか)を表していると考えることができる。 One of evaluation methods using the characteristics of pole figure measurement is in-plane orientation measurement. This is because when the angle between the {hkl} Cu plane of interest and the crystal plane {h'k'l '} Cu geometrically corresponding to the {hkl} Cu plane is α ′, “α = 90− Scan the α axis so that it becomes “α ′” (tilt the sample), and fix the sample to the β axis with respect to the 2θ value of the {h′k′l ′} Cu surface (fixing the scanning angle 2θ of the detector) This is a measurement method of scanning (in-plane rotation (rotation) from 0 to 360 °). If the average of the half-value width of the {h'k'l '} Cu surface peak by this measurement is defined as Δβ, the degree of orientation in the biaxial direction of the { hkl } Cu surface in the rolling plane can be evaluated by Δβ. At this time, it can be said that the smaller the value of Δβ, the better the crystal orientation in the in-roll direction. In other words, it can be considered that Δβ represents how much the cube is rotating in the rolling plane (deviation from the “grid eye” shape).
〔本発明の第1の実施の形態〕
(面内配向測定)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、立方体集合組織の{200}Cu面に対し55°の位置関係にある{111}Cu面のXRD面内配向測定による半価幅が10°以下であることを特徴とする。
[First embodiment of the present invention]
(In-plane orientation measurement)
The rolled copper foil in the present embodiment has a {111} Cu surface having a 55 ° positional relationship with respect to the {200} Cu surface of the cubic texture in a state where recrystallization annealing is performed after the final cold rolling step. A half width measured by XRD in-plane orientation measurement is 10 ° or less.
図3は、本実施の形態に係る圧延銅箔において、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面の{200}Cu面に対し55°(測定条件上、α=35°)の位置関係にある{111}Cu面のXRD面内配向測定を行った結果の1例である。図3から明らかなように、4本のピーク、すなわち4回対称性の回折ピークが現れている(圧延方向をβ=0°とした場合、各々のピークの中心は、例えば、β≒45°, 135°, 225°, 315°となる)。立方体集合組織が発達していれば(例えば、圧延面の約90%以上を再結晶粒の{200}Cu面が占めていれば)、β走査で前記4本のピーク以外はほとんど検出されない。また、{111}Cu面の面内配向測定によるΔβは10°以下である(4本のピークの平均)。この結果は、{111}Cu面が圧延面内方向に良く配向した(良好な結晶粒配向度を有する)圧延銅箔であることを示している。 FIG. 3 shows that in the rolled copper foil according to the present embodiment, 55 ° with respect to the {200} Cu surface of the rolled surface after the final cold rolling step (α = It is an example of the result of measuring the XRD in-plane orientation of the {111} Cu plane having a positional relationship of 35 °). As apparent from FIG. 3, four peaks, that is, four-fold symmetry diffraction peaks appear (when the rolling direction is β = 0 °, the center of each peak is, for example, β≈45 °. , 135 °, 225 °, and 315 °). If the cubic texture is developed (for example, if the {200} Cu surface of the recrystallized grains occupies about 90% or more of the rolled surface), the four peaks are hardly detected except for the four peaks. Further, Δβ by in-plane orientation measurement of the {111} Cu plane is 10 ° or less (average of four peaks). This result shows that the {111} Cu plane is a rolled copper foil that is well oriented in the in-roll direction (having a good degree of grain orientation).
一方、{111}Cu面のΔβが10°を超えると、従来よりも高い屈曲特性が得られない。よって、Δβは10°以下とする。より望ましくは9.5°以下であり、更に望ましくは9°以下である。 On the other hand, if Δβ of the {111} Cu surface exceeds 10 °, bending characteristics higher than conventional cannot be obtained. Therefore, Δβ is set to 10 ° or less. More desirably, it is 9.5 ° or less, and further desirably 9 ° or less.
なお、{200}Cu面と{100}Cu面は平行であるので、{200}Cu面と{111}Cu面のなす角度は当然55°である(図1参照)。 Since the {200} Cu plane and the {100} Cu plane are parallel, the angle between the {200} Cu plane and the {111} Cu plane is naturally 55 ° (see FIG. 1).
(規格化平均強度の比)
また、本実施の形態における圧延銅箔は、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面を基準としたX線回折極点図測定のα=35°におけるβ走査による前記{111}Cu面回折ピークの規格化平均強度[a]とα=74°におけるβ走査による前記{111}Cu面回折ピークの規格化平均強度[b]の比が、[a]/[b]≧3であることを特徴とする。
(Ratio of normalized average intensity)
In addition, the rolled copper foil in the present embodiment is the state obtained by β scanning at α = 35 ° of X-ray diffraction pole figure measurement based on the rolled surface in a state where recrystallization annealing is performed after the final cold rolling step. the ratio of the {111} normalized average intensity [a] and alpha = the by β scanning at 74 ° {111} Cu plane normalized average intensity of the diffraction peak of the Cu surface diffraction peak [b] is, [a] / [b ] ≧ 3.
ここで、規格化平均強度RCとは、XRD極点図測定において、各α角度におけるβ軸走査(面内回転軸走査)による所定の{hkl}Cu回折ピーク強度を平均化したカウント数であり、次式(詳細は下記文献を参照)により算出することができる。なお、規格化の計算は通常コンピューターで実施される。
RC=IC / Istd
ここで、
IC:補正強度(バックグラウンド補正、吸収補正)
Istd:計算で求めた規格化するための強度
である。
(文献名)「RAD システム応用ソフトウェア 集合組織解析プログラム 取扱説明書(説明書番号:MJ201RE)」,理学電機株式会社,p.22〜23.
(文献名)「CN9258E101 RINT2000シリーズ アプリケーションソフトウェア 正極点 取扱説明書(説明書番号:MJ10102A01)」理学電機株式会社,p.8〜10.
Here, the normalized average intensity RC is a count number obtained by averaging predetermined {hkl} Cu diffraction peak intensities by β-axis scanning (in-plane rotation axis scanning) at each α angle in XRD pole figure measurement. , And can be calculated by the following formula (refer to the following document for details). The normalization calculation is usually performed by a computer.
R C = I C / I std
here,
I C : Correction intensity (background correction, absorption correction)
I std : Strength for normalization obtained by calculation.
(Literature name) “RAD system application software texture analysis program instruction manual (manual number: MJ201RE)”, Rigaku Corporation, p. 22-23.
(Literature name) “CN9258E101 RINT2000 Series Application Software Positive Point Manual (manual number: MJ10102A01)” Rigaku Corporation, p. 8-10.
また、XRDピーク強度を規格化して用いる理由は、XRD測定の際の管電圧や管電流などの条件設定の違いによる影響をなくして比較できるようにするためである(実質的に装置依存性がなくなる)。 The reason why the XRD peak intensity is standardized and used is that the comparison can be made without the influence of the difference in the condition setting such as the tube voltage and tube current at the time of XRD measurement (substantially the device dependence. Disappear).
一方、圧延面の{200}Cu面に対する{111}Cu面のXRD極点図測定におけるα=35°の規格化平均強度[a]と、α=74°の規格化平均強度[b]には、それぞれ次のような意味がある。 On the other hand, the {111} normalized average intensity of alpha = 35 ° in the XRD pole figure measurement of the Cu surface [a] for {200} Cu plane of the rolled surface, normalized average intensity of alpha = 74 ° to the [b] is Each has the following meaning.
前述したように、圧延面の{200}Cu面に対する{111}Cu面のなす角度は幾何学的に55°であるので、α=35°(=90°−55°)となる。規格化平均強度[a]は、圧延面の{200}Cu面に対応する{111}Cu面の回折強度である。言い換えると、圧延面における{200}Cu面の規格化した回折強度を意味する。 As described above, the angle of the {111} Cu plane to the {200} Cu plane of the rolled surface is so geometrically is 55 °, the α = 35 ° (= 90 ° -55 °). The normalized average intensity [a] is the diffraction intensity of the {111} Cu surface corresponding to the {200} Cu surface of the rolled surface. In other words, it means the normalized diffraction intensity of the {200} Cu surface on the rolled surface.
同様に、圧延面の{200}Cu面と、該{200}Cu面の双晶領域に対する{111}Cu面のなす角度は幾何学的に16°であるので、α=74°(=90°−16°)となる。規格化平均強度[b]は、圧延面の{200}Cu面の双晶領域に対応する{111}Cu面の回折強度である。言い換えると、圧延面における{200}Cu面の双晶領域に対する規格化した回折強度を意味する。 Similarly, since the angle formed between the {200} Cu plane of the rolled surface and the {111} Cu plane with respect to the twin region of the {200} Cu plane is geometrically 16 °, α = 74 ° (= 90 ° -16 °). The normalized average intensity [b] is the diffraction intensity of the {111} Cu surface corresponding to the twin region of the {200} Cu surface of the rolled surface. In other words, it means the normalized diffraction intensity for the twin region of the {200} Cu plane on the rolled surface.
したがって、[a]/[b]は、圧延面における立方体集合組織である{200}Cu面とその双晶関係にある結晶領域との規格化した回折強度比を意味している。 Therefore, [a] / [b] means the normalized diffraction intensity ratio between the {200} Cu plane, which is a cubic texture in the rolled surface, and the twin crystal region.
図4は、本実施の形態に係る圧延銅箔において、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面を基準とした{111}Cu面のXRD極点図測定により得られる結果の1例である。図4から明らかなように、α=35°における{111}Cu面の規格化平均強度[a]とα=74°における規格化平均強度[b]の比は[a]/[b]≧3である。この結果は、{200}Cu面が主体である立方体集合組織において、{200}Cu面の双晶組織(双晶領域)が少ない圧延銅箔であることを示している。 FIG. 4 is obtained by XRD pole figure measurement of {111} Cu plane with reference to the rolled surface in the rolled copper foil according to the present embodiment in a state where recrystallization annealing is performed after the final cold rolling step. It is an example of a result. As is clear from FIG. 4, the ratio of the normalized average intensity [a] of the {111} Cu surface at α = 35 ° and the normalized average intensity [b] at α = 74 ° is [a] / [b] ≧ 3. This result indicates that {200} in the cube texture Cu surface is mainly a rolled copper foil twin tissues (twin region) with less {200} Cu plane.
一方、規格化平均強度の比が[a]/[b]<3となると、従来よりも高い屈曲特性が得られない。よって、[a]/[b]≧3とする。より望ましくは[a]/[b]≧3.5であり、更に望ましくは[a]/[b]≧4である。 On the other hand, when the ratio of the normalized average strength is [a] / [b] <3, it is not possible to obtain a bending characteristic higher than the conventional one. Therefore, [a] / [b] ≧ 3. [A] / [b] ≧ 3.5 is more preferable, and [a] / [b] ≧ 4 is more preferable.
〔本発明の第2の実施の形態〕
(2θ/θ測定)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面が当該再結晶粒の{200}Cu面に強く配向しており、その占有率が90%以上であることを特徴とする。
[Second Embodiment of the Present Invention]
(2θ / θ measurement)
In the rolled copper foil in the present embodiment, the rolled surface is strongly oriented to the {200} Cu surface of the recrystallized grains in a state where recrystallization annealing is performed after the final cold rolling step, and the occupation ratio is It is characterized by being 90% or more.
図5は、本実施の形態に係る圧延銅箔において、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面に対してX線回折2θ/θ測定を行った結果の1例である。図5から明らかなように、圧延面は当該再結晶粒の{200}Cu面に強く配向しており、その占有率は90%以上である。これは、立方体集合組織が発達した圧延銅箔であることを示している。 FIG. 5 shows an example of the result of X-ray diffraction 2θ / θ measurement performed on the rolled surface in the rolled copper foil according to the present embodiment in a state where recrystallization annealing was performed after the final cold rolling step. It is. As is clear from FIG. 5, the rolled surface is strongly oriented to the {200} Cu surface of the recrystallized grains, and the occupation ratio is 90% or more. This indicates that the rolled copper foil has developed a cubic texture.
一方、{200}Cu面の占有率が90%未満であると、従来よりも高い屈曲特性が得られない。よって、占有率は90%以上とする。より望ましくは92%以上であり、更に望ましくは94%以上である。 On the other hand, if the occupancy ratio of the {200} Cu surface is less than 90%, higher bending characteristics than the conventional one cannot be obtained. Therefore, the occupation ratio is 90% or more. More desirably, it is 92% or more, and more desirably 94% or more.
なお、前記占有率は次のように定義した。
占有率(%)=[I{200}Cu / (I{111}Cu+I{200}Cu+I{220}Cu+I{311}Cu)] × 100
ここで、
I{200}Cu:{200}Cu面の回折ピーク強度
I{111}Cu:{111}Cu面の回折ピーク強度
I{220}Cu:{220}Cu面の回折ピーク強度
I{311}Cu:{311}Cu面の回折ピーク強度
である。
The occupation ratio was defined as follows.
Occupancy (%) = [I {200} Cu / (I {111} Cu + I {200} Cu + I {220} Cu + I {311} Cu )] × 100
here,
I {200} Cu : {200} Diffraction peak intensity on Cu surface
I {111} Cu : Diffraction peak intensity of {111} Cu surface
I {220} Cu : {220} Diffraction peak intensity of Cu plane
I {311} Cu : {311} The diffraction peak intensity on the Cu surface.
(ロッキングカーブ測定)
また、本実施の形態における圧延銅箔は、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面で強く配向している{200}Cu面のロッキングカーブ測定による半価幅が10°以下であることを特徴とする。
(Rocking curve measurement)
In addition, the rolled copper foil in the present embodiment has a half width measured by rocking curve measurement of {200} Cu surface which is strongly oriented on the rolled surface in a state where recrystallization annealing is performed after the final cold rolling step. It is 10 degrees or less.
本発明では、前述した圧延面の90%以上を占める再結晶粒の{200}Cu面の回折線に着目し、{200}Cu面の結晶粒配向度Δθを評価する。図6は、本実施の形態に係る圧延銅箔において、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面に対して{200}Cu面のXRDロッキングカーブ測定を行った結果の1例である。図6から明らかなように、{200}Cu面のロッキングカーブ測定によるΔθは10°以下である。この結果は、{200}Cu面が圧延面の垂直方向に良く配向した(良好な結晶粒配向度を有する)圧延銅箔であることを示している。 In the present invention, focused on the diffraction line of the {200} Cu plane of recrystallized grains account for more than 90% of the rolling surface as described above, to assess the grain orientation degree Δθ of {200} Cu plane. FIG. 6 shows the result of XRD rocking curve measurement of {200} Cu surface with respect to the rolled surface in the rolled copper foil according to the present embodiment in a state where recrystallization annealing was performed after the final cold rolling step. This is an example. As is apparent from FIG. 6, Δθ obtained by measuring the rocking curve of the {200} Cu surface is 10 ° or less. This result indicates that the {200} Cu surface is a rolled copper foil that is well oriented in the direction perpendicular to the rolled surface (having a good degree of grain orientation).
一方、{200}Cu面のΔθが10°を超えると、従来よりも高い屈曲特性が得られない。よって、Δθは10°以下とする。より望ましくは9.5°以下であり、更に望ましくは9°以下である。 On the other hand, if Δθ of the {200} Cu surface exceeds 10 °, bending characteristics higher than conventional cannot be obtained. Therefore, Δθ is set to 10 ° or less. More desirably, it is 9.5 ° or less, and further desirably 9 ° or less.
ここまでの結晶粒配向状態をまとめる。本発明の実施の形態に係る圧延銅箔は、{111}Cu面の良好な圧延面内配向度、{200}Cu面の良好な圧延面垂直方向配向度、および占有率90%以上の立方体集合組織を考え合わせた場合、銅の立方晶が3次元的に良く揃った結晶構造を有しているということができる。 The crystal grain orientation states so far are summarized. The rolled copper foil according to the embodiment of the present invention is a cube having a {111} Cu surface with a good in-roll orientation, a {200} Cu surface with a good vertical orientation on the rolling surface, and an occupation ratio of 90% or more. When considering the texture, it can be said that the copper cubic crystals have a three-dimensionally well-aligned crystal structure.
(高屈曲特性化のメカニズム)
つぎに、本発明の実施の形態に係る圧延銅箔の高屈曲特性化のメカニズムについて説明する。
(Mechanism for high bending properties)
Below, the mechanism of the high bending characteristic of the rolled copper foil which concerns on embodiment of this invention is demonstrated.
金属結晶に応力が掛かると、転位は結晶のすべり面に沿って移動しやすいが、結晶粒界は、一般的に転位の移動に対する障害物となる。多結晶体である圧延銅箔において、屈曲運動により転位が結晶粒界等に集積すると、集積箇所でクラックが生じやすくなり、いわゆる金属疲労を起こすと考えられる。逆の見方をすると、多結晶体において転位が集積することを抑制できれば、屈曲特性が向上することが期待される。 When stress is applied to the metal crystal, dislocations easily move along the slip plane of the crystal, but the crystal grain boundary is generally an obstacle to the movement of dislocations. In a rolled copper foil that is a polycrystalline body, when dislocations accumulate at a grain boundary or the like due to a bending motion, cracks are likely to occur at the accumulation location, which is considered to cause so-called metal fatigue. In other words, if the dislocations can be prevented from accumulating in the polycrystal, it is expected that the bending characteristics will be improved.
前述したように、本発明の実施の形態に係る圧延銅箔は、銅の立方晶が3次元的に良く揃った結晶構造を有しており、かつ{200}Cu面が主体である立方体集合組織において、{200}Cu面の双晶組織が少ない圧延銅箔であることから、屈曲運動の際に、転位が交差すべりを起こす確率が高いものと考えられる。これにより、結晶粒界等が転位の移動に対する障害となりにくくなり、屈曲特性が向上する(屈曲寿命が長くなる)と考えられる。 As described above, the rolled copper foil according to the embodiment of the present invention has a crystal structure in which copper cubic crystals are three-dimensionally well aligned, and is a cubic aggregate mainly composed of {200} Cu planes. Since the structure is a rolled copper foil with few twin structures on the {200} Cu plane, it is considered that there is a high probability that dislocations will cross-slip during bending. As a result, it is considered that the crystal grain boundary or the like is less likely to become an obstacle to the movement of dislocations, and the bending characteristics are improved (the bending life is increased).
言い換えると、交差すべりを効果的に起こさせるためには、少なくともΔβおよびΔθの両方が優れている(小さい)こと、すなわち、3軸配向に優れていることが必要である(例えば、Δβ≦10°およびΔθ≦10°)。 In other words, in order to cause cross-slip effectively, at least both Δβ and Δθ must be excellent (small), that is, excellent in triaxial orientation (for example, Δβ ≦ 10). ° and Δθ ≦ 10 °).
なぜならば、いわゆる立方体集合組織が発達したとしても(一般には、圧延面に対する{200}Cu面の占有率が高い状態を意味する)、Δβが小さくなければ、隣り合う結晶粒間ですべり方向が大きくずれて、交差すべりが起き難くなるためである。 This is because even if a so-called cubic texture has developed (in general, it means that the occupancy of {200} Cu plane is high with respect to the rolled surface), if Δβ is not small, the slip direction between adjacent grains is This is because it is difficult to cross and slip.
また、立方体集合組織の3軸配向に加えて、{200}Cu面の双晶組織が少ない圧延銅箔(例えば、[a]/[b]≧3)であることも重要な要素であると考えられる。なぜならば、主体の{200}Cu面とその双晶領域は平行関係でないことから、それぞれの面のすべり方向も当然異なり、双晶面が転位の移動に対する障害物となり得るためである。 In addition to the triaxial orientation of the cubic texture, it is also an important factor that the rolled copper foil has a small twin structure on the {200} Cu plane (for example, [a] / [b] ≧ 3). Conceivable. This is because the main {200} Cu plane and its twin region are not in parallel relation, so the slip direction of each plane is naturally different, and the twin plane can be an obstacle to dislocation movement.
〔本発明の第3の実施の形態〕
(規格化平均強度)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後で再結晶焼鈍前の状態で、圧延面を基準とした{111}Cu面のXRD極点図測定において、α角度が35〜75°の範囲における規格化平均強度が階段状になっていない、もしくは、極大領域が実質的に一つだけ存在することを特徴とする。
[Third embodiment of the present invention]
(Standardized average strength)
In the rolled copper foil in the present embodiment, the α angle is 35 to 75 in the XRD pole figure measurement of the {111} Cu plane based on the rolled surface in the state after the final cold rolling step and before recrystallization annealing. The normalized average intensity in the range of ° is not stepped, or there is substantially only one maximum region.
図7は、本実施の形態に係る圧延銅箔において、最終冷間圧延工程の後で再結晶焼鈍前の状態で、圧延面を基準とした{111}Cu面のXRD極点図測定により得られる結果の1例である。図7から明らかなように、α=35〜75°の範囲において{111}Cu面の規格化平均強度が階段状になっていない、もしくは、極大領域が実質的に一つだけ存在する結晶粒配向状態を有する圧延銅箔であることを示している。 FIG. 7 is obtained by measuring the XRD pole figure of the {111} Cu plane based on the rolled surface in the rolled copper foil according to the present embodiment, in the state after the final cold rolling step and before the recrystallization annealing. It is an example of a result. As is apparent from FIG. 7, the grain size where the normalized average intensity of the {111} Cu surface is not stepped in the range of α = 35 to 75 °, or there is substantially only one local maximum region. It shows that the rolled copper foil has an orientation state.
一方、α=35〜75°の範囲における{111}Cu面の規格化平均強度が階段状、もしくは、極大領域が複数存在する結晶粒配向状態の圧延銅箔であると、再結晶焼鈍を施した後、前述した規格化平均強度の比が[a]/[b]<3となり従来よりも高い屈曲特性が得られない。よって、α=35〜75°の範囲における{111}Cu面の規格化平均強度が階段状になっていない、もしくは、極大領域が実質的に一つだけ存在する結晶粒配向状態の圧延銅箔とする。 On the other hand, if the normalized average strength of the {111} Cu surface in the range of α = 35 to 75 ° is a stepped shape or a rolled copper foil in a grain orientation state in which a plurality of maximum regions exist, recrystallization annealing is performed. After that, the ratio of the normalized average strength described above becomes [a] / [b] <3, so that a higher bending characteristic than the conventional one cannot be obtained. Therefore, the rolled copper foil in a grain orientation state in which the normalized average intensity of the {111} Cu surface in the range of α = 35 to 75 ° is not stepped or has only one maximum region. And
〔本発明の第4の実施の形態〕
(圧延銅箔の銅合金組成)
本実施の形態におけるFPC用圧延銅箔は、Snを0.001〜0.009質量%含み、残部がCu及び不可避不純物からなる銅合金であることを特徴とする。
[Fourth embodiment of the present invention]
(Copper alloy composition of rolled copper foil)
The rolled copper foil for FPC in the present embodiment is characterized by being a copper alloy containing 0.001 to 0.009 mass% of Sn and the balance being Cu and inevitable impurities.
本実施の形態において、FPC用圧延銅箔を構成する銅合金の合金成分の添加理由と含有量の限定理由を以下に説明する。 In this Embodiment, the reason for the addition of the alloy component of the copper alloy which comprises the rolled copper foil for FPC, and the reason for limitation of content are demonstrated below.
圧延銅箔において、最終冷間圧延工程における総加工度が大きくなるほど(例えば、90%以上)、常温軟化を起こし易い傾向がある。この望まない現象(常温軟化)が起こると、FPC製造工程における銅箔の裁断や基材との積層時に銅箔の変形が生じ易く、歩留まり低下の要因となる。 In the rolled copper foil, the higher the total degree of processing in the final cold rolling process (for example, 90% or more), the more likely it is to soften at room temperature. When this undesirable phenomenon (normal temperature softening) occurs, the copper foil is easily deformed during the cutting of the copper foil or the lamination with the base material in the FPC manufacturing process, which causes a decrease in yield.
CuにSnを含有させることにより、最終冷間圧延工程において強加工を施しても常温軟化を抑制する(軟化温度または再結晶開始温度を制御する)ことができる。なお、ここで言う「常温軟化」は、冷間圧延加工中における部分的な再結晶現象(詳細は後述)を含むものとする。 By containing Sn in Cu, softening at room temperature can be suppressed (softening temperature or recrystallization start temperature can be controlled) even if a strong work is performed in the final cold rolling step. Note that the “normal temperature softening” mentioned here includes a partial recrystallization phenomenon (details will be described later) during the cold rolling process.
Snの含有量が増加するのに伴い、圧延銅箔の軟化温度は上昇する。Snが0.001質量%より少ない場合では、所望の軟化温度に制御することが困難である。また、Snが0.009質量%より多い場合では、軟化温度が高くなり過ぎて前述したCCL工程での再結晶焼鈍が困難になるとともに、電気伝導性が低下するという弊害も生じる。 As the Sn content increases, the softening temperature of the rolled copper foil increases. When Sn is less than 0.001% by mass, it is difficult to control to a desired softening temperature. Moreover, when Sn is more than 0.009 mass%, the softening temperature becomes too high, and recrystallization annealing in the above-described CCL process becomes difficult, and there is a problem that electric conductivity is lowered.
従って、Snの含有量は0.001〜0.009質量%とする。より好ましくは0.002〜0.008質量%であり、更に好ましくは0.003〜0.007質量%である。 Therefore, the Sn content is set to 0.001 to 0.009 mass%. More preferably, it is 0.002-0.008 mass%, More preferably, it is 0.003-0.007 mass%.
〔本発明の第5の実施の形態〕
(圧延銅箔における再結晶粒の平均粒径)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後に再結晶焼鈍を施した状態で、圧延面において観察される当該再結晶粒の平均粒径が40μm以上であることを特徴とする。
[Fifth embodiment of the present invention]
(Average grain size of recrystallized grains in rolled copper foil)
The rolled copper foil in the present embodiment is characterized in that the average grain size of the recrystallized grains observed on the rolled surface is 40 μm or more in a state where recrystallization annealing is performed after the final cold rolling step. .
前述したように、多結晶体において、転位の集積(あるいは、転位の移動を妨げる障害物)を抑制できれば、屈曲特性が向上することが期待される。すなわち、銅の立方晶が3次元的に良く揃っており、かつ{200}Cu面の双晶組織が少ない結晶構造を有する状態に加えて、再結晶粒の粒径を大きくする(結晶粒界自体を減少させる)ことにより、屈曲特性の向上効果がより顕著になる。 As described above, if the dislocation accumulation (or an obstacle that hinders the movement of dislocations) can be suppressed in the polycrystal, it is expected that the bending characteristics are improved. In other words, in addition to a state in which copper cubic crystals are well aligned three-dimensionally and have a crystal structure with few twin structures on the {200} Cu plane, the grain size of the recrystallized grains is increased (grain boundaries) By reducing itself, the effect of improving the bending characteristics becomes more remarkable.
ただし、結晶粒界を少なくしても、再結晶粒の3軸配向性が低ければ、屈曲特性向上の効果は小さい。すなわち、本実施の形態における圧延銅箔も、屈曲運動の際に転位が交差すべりを起こすような結晶粒配向性を有していることが前提条件である。また、再結晶粒の平均粒径を40μm以上とするためには、最終冷間圧延工程における総加工度を大きくする(例えば、94%以上)と同時に、冷間圧延加工途中での再結晶現象を抑制する(詳細は後述)ことで達成できる。
However, even if the crystal grain boundaries are reduced, if the triaxial orientation of the recrystallized grains is low, the effect of improving the bending characteristics is small. That is, it is a precondition that the rolled copper foil in the present embodiment also has a crystal grain orientation that causes dislocations to cross and slip during bending motion. Further, in order to make the average grain size of recrystallized
一方、再結晶粒の平均粒径が40μmより小さくなると、従来よりも高い屈曲特性が得られない。よって、再結晶粒の平均粒径は40μm以上とする。より望ましくは50μm以上であり、更に望ましくは60μm以上である。 On the other hand, if the average grain size of the recrystallized grains is smaller than 40 μm, it is not possible to obtain higher bending characteristics than in the past. Therefore, the average grain size of the recrystallized grains is set to 40 μm or more. More desirably, it is 50 μm or more, and further desirably 60 μm or more.
〔圧延銅箔の製造方法〕
図8は、本発明の実施の形態の圧延銅箔における製造工程の全体フローを示す図である。上記の本実施の形態の圧延銅箔は、原材料となるタフピッチ銅(JIS H3100 C1100)や無酸素銅(JIS H3100 C1020)や上記成分を含む銅合金のインゴット(鋳塊)を用意(工程a)した後、熱間圧延を行う熱間圧延工程(工程b)と、熱間圧延工程の後、冷間圧延を行う冷間圧延工程(工程c)と冷間圧延による加工硬化を緩和する中間焼鈍工程(工程d)を適宜繰り返し行うことにより「生地」と呼ばれる焼鈍された圧延銅箔が製造される。なお、「生地」の直前の中間焼鈍工程を「生地焼鈍工程」(工程d')と呼ぶこともある。「生地焼鈍工程」においては、それ以前の加工歪が十分に緩和されること(例えば、略完全焼鈍)が望ましい。
[Method for producing rolled copper foil]
FIG. 8 is a diagram showing an overall flow of a manufacturing process in the rolled copper foil according to the embodiment of the present invention. The rolled copper foil of the present embodiment is provided with tough pitch copper (JIS H3100 C1100), oxygen-free copper (JIS H3100 C1020), or a copper alloy ingot (ingot) containing the above components as a raw material (step a). Then, a hot rolling step (step b) for performing hot rolling, a cold rolling step (step c) for performing cold rolling after the hot rolling step, and intermediate annealing for relaxing work hardening by cold rolling. An annealed rolled copper foil called “dough” is manufactured by appropriately repeating the step (step d). Note that the intermediate annealing step immediately before the “dough” may be referred to as a “dough annealing step” (step d ′). In the “fabric annealing step”, it is desirable that processing strain before that is sufficiently relaxed (for example, substantially complete annealing).
その後、「生地」に対して最終冷間圧延工程(工程e、「仕上げ圧延工程」と称される場合もある)を施して、所定厚さのFPC用の圧延銅箔が製造される。なお、この時の圧延銅箔は、加工硬化の状態(焼鈍されていない状態)にある。 Thereafter, the final cold rolling step (step e, sometimes referred to as “finish rolling step”) is applied to the “dough” to produce a rolled copper foil for FPC having a predetermined thickness. In addition, the rolled copper foil at this time exists in the state of work hardening (state which has not been annealed).
最終冷間圧延工程後の圧延銅箔は、必要に応じて表面処理等が施され(工程f)、FPC製造工程(工程g)に供給される。前述したように、再結晶焼鈍(工程g’)は工程gの中(例えば、CCL工程)で為されることが多い。 The rolled copper foil after the final cold rolling process is subjected to surface treatment or the like as necessary (process f) and supplied to the FPC manufacturing process (process g). As described above, the recrystallization annealing (step g ′) is often performed in the step g (for example, the CCL step).
本発明において、「最終冷間圧延工程」とは工程eを意味し、「再結晶焼鈍」工程g’とは工程gの中で為されるものを意味するものとする。 In the present invention, the “final cold rolling step” means the step e, and the “recrystallization annealing” step g ′ means that performed in the step g.
本発明における圧延銅箔の製造方法は、再結晶焼鈍の前の最終冷間圧延工程における総加工度を94%以上とし、かつ1パスあたりの加工度を15〜50%に制御することを特徴とする。さらに、該最終冷間圧延工程において、「1パス目の加工度」≧「2パス目の加工度」≧「3パス目の加工度」となるように制御するとともに、3パス目以降の1パスあたりの加工度を15〜25%に制御することを特徴とする。 The method for producing a rolled copper foil in the present invention is characterized in that the total degree of work in the final cold rolling step before recrystallization annealing is set to 94% or more, and the degree of work per pass is controlled to 15 to 50%. And Further, in the final cold rolling step, control is performed such that “the degree of processing in the first pass” ≧ “the degree of processing in the second pass” ≧ “the degree of processing in the third pass” and 1 after the third pass. The degree of processing per pass is controlled to 15 to 25%.
なお、総加工度とは、「総加工度(%)={1−(最終冷間圧延工程後の板厚/生地の板厚)}×100」と定義する。また、1パスあたりの加工度とは、1対の圧延ロールを通過したときの板厚の減少率を言い、「1パスあたりの加工度(%)={1−(圧延加工1回後の板厚/該圧延加工前の板厚)}×100」と定義する。 The total work degree is defined as “total work degree (%) = {1− (plate thickness after final cold rolling step / sheet thickness of dough)} × 100”. The degree of work per pass refers to the reduction rate of the sheet thickness when passing through a pair of rolling rolls, and “work degree per pass (%) = {1− (after one rolling process). Plate thickness / plate thickness before rolling)} × 100 ”.
再結晶焼鈍の前の最終冷間圧延工程において、総加工度を94%以上としたのは、圧延面に対して{220}Cu面配向(圧延集合組織)を発達させ、後の再結晶焼鈍により圧延面において90%以上の占有率を有する{200}Cu面配向(立方体集合組織)を達成するためである。また、該再結晶焼鈍により、再結晶粒の平均粒径を40μm以上とするためである。
In the final cold rolling process before recrystallization annealing, the total workability was set to 94% or more because the {220} Cu plane orientation (rolling texture) was developed with respect to the rolling surface, and the subsequent recrystallization annealing. This is to achieve {200} Cu plane orientation (cubic texture) having an occupation ratio of 90% or more on the rolled surface. Moreover, it is for making the average particle diameter of a recrystallized
さらに、再結晶焼鈍の前の最終冷間圧延工程において、1パスあたりの加工度を15〜50%に制御し、特に、「1パス目の加工度」≧「2パス目の加工度」≧「3パス目の加工度」となるように制御するとともに、3パス目以降の加工度を15〜25%に制御するのは、圧延集合組織における{111}Cu面のXRD極点図測定で、α=35〜75°の範囲において{111}Cu面の規格化平均強度が階段状になっていない、もしくは、極大領域が実質的に一つだけ存在する結晶粒配向状態を達成するためである。 Further, in the final cold rolling step before recrystallization annealing, the degree of work per pass is controlled to 15 to 50%, and in particular, “degree of work in the first pass” ≧ “degree of work in the second pass” ≧ In order to control to the “degree of processing in the third pass” and to control the degree of processing in the third pass and beyond to 15 to 25%, it is XRD pole figure measurement of {111} Cu plane in the rolling texture. This is to achieve a grain orientation state in which the normalized average intensity of the {111} Cu plane is not stepped in the range of α = 35 to 75 °, or there is substantially only one maximum region. .
最終冷間圧延工程において、総加工度が94%未満、または1パスあたりの加工度制御が上記条件から外れた場合、前記目的を達成するには不十分である。したがって、総加工度を94%以上とし、かつ1パスあたりの加工度を15〜50%に制御する。さらに、「1パス目の加工度」≧「2パス目の加工度」≧「3パス目の加工度」となるように制御するとともに、3パス目以降の加工度を15〜25%に制御することが好ましい。 In the final cold rolling process, if the total workability is less than 94% or the workability control per pass is out of the above conditions, it is not sufficient to achieve the object. Therefore, the total processing degree is set to 94% or more, and the processing degree per pass is controlled to 15 to 50%. Further, control is performed so that “the degree of machining in the first pass” ≧ “the degree of machining in the second pass” ≧ “the degree of machining in the third pass”, and the degree of machining after the third pass is controlled to 15 to 25%. It is preferable to do.
〔加工度制御の考察〕
圧延加工時に掛かる応力は、対象物に対して「引張応力成分」と「圧縮応力成分」に分けて考えられる。また、銅箔に対する冷間圧延加工において、銅箔中の銅結晶は、圧延加工時の応力により回転現象を起こし、加工の進展とともに圧延集合組織を形成する。このとき、応力方向による結晶の回転方位(圧延面に配向する方位)は、一般的に、圧縮応力の場合が{220}Cu面、引張応力の場合が{311}Cu面や{211}Cu面である。
[Consideration of processing degree control]
The stress applied during the rolling process is considered to be divided into “tensile stress component” and “compressive stress component” with respect to the object. Moreover, in the cold rolling process with respect to copper foil, the copper crystal in copper foil raise | generates a rotation phenomenon with the stress at the time of a rolling process, and forms a rolling texture with progress of a process. At this time, the rotation direction of the crystal depending on the stress direction (orientation oriented on the rolling surface) is generally {220} Cu surface in the case of compressive stress and {311} Cu surface or {211} Cu in the case of tensile stress. Surface.
従来の圧延銅箔においては、上記の観点から、最終冷間圧延工程における総加工度および1パスあたりの加工度を高めに設定し、圧縮応力を高めることで{220}Cu面配向(圧延集合組織)を強めていた。 In the conventional rolled copper foil, from the above viewpoint, the total degree of work in the final cold rolling process and the degree of work per pass are set high, and the {220} Cu plane orientation (rolling set) is increased by increasing the compressive stress. Organization).
また、従来の圧延銅箔においては、最終冷間圧延工程における総加工度のみに着目し、1パスあたりの加工度には特段の考慮がなされていなかった。ただし、総加工度を高めようとした場合、加工パス数低減の観点から、1パスあたりの加工度を高めに設定することが通常と考えられる。 Moreover, in the conventional rolled copper foil, paying attention only to the total workability in the final cold rolling process, no special consideration has been given to the workability per pass. However, when trying to increase the total processing degree, it is considered normal to set the processing degree per pass higher from the viewpoint of reducing the number of processing passes.
しかしながら、本発明者らの金属結晶学的な詳細検討により、1パスあたりの加工度を高めに設定した上で、総加工度を高めていくと、最終冷間圧延工程の途中で部分的に再結晶現象等が生じ、{220}Cu面配向(圧延集合組織)の形成を阻害していることが判明した。なお、{220}Cu面配向(圧延集合組織)形成の阻害が、再結晶焼鈍による立方体集合組織の3軸配向を阻害することは言うまでもない(特に、面内配向度Δβを劣化させる)。 However, the metal crystallographic detailed study by the present inventors has set the workability per pass higher, and when the total workability is increased, it is partially in the middle of the final cold rolling process. It was found that a recrystallization phenomenon or the like occurred and hindered the formation of {220} Cu plane orientation (rolling texture). Needless to say, the inhibition of {220} Cu plane orientation (rolling texture) formation inhibits the triaxial orientation of the cubic texture due to recrystallization annealing (particularly, the in-plane orientation degree Δβ is degraded).
そこで、本発明においては、従来とは逆に、1パスあたりの加工度(圧縮応力)を低めに制御した上で、総加工度(蓄積加工歪)を高めていく製造方法を発明した。これにより、最終冷間圧延工程途中の再結晶(加工歪の緩和)を抑制しながら{220}Cu面配向(圧延集合組織)を形成できる。なお、最終冷間圧延工程途中で再結晶を抑制しながらの{220}Cu面配向(圧延集合組織)の形成は、前述した本発明の第2の実施の形態で実現される。 Therefore, in the present invention, contrary to the prior art, a manufacturing method has been invented in which the degree of processing (accumulated processing strain) is increased while the degree of processing (compression stress) per pass is controlled to be low. Thereby, {220} Cu plane orientation (rolling texture) can be formed while suppressing recrystallization (relaxation of processing strain) during the final cold rolling process. Note that the formation of {220} Cu plane orientation (rolling texture) while suppressing recrystallization during the final cold rolling process is realized in the above-described second embodiment of the present invention.
〔他の実施の形態〕
工程aにおいて、溶解・鋳造方法に制限はなく、また、材料の寸法にも制限はない。工程b、工程cおよび工程dにおいても、特段の制限はなく、通常の方法・条件でよい。また、FPCに用いる圧延銅箔の厚みは一般的に50μm以下であり、本発明の圧延銅箔の厚みも、50μm以下であれば制限はない。
[Other Embodiments]
In step a, the melting / casting method is not limited, and the material dimensions are not limited. There are no particular restrictions on step b, step c, and step d, and ordinary methods and conditions may be used. Moreover, generally the thickness of the rolled copper foil used for FPC is 50 micrometers or less, and if the thickness of the rolled copper foil of this invention is 50 micrometers or less, there will be no restriction | limiting.
〔フレキシブルプリント配線板の製造〕
上記実施の形態の圧延銅箔を用いて、通常行われている製造方法により、フレキシブルプリント配線板を得ることができる。また、圧延銅箔に対する再結晶焼鈍は、通常のCCL工程で行われる熱処理でもよいし、別工程で行われてもよい。
[Manufacture of flexible printed wiring boards]
A flexible printed wiring board can be obtained by the manufacturing method currently performed normally using the rolled copper foil of the said embodiment. Further, the recrystallization annealing for the rolled copper foil may be a heat treatment performed in a normal CCL process or may be performed in a separate process.
〔実施の形態の効果〕
上記の本発明の実施の形態によれば、下記の効果を奏する。
(1)従来よりも優れた屈曲特性を有する圧延銅箔を得ることができる。
(2)従来よりも優れた屈曲特性を有する圧延銅箔を安定して製造することができる。
(3)従来よりも優れた屈曲特性を有するフレキシブルプリント配線板(FPC)等の可撓性配線を得ることができる。
(4)フレキシブルプリント配線板(FPC)のみに留まらず、高い屈曲特性(屈曲寿命)が要求される他の導電部材にも適用できる。
[Effect of the embodiment]
According to the above embodiment of the present invention, the following effects can be obtained.
(1) A rolled copper foil having bending properties superior to those of the conventional art can be obtained.
(2) A rolled copper foil having bending properties superior to those of conventional ones can be stably produced.
(3) A flexible wiring such as a flexible printed wiring board (FPC) having bending characteristics superior to those of the conventional one can be obtained.
(4) Not only the flexible printed wiring board (FPC) but also other conductive members that require high bending characteristics (flexing life).
以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.
(実施例1および比較例1〜3の作製)
はじめに、原料素材として無酸素銅(酸素含有量2ppm)を作製し、厚さ200mm、幅650mmの鋳塊を製造した。その後、図8記載のフローにしたがって、10mmの厚さまで熱間圧延を行った後、冷間圧延および中間焼鈍を適宜繰り返して、0.8mmと0.2mmの2種類の厚みを有する生地を製造した。なお、生地焼鈍としては、700 ℃の温度で、約1分間保持する熱処理を行った。
(Production of Example 1 and Comparative Examples 1 to 3)
First, oxygen-free copper (
つぎに、表1に示す条件で最終冷間圧延工程を行うことにより、厚さ16μmの圧延銅箔(実施例1および比較例1〜3)を作製した。なお、各条件(各圧延銅箔)において、試料を5つずつ作製した。 Next, the final cold rolling process was performed under the conditions shown in Table 1 to produce a rolled copper foil (Example 1 and Comparative Examples 1 to 3) having a thickness of 16 μm. In each condition (each rolled copper foil), five samples were prepared.
表1に示すように、実施例1は、本発明の実施の形態に係る圧延銅箔である。比較例1は、最終冷間圧延工程における1パスあたりの加工度が本発明の要件から外れる圧延銅箔である。比較例2は、最終冷間圧延工程における総加工度が本発明の要件から外れる圧延銅箔である。比較例3は、最終冷間圧延工程における総加工度および1パスあたりの加工度ともに本発明の要件から外れる圧延銅箔である。 As shown in Table 1, Example 1 is a rolled copper foil according to an embodiment of the present invention. Comparative Example 1 is a rolled copper foil whose workability per pass in the final cold rolling process deviates from the requirements of the present invention. Comparative Example 2 is a rolled copper foil in which the total degree of work in the final cold rolling process deviates from the requirements of the present invention. Comparative Example 3 is a rolled copper foil that deviates from the requirements of the present invention for both the total workability and the workability per pass in the final cold rolling process.
(最終冷間圧延工程上がりの圧延銅箔の結晶粒配向状態)
上記のようにして作製した各圧延銅箔(厚さ16μm)の加工上がりの状態(最終冷間圧延工程の後で再結晶焼鈍前)における、圧延面を基準とした{111}Cu面のXRD極点図測定結果を図9〜12に示す。
(Grain orientation state of rolled copper foil after final cold rolling process)
{111} Cu surface XRD on the basis of the rolled surface in the processed state of each rolled copper foil (thickness 16 μm) produced as described above (after the final cold rolling step and before recrystallization annealing) The pole figure measurement results are shown in FIGS.
なお、各種XRD測定(極点図測定、面内配向測定、ロッキングカーブ測定、2θ/θ測定)には、X線回折装置(株式会社リガク製、型式:RAD−B)を用いた。対陰極(ターゲット)はCuを用い、管電圧および管電流はそれぞれ40kV、30mAとした。また、XRD測定に供する試料の大きさは、約15×約15mm2とした。 An X-ray diffractometer (manufactured by Rigaku Corporation, model: RAD-B) was used for various XRD measurements (pole diagram measurement, in-plane orientation measurement, rocking curve measurement, 2θ / θ measurement). The counter cathode (target) was Cu, and the tube voltage and tube current were 40 kV and 30 mA, respectively. The size of the sample used for XRD measurement was about 15 × about 15 mm 2 .
また、XRD極点図測定の条件は、一般的なシュルツ反射法を用い、α=15〜90°(圧延面に垂直方向がα=90°)の範囲を1°ステップ毎でβ角度を0〜360°まで走査(自転)しながら、{111}Cu面の回折強度を測定した(2θ≒43°で、2θ値は試料毎に予備測定した結果を用いた)。このときのスリット条件は、発散スリット=1°、散乱スリット=7mm、受光スリット=7mmおよびシュルツスリット(スリット高さ1mm)を用いた。
The XRD pole figure is measured by using a general Schulz reflection method, and a range of α = 15 to 90 ° (α = 90 ° in the direction perpendicular to the rolling surface) is set to a β angle of 0 to 1 ° step by step. While scanning (rotating) up to 360 °, the diffraction intensity of the {111} Cu surface was measured (2θ≈43 °, and the 2θ value was the result of preliminary measurement for each sample). The slit conditions at this time were divergent slit = 1 °, scattering slit = 7 mm, light receiving slit = 7 mm, and Schulz slit (slit
図9は、実施例1における圧延面を基準とした{111}Cu面のXRD極点図測定結果の1例である。図9(a)は各α角度におけるβ走査で得られる該{111}Cu面回折ピークの規格化平均強度を示し、図9(b)は正極点図を示している。 FIG. 9 is an example of the XRD pole figure measurement result of the {111} Cu plane based on the rolled surface in Example 1. FIG. 9A shows the normalized average intensity of the {111} Cu plane diffraction peak obtained by β scanning at each α angle, and FIG. 9B shows a positive dot diagram.
図10は、比較例1における圧延面を基準とした{111}Cu面のXRD極点図測定結果の1例である。図10(a)は各α角度におけるβ走査で得られる該{111}Cu面回折ピークの規格化平均強度を示し、図10(b)は正極点図を示している。 FIG. 10 is an example of the XRD pole figure measurement result of the {111} Cu plane based on the rolled surface in Comparative Example 1. FIG. 10A shows the normalized average intensity of the {111} Cu plane diffraction peak obtained by β scanning at each α angle, and FIG. 10B shows a positive dot diagram.
図11は、比較例2における圧延面を基準とした{111}Cu面のXRD極点図測定結果の1例である。図11(a)は各α角度におけるβ走査で得られる該{111}Cu面回折ピークの規格化平均強度を示し、図11(b)は正極点図を示している。 FIG. 11 is an example of the XRD pole figure measurement result of the {111} Cu plane based on the rolled surface in Comparative Example 2. FIG. 11A shows the normalized average intensity of the {111} Cu plane diffraction peak obtained by β scanning at each α angle, and FIG. 11B shows a positive dot diagram.
図12は、比較例3における圧延面を基準とした{111}Cu面のXRD極点図測定結果の1例である。図12(a)は各α角度におけるβ走査で得られる該{111}Cu面回折ピークの規格化平均強度を示し、図12(b)は正極点図を示している。 FIG. 12 is an example of the XRD pole figure measurement result of the {111} Cu plane based on the rolled surface in Comparative Example 3. FIG. 12A shows the normalized average intensity of the {111} Cu plane diffraction peak obtained by β scanning at each α angle, and FIG. 12B shows a positive dot diagram.
図9(a)、図10(a)、図11(a)および図12(a)において、図中の矢印は、規格化平均強度が階段状または極大領域になっている部分を示している。図から明らかなように、α=35〜75°の範囲において、実施例1では極大領域が実質的に一つだけ存在するのに対し、比較例1〜3では少なくとも2箇所存在することが判る。 In FIG. 9A, FIG. 10A, FIG. 11A, and FIG. 12A, the arrows in the figure indicate portions where the normalized average intensity is stepped or maximal. . As is apparent from the figure, in the range of α = 35 to 75 °, there is substantially only one local maximum region in Example 1, whereas there are at least two locations in Comparative Examples 1 to 3. .
ここで、図10(a)および図12(a)におけるα=40〜45°の範囲の極大領域に対応して、図10(b)および図12(b)において図中の矢印で示すように、4回対称性の回折ピークが確認される。この4回対称性の回折ピークは、冷間圧延加工途中での再結晶現象に起因するものと考えられる。また、比較例1および3は、最終冷間圧延工程における1パスあたりの加工度が本発明の要件よりも大きい圧延銅箔であり(表1参照)、1パスあたりの加工度が冷間圧延加工途中での再結晶現象に強く影響を及ぼすことを示唆している。 Here, corresponding to the maximum region in the range of α = 40 to 45 ° in FIGS. 10 (a) and 12 (a), as indicated by the arrows in FIGS. 10 (b) and 12 (b). In addition, a diffraction peak having a 4-fold symmetry is confirmed. This four-fold symmetry diffraction peak is considered to be caused by a recrystallization phenomenon during the cold rolling process. Further, Comparative Examples 1 and 3 are rolled copper foils whose degree of work per pass in the final cold rolling process is larger than the requirements of the present invention (see Table 1), and the degree of work per pass is cold rolled. This suggests that it strongly affects the recrystallization phenomenon during processing.
一方、図11(b)において、図11(a)におけるα=40〜45°の範囲の階段状領域に対応する4回対称性の回折ピークは確認されない。しかしながら、比較例2は最終冷間圧延工程における総加工度が本発明の要件よりも小さい圧延銅箔であることから(表1参照)、冷間圧延加工における銅結晶の回転現象が不十分であったために、図11(a)におけるα=40〜45°の範囲の階段状領域が検出されたものと考えられる。 On the other hand, in FIG. 11B, a four-fold symmetry diffraction peak corresponding to the stepped region in the range of α = 40 to 45 ° in FIG. However, since Comparative Example 2 is a rolled copper foil whose total workability in the final cold rolling process is smaller than the requirements of the present invention (see Table 1), the rotation phenomenon of copper crystals in the cold rolling work is insufficient. Therefore, it is considered that a stepped region in the range of α = 40 to 45 ° in FIG.
最終冷間圧延工程の加工条件と加工上がり圧延銅箔の結晶粒配向状態の関係をまとめる。再結晶焼鈍前の最終冷間圧延工程において、総加工度を94%以上とし、かつ1パスあたりの加工度を15〜50%に制御し、特に、「1パス目の加工度」≧「2パス目の加工度」≧「3パス目の加工度」となるように制御するとともに、3パス目以降の加工度を15〜25%に制御することによって、最終冷間圧延工程途中の再結晶現象を抑制し、かつ銅結晶の回転現象を促進させた{220}Cu面配向(圧延集合組織)を形成できることが判る。 The relationship between the processing conditions of the final cold rolling process and the crystal grain orientation state of the finished rolled copper foil will be summarized. In the final cold rolling step before recrystallization annealing, the total workability is set to 94% or more, and the workability per pass is controlled to 15 to 50%. In particular, “workability in the first pass” ≧ “2 Recrystallization during the final cold rolling process is performed by controlling the degree of processing at the pass “≧“ degree of processing at the third pass ”and controlling the degree of processing after the third pass to 15 to 25%. It can be seen that {220} Cu plane orientation (rolling texture) can be formed which suppresses the phenomenon and promotes the rotation phenomenon of the copper crystal.
逆に、「総加工度」または「1パスあたりの加工度」が本発明の要件を外れると、圧延加工途中の再結晶現象や不十分な結晶回転を生じさせ、圧延銅箔における{220}Cu面配向(圧延集合組織)の効果的な形成を阻害する。また、圧延加工途中の再結晶現象や不十分な結晶回転は、圧延面を基準とした{111}Cu面のXRD極点図測定(特に、各α角度におけるβ走査で得られる該{111}Cu面回折ピークの規格化平均強度)により判別できる。 On the contrary, if the “total workability” or “workability per pass” deviates from the requirement of the present invention, a recrystallization phenomenon during rolling and insufficient crystal rotation occur, and {220} in the rolled copper foil. Inhibits effective formation of Cu plane orientation (rolling texture). In addition, recrystallization phenomenon during rolling and insufficient crystal rotation are caused by XRD pole figure measurement of {111} Cu plane based on the rolling surface (particularly the {111} Cu obtained by β scanning at each α angle). It can be determined by the normalized average intensity of the surface diffraction peak.
(再結晶焼鈍後の圧延銅箔の結晶粒配向状態)
上記のようにして作製した各圧延銅箔(厚さ16μm、最終冷間圧延工程上がり)に対し、温度180℃で60分間保持する再結晶焼鈍を施した後、X線回折装置を用いて各圧延銅箔の結晶粒配向状態を評価した。
(Grain orientation state of rolled copper foil after recrystallization annealing)
Each rolled copper foil produced as described above (thickness 16 μm, final cold rolling process increased) is subjected to recrystallization annealing that is held at a temperature of 180 ° C. for 60 minutes, and then each is performed using an X-ray diffractometer. The crystal grain orientation state of the rolled copper foil was evaluated.
XRD・2θ/θ測定により立方体集合組織の{200}Cu面占有率を評価したところ(それぞれ5試料の平均)、実施例1が約94%、比較例1が約91%、比較例2が約89%、比較例3が約88%であった。 When the {200} Cu plane occupancy of the cube texture was evaluated by XRD · 2θ / θ measurement (average of 5 samples each), Example 1 was about 94%, Comparative Example 1 was about 91%, and Comparative Example 2 was About 89% and Comparative Example 3 were about 88%.
また、XRDロッキングカーブ測定は、次のように行った。各圧延銅箔のXRD・2θ/θ測定により得られた{200}Cu面回折ピークの2θ値に検出器を固定して、試料をθ=15〜35°まで走査したときに得られる回折ピークの半価幅Δθを算出した。なお、2θ/θ測定およびロッキングカーブ測定におけるスリット条件は、発散スリットが1°、受光スリットが0.15mm、散乱スリットが1°で行なった。Δθの測定結果(それぞれ5試料の平均)は、実施例1が約7.8°、比較例1が約8.6°、比較例2が約7.3°、比較例3が約10.4°であった。 Moreover, the XRD rocking curve measurement was performed as follows. Diffraction peak obtained when the detector is fixed to the 2θ value of the {200} Cu plane diffraction peak obtained by XRD · 2θ / θ measurement of each rolled copper foil and the sample is scanned from θ = 15 to 35 °. The half-value width Δθ of was calculated. The slit conditions in 2θ / θ measurement and rocking curve measurement were 1 ° for the diverging slit, 0.15 mm for the light receiving slit, and 1 ° for the scattering slit. The measurement results of Δθ (average of 5 samples each) are about 7.8 ° in Example 1, about 8.6 ° in Comparative Example 1, about 7.3 ° in Comparative Example 2, and about 10. in Comparative Example 3. It was 4 °.
また、XRD面内配向測定は、次のように行った。まず、各圧延銅箔(各試料)ごとに予め{111}Cu面の2θ値を求める(例えば、JCPDS等からの{111}Cu面2θ値を用いて{111}Cu面の面内配向測定を行い、最も回折強度の大きかったβ値を用いて、試料面をα=35°に設定した状態で2θ/θ測定を行うことにより、当該試料の{111}Cu面の2θ値が得られる)。その後、当該試料の{111}Cu面の2θ値に検出器を固定して、試料をβ軸走査(β=0〜360°)したときに得られる4回対称性の回折ピークの平均半価幅Δβを算出した。Δβの測定結果(それぞれ5試料の平均)は、実施例1が約8.3°、比較例1が約8.8°、比較例2が約9.8°、比較例3が約11.8°であった。 Moreover, the XRD in-plane orientation measurement was performed as follows. First, the 2θ value of the {111} Cu surface is obtained in advance for each rolled copper foil (each sample) (for example, in-plane orientation measurement of the {111} Cu surface using the {111} Cu surface 2θ value from JCPDS, etc.) And the 2θ / θ measurement is performed with the sample surface set to α = 35 ° using the β value having the highest diffraction intensity, and the 2θ value of the {111} Cu surface of the sample can be obtained. ). Thereafter, the average half value of the four-fold symmetry diffraction peak obtained when the detector is fixed to the 2θ value of the {111} Cu surface of the sample and the sample is β-axis scanned (β = 0 to 360 °). The width Δβ was calculated. The measurement results of Δβ (average of 5 samples each) were about 8.3 ° in Example 1, about 8.8 ° in Comparative Example 1, about 9.8 ° in Comparative Example 2, and about 11. in Comparative Example 3. It was 8 °.
また、{111}Cu面の規格化平均強度比の評価は、前述と同様に、シュルツ反射法によるXRD極点図測定において(α=15〜90°の範囲で1°ステップ毎にβ角度を0〜360°まで走査しながら、{111}Cu面の回折強度を測定)、α=35°における{111}Cu面の規格化平均強度[a]とα=74°における規格化平均強度[b]の比を求めた。図13は、実施例1における規格化平均強度のグラフの1例である。図14は、比較例3における規格化平均強度のグラフの1例である。また、規格化平均強度比の結果(それぞれ5試料の平均)は、実施例1が約4.5、比較例1が約2.9、比較例2が約2.0、比較例3が約1.7であった。 In addition, the evaluation of the normalized average intensity ratio of the {111} Cu surface is carried out in the same way as described above in the XRD pole figure measurement by the Schulz reflection method (the β angle is set to 0 for each 1 ° step in the range of α = 15 to 90 °). The diffraction intensity of the {111} Cu surface is measured while scanning up to 360 °), the normalized average intensity [a] of the {111} Cu surface at α = 35 °, and the normalized average intensity [b] at α = 74 ° ] Ratio was determined. FIG. 13 is an example of a graph of normalized average intensity in Example 1. FIG. 14 is an example of a graph of normalized average intensity in Comparative Example 3. The results of normalized average strength ratio (average of 5 samples each) were about 4.5 for Example 1, about 2.9 for Comparative Example 1, about 2.0 for Comparative Example 2, and about Comparative Example 3. 1.7.
再結晶焼鈍後の圧延銅箔に対する、上記の各種XRD測定結果を表2に示す。 Table 2 shows various XRD measurement results for the rolled copper foil after the recrystallization annealing.
再結晶焼鈍前後における圧延銅箔の結晶粒配向状態の関係をまとめる。表2の結果から明らかなように、図9のような結晶粒配向状態を有する圧延銅箔に再結晶焼鈍を施した圧延銅箔は、{200}Cu面占有率、Δθ、Δβの3つの指標から立方体集合組織が極めて高い3軸配向性を有していることを示している。さらに、規格化平均強度比([a]/[b])の指標から、立方体集合組織の3軸配向に加えて、{200}Cu面の双晶組織が少ない圧延銅箔であることを示している。 The relationship of the crystal grain orientation state of the rolled copper foil before and after recrystallization annealing will be summarized. As is clear from the results in Table 2, a rolled copper foil obtained by subjecting a rolled copper foil having a crystal grain orientation state as shown in FIG. 9 to recrystallization annealing has three parts: {200} Cu plane occupancy, Δθ, and Δβ. The index indicates that the cubic texture has a very high triaxial orientation. Furthermore, the index of the normalized average strength ratio ([a] / [b]) indicates that the rolled copper foil has few twin structures on the {200} Cu plane in addition to the triaxial orientation of the cubic texture. ing.
これに対し、図10〜12のような結晶粒配向状態を有する圧延銅箔に再結晶焼鈍を施した圧延銅箔は、4つの指標({200}Cu面占有率、Δθ、Δβ、規格化平均強度比)のいずれか1つ以上が劣っており、立方体集合組織の3軸配向性が劣っている(阻害されている)、および/または立方体集合組織における{200}Cu面の双晶組織が多い圧延銅箔であることを示している。 In contrast, a rolled copper foil obtained by subjecting a rolled copper foil having a grain orientation state as shown in FIGS. 10 to 12 to recrystallization annealing has four indices ({200} Cu plane occupancy, Δθ, Δβ, normalized) Any one or more of (average intensity ratio) is inferior, the triaxial orientation of the cube texture is inferior (inhibited), and / or the twin structure of {200} Cu plane in the cube texture It shows that it is a rolled copper foil.
(再結晶焼鈍後の圧延銅箔の平均結晶粒径)
上記のようにして作製した各圧延銅箔(厚さ16μm、再結晶焼鈍後)に対する平均結晶粒径の評価は、次のように行った。圧延銅箔の表面を過酸化水素水(例えば、和光純薬工業株式会社製、品番:080−01186)とアンモニア水(例えば、和光純薬工業株式会社製、品番:017−03176)の混合溶液(アンモニア水10ml + 過酸化水素水2〜3滴)で湿らせた脱脂綿でエッチング(エッチングする面を脱脂綿で1〜2回拭う程度)した後、表面の金属組織写真を光学顕微鏡(オリンパス株式会社製、型式:PMG3)を用いて撮影した。この写真に対し、JIS H 0501の切断法に準拠して平均結晶粒径を求めた。結果を表3に示す。
(Average crystal grain size of rolled copper foil after recrystallization annealing)
Evaluation of the average crystal grain size for each rolled copper foil (thickness 16 μm, after recrystallization annealing) produced as described above was performed as follows. The surface of the rolled copper foil is a mixed solution of hydrogen peroxide water (for example, Wako Pure Chemical Industries, Ltd., product number: 080-01186) and ammonia water (for example, Wako Pure Chemical Industries, Ltd., product number: 017-03176). After etching with absorbent cotton moistened with 10 ml of ammonia water + 2 to 3 drops of hydrogen peroxide solution (to wipe the surface to be etched once or twice with absorbent cotton), an optical microscope (Olympus Corporation) Photo was taken using a model manufactured by PMG3). For this photograph, the average crystal grain size was determined in accordance with the cutting method of JIS H 0501. The results are shown in Table 3.
表3の結果から明らかなように、実施例1の圧延銅箔は、比較例1〜3に比して非常に大きな平均結晶粒径を有していることが判る。この結果は、実施例1における立方体集合組織の極めて高い3軸配向性と{200}Cu面の双晶組織が少ない圧延銅箔(表2参照)に起因しているものと考えられる。 As is apparent from the results in Table 3, it can be seen that the rolled copper foil of Example 1 has a very large average crystal grain size as compared with Comparative Examples 1 to 3. This result is considered to be due to the extremely high triaxial orientation of the cubic texture in Example 1 and the rolled copper foil (see Table 2) with little twin structure on the {200} Cu plane.
(再結晶焼鈍後の圧延銅箔の屈曲特性)
上記のようにして作製した各圧延銅箔(厚さ16μm、再結晶焼鈍後)に対する屈曲特性の評価は、次のように行った。図15は、屈曲特性評価(摺動屈曲試験)の概略を表した模式図である。摺動屈曲試験装置は信越エンジニアリング株式会社製、型式:SEK−31B2Sを用い、R=2.5mm、振幅ストローク=10mm、周波数=25Hz(振幅速度=1500回/分)、試料幅=12.5mm、試料長さ=220mm、試料片の長手方向が圧延方向となる条件で測定した。結果を表4に示す。
(Bending characteristics of rolled copper foil after recrystallization annealing)
Evaluation of the bending characteristic with respect to each rolled copper foil (thickness 16 micrometers, after recrystallization annealing) produced as mentioned above was performed as follows. FIG. 15 is a schematic diagram showing an outline of bending characteristic evaluation (sliding bending test). The sliding bending test apparatus is manufactured by Shin-Etsu Engineering Co., Ltd., model: SEK-31B2S, R = 2.5 mm, amplitude stroke = 10 mm, frequency = 25 Hz (amplitude speed = 1500 times / min), sample width = 12.5 mm The sample length was 220 mm, and the measurement was performed under the condition that the longitudinal direction of the sample piece was the rolling direction. The results are shown in Table 4.
表4の結果から明らかなように、実施例1の圧延銅箔は、比較例1〜3に比して2倍以上の屈曲寿命回数(高い屈曲特性)を有していることが判る。この結果は、実施例1における立方体集合組織の極めて高い3軸配向性と{200}Cu面の双晶組織が少ない圧延銅箔(表2参照)、ならびに大きな平均結晶粒径(表3参照)に起因しているものと考えられる。 As is apparent from the results in Table 4, it can be seen that the rolled copper foil of Example 1 has a flex life (high bending characteristics) twice or more that of Comparative Examples 1 to 3. This result shows that the cubic texture in Example 1 has a very high triaxial orientation, a rolled copper foil (see Table 2) with little twin structure on the {200} Cu plane, and a large average crystal grain size (see Table 3). It is thought to be caused by
(実施例2〜3および比較例4の作製)
原料素材として前記無酸素銅(酸素含有量2ppm)にSnを0.004質量%添加した銅合金(実施例2)、前記無酸素銅にSnを0.007質量%添加した銅合金(実施例3)および前記無酸素銅にSnを0.01質量%添加した銅合金(比較例4)を作製し、厚さ200mm、幅650mmの鋳塊を製造した。その後、図8記載のフローにしたがって、10mmの厚さまで熱間圧延を行った後、冷間圧延および中間焼鈍を適宜繰り返して、0.8mmの厚みを有する生地を製造した。なお、生地焼鈍としては、700 ℃の温度で、約1分間保持する熱処理を行った。
(Production of Examples 2-3 and Comparative Example 4)
A copper alloy (Example 2) in which 0.004 mass% of Sn is added to the oxygen-free copper (
つぎに、実施例1と同様の条件(表1参照)で最終冷間圧延工程を行うことにより、厚さ16μmの圧延銅箔(実施例2〜3および比較例4)を作製した。なお、先と同様に各条件(各圧延銅箔)において、試料を5つずつ作製した。 Next, by carrying out the final cold rolling process under the same conditions as in Example 1 (see Table 1), a rolled copper foil (Examples 2 to 3 and Comparative Example 4) having a thickness of 16 μm was produced. Note that five samples were prepared under the same conditions (each rolled copper foil) as before.
作製した圧延銅箔(実施例2〜3および比較例4)の軟化温度を調査した。調査方法は、JIS Z 2241の引張試験方法にほぼ準拠し、万能試験機(株式会社島津製作所製、型式:AG−I)を用いた引張強度で判定した。先ず、試料片として幅15mm、長さ200mmの短冊状に切り出した(長さ方向が圧延方向)。切り出した各試料片に対し、50℃、100℃、130℃、160℃、180℃、200℃、220℃、240℃、260℃、280℃、300℃、320℃、340℃、360℃の各温度で30分間熱処理を施した。熱処理後の各試料片の引張強度を測定し、強度の低下がほぼ飽和(110〜150N/mm2程度)した温度を軟化温度とした(なお、熱処理前の圧延銅箔の引張強度は380〜480N/mm2程度)。 The softening temperature of the produced rolled copper foil (Examples 2-3 and Comparative Example 4) was investigated. The investigation method was almost based on the tensile test method of JIS Z 2241, and was determined by the tensile strength using a universal testing machine (manufactured by Shimadzu Corporation, model: AG-I). First, a sample piece was cut into a strip shape having a width of 15 mm and a length of 200 mm (the length direction is the rolling direction). For each sample piece cut out, 50 ° C, 100 ° C, 130 ° C, 160 ° C, 180 ° C, 200 ° C, 220 ° C, 240 ° C, 260 ° C, 280 ° C, 300 ° C, 320 ° C, 340 ° C, 360 ° C Heat treatment was performed at each temperature for 30 minutes. The tensile strength of each sample piece after heat treatment was measured, and the temperature at which the decrease in strength was almost saturated (about 110 to 150 N / mm 2 ) was defined as the softening temperature (note that the tensile strength of the rolled copper foil before heat treatment was 380 to 380). About 480 N / mm 2 ).
このようにして調査した結果(それぞれ5試料の平均)、実施例2の軟化温度は約180℃、実施例3の軟化温度は約260℃、比較例4の軟化温度は約320℃であった。なお、Sn成分を含まない無酸素銅(実施例1)の軟化温度は約100℃であった。 As a result of the investigation (average of 5 samples each), the softening temperature of Example 2 was about 180 ° C., the softening temperature of Example 3 was about 260 ° C., and the softening temperature of Comparative Example 4 was about 320 ° C. . In addition, the softening temperature of oxygen-free copper (Example 1) which does not contain Sn component was about 100 degreeC.
これらの圧延銅箔に対し、CCL工程での再結晶焼鈍を想定した条件(温度300℃で10分間保持)で熱処理を施した後、前述と同様の平均結晶粒径評価と屈曲特性評価(摺動屈曲試験)を行った。平均結晶粒径の評価結果を表5に、屈曲特性の評価結果を表6に示す。 These rolled copper foils were subjected to heat treatment under conditions assuming recrystallization annealing in the CCL process (held at a temperature of 300 ° C. for 10 minutes), and then evaluated for the average crystal grain size and bending characteristics (sliding) as described above. Dynamic bending test). Table 5 shows the evaluation results of the average crystal grain size, and Table 6 shows the evaluation results of the bending characteristics.
表3〜6の結果を総合的に考え合わせると、実施例2および3の圧延銅箔は、必要十分な再結晶焼鈍が行われたことから、従来の圧延銅箔(比較例1〜3)に比して2倍以上の屈曲寿命回数(高い屈曲特性)を示したものと考えられる。また、同様の理由により、熱処理後の平均結晶粒径が十分な大きさ(40μm以上)を有していたものと考えられる。 When considering the results of Tables 3 to 6 comprehensively, the rolled copper foils of Examples 2 and 3 were subjected to necessary and sufficient recrystallization annealing, so that conventional rolled copper foils (Comparative Examples 1 to 3) were used. It is considered that the number of flexing lifespans (high flexing characteristics) was twice or more as compared with. For the same reason, it is considered that the average crystal grain size after the heat treatment had a sufficient size (40 μm or more).
また、上記熱処理を施した実施例2および3の圧延銅箔に対し、圧延面を基準とした{111}Cu面のXRD極点図測定を行ったところ、図3および図13と同様な結果が得られ、Δβ≦10°および[a]/[b]≧3である結晶粒配向状態を有していることを確認した。 Moreover, when the XRD pole figure measurement of the {111} Cu surface on the basis of the rolling surface was performed on the rolled copper foils of Examples 2 and 3 subjected to the heat treatment, the same results as in FIGS. 3 and 13 were obtained. It was confirmed that it had a crystal grain orientation state where Δβ ≦ 10 ° and [a] / [b] ≧ 3.
一方、Sn成分の含有量が本発明の要件よりも多い比較例4は、従来の圧延銅箔(比較例1〜3)よりも劣る屈曲特性であった。そこで、上記熱処理を施した比較例4の圧延銅箔に対し、XRD極点図測定を行った。図16は、比較例4における圧延面を基準とした{111}Cu面のXRD極点図測定による各α角度に対するβ走査で得られる該{111}Cu面回折ピークの規格化平均強度のグラフの1例である。 On the other hand, Comparative Example 4 in which the content of the Sn component is larger than the requirements of the present invention was inferior to the conventional rolled copper foil (Comparative Examples 1 to 3) in bending properties. Therefore, XRD pole figure measurement was performed on the rolled copper foil of Comparative Example 4 subjected to the heat treatment. FIG. 16 is a graph of the normalized average intensity of the {111} Cu plane diffraction peak obtained by β scanning for each α angle by XRD pole figure measurement of the {111} Cu plane relative to the rolled surface in Comparative Example 4. This is an example.
図中の結果から明らかなように、[a]/[b]<3であり、しかも再結晶に起因する回折と圧延集合組織に起因する回折が混在していることがわかる。これは、Sn成分の含有量が多過ぎたために、十分な再結晶焼鈍が行われなかったためと考えられる。 As is apparent from the results in the figure, [a] / [b] <3, and it can be seen that diffraction due to recrystallization and diffraction due to rolling texture are mixed. This is presumably because sufficient recrystallization annealing was not performed because the content of the Sn component was too large.
1:銅箔
2:試料固定板
2a:ねじ
3:振動伝達部
4:発振駆動体
R:曲率
1: Copper foil 2:
Claims (6)
かつ前記X線回折極点図測定のα=35°におけるβ走査による前記{111}Cu面回折ピークの規格化平均強度[a]とα=74°におけるβ走査による前記{111}Cu面回折ピークの規格化平均強度[b]の比が、[a]/[b]≧3である結晶粒配向状態を有することを特徴とする圧延銅箔。 In the rolled copper foil made of tough pitch copper or oxygen-free copper subjected to recrystallization annealing after the final cold rolling step, the result obtained by the X-ray diffraction pole figure measurement based on the rolled surface, the {200 } plane orientation degree Δβ of {111} Cu plane to the Cu surface is 10 ° or less,
And wherein by β scanning in the alpha = 35 ° in X-ray diffraction pole figure measurement {111} normalized average intensity of the Cu surface diffraction peak [a] and alpha = the by β scanning at 74 ° {111} Cu plane diffraction peak A rolled copper foil characterized by having a grain orientation state in which the ratio of normalized average strength [b] of [a] / [b] ≧ 3.
かつ前記{200}Cu面のX線回折ロッキングカーブ測定により得られる結果で、該回折ピークの半価幅Δθが10°以下であることを特徴とする圧延銅箔。 The rolled copper foil according to claim 1, wherein 90% or more of the diffraction peak of the copper crystal is the {200} Cu plane as a result obtained by X-ray diffraction 2θ / θ measurement on the rolled surface.
And the rolled copper foil characterized by the half-value width | variety (DELTA) (theta) of this diffraction peak being 10 degrees or less by the result obtained by the X-ray-diffraction rocking curve measurement of said {200} Cu surface.
前記再結晶焼鈍の前の前記最終冷間圧延工程における総加工度を94%以上とし、1パスあたりの加工度を15〜50%に制御し、かつ「1パス目の加工度」≧「2パス目の加工度」≧「3パス目の加工度」となるように制御するとともに、3パス目以降の加工度を15〜25%に制御することを特徴とする圧延銅箔の製造方法。 Results obtained by X-ray diffraction pole figure measurement based on the rolling surface of rolled copper foil made of tough pitch copper or oxygen-free copper after the final cold rolling process and before recrystallization annealing, with β scanning at each α angle normalized average intensity of the resulting {111} Cu plane diffraction peaks when plotting the α angle is rolled copper foil maximum area of the normalized average strength degree there is only one one in the range of 35 to 75 ° A manufacturing method comprising:
The total working ratio in the final cold rolling step prior to the recrystallization annealing is 94% or more, to control the working ratio per one pass to 15% to 50%, and "first pass working ratio" ≧ "2 A method for producing a rolled copper foil, characterized in that control is performed so that the degree of processing of the pass "≧" degree of processing of the third pass ", and the degree of processing after the third pass is controlled to 15 to 25% .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006290880A JP4285526B2 (en) | 2006-10-26 | 2006-10-26 | Rolled copper foil and method for producing the same |
US11/682,943 US7789977B2 (en) | 2006-10-26 | 2007-03-07 | Rolled copper foil and manufacturing method thereof |
CN2007101674764A CN101168829B (en) | 2006-10-26 | 2007-10-25 | Rolled copper foil and manufacturing method thereof |
US12/846,865 US20100291402A1 (en) | 2006-10-26 | 2010-07-30 | Rolled copper foil and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006290880A JP4285526B2 (en) | 2006-10-26 | 2006-10-26 | Rolled copper foil and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008106312A JP2008106312A (en) | 2008-05-08 |
JP4285526B2 true JP4285526B2 (en) | 2009-06-24 |
Family
ID=39389594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006290880A Active JP4285526B2 (en) | 2006-10-26 | 2006-10-26 | Rolled copper foil and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4285526B2 (en) |
CN (1) | CN101168829B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130095157A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130095203A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130095204A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130095156A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130129054A (en) | 2012-05-17 | 2013-11-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130129053A (en) | 2012-05-17 | 2013-11-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20140010867A (en) | 2012-07-17 | 2014-01-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20140010858A (en) | 2012-07-17 | 2014-01-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20140125720A (en) | 2013-04-18 | 2014-10-29 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil with copper plating layer |
KR101540508B1 (en) * | 2012-02-28 | 2015-07-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Rolled copper foil |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5073386B2 (en) * | 2007-07-05 | 2012-11-14 | 株式会社Neomaxマテリアル | ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE |
JP4763068B2 (en) * | 2008-06-30 | 2011-08-31 | 新日鐵化学株式会社 | Flexible circuit board, manufacturing method thereof, and bent portion structure of flexible circuit board |
EP2366815A4 (en) * | 2008-11-12 | 2012-12-26 | Toyo Kohan Co Ltd | Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor |
JP5245813B2 (en) * | 2008-12-25 | 2013-07-24 | 日立電線株式会社 | Rolled copper foil |
JP2010150597A (en) * | 2008-12-25 | 2010-07-08 | Hitachi Cable Ltd | Rolled copper foil |
JP2010280191A (en) * | 2009-06-08 | 2010-12-16 | Hitachi Cable Ltd | Copper foil for heat treatment, manufacturing method thereof and flexible printed wiring board |
JP4677505B1 (en) | 2010-03-31 | 2011-04-27 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
JP4601085B1 (en) * | 2010-06-03 | 2010-12-22 | Jx日鉱日石金属株式会社 | Cu-Co-Si-based copper alloy rolled plate and electrical component using the same |
JP5625188B2 (en) * | 2010-06-29 | 2014-11-19 | 三井住友金属鉱山伸銅株式会社 | Rolled copper foil and method for producing the same |
JP5329491B2 (en) * | 2010-08-13 | 2013-10-30 | Jx日鉱日石金属株式会社 | Copper foil for flexible printed wiring board and method for producing the same |
JP5575632B2 (en) * | 2010-12-17 | 2014-08-20 | 株式会社Shカッパープロダクツ | Method for producing copper foil for lithium ion secondary battery |
CN102319733B (en) * | 2011-01-18 | 2014-04-16 | 菏泽广源铜带股份有限公司 | Production process for red copper rolled copper foil without rolling needle hole |
JP5451674B2 (en) | 2011-03-28 | 2014-03-26 | Jx日鉱日石金属株式会社 | Cu-Si-Co based copper alloy for electronic materials and method for producing the same |
JP4799701B1 (en) * | 2011-03-29 | 2011-10-26 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same |
JP5694094B2 (en) * | 2011-09-01 | 2015-04-01 | Jx日鉱日石金属株式会社 | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device |
JP5758254B2 (en) * | 2011-09-27 | 2015-08-05 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5679580B2 (en) * | 2011-11-07 | 2015-03-04 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5273236B2 (en) * | 2011-12-06 | 2013-08-28 | 日立電線株式会社 | Rolled copper foil |
JP5657043B2 (en) * | 2012-02-28 | 2015-01-21 | Jx日鉱日石金属株式会社 | Rolled copper foil |
CN102716908B (en) * | 2012-07-04 | 2014-02-26 | 北京科技大学 | Forming method of high-flexibility ultrathin rolled copper foil |
CN103084388B (en) * | 2013-01-25 | 2015-03-11 | 中南大学 | Preparation method of ultrathin Ta-W alloy foil |
CN104511479B (en) * | 2013-10-04 | 2017-01-11 | Jx日矿日石金属株式会社 | Rolled copper foil |
JP6393126B2 (en) * | 2013-10-04 | 2018-09-19 | Jx金属株式会社 | Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method |
EP2862640B1 (en) * | 2013-10-18 | 2016-11-30 | Primetals Technologies Germany GmbH | Method and device for processing rolled goods in a rolling line |
CN104099510B (en) * | 2014-07-30 | 2016-06-15 | 宁波通达精密铸造有限公司 | Liquid iron balling processing method |
JP6734033B2 (en) * | 2015-10-16 | 2020-08-05 | 株式会社Shカッパープロダクツ | Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board |
CN105772508B (en) * | 2015-12-27 | 2017-12-19 | 佛山市领卓科技有限公司 | A kind of method of copper foil deep processing |
CN105714382B (en) * | 2016-02-23 | 2017-12-29 | 北京大学 | The preparation method of large scale Cu (100) monocrystalline copper foil |
JP6848251B2 (en) * | 2016-08-04 | 2021-03-24 | 日立金属株式会社 | Thermoelectric conversion module and its manufacturing method |
JP6744174B2 (en) * | 2016-08-12 | 2020-08-19 | 株式会社Shカッパープロダクツ | Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board |
EP3667710B1 (en) * | 2017-08-09 | 2022-01-05 | NIPPON STEEL Chemical & Material Co., Ltd. | Cu ALLOY BONDING WIRE FOR SEMICONDUCTOR DEVICE |
CN112064071B (en) * | 2020-09-09 | 2021-08-03 | 松山湖材料实验室 | Bending-resistant copper foil, preparation method thereof and FPC (flexible printed circuit) flexible circuit board |
-
2006
- 2006-10-26 JP JP2006290880A patent/JP4285526B2/en active Active
-
2007
- 2007-10-25 CN CN2007101674764A patent/CN101168829B/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130095157A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130095203A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130095204A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130095156A (en) | 2012-02-17 | 2013-08-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR101540508B1 (en) * | 2012-02-28 | 2015-07-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Rolled copper foil |
KR20130129054A (en) | 2012-05-17 | 2013-11-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20130129053A (en) | 2012-05-17 | 2013-11-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20140010867A (en) | 2012-07-17 | 2014-01-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20140010858A (en) | 2012-07-17 | 2014-01-27 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil |
KR20140125720A (en) | 2013-04-18 | 2014-10-29 | 가부시키가이샤 에스에이치 카퍼프로덕츠 | Rolled copper foil with copper plating layer |
Also Published As
Publication number | Publication date |
---|---|
JP2008106312A (en) | 2008-05-08 |
CN101168829A (en) | 2008-04-30 |
CN101168829B (en) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4285526B2 (en) | Rolled copper foil and method for producing the same | |
JP4215093B2 (en) | Rolled copper foil and method for producing the same | |
JP4466688B2 (en) | Rolled copper foil | |
JP5320638B2 (en) | Rolled copper foil and method for producing the same | |
US7789977B2 (en) | Rolled copper foil and manufacturing method thereof | |
JP5245813B2 (en) | Rolled copper foil | |
JP4992940B2 (en) | Rolled copper foil | |
JP5752536B2 (en) | Rolled copper foil | |
JP2000212660A (en) | Rolled copper foil for flexible printed circuit board and its production | |
KR101893280B1 (en) | Rolled copper foil, method for producing rolled copper foil, flexible flat cable, and method for producing flexible flat cable | |
JP2010150597A (en) | Rolled copper foil | |
JP5390852B2 (en) | Rolled copper foil | |
JP2004256879A (en) | Rolled copper foil having high elongation | |
JP4162087B2 (en) | Highly flexible rolled copper foil and method for producing the same | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
JP4430509B2 (en) | Rolled copper foil | |
US20090173414A1 (en) | Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil | |
JP3709109B2 (en) | Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same | |
JP2008038170A (en) | Rolled copper foil | |
JP5273236B2 (en) | Rolled copper foil | |
US8293033B2 (en) | Rolled copper foil | |
JP5562218B2 (en) | Rolled copper foil | |
JP3830680B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP2013241631A (en) | Rolled copper foil | |
JP3986707B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090316 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4285526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140403 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |