JP4672515B2 - Rolled copper alloy foil for bending - Google Patents
Rolled copper alloy foil for bending Download PDFInfo
- Publication number
- JP4672515B2 JP4672515B2 JP2005298086A JP2005298086A JP4672515B2 JP 4672515 B2 JP4672515 B2 JP 4672515B2 JP 2005298086 A JP2005298086 A JP 2005298086A JP 2005298086 A JP2005298086 A JP 2005298086A JP 4672515 B2 JP4672515 B2 JP 4672515B2
- Authority
- JP
- Japan
- Prior art keywords
- bending
- copper alloy
- alloy foil
- rolled
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005452 bending Methods 0.000 title claims description 61
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 28
- 239000011888 foil Substances 0.000 title claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 62
- 238000005096 rolling process Methods 0.000 claims description 23
- 239000010949 copper Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 230000003746 surface roughness Effects 0.000 claims description 13
- 238000002441 X-ray diffraction Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 239000011889 copper foil Substances 0.000 description 44
- 238000000137 annealing Methods 0.000 description 21
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000010731 rolling oil Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Description
本発明は屈曲用圧延銅合金箔に関する。とりわけ、本発明はフレキシブルプリント配線板(FPC)に用いる可撓性配線部材として好適な屈曲用圧延銅合金箔に関する。 The present invention relates to a rolled copper alloy foil for bending. In particular, the present invention relates to a rolled copper alloy foil for bending suitable as a flexible wiring member used for a flexible printed wiring board (FPC).
電子機器の電子回路にはプリント配線板(PWB)が多用されている。プリント配線板は、紙基材フェノール樹脂やガラス布基材エポキシ樹脂といった硬質の絶縁基材を用いたリジッドプリント配線板と、ポリイミドフィルムやポリエステルフィルムといった柔軟性がある樹脂基板を用いたフレキシブルプリント配線板(FPC)に大別される。このうち、FPCは樹脂基板に銅箔をエポキシ等の熱硬化性樹脂からなる接着剤を用いて貼り合わせ、加熱加圧により一体化して銅張積層板とした後に、銅箔をエッチングして種々の回路パターンを形成して製造されるのが通常である。 Printed wiring boards (PWB) are frequently used in electronic circuits of electronic devices. The printed wiring board is a rigid printed wiring board using a hard insulating substrate such as a paper base phenolic resin or a glass cloth base epoxy resin, and a flexible printed wiring using a flexible resin substrate such as a polyimide film or a polyester film. Broadly divided into plates (FPC). Among these, the FPC is made by bonding a copper foil to a resin substrate using an adhesive made of a thermosetting resin such as an epoxy, and integrating by heating and pressing to form a copper-clad laminate, and then etching the copper foil to variously In general, the circuit pattern is formed.
FPCの最大の特徴は柔軟性である。この特徴を利用して、FPCをカメラ、ミシン、電卓、パソコン、ワープロなどの小型電子機器内部の狭い空間に折り曲げて高密度実装したり(static flexibility)、プリンターのヘッド部やハードディスク内の駆動部等の可動部分への配線に利用したり(dynamic flexibility)している。 The biggest feature of FPC is flexibility. Using this feature, FPC can be folded into a small space inside small electronic devices such as cameras, sewing machines, calculators, personal computers, word processors, etc., and mounted in high density (static flexibility), or the printer head or hard disk drive It is used for wiring to movable parts such as (dynamic flexibility).
電子機器の可動部では100万回以上の屈曲が繰り返され得る。このとき、回路パターンを形成する銅箔が疲労限度以上の条件に達すると疲労劣化して柔軟性が低下し、遂には回路内にクラックが発生し断線に至る場合がある。回路破断には至らない場合であっても、クラックの発生に伴って回路の電気抵抗が増加し、回路としての性能が低下する。 Bending of one million times or more can be repeated in the movable part of the electronic device. At this time, if the copper foil forming the circuit pattern reaches a condition equal to or higher than the fatigue limit, the fatigue deteriorates and the flexibility is lowered. Finally, a crack may be generated in the circuit, resulting in disconnection. Even if the circuit does not break, the electrical resistance of the circuit increases with the occurrence of cracks, and the performance as a circuit decreases.
従って、特に電子機器の可動部への適用を考えた場合には、FPC用の銅箔には高い屈曲性が要求される。そのため、そのような用途に用いられるFPCには電解銅箔よりも屈曲性に優れた圧延銅箔が用いられているが、近年の装置の小型化や高水準化に伴い、屈曲性への要求はより高度化している。 Therefore, especially when considering application to a movable part of an electronic device, high flexibility is required for the copper foil for FPC. For this reason, rolled copper foils that are more flexible than electrolytic copper foils are used for FPCs used in such applications, but with the recent downsizing and higher standards of equipment, demands for flexibility are required. Is more sophisticated.
銅箔の屈曲性を向上させる方法として、例えば、銅箔を焼鈍状態とする方法が一般的に行われている。これは、銅箔の屈曲性が再結晶焼鈍を行うことにより圧延上がりよりも著しく向上することを利用したものである。この焼鈍は粗化めっきして裁断した後に加熱処理を行うか、樹脂基板と接着する際の加熱と兼ねて行われているのが通常であり、130〜250℃で15分〜24時間、代表的に200℃で30分間加熱して行われ、これによって銅箔は再結晶組織に調質された状態となる。
焼鈍状態の銅箔を最初から用いず製造工程の中間で焼鈍を行う理由は、焼鈍後の軟質状態では裁断や樹脂基板との貼り合わせの際に銅箔が変形したり、銅箔にしわが生じたりし易いためであり、圧延上がりの硬質の状態の方がFPCの製造性の点からは有利なためである。
As a method for improving the flexibility of the copper foil, for example, a method of bringing the copper foil into an annealed state is generally performed. This utilizes the fact that the flexibility of the copper foil is remarkably improved over the rolling up due to the recrystallization annealing. This annealing is usually carried out after roughing plating and cutting, or is performed in combination with heating at the time of bonding to the resin substrate, typically at 130 to 250 ° C. for 15 minutes to 24 hours. In particular, it is performed by heating at 200 ° C. for 30 minutes, whereby the copper foil is tempered to a recrystallized structure.
The reason for annealing in the middle of the manufacturing process without using the annealed copper foil from the beginning is that the copper foil is deformed or wrinkled in the soft state after annealing when it is cut or bonded to the resin substrate This is because a hard state after rolling is more advantageous from the viewpoint of manufacturability of the FPC.
また、高い加工度で圧延した銅を再結晶焼鈍すると、その再結晶集合組織として立方体方位が発達するが、これにより屈曲性が向上することが知られている。特許第3009383号公報に記載の発明ではタフピッチ銅又は無酸素銅に対して最終冷間圧延の加工度を90%以上で行うと共に、その直前の焼鈍を、該焼鈍で得られる再結晶の平均粒径が5〜20μmになる条件で行うことによって銅箔の立方体方位を発達させ、屈曲性の向上を図っている。この発明によれば、200℃で30分間加熱して再結晶組織に調質した状態において、圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I0)に対し、I/I0>20である立方体集合組織を有し、破断までの屈曲回数(疲労寿命)が増加するとされている。 Further, it is known that when copper rolled at a high workability is recrystallized and annealed, a cubic orientation develops as the recrystallized texture, which improves the flexibility. In the invention described in Japanese Patent No. 3009383, the average degree of recrystallization obtained by annealing is performed at a final cold rolling work degree of 90% or more on tough pitch copper or oxygen-free copper. By carrying out under the condition that the diameter becomes 5 to 20 μm, the cube orientation of the copper foil is developed and the flexibility is improved. According to the present invention, the strength (I) of the (200) plane obtained by X-ray diffraction of the rolled surface in a state where the recrystallized structure is tempered by heating at 200 ° C. for 30 minutes has an X-ray of fine powder copper. It has a cubic texture with I / I 0 > 20 with respect to the strength (I 0 ) of the (200) plane determined by diffraction, and the number of bendings (fatigue life) until fracture increases.
その他、立方体方位を発達させる方法として、特開2003−193211号公報にCu中のトータル不純物量の制御(タフピッチ銅では40ppm以下、無酸素銅では20ppm以下とする。)、及びCu中へAgを100ppm〜700ppmの範囲で添加することが有効であることが記載されている。 In addition, as a method for developing the cube orientation, Japanese Patent Application Laid-Open No. 2003-193411 discloses control of the total amount of impurities in Cu (40 ppm or less for tough pitch copper and 20 ppm or less for oxygen-free copper), and Ag into Cu. It is described that it is effective to add in the range of 100 ppm to 700 ppm.
疲労寿命は銅箔の屈曲性に関する重要な特性の一つであるが、銅箔は屈曲回数が増加するにつれて疲労し、微細なクラックの発生と共に早い段階から電気抵抗は増加を続けるという問題がある。そのため、屈曲による電気抵抗の増加を抑えることも回路の性能を維持するために重要な特性と考えられる。
従って、本発明の課題の一つは屈曲による電気抵抗の増加の少ない、通電信頼性に優れた屈曲用圧延銅合金箔を提供することである。また、本発明の別の課題の一つは前記屈曲用圧延銅合金箔を用いた銅張積層板を提供することである。本発明の更に別の課題の一つは前記屈曲用圧延銅合金箔を用いたFPCを提供することである。
Fatigue life is one of the important characteristics of copper foil bendability, but copper foil fatigues as the number of bends increases, and there is a problem that electrical resistance continues to increase from an early stage with the occurrence of fine cracks. . Therefore, suppressing the increase in electrical resistance due to bending is also considered an important characteristic for maintaining the circuit performance.
Accordingly, one of the objects of the present invention is to provide a rolled copper alloy foil for bending that has little increase in electrical resistance due to bending and is excellent in current-carrying reliability. Another object of the present invention is to provide a copper clad laminate using the bending rolled copper alloy foil. Still another object of the present invention is to provide an FPC using the bending rolled copper alloy foil.
FPCの屈曲による電気抵抗の増加は、金属疲労により発生したクラックによって導体部の実効断面積が減少することで起こる。繰り返し塑性変形を受ける系で金属疲労による亀裂の発生を防ぐことは不可能であるが、クラックの進展を抑制することで電気抵抗の増加を抑えることはできる。金属疲労によるクラックの進展は、一般に次のような過程を経ると考えられる。
第1段階:応力のせん断成分によりすべり面に沿った亀裂が進展する段階
第2段階:応力のへき開成分により応力方向に垂直に亀裂が進展する段階
第1段階では亀裂はすべり面に沿ったせん断によって進展するため、電気抵抗の増加はほとんど起こらない。一方、第2段階ではへき開方向に亀裂が広がるため、電気抵抗が増加する。
The increase in electrical resistance due to the bending of the FPC occurs when the effective cross-sectional area of the conductor portion is reduced due to cracks caused by metal fatigue. Although it is impossible to prevent the occurrence of cracks due to metal fatigue in a system that undergoes repeated plastic deformation, an increase in electrical resistance can be suppressed by suppressing the progress of cracks. The development of cracks due to metal fatigue is generally considered to go through the following process.
1st stage: stage where cracks along the slip surface develop due to shear component of stress 2nd stage: stage where crack progresses perpendicular to the stress direction due to cleavage component of stress In the 1st stage, cracks shear along the slip surface Therefore, there is almost no increase in electrical resistance. On the other hand, in the second stage, since the crack spreads in the cleavage direction, the electrical resistance increases.
そこで、本発明者は第1段階のすべり面に沿ったせん断変形を容易にし、電気抵抗の増加を抑制することを主眼として屈曲用圧延銅合金箔の通電信頼性を向上させるべく鋭意研究を行ったところ、以下の特性の一つ以上を有し、好ましくはすべてを兼備する圧延銅箔が特に優れた通電信頼性を有することを見出した。本明細書において優れた通電信頼性とは、たとえば図2に示すような配線パターンを有する回路幅1mmのFPCとして、表面ひずみ0.3%以上の繰り返し応力を受ける系において、電気抵抗増加率が10万回屈曲後に5%以下、15万回屈曲後に10%以下であることである。 In view of this, the present inventor has conducted intensive research to improve the energization reliability of the rolled copper alloy foil for bending, with the primary purpose of facilitating shear deformation along the sliding surface in the first stage and suppressing the increase in electrical resistance. As a result, it has been found that a rolled copper foil having one or more of the following characteristics, and preferably having all of them, has particularly excellent energization reliability. In the present specification, excellent energization reliability means that, for example, an FPC having a circuit width of 1 mm having a wiring pattern as shown in FIG. It is 5% or less after 100,000 times of bending and 10% or less after 150,000 times of bending.
本発明に係る銅合金箔が有するべき特性は、第一に、Fe、Ni、Ag及びAlから選択される1種以上の元素をCuに固溶する範囲の濃度で含み、残部がCuおよび不可避的不純物からなる組成を有することである。第二に、200℃、30分間で焼鈍して再結晶組織に調質した状態において、圧延面で求めた(200)面のX線回折強度Iと、銅粉末での(200)面のX線回折強度I0との比率I/I0(200)が60以上あることである。第三に、200℃、30分間で焼鈍して再結晶組織に調質した状態において、屈曲変形に対して主すべり面が活動可能である方位(変形方向に対して主すべり面が40°〜50°の方位を指すのが通常である。)に配向した結晶粒の占める割合が、圧延面からの観察によって面積率で80%以上となる結晶組織をもつことである。第四に、表面粗さRaが0.2μm以下であることである。 The characteristics to be possessed by the copper alloy foil according to the present invention are as follows. First, one or more elements selected from Fe, Ni, Ag and Al are contained at a concentration in a range where they are dissolved in Cu, with the balance being Cu and inevitable. And having a composition consisting of mechanical impurities. Secondly, in a state of annealing at 200 ° C. for 30 minutes and tempering to a recrystallized structure, the (200) plane X-ray diffraction intensity I obtained on the rolled surface and the (200) plane X in the copper powder are obtained. The ratio I / I 0 (200) to the line diffraction intensity I 0 is 60 or more. Third, in a state where annealing is performed at 200 ° C. for 30 minutes and the recrystallized structure is tempered, the orientation in which the main slip surface can be active with respect to bending deformation (the main slip surface is 40 ° to the deformation direction). The ratio of the crystal grains oriented in the direction of 50 ° is usually 80% or more in terms of the area ratio as observed from the rolling surface. Fourth, the surface roughness Ra is 0.2 μm or less.
本発明に係る銅合金箔を用いて、常法に従って銅張積層板を製造し、更にFPCを製造することで通電信頼性の高いFPCが得られる。例えばFPC製造工程中に銅箔を再結晶組織に調質された状態とする焼鈍工程を導入することで、通電信頼性の高いFPCが製造可能となる。 By using the copper alloy foil according to the present invention, a copper-clad laminate is manufactured according to a conventional method, and further FPC is manufactured, whereby an FPC with high conduction reliability is obtained. For example, by introducing an annealing process in which the copper foil is tempered into a recrystallized structure during the FPC manufacturing process, it is possible to manufacture an FPC with high conduction reliability.
本発明によれば、通電信頼性に優れた屈曲用圧延銅合金箔を提供することができ、本発明に係る銅合金箔を採用したFPCは高い通電信頼性を有することができる。 According to the present invention, it is possible to provide a rolled copper alloy foil for bending excellent in energization reliability, and an FPC employing the copper alloy foil according to the present invention can have high energization reliability.
本発明に係る屈曲用圧延銅合金箔はFe、Ni、Ag及びAlから選択される1種以上の元素、特にAgをCuに固溶する範囲の濃度(例えば総量で0.005〜0.500質量%、好ましくは0.01〜0.10質量%)で含み、残部がCuおよび不可避的不純物からなる組成を有することが好ましい。Fe、Ni、Ag及びAlは銅に固溶して積層欠陥エネルギーを高める作用があり、これがすべり面に沿ったせん断変形の容易化に寄与する。
また、後述するように仕上圧延時の加工度はできるだけ高くすることが望ましいが、高い加工度(例えば99%以上)で仕上圧延を行うと割れが生じ易い。しかし、上記の添加元素を加えることで割れの発生が抑制され、このような高い加工度を採用し易くなる。
更に、Agには焼鈍して再結晶組織に調質するときに立方体方位の発達を促進し、屈曲性を高める効果がある。
The rolled copper alloy foil for bending according to the present invention has a concentration in a range in which one or more elements selected from Fe, Ni, Ag and Al, particularly Ag is dissolved in Cu (for example, 0.005 to 0.500 in total amount). It is preferable that the composition has a composition composed of Cu and inevitable impurities. Fe, Ni, Ag, and Al have a function of increasing the stacking fault energy by dissolving in copper, which contributes to facilitating shear deformation along the slip surface.
Further, as will be described later, it is desirable that the workability during finish rolling be as high as possible. However, if finish rolling is performed at a high workability (for example, 99% or more), cracks are likely to occur. However, the addition of the above-described additive element suppresses the generation of cracks and makes it easy to adopt such a high degree of processing.
Furthermore, Ag has the effect of promoting the development of the cubic orientation and increasing the flexibility when annealing and refining to a recrystallized structure.
また、すべり面に沿ったせん断変形を容易にするためには結晶方位を制御することが望ましい。結晶方位の制御は仕上げの冷間圧延の加工度をできるだけ高くすることにより行うのが有利であり、一般に90%以上、好ましくは98%、より好ましくは99%以上(例えば99.5%、更には99.9%)とすることで、後に再結晶組織に調質する際に立方体方位の発達が促され、屈曲性が向上する。ここで、圧延加工度(R)%は、R=(t0−t)/t0×100(t0:圧延前の厚み、t:圧延後の厚み)で定義される。
本発明における結晶方位の整列度合いは200℃、30分間で焼鈍して再結晶組織に調質した状態において、圧延面で求めた(200)面のX線回折強度Iと、銅粉末での(200)面のX線回折強度I0との比率I/I0(200)が60以上であるのが好ましく、より好ましくは70以上であり、例えば70〜80である。なお、銅粉末でのX線回折で求めた(200)面の強度I0は、結晶が無秩序に配向した状態((200)面が発達していない状態)の基準値として選択した。
In order to facilitate shear deformation along the slip surface, it is desirable to control the crystal orientation. It is advantageous to control the crystal orientation by increasing the workability of the finish cold rolling as much as possible, generally 90% or more, preferably 98%, more preferably 99% or more (for example, 99.5%, 99.9%), the development of the cubic orientation is promoted when the recrystallized structure is tempered later, and the flexibility is improved. Here, the rolling degree (R)% is defined by R = (t 0 −t) / t 0 × 100 (t 0 : thickness before rolling, t: thickness after rolling).
In the present invention, the degree of alignment of the crystal orientation is 200 ° C., annealed at 30 ° C., and tempered to a recrystallized structure. The ratio I / I 0 (200) of the (200) plane to the X-ray diffraction intensity I 0 is preferably 60 or more, more preferably 70 or more, for example, 70 to 80. The intensity I 0 of the (200) plane obtained by X-ray diffraction with copper powder was selected as a reference value for the state in which the crystals were disorderly oriented (the state where the (200) plane was not developed).
更に、本発明に係る屈曲用圧延銅合金箔は、200℃、30分間で焼鈍して再結晶組織に調質した状態において、屈曲変形に対して主すべり面が活動可能である方位に配向した結晶粒の占める割合が、圧延面からの観察によって面積率で80%以上、とりわけ90%以上となる結晶組織をもつことが好ましい。すべり面に沿ったせん断変形が容易になるからである。
このような結晶組織は添加元素および中間焼鈍と冷間圧延の条件を調整することで得ることができる。
Further, the rolled copper alloy foil for bending according to the present invention is oriented in an orientation in which the main sliding surface can be active against bending deformation in a state where the recrystallization structure is tempered by annealing at 200 ° C. for 30 minutes. It is preferable to have a crystal structure in which the proportion of crystal grains is 80% or more, particularly 90% or more in terms of area ratio as observed from the rolling surface. This is because shear deformation along the slip surface becomes easy.
Such a crystal structure can be obtained by adjusting additive elements and intermediate annealing and cold rolling conditions.
更に、銅箔表面の算術平均粗さ(表面粗さRa)を小さくすると、表面凹部からの亀裂の発生が抑制され、銅箔の変形はすべり面に沿ったせん断変形によって行われ易くなる。そこで、表面粗さRaを0.2μm以下、とりわけ0.1μm以下に制御することが好ましい。本発明では、表面粗さRaは触針式表面粗さ計(小坂製作所製SE−3400)を用い、JIS B−0601−2001に準拠した条件で測定したときの値を指す。
表面粗さRaの制御は公知の方法によって行うことができ、当業者であれば圧延時のパス毎の加工度、圧延速度、圧延油の粘度、圧延ロールの直径、圧延ロール表面の粗さ、及び圧下率などを適宜変化させることによって調節することができる。
Further, when the arithmetic average roughness (surface roughness Ra) on the surface of the copper foil is reduced, the generation of cracks from the surface recesses is suppressed, and the deformation of the copper foil is easily performed by shear deformation along the sliding surface. Therefore, it is preferable to control the surface roughness Ra to 0.2 μm or less, particularly 0.1 μm or less. In the present invention, the surface roughness Ra indicates a value when measured using a stylus type surface roughness meter (SE-3400 manufactured by Kosaka Seisakusho Co., Ltd.) under conditions based on JIS B-0601-2001.
The control of the surface roughness Ra can be performed by a known method, and those skilled in the art will understand the degree of processing for each pass during rolling, the rolling speed, the viscosity of the rolling oil, the diameter of the rolling roll, the roughness of the rolling roll surface, And it can adjust by changing a rolling reduction etc. suitably.
本発明に係る屈曲用圧延銅合金箔は、典型的に200℃で30分間程度焼鈍することで再結晶組織に調質することができる。銅箔を焼鈍して再結晶させると、再結晶初期に立方体方位粒が形成される。その後、焼鈍を継続しても立方体集合組織の発達度はほとんど変化しない。また、立方体方位の発達度は焼鈍温度に大きくは依存しないため、樹脂基板との接着工程で銅箔を再結晶組織に調質する工程を兼ねるときには、樹脂側で必要とされる温度条件に比較的適合し易い。
そこで、本発明に係る屈曲用圧延銅合金箔をFPCの配線部材として用いるときは、FPCの製造性の観点から圧延仕上りの状態で裁断や樹脂基板との貼り合わせを行い、その後の樹脂基板との接着工程における加熱時に併せて焼鈍し、再結晶組織に調質するのが便宜である(但し、このことは樹脂基板との接着工程前又は後に銅箔を再結晶組織に調質することを排除するものではない。)。
例示的に、三層フレキシブル基板ではエポキシ等の熱硬化性樹脂からなる接着剤を用いて、銅箔とポリイミド等の樹脂フィルムを貼り合わせる。この接着剤を硬化させるために、130〜170℃の温度で数時間から数十時間の加熱処理を行う。この熱処理により銅箔を再結晶組織に調質することができる。二層フレキシブル基板の製造方法の一つであるキャスティング法では、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを、銅箔上に塗布して加熱硬化させ、銅箔上にポリイミド被膜を形成する。この加熱硬化処理では、300℃程度の温度で数十分から数時間加熱するが、この熱処理により銅箔を再結晶組織に調質することができる。
The rolled copper alloy foil for bending according to the present invention can be tempered to a recrystallized structure by typically annealing at 200 ° C. for about 30 minutes. When the copper foil is annealed and recrystallized, cubic orientation grains are formed at the initial stage of recrystallization. Thereafter, even if annealing is continued, the degree of development of the cube texture hardly changes. In addition, since the degree of cube orientation development does not depend greatly on the annealing temperature, when combined with the process of refining copper foil to a recrystallized structure in the bonding process with the resin substrate, it is compared with the temperature conditions required on the resin side. Easy to adapt.
Therefore, when the bending rolled copper alloy foil according to the present invention is used as an FPC wiring member, cutting and bonding with a resin substrate are performed in a rolled state from the viewpoint of FPC manufacturability, and then the resin substrate and It is convenient to anneal at the time of heating in the bonding process and to temper the recrystallized structure (however, this means that the copper foil is tempered to the recrystallized structure before or after the bonding process with the resin substrate. It is not something that is excluded.)
For example, in a three-layer flexible substrate, a copper foil and a resin film such as polyimide are bonded together using an adhesive made of a thermosetting resin such as epoxy. In order to cure the adhesive, heat treatment is performed at a temperature of 130 to 170 ° C. for several hours to several tens of hours. By this heat treatment, the copper foil can be tempered to a recrystallized structure. In the casting method, which is one of the methods for producing a two-layer flexible substrate, a varnish containing polyamic acid, which is a precursor of a polyimide resin, is applied on a copper foil and cured by heating to form a polyimide film on the copper foil. . In this heat curing treatment, heating is performed at a temperature of about 300 ° C. for several tens of minutes to several hours, and the copper foil can be tempered to a recrystallized structure by this heat treatment.
銅箔の厚みを薄くすると、屈曲の際の曲げ部外周に生じるひずみが減少するため屈曲性が向上する。本発明に係る屈曲用圧延銅合金箔は可撓性配線部材として好適であり、特にFPCへの適用が意図されるものであるから、銅箔の厚みは50μm以下であるのが好ましく、20μm以下であるのがより好ましく、例えば10〜20μmである。更に、樹脂基板との接着後に減肉エッチングなどを施すことによって10μm以下とすることもできる。本発明に係る屈曲用圧延銅合金箔を200℃、30分間で焼鈍して再結晶組織に調質した場合には、たとえば回路幅1mmのFPCとして、表面ひずみ0.3%以上の繰り返し応力を受ける系において、電気抵抗増加率が10万回屈曲後に5%以下、15万回屈曲後に10%以下であり、好ましくは、屈曲回数10万回で1%以下であり、屈曲回数15万回で4%以下である。ここで、表面ひずみは以下の式で与えられる。
(表面ひずみ)=(屈曲による銅箔表面の変形量)/(屈曲部長さ)
銅箔表面の変形量とは図5の(AB−A’B’)を指し、屈曲部長さとはABを指す。
例示的には、屈曲速度1000回/分、摺動幅20mm、曲げ半径2.5mmとして厚さ18μmの銅箔に屈曲試験を行ったとき、電気抵抗の増加率が屈曲回数10万回で5%以下であり、屈曲回数15万回で10%以下である。好ましくは、屈曲回数10万回で1%以下であり、屈曲回数15万回で4%以下である。
When the thickness of the copper foil is reduced, the bendability is improved because the strain generated on the outer periphery of the bent portion during bending is reduced. Since the rolled copper alloy foil for bending according to the present invention is suitable as a flexible wiring member, and particularly intended for application to FPC, the thickness of the copper foil is preferably 50 μm or less, and 20 μm or less. More preferably, it is 10-20 micrometers, for example. Further, the thickness can be reduced to 10 μm or less by performing thinning etching after bonding with the resin substrate. When the rolled copper alloy foil for bending according to the present invention is annealed at 200 ° C. for 30 minutes and tempered to a recrystallized structure, for example, FPC with a circuit width of 1 mm is subjected to a repeated stress with a surface strain of 0.3% or more. In the receiving system, the electric resistance increase rate is 5% or less after 100,000 bending, 10% or less after 150,000 bending, preferably 1% or less after 100,000 bending, and 150,000 bending 4% or less. Here, the surface strain is given by the following equation.
(Surface strain) = (Deformation amount of copper foil surface by bending) / (Bending length)
The deformation amount of the copper foil surface indicates (AB-A′B ′) in FIG. 5, and the bent portion length indicates AB.
Illustratively, when a bending test is performed on a copper foil having a bending speed of 1000 times / minute, a sliding width of 20 mm, a bending radius of 2.5 mm, and a thickness of 18 μm, the increase rate of electrical resistance is 5 when the number of bendings is 100,000. %, And it is 10% or less after 150,000 flexions. Preferably, it is 1% or less at 100,000 times of bending and 4% or less at 150,000 times of bending.
そのため、本発明に係る屈曲用圧延銅合金箔を用いて製造されたFPCは通電信頼性が高く、プリンターのヘッド部やハードディスク内の駆動部等の可動部分への配線、更には携帯電話やノートパソコンの折り畳み部の配線といった繰り返し屈曲が行われる部分への配線や、熱サイクルによる収縮等により繰り返し応力を受ける配線のために好適に使用することができる。 For this reason, the FPC manufactured using the rolled copper alloy foil for bending according to the present invention has high energization reliability, wiring to a movable part such as a head part of a printer or a drive part in a hard disk, and also a mobile phone or a notebook. It can be suitably used for wiring to a portion that is repeatedly bent, such as wiring of a folded portion of a personal computer, or wiring that repeatedly receives stress due to contraction due to thermal cycling.
以下に本発明及びその利点をより良く理解するための実施例を記載するが、本発明が限定されることを意図するものではない。 The following examples are provided to better understand the present invention and its advantages, but are not intended to limit the present invention.
実施例
タフピッチ銅に200ppmのAgを添加して厚さ170mmの鋳塊を溶製した。この鋳塊を熱間圧延して8mmの厚さとした後に、冷間圧延と焼鈍を繰り返し、最後に仕上冷間圧延を99%の加工度で行い、厚さ18μmの圧延仕上がりの銅箔を得た。仕上冷間圧延では圧延油膜厚みを調整することで表面の粗さを制御した。結晶組織は添加元素と中間焼鈍条件および仕上圧延の加工度を調整することで制御した。
比較例1
厚さ170mmのタフピッチ銅の鋳塊を溶製した。この鋳塊を熱間圧延して8mmの厚さとした後に、冷間圧延と焼鈍を繰り返し、最後に仕上冷間圧延を80%の加工度で行い、厚さ18μmの圧延仕上がりの銅箔を得た。仕上冷間圧延では圧延油膜厚みを調整することで表面の粗さを制御した。結晶組織は中間焼鈍条件および仕上圧延の加工度の調整によって制御した。
比較例2
タフピッチ銅に1200ppmのSnを添加して厚さ170mmの鋳塊を溶製した。この鋳塊を熱間圧延して8mmの厚さとした後に、冷間圧延と焼鈍を繰り返し、最後に仕上冷間圧延を80%以上の加工度で行い、厚さ18μmの圧延仕上がりの銅箔を得た。仕上冷間圧延では圧延油膜厚みを調整することで表面の粗さを制御した。結晶組織は中間焼鈍条件および仕上圧延の加工度の調整によって制御した。
比較例3
屈曲用途に用いることを前提に作られた電解銅箔(厚さ18μm)を用いた。
Example 200 ppm of Ag was added to tough pitch copper to melt an ingot having a thickness of 170 mm. This ingot is hot-rolled to a thickness of 8 mm, and then cold-rolling and annealing are repeated. Finally, finish cold-rolling is performed at a workability of 99% to obtain a rolled copper foil having a thickness of 18 μm. It was. In finish cold rolling, the surface roughness was controlled by adjusting the thickness of the rolling oil film. The crystal structure was controlled by adjusting the additive elements, intermediate annealing conditions, and the finishing degree of finish rolling.
Comparative Example 1
An ingot of tough pitch copper having a thickness of 170 mm was melted. This ingot is hot-rolled to a thickness of 8 mm, and then cold-rolling and annealing are repeated. Finally, finish cold-rolling is performed at a workability of 80% to obtain a rolled copper foil having a thickness of 18 μm. It was. In finish cold rolling, the surface roughness was controlled by adjusting the thickness of the rolling oil film. The crystal structure was controlled by adjusting the intermediate annealing conditions and the finishing degree of finish rolling.
Comparative Example 2
An ingot having a thickness of 170 mm was melted by adding 1200 ppm of Sn to tough pitch copper. This ingot is hot rolled to a thickness of 8 mm, and then cold rolling and annealing are repeated. Finally, finish cold rolling is performed at a workability of 80% or more, and a finished copper foil having a thickness of 18 μm is obtained. Obtained. In finish cold rolling, the surface roughness was controlled by adjusting the thickness of the rolling oil film. The crystal structure was controlled by adjusting the intermediate annealing conditions and the finishing degree of finish rolling.
Comparative Example 3
An electrolytic copper foil (thickness: 18 μm) made on the assumption that it is used for bending applications was used.
これらの銅箔を25μmのポリイミドを塗布した二層銅張積層板(CCL)に加工した。ポリイミドの加熱硬化の際に、350℃、15分の熱処理を行った。得られた各二層CCLに配線パターン加工を行いFPCサンプルを作製し、以下の評価を行った。なお、上記熱処理によって銅箔は200℃、30分間による焼鈍と同様の再結晶組織に調質されたものと考えられる。 These copper foils were processed into a two-layer copper clad laminate (CCL) coated with 25 μm polyimide. During the heat curing of the polyimide, heat treatment was performed at 350 ° C. for 15 minutes. The obtained two-layer CCL was subjected to wiring pattern processing to produce an FPC sample, and the following evaluation was performed. In addition, it is thought that copper foil was tempered by the said heat processing to the recrystallized structure similar to annealing by 200 degreeC and 30 minutes.
X線回折
圧延面における(200)面の回折強度の積分値(I)を求めた。この値を予め測定しておいた関東化学株式会社製の銅粉末(方位がランダムな試料)の(200)面の回折強度積分値(I0)で割り、I/I0を計算した。ピーク強度の積分値の測定は、銅箔及び銅粉末ともにCo管球を用いた。結果を表1に示す。
The integral value (I) of the diffraction intensity of the (200) plane on the X-ray diffraction rolled surface was determined. This value was divided by the integrated diffraction intensity value (I 0 ) of the (200) plane of copper powder (sample with random orientation) manufactured by Kanto Chemical Co., which had been measured in advance, to calculate I / I 0 . For measurement of the integrated value of peak intensity, a Co tube was used for both the copper foil and the copper powder. The results are shown in Table 1.
表面粗さ(Ra)
JIS B0601−2001に従い、触針式表面粗さ計(小坂製作所製SE−3400)を用いて表面粗さ(Ra)を求めた。基準長さを0.8mmとし、圧延平行方向に測定した。Raの測定は場所を変えて3回行い、その平均値を求めた。結果を表1に示す。
Surface roughness (Ra)
According to JIS B0601-2001, the surface roughness (Ra) was calculated | required using the stylus type surface roughness meter (SE-3400 by Kosaka Manufacturing Co., Ltd.). The reference length was set to 0.8 mm and measured in the rolling parallel direction. Ra was measured three times at different locations, and the average value was obtained. The results are shown in Table 1.
屈曲試験
次に、得られた各二層CCLを図2に示す形状にエッチングして幅1mm、長さ100mm(ポリイミド厚み25μm、銅箔厚み18μm)の回路を4本形成し、図3に示す装置を用いて、屈曲による電気抵抗の増加率を測定した。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、試験片1は、矢印で示したねじ2の部分と振動伝達部材3の先端部の計4点で装置に固定される。振動伝達部材3が上下に駆動すると、試験片1の中間部は、所定の曲げ半径rでヘアピン状に屈曲される。試験条件は次の通りである。電気抵抗はW字に形成した回路の両端間で測定した。結果を図1及び表1に示す。
試験片幅:1mm
試験片長さ:100mm
試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取
曲げ半径r:2.5mm
屈曲方向:樹脂面が外側
摺動幅:20mm
屈曲速度:1000回/分
表面ひずみ:0.4%
Bending test Next, each of the obtained two-layer CCL width is etched into the shape shown in FIG. 2 1 mm, circuit and four form of length 100 mm (polyimide thickness 25 [mu] m, copper foil thickness 18 [mu] m), 3 Using the apparatus, the rate of increase in electrical resistance due to bending was measured. This apparatus has a structure in which a vibration transmission member 3 is coupled to an oscillation driver 4, and the test piece 1 is attached to the apparatus at a total of four points including a screw 2 portion indicated by an arrow and a tip portion of the vibration transmission member 3. Fixed. When the vibration transmitting member 3 is driven up and down, the intermediate portion of the test piece 1 is bent into a hairpin shape with a predetermined bending radius r. The test conditions are as follows. The electric resistance was measured between both ends of a circuit formed in a W shape. The results are shown in FIG.
Specimen width: 1mm
Test piece length: 100 mm
Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction Bending radius r: 2.5 mm
Bending direction: Resin surface is outside Sliding width: 20 mm
Bending speed: 1000 times / min Surface strain: 0.4%
結晶組織
屈曲変形に対して主すべり面が活動可能である方位に配向した結晶粒の占める割合を、1万回屈曲後の銅箔表面を光学顕微鏡で観察し評価した。すべり面の活動した結晶粒は表面にすべり帯が発達するため、光学観察では暗く見える。そこで、すべり面の活動により銅箔表面にすべり帯が発達した結晶粒が占める面積率を、明度の違いを基準として求めた。結果を図4および表1に示す。
The ratio of the crystal grains oriented in the orientation in which the main slip surface can be active with respect to the bending deformation of the crystal structure was evaluated by observing the surface of the copper foil after bending 10,000 times with an optical microscope. Crystals with active slip planes appear dark in optical observations because of the development of slip bands on the surface. Therefore, the area ratio occupied by the crystal grains with slip bands developed on the surface of the copper foil due to the activity of the slip surface was determined based on the difference in brightness. The results are shown in FIG.
1:試験片
2:ねじ
3:振動伝達部材
4:発振駆動体
1: Test piece 2: Screw 3: Vibration transmission member 4: Oscillation drive
Claims (9)
200℃、30分間で焼鈍して再結晶組織に調質し、回路幅1mmのFPCとした場合に、長さ方向が圧延方向となるようにして、曲げ半径R2.5mm、摺動幅20mm、屈曲速度1000回/分、表面ひずみ0.3%以上の繰り返し応力を受ける系において、電気抵抗増加率が10万回屈曲後に5%以下、15万回屈曲後に10%以下であり、表面粗さRaが0.2μm以下であることを特徴とする圧延仕上がりの屈曲用圧延銅合金箔。 Look including the 0.01 to 0.10 wt% of Ag, the balance being a bending rolled copper alloy foil made of Cu and unavoidable impurities,
When annealed at 200 ° C. for 30 minutes and tempered to a recrystallized structure, when the FPC has a circuit width of 1 mm, the length direction is the rolling direction, the bending radius is R2.5 mm, the sliding width is 20 mm, In a system which receives a bending stress of 1000 times / minute and a repeated stress with a surface strain of 0.3% or more, the electrical resistance increase rate is 5% or less after 100,000 times of bending and 10% or less after 150,000 times of bending. A rolled copper alloy foil for bending having a rolled finish, wherein Ra is 0.2 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298086A JP4672515B2 (en) | 2005-10-12 | 2005-10-12 | Rolled copper alloy foil for bending |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298086A JP4672515B2 (en) | 2005-10-12 | 2005-10-12 | Rolled copper alloy foil for bending |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007107036A JP2007107036A (en) | 2007-04-26 |
JP4672515B2 true JP4672515B2 (en) | 2011-04-20 |
Family
ID=38033131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005298086A Active JP4672515B2 (en) | 2005-10-12 | 2005-10-12 | Rolled copper alloy foil for bending |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4672515B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4704474B2 (en) * | 2006-10-24 | 2011-06-15 | Jx日鉱日石金属株式会社 | Rolled copper foil with excellent bending resistance |
JP5057932B2 (en) * | 2007-10-31 | 2012-10-24 | Jx日鉱日石金属株式会社 | Rolled copper foil and flexible printed wiring board |
WO2009073670A1 (en) * | 2007-12-04 | 2009-06-11 | E. I. Du Pont De Nemours And Company | Bendable circuit structure for led mounting and interconnection |
JP2009242846A (en) * | 2008-03-31 | 2009-10-22 | Nippon Mining & Metals Co Ltd | Copper alloy foil |
EP2306794B1 (en) * | 2008-06-30 | 2015-08-05 | Nippon Steel & Sumikin Chemical Co., Ltd. | Method for producing flexible circuit board |
JP4763068B2 (en) * | 2008-06-30 | 2011-08-31 | 新日鐵化学株式会社 | Flexible circuit board, manufacturing method thereof, and bent portion structure of flexible circuit board |
CN102782174B (en) | 2009-12-25 | 2015-11-25 | 新日铁住金化学株式会社 | The curved part structure of flexible PCB and flexible PCB |
JP5329491B2 (en) * | 2010-08-13 | 2013-10-30 | Jx日鉱日石金属株式会社 | Copper foil for flexible printed wiring board and method for producing the same |
JP5698634B2 (en) * | 2010-10-28 | 2015-04-08 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5778460B2 (en) * | 2011-03-24 | 2015-09-16 | Jx日鉱日石金属株式会社 | Rolled copper foil, method for producing the same, and copper-clad laminate |
KR101886824B1 (en) | 2011-03-31 | 2018-08-08 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | Copper foil, copper-clad laminate, flexible circuit board, and manufacturing method for copper-clad laminate |
JP5788225B2 (en) * | 2011-05-30 | 2015-09-30 | Jx日鉱日石金属株式会社 | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment |
JP5694094B2 (en) * | 2011-09-01 | 2015-04-01 | Jx日鉱日石金属株式会社 | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board, and electronic device |
JP5373940B1 (en) * | 2012-07-17 | 2013-12-18 | 株式会社Shカッパープロダクツ | Rolled copper foil |
JP5723849B2 (en) * | 2012-07-19 | 2015-05-27 | Jx日鉱日石金属株式会社 | High strength titanium copper foil and method for producing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000212660A (en) * | 1999-01-18 | 2000-08-02 | Nippon Mining & Metals Co Ltd | Rolled copper foil for flexible printed circuit board and its production |
JP2003193211A (en) * | 2001-12-27 | 2003-07-09 | Nippon Mining & Metals Co Ltd | Rolled copper foil for copper-clad laminate |
-
2005
- 2005-10-12 JP JP2005298086A patent/JP4672515B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000212660A (en) * | 1999-01-18 | 2000-08-02 | Nippon Mining & Metals Co Ltd | Rolled copper foil for flexible printed circuit board and its production |
JP2003193211A (en) * | 2001-12-27 | 2003-07-09 | Nippon Mining & Metals Co Ltd | Rolled copper foil for copper-clad laminate |
Also Published As
Publication number | Publication date |
---|---|
JP2007107036A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5055088B2 (en) | Copper foil and flexible printed circuit board using the same | |
JP3009383B2 (en) | Rolled copper foil and method for producing the same | |
JP4672515B2 (en) | Rolled copper alloy foil for bending | |
JP3856582B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP5124039B2 (en) | Copper foil and copper-clad laminate using the same | |
JP6294376B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP6392268B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5235080B2 (en) | Copper alloy foil and flexible printed circuit board using the same | |
JP6294257B2 (en) | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP4162087B2 (en) | Highly flexible rolled copper foil and method for producing the same | |
JP2001262296A (en) | Rolled copper foil and its manufacturing process | |
JP6617313B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
KR101525368B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device | |
JP6663712B2 (en) | Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
KR20220054767A (en) | Copper foil for flexible printed substrate | |
JP6348621B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP2007107038A (en) | Copper or copper alloy foil for circuit | |
JP2011153360A (en) | Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same | |
JP2001144391A (en) | Rolled copper foil for printed circuit board and manufacturing method therefor | |
JP2009185364A (en) | Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member | |
KR102285062B1 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment | |
KR102136096B1 (en) | Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment | |
JP6647253B2 (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
JP5546571B2 (en) | Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body | |
JP6712561B2 (en) | Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100610 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100610 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110104 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4672515 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |