JP2008505433A - 照明光源 - Google Patents
照明光源 Download PDFInfo
- Publication number
- JP2008505433A JP2008505433A JP2006552269A JP2006552269A JP2008505433A JP 2008505433 A JP2008505433 A JP 2008505433A JP 2006552269 A JP2006552269 A JP 2006552269A JP 2006552269 A JP2006552269 A JP 2006552269A JP 2008505433 A JP2008505433 A JP 2008505433A
- Authority
- JP
- Japan
- Prior art keywords
- light source
- light
- point
- illumination
- led
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 86
- 238000010586 diagram Methods 0.000 claims abstract description 109
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 49
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 230000002596 correlated effect Effects 0.000 description 71
- 238000009877 rendering Methods 0.000 description 61
- 230000003595 spectral effect Effects 0.000 description 38
- 239000002131 composite material Substances 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 13
- 239000003086 colorant Substances 0.000 description 9
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
Abstract
【課題】簡易な制御で、可能な限り自然光に近い状態のまま光源色を変化させ得る照明光源を提供すること。
【解決手段】照明光源は、CIE1931色度図上における第1の点(P1)に対応する第1の光源色で発光する白色LEDと、第2の点(P2)に対応する第2の光源色で発光する橙色LEDとを有し、第1の光源色と第2の光源色とが混色された光源色を呈するようにした。ここで、第1の点(P1)は、黒体軌跡(PL)上にほぼ位置する。第2の点(P2)は、当該第2の点(P2)と前記第1の点(P1)を結ぶ線分(L1)が、第1の点(P1)を通る前記黒体軌跡(PL)の法線(L2)に対応する接線(L3)とほぼ平行となる関係となるようなところに位置する。
【選択図】図1
【解決手段】照明光源は、CIE1931色度図上における第1の点(P1)に対応する第1の光源色で発光する白色LEDと、第2の点(P2)に対応する第2の光源色で発光する橙色LEDとを有し、第1の光源色と第2の光源色とが混色された光源色を呈するようにした。ここで、第1の点(P1)は、黒体軌跡(PL)上にほぼ位置する。第2の点(P2)は、当該第2の点(P2)と前記第1の点(P1)を結ぶ線分(L1)が、第1の点(P1)を通る前記黒体軌跡(PL)の法線(L2)に対応する接線(L3)とほぼ平行となる関係となるようなところに位置する。
【選択図】図1
Description
本発明は、照明光源に関し、特に、光源色(相関色温度)を変化させ得る照明光源に関する。
近年、一般家庭や職場において、季節や一日の時間帯等その時々の雰囲気に応じ室内照明の光源色(相関色温度)を変化させたいといった要請がある。例えば、季節であれば、夏季は白っぽい寒色系にしたり、冬季は赤みがかった暖色系にしたり、時間帯であれば、仕事中は作業能率が向上すると思われる昼光色、休憩中はくつろぎやすい電球色などに変化させるといった具合である。
この場合、室内照明であることを考慮すれば、光源色はできるだけ自然な色を維持したまま変化させることが好ましい。すなわち、光源色がCIE1931色度図上の黒体軌跡またはこの近傍をたどるように変化させることが好ましい。
従来、室内照明の光源といえば蛍光ランプが主流であるが、蛍光ランプは複数種類の蛍光体の混合割合でその光源色が決まってしまう。そのため、仮に、蛍光ランプによって室内照明の光源色を変化させようとした場合、その都度、所望の光源色を有する蛍光ランプに取り替えなければならず、到底、その煩に耐えない。
従来、室内照明の光源といえば蛍光ランプが主流であるが、蛍光ランプは複数種類の蛍光体の混合割合でその光源色が決まってしまう。そのため、仮に、蛍光ランプによって室内照明の光源色を変化させようとした場合、その都度、所望の光源色を有する蛍光ランプに取り替えなければならず、到底、その煩に耐えない。
そこで、近年、高効率の青色LEDの実現により、赤、緑、青の3原色が揃ったLEDが注目されている。すなわち、赤色LED、緑色LED、青色LEDの3種類のLEDを各々複数個、密接して配置し、赤色光、緑色光、青色光の混色によって所望色の光源色を実現するのである(例えば、特許文献1を参照。)。この際、赤色LED、緑色LED、青色LEDの光源色は前記色度図上では、黒体軌跡を取り囲む三角形の頂点に位置することとなるので、各色LED間の相対発光強度(各LEDへの給電電力)を調整することによって、光源色を黒体軌跡上若しくはこの近傍に沿って変化させることが可能である。すなわち、一つの光源で光源色を自然光に近い状態を維持したまま種々に変化させることができるのである。
特開2004−6253号公報
しかしながら、上記した赤色LED、緑色LED、青色LEDによる場合には、3色のバランス、すなわち、各LEDへの給電電力のバランスを微妙に制御しなければならない。そのため、コストの高い制御システムが必要になってしまう。
上記した課題に鑑み、本発明は、もっと簡易な制御で光源色を自然光に近い状態のまま変化させ得る照明光源を提供することを目的とする。
上記した課題に鑑み、本発明は、もっと簡易な制御で光源色を自然光に近い状態のまま変化させ得る照明光源を提供することを目的とする。
本発明に係る照明光源は、CIE1931色度図上における第1の点に対応する第1の光源色で発光する第1の光源と、前記色度図上における第2の点に対応する第2の光源色で発光し、給電電力の大きさによって発光強度が変化する第2の光源とを有し、前記第1の点は、前記色度図における黒体軌跡上にほぼ位置し、前記第2の点は、当該第2の点と前記第1の点を結ぶ線分が、第1の点を通る前記黒体軌跡の法線に対応する接線とほぼ平行となる関係となるようなところに位置し、前記第1の光源色と前記第2の光源色が混色された光源色を呈する。
上記構成によれば、第2の光源に対する給電電力の大きさを変化させるだけで、照明光源の光源色が、前記線分上の任意の点に対応する光源色に変化する。すなわち、色度図上の黒体軌跡から大きくはずれることなく、換言すれば、自然光に近い状態を維持したまま光源色を変化させることが可能となる。
以下、本発明に係る照明光源の実施の形態について図面を参照しながら説明する。
先ず、実施の形態に係る照明光源の具体的な説明に入る前に、本発明の基本的な考えについて、図1を参照しながら説明する。図1(a)は、CIE1931色度図(以下、単に「色度図」といった場合には、この色度図を指す。)である。
本件の照明光源は、基本的に、色度図上の第1の点P1に対応する第1の光源色で発光する第1の光源と第2の点P2に対応する第2の光源色で発光する第2の光源とを有し、第1の光源のみを発光させて第1の光源色を得たり、第1の光源と第2の光源を同時に発光させ、第1の光源色と第2の光源色の合成された光源色を得たりするものである。
先ず、実施の形態に係る照明光源の具体的な説明に入る前に、本発明の基本的な考えについて、図1を参照しながら説明する。図1(a)は、CIE1931色度図(以下、単に「色度図」といった場合には、この色度図を指す。)である。
本件の照明光源は、基本的に、色度図上の第1の点P1に対応する第1の光源色で発光する第1の光源と第2の点P2に対応する第2の光源色で発光する第2の光源とを有し、第1の光源のみを発光させて第1の光源色を得たり、第1の光源と第2の光源を同時に発光させ、第1の光源色と第2の光源色の合成された光源色を得たりするものである。
第1の点P1は、黒体軌跡PL上にほぼ位置する。ここで、「ほぼ位置する」とは、CIE1960uv色度図上において黒体軌跡からの距離の1000倍をduv(色度偏差)としたとき、第1の点P1が、−5≦duv≦10の範囲に位置することを意味する(なお、duvは、点P1がy軸方向黒体軌跡の上側にある場合は正の値をとり、下側にある場合は負の値をとる。)。この範囲が、日本工業規格JIS:Z9112において、代表的な照明光源である蛍光ランプで定められている5種類の光源色(昼光色、昼白色、白色、温白色、電球色)の色度範囲の内、黒体軌跡からの隔たりを規定する範囲とほぼ一致するからである。すなわち、本件の照明光源は、蛍光ランプの代替光源として用いることを主眼の一つとしている。因みに、図1(a)中の5個の四辺形はそれぞれ、上記JIS規格で定められている昼光色D、昼白色N、白色W、温白色WW、電球色Lの色度範囲を示している。また、当該5つの光源色全体における相関色温度の範囲の下限は2600Kであり、上限は7100Kである。本件の照明光源は、一応この範囲内で光源色の相関色温度を変化させることを念頭においている。
次に、第2の点P2の存在位置を、図1(b)も参照しながら説明する。図1(b)は、第1の点P1およびその付近の拡大図である。第2の点P2は、当該第2の点P2と前記第1の点P1を結ぶ線分L1が、第1の点Pを通る前記黒体軌跡PLの法線L2に対応する接線L3とほぼ平行となる関係となるようなところに位置する。
ここで、「線分L1が、…接線L3とほぼ平行となるような」の趣旨について説明する。第1の点P1に対応する第1の光源色と第2の点に対応する第2の光源色の2色を混ぜると、その結果できる色は、この2色の色度座標を結ぶ線分L1上のどこかの座標(点P1・2)に対応した色になる(混ぜる比率によって変わる)。本実施の形態では、第1の光源は必ず発光させ、第1の光源に対する第2の光源の発光強度(相対強度)を変化させることによって所望の光源色(色温度)を得るものである。このとき、第2の光源の第1の光源に対する相対強度を強くしていったときに、点P1・2をできる限り長い区間において−5≦duv≦10の範囲に入れようとするためには、線分L1は、黒体軌跡PLに沿っている必要がある。「線分L1が、…接線L3とほぼ平行となるような」という意味は、点P1・2が−5≦duv≦10の範囲に入るように、線分L1を接線L3に沿わせるという意味である。換言すると、線分L1は、第2の光源の第1の光源に対する相対強度を変化させる範囲において、点P1・2が−5≦duv≦10の範囲に入る程度に、接線L3と平行であれば(おおよそ同じ方向に向いていれば)よいのである。「ほぼ平行」としたのは、このような趣旨からである。
ここで、「線分L1が、…接線L3とほぼ平行となるような」の趣旨について説明する。第1の点P1に対応する第1の光源色と第2の点に対応する第2の光源色の2色を混ぜると、その結果できる色は、この2色の色度座標を結ぶ線分L1上のどこかの座標(点P1・2)に対応した色になる(混ぜる比率によって変わる)。本実施の形態では、第1の光源は必ず発光させ、第1の光源に対する第2の光源の発光強度(相対強度)を変化させることによって所望の光源色(色温度)を得るものである。このとき、第2の光源の第1の光源に対する相対強度を強くしていったときに、点P1・2をできる限り長い区間において−5≦duv≦10の範囲に入れようとするためには、線分L1は、黒体軌跡PLに沿っている必要がある。「線分L1が、…接線L3とほぼ平行となるような」という意味は、点P1・2が−5≦duv≦10の範囲に入るように、線分L1を接線L3に沿わせるという意味である。換言すると、線分L1は、第2の光源の第1の光源に対する相対強度を変化させる範囲において、点P1・2が−5≦duv≦10の範囲に入る程度に、接線L3と平行であれば(おおよそ同じ方向に向いていれば)よいのである。「ほぼ平行」としたのは、このような趣旨からである。
また、「ほぼ平行」とした上記趣旨から、線分L1が黒体軌跡PLと交差する場合もあり得る。すなわち、以下の場合もあり得る。(i)第1の点P1が黒体軌跡PL上に在って、線分L1が黒体軌跡PLと1回交差する場合、(ii)第1の点P1が弓なりの黒体軌跡PLの内側に在って、線分L1が黒体軌跡PLと1回交差する場合、(iii)第1の点P1が弓なりの黒体軌跡PLの外側にあって、線分L1が黒体軌跡PLと2回交差する場合、および(iv)第1の点P1が弓なりの黒体軌跡PLの外側にあって、線分L1が黒体軌跡PLと接する場合である。
図2、図3は、上記のようにして、第2の光源の第1の光源に対する相対強度を変化させた際の光源色(相関色温度Tc、色度偏差duv)と平均演色評価数Raとの関係を示すグラフである。グラフ中の括弧( )で囲んだ数字は、後述する実施例の番号に対応している。図2、3は、各実施例の説明において適宜参照することとする。
(実施の形態1)
図4(a)は実施の形態1に係る照明光源2の概略構成を示す平面図であり、図4(b)は同正面図である。
(実施の形態1)
図4(a)は実施の形態1に係る照明光源2の概略構成を示す平面図であり、図4(b)は同正面図である。
照明光源2は、多層プリント配線板4(以下、単に「プリント配線板4」という。)と当該プリント配線板4に実装された、発光素子である白色LED6と橙色LED8を有する。白色LED6は12個、橙色LED8は7個実装されている。両LED6、8はいずれもいわゆる砲弾型のLEDであって、白色LED6と橙色LED8は、プリント配線板4内のプリント配線(不図示)によって、図4(c)の回路図に示すように電気的に接続されている。すなわち、12個の白色LED6が直列に接続され(直列に接続された12個の白色LED6を「白色LED列10」と称することとする。)、7個の橙色LED8が直列に接続されている(直列に接続された7個の橙色LED8を「橙色LED列12」と称することとする。)。実施の形態1では、前記第1の光源を白色LED列10で構成し、前記第2の光源を橙色LED列12で構成することとした。
また、白色LED列10における高電位側末端の白色LED6Aのアノード電極は、プリント配線板4に搭載された制限抵抗14(図4(a)では不図示)を介して、給電端子16と接続されていて、橙色LED列12における高電位側末端の橙色LED8Aのアノード電極は、プリント配線板4に搭載された制限抵抗18(図4(a)では不図示)を介して、給電端子20と接続されている。さらに、白色LED列10における低電位側末端の白色LED6Bのカソード電極と、橙色LED列12における低電位側末端の橙色LED8Bのカソード電極とが、プリント配線板4内のプリント配線(不図示)を介して共通端子22と接続されている。
上記の構成からなる照明光源2は、公知の可変電源装置24によって駆動される。すなわち、可変電源装置24の可変電源部24Aによって給電端子16への、可変電源部24Bによって給電端子20への給電電力を制御することにより、一方のLED列のみを点灯させたり、両方のLED列を同時に点灯させたり、あるいは、同時に点灯させた際の両LED間の相対発光強度を変化させることができる。両方のLED列を同時に点灯させた際には、図4(a)に示すように、各白色LED6と各橙色LED8は、密接して配されており、かつ、白色LED6と橙色LED8との間の配列がバランスよくなされているので、照明光源2は、各白色LED6の発する白色光と各橙色LED8の発する橙色光とがよく混ざり合った光源色の光を発することとなる。なお、LEDの駆動電流は、PWM(パルス幅変調)制御することが好ましい。すなわち、可変電源装置24には、PWM制御可能なものを用いることが好ましい。PWM制御によれば、給電電力を変化させた際のLEDの波長シフトが抑えられるからである。
白色LED6は、後述するように、青色発光する青色LEDチップまたは近紫外発光する近紫外LEDチップと所定の蛍光体とがパッケージされてなり、チップ自身の発光色と、蛍光体での変換後の発光色との混色によって白色光を発するものである。また、橙色LED8は、橙色発光する橙色LEDチップがパッケージされてなり、当該橙色LEDからの橙色光がそのまま発せられるものである。本実施の形態では、上記青色LEDチップおよび紫外LEDチップにGaInN系のものを、上記橙色LEDチップにAlGaInP系のものを用いることとした。
白色LED6に関し、青色LEDチップに対する蛍光体としては、青色光を緑色光に変換する緑色蛍光体、および青色光を赤色光に変換する赤色蛍光体が用いられる。本実施の形態において、上記各色蛍光体は、以下に記す化学式で表されるものが用いられる。緑色蛍光体…(Sr,Ba,Ca)2SiO4:Eu2+[略称:緑SSY]、赤色蛍光体…Sr2Si5N8:Eu2+[略称:赤NS]。
また、近紫外LEDチップに対する蛍光体としては、近紫外光を青色光に変換する青色蛍光体、近紫外光を緑色光に変換する緑色蛍光体、近紫外光を黄色光に変換する黄色蛍光体、および近紫外光を赤色光に変換する赤色蛍光体が用いられる。本実施の形態において上記各色蛍光体は、以下に記す化学式で表されるものが用いられる。緑色蛍光体…BaMgAl10O17:Eu2+,Mn2+[略称:緑BTM]、赤色蛍光体…Sr2Si5N8:Eu2+[略称:赤NS]、青色蛍光体…(Ba,Sr)2MgAl10O17:Eu2+[略称:青BAT]、黄色蛍光体…(Sr,Ba,Ca)2SiO4:Eu2+[略称:黄SSY]。
以下、上記実施の形態1の範疇に入る具体的な実施例について説明する。
(実施例1)
実施例1に用いる青色LEDチップ、緑色蛍光体(緑SSY)、赤色蛍光体(赤NS)、および橙色LEDチップから発せられる各光の分光分布図を図5に示す。なお、図5は、各光のピーク高さを「1」に揃えて描いたものである。図5に示すように、青色LEDチップには、主発光ピーク波長が460nmであるものが用いられる。橙色LEDチップには、主発光ピーク波長が585nmであるものが用いられる。緑色蛍光体(緑SSY)から発せられる緑色光と赤色蛍光体(赤NS)から発せられる赤色光の分光分布は、図5に示す通りである。
(実施例1)
実施例1に用いる青色LEDチップ、緑色蛍光体(緑SSY)、赤色蛍光体(赤NS)、および橙色LEDチップから発せられる各光の分光分布図を図5に示す。なお、図5は、各光のピーク高さを「1」に揃えて描いたものである。図5に示すように、青色LEDチップには、主発光ピーク波長が460nmであるものが用いられる。橙色LEDチップには、主発光ピーク波長が585nmであるものが用いられる。緑色蛍光体(緑SSY)から発せられる緑色光と赤色蛍光体(赤NS)から発せられる赤色光の分光分布は、図5に示す通りである。
実施例1に係る照明光源2において、白色LED列10(図4)のみを点灯させた際の、青色光(青色LEDチップ)、緑色光(緑色蛍光体)、赤色光(赤色蛍光体)の相対強度は、図6(a)に示す通りであり、これによって得られる白色光の相関色温度Tcは6872K(色度偏差duv=1.2)で、平均演色評価数Raは91である。ここで、相対強度とは、合成する各色光間におけるピーク波長の高さの比である。なお、図中の(x,y)は当該色度図(CIE1931色度図)における色度座標を示し、(u,v)はCIE1960uv色度図(不図示)における色度座標を示す。
第1の光源である白色LED列10(図4)のみを点灯させた際の色度図上における位置を白抜きの丸「○」で示す。この「○」で示すのが、上記第1の点に相当する。
また、仮に、第2の光源である橙色LED列12(図4)のみを点灯させた際の色度図上における位置を黒塗りの丸「●」で示す。この「●」で示すのが、上記第2の点に相当する。
また、仮に、第2の光源である橙色LED列12(図4)のみを点灯させた際の色度図上における位置を黒塗りの丸「●」で示す。この「●」で示すのが、上記第2の点に相当する。
白色LED列10と橙色LED列12を同時に点灯させた際の、青色光(青色LEDチップ)、緑色光(緑色蛍光体)、橙色光(橙色LED)、赤色光(赤色蛍光体)の相対強度は、図6(b)に示す通りであり、これによって得られる白色光の相関色温度Tcは4185K(色度偏差duv=1.0)で、平均演色評価数Raは51である。このときの、色度図上における位置を白抜きの四角「◇」で示す。照明光源2全体としては、この「◇」で示す座標位置に対応する光源色(以下、白色LED列10と橙色LED列12を同時に点灯させたときに得られる光源色を「合成色」と称することとする。)で発光することとなる。
なお、言うまでもなく、橙色LED列12の白色LED列10に対する相対強度を任意に変化させることによって、図2の(1)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが6872≧Tc≧3100の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが5600≦Tc≦6872の範囲において、平均演色評価数Raは80以上となり、6650≦Tc≦6872の範囲において平均演色評価数Raは90以上となる。
以下、各実施例の説明で用いる色度図において、第1の光源(白色LED列)のみを点灯させたときの位置を白抜きの丸「○」で、仮に第2の光源(橙色LED列)のみを点灯させたときの位置を黒塗りの丸「●」で、第1および第2の光源を同時に点灯させたときの位置を四角「◇」で示すこととする。
(実施例2)
実施例2は、白色LEDを青色LEDチップではなく近紫外LEDチップで構成した点が実施例1と異なっている以外は、基本的に実施例1と同様である。
(実施例2)
実施例2は、白色LEDを青色LEDチップではなく近紫外LEDチップで構成した点が実施例1と異なっている以外は、基本的に実施例1と同様である。
実施例2に用いる近紫外LEDチップ、緑色蛍光体(緑BTM)、赤色蛍光体(赤NS)、青色蛍光体(青BAT)、黄色蛍光体(黄SSY)、および橙色LEDチップから発せられる各光の分光分布図を図7に示す。なお、図7は、図5と同様、各光のピーク高さを「1」に揃えて描いたものである。図7に示すように、近紫外LEDチップには、主発光ピーク波長が395nmであるものが用いられる。橙色LEDチップには、実施例1のものと同じ主発光ピーク波長が585nmであるものが用いられる。緑色蛍光体(緑BTM)から発せられる緑色光、赤色蛍光体(赤NS)から発せられる赤色光、青色蛍光体(青BAT)から発せられる青色光、および黄色蛍光体(黄SSY)から発せられる黄色光の分光分布は、図7に示す通りである。
実施例2に係る照明光源2において、白色LED列10(図4)のみを点灯させた際の、青色光(青色蛍光体)、緑色光(緑色蛍光体)、黄色光(黄色蛍光体)、赤色光(赤色蛍光体)、近紫外光(近紫外LEDチップ)の相対強度は、図8(a)に示す通りであり、これによって得られる白色光の相関色温度Tcは7017K(色度偏差duv=0.7)で、平均演色評価数Raは91である。
白色LED列10と橙色LED列12を同時に点灯させた際の、青色光(青色蛍光体)、緑色光(緑色蛍光体)、黄色光(黄色蛍光体)、赤色光(赤色蛍光体)、近紫外光(近紫外LEDチップ)、橙色光(橙色LED)の相対強度は、図8(b)に示す通りであり、これによって得られる白色光の相関色温度Tcは5291K(色度偏差duv=−0.9)で、平均演色評価数Raは80である。
また、実施例1の場合と同様、橙色LED列12の白色LED列10に対する相対強度を任意に変化させることによって、図3の(2)に示すように広範囲に合成色を変化させることが可能であることは勿論である。この場合、相関色温度Tcが7107≧Tc≧3070の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが5280≦Tc≦7017の範囲において、平均演色評価数Raは80以上となり、5950≦Tc≦7017の範囲において平均演色評価数Raは90以上となる。
以上、説明したように、実施の形態1に係る照明光源2によれば、白色LED列10と橙色LED列12の二つの光源の給電電力(2系統の給電電力)を制御するだけで光源色(相関色温度)を変化させることができるので、従来のR,G、Bの各LEDの給電電力(3系統の給電電力)を制御しなければならないものと比較して、簡易な制御となる。しかも、その相関色温度は上記の範囲に渡って変化可能であり、この間の色度偏差も上記範囲に収まる。
(実施の形態2)
実施の形態2は、主に第2の光源(橙色LED列)の構成が異なる以外は実施の形態1と基本的に同じ構成である。したがって、共通部分には同じ符号を付してその説明は省略するか簡単に言及するにとどめ、異なる部分を中心に説明する。
(実施の形態2)
実施の形態2は、主に第2の光源(橙色LED列)の構成が異なる以外は実施の形態1と基本的に同じ構成である。したがって、共通部分には同じ符号を付してその説明は省略するか簡単に言及するにとどめ、異なる部分を中心に説明する。
実施の形態1では、第2の光源を1種類の橙色LED8(図4)で構成することとした。これに対して、実施の形態2では、第2の光源を2種類の橙色LEDで構成している。2種類の橙色LEDの違いは、主発光ピーク波長の違いにある。
図9(a)は実施の形態2に係る照明光源32の概略構成を示す平面図であり、図9(b)は同正面図である。
図9(a)は実施の形態2に係る照明光源32の概略構成を示す平面図であり、図9(b)は同正面図である。
照明光源32は、多層プリント配線板34(以下、単に「プリント配線板34」と言う。)を有し、当該プリント配線板34に、実施の形態1と同様な並びで実装された複数個の砲弾型LEDを有する。
これらLEDの内、符号36で示す6個のLEDが第1の波長をピーク波長に有する橙色LEDであり、符号38で示す4個のLEDが前記第1の波長よりも短い第2の波長を有する橙色LEDである。第1および第2の波長の具体例は、後述する実施例の中で挙げることとする。なお、白色LED6は、使用個数は減っているが、実施の形態1と同じものである。
これらLEDの内、符号36で示す6個のLEDが第1の波長をピーク波長に有する橙色LEDであり、符号38で示す4個のLEDが前記第1の波長よりも短い第2の波長を有する橙色LEDである。第1および第2の波長の具体例は、後述する実施例の中で挙げることとする。なお、白色LED6は、使用個数は減っているが、実施の形態1と同じものである。
白色LED6、橙色LED36、および橙色LED38は、プリント配線板34内のプリント配線(不図示)によって、図9(c)の回路図に示すように電気的に接続されている。すなわち、9個の白色LED6が直列に接続されている(直列に接続された9個の白色LED6を「白色LED列40」と称することとする。)。また、6個の橙色LED36が直列に接続され第1のLED列42を成し、4個の橙色LED38が直列に接続され第2のLED列44を成し、前記両LED列42、44同士がそれぞれ制限抵抗46、48を経て並列に接続されている(以下、並列接続された第1のLED列42と第2のLED列44を「橙色LED列50」と称する。)。実施の形態2では、第1の光源を白色LED列40で構成し、前記第2の光源を橙色LED列50で構成することとした。
また、第1のLED列42が発する光の発光強度(ピーク波長高さ)と第2のLED列44が発する光の発光強度(ピーク波長の高さ)がほぼ等しくなるように、両制限抵抗46,48間の抵抗比が設定されている。これにより、橙色LED列50においては、色度図上において、第1のLED列42の色度座標と第2のLED列44の色度座標を結ぶ線分のほぼ中点に対応する色度座標に対応する光源色が得られることとなる。
以下、上記実施の形態2の範疇に入る具体例を実施例3〜13に基づいて説明する。なお、白色LED6として、実施例3〜8では青色LEDチップによるもの、実施例9〜13では近紫外LEDチップによるものをそれぞれ用いている。
(実施例3)
図10は、実施例3における橙色LED列50(図9)の分光分布図である。625nmのピーク波長が第1のLED列42(図9)の波長成分であり、565nmのピーク波長が第2のLED列44(図9)の波長成分である。
(実施例3)
図10は、実施例3における橙色LED列50(図9)の分光分布図である。625nmのピーク波長が第1のLED列42(図9)の波長成分であり、565nmのピーク波長が第2のLED列44(図9)の波長成分である。
図11(a)は、白色LED列40(図9)のみを点灯させたときの分光分布図であり、図11(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは7112K(色度偏差duv=0.3)で、平均演色評価数Raは91である。
図12(a)は、白色LED列40と橙色LED列50を同時に点灯させた際の分光分布図であり、図12(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは4071K(色度偏差duv=0.9)で、平均演色評価数Raは85である。
図12(a)は、白色LED列40と橙色LED列50を同時に点灯させた際の分光分布図であり、図12(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは4071K(色度偏差duv=0.9)で、平均演色評価数Raは85である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(3)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7112≧Tc≧3110の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3650≦Tc≦7112の範囲において、平均演色評価数Raは80以上となり、4860≦Tc≦7112の範囲において平均演色評価数Raは90以上となる。
(実施例4)
図13は、実施例4における橙色LED列50(図9)の分光分布図である。620nmのピーク波長が第1のLED列42(図9)の波長成分であり、570nmのピーク波長が第2のLED列44(図9)の波長成分である。
図14(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは7112K(色度偏差duv=0.3)で、平均演色評価数Raは91である。
図13は、実施例4における橙色LED列50(図9)の分光分布図である。620nmのピーク波長が第1のLED列42(図9)の波長成分であり、570nmのピーク波長が第2のLED列44(図9)の波長成分である。
図14(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは7112K(色度偏差duv=0.3)で、平均演色評価数Raは91である。
図14(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは4234K(色度偏差duv=−4.5)で、平均演色評価数Raは83である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(4)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7112≧Tc≧2550の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3870≦Tc≦7112の範囲において、平均演色評価数Raは80以上となり、5450≦Tc≦7112の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(4)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7112≧Tc≧2550の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3870≦Tc≦7112の範囲において、平均演色評価数Raは80以上となり、5450≦Tc≦7112の範囲において平均演色評価数Raは90以上となる。
(実施例5)
図15は、実施例5における橙色LED列50(図9)の分光分布図である。615nmのピーク波長が第1のLED列42(図9)の波長成分であり、575nmのピーク波長が第2のLED列44(図9)の波長成分である。
図16(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは6950K(色度偏差duv=4.5)で、平均演色評価数Raは91である。
図15は、実施例5における橙色LED列50(図9)の分光分布図である。615nmのピーク波長が第1のLED列42(図9)の波長成分であり、575nmのピーク波長が第2のLED列44(図9)の波長成分である。
図16(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは6950K(色度偏差duv=4.5)で、平均演色評価数Raは91である。
図16(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは4451K(色度偏差duv=−4.2)で、平均演色評価数Raは81である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(5)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが6950≧Tc≧4020の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが4500≦Tc≦6950の範囲において、平均演色評価数Raは80以上となり、6300≦Tc≦6950の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(5)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが6950≧Tc≧4020の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが4500≦Tc≦6950の範囲において、平均演色評価数Raは80以上となり、6300≦Tc≦6950の範囲において平均演色評価数Raは90以上となる。
(実施例6)
上記実施例3〜5では、図9に示す、第1のLED列42が発する光の発光強度(ピーク波長高さ)と第2のLED列44が発する光の発光強度(ピーク波長の高さ)がほぼ等しくなるように、両制限抵抗46,48間の抵抗比を設定した。
これに対し、実施例6および後述する実施例7、8では、図9に示す、第1のLED列42の発する光の発光強度(ピーク波長高さ)の方が第2のLED列44が発する光の発光強度(ピーク波長高さ)よりも強くなるように、両制限抵抗46,48間の抵抗比が設定されている。これにより、橙色LED列50の光源色の色度座標上における位置(第2の点)が、560〜620nm付近の単色光軌跡に沿って長波長側にシフトすることとなる。その結果、実施例6〜8では、実施例3〜5よりも低色温度領域での調色が可能となる。
上記実施例3〜5では、図9に示す、第1のLED列42が発する光の発光強度(ピーク波長高さ)と第2のLED列44が発する光の発光強度(ピーク波長の高さ)がほぼ等しくなるように、両制限抵抗46,48間の抵抗比を設定した。
これに対し、実施例6および後述する実施例7、8では、図9に示す、第1のLED列42の発する光の発光強度(ピーク波長高さ)の方が第2のLED列44が発する光の発光強度(ピーク波長高さ)よりも強くなるように、両制限抵抗46,48間の抵抗比が設定されている。これにより、橙色LED列50の光源色の色度座標上における位置(第2の点)が、560〜620nm付近の単色光軌跡に沿って長波長側にシフトすることとなる。その結果、実施例6〜8では、実施例3〜5よりも低色温度領域での調色が可能となる。
なお、第1のLED列42と第2のLED列44の間の発光強度に差をつける方法は、上記したものに限らず、例えば、図9(d)に示すようにしても構わない。すなわち、第1のLED列42と第2のLED列44とを直列に接続するのである。この場合、両LED列を構成するLEDの個数の比によって、両LED列間の発光強度比を設定することが可能となる。
図17は、実施例6における橙色LED列50(図9)の分光分布図である。625nmのピーク波長が第1のLED列42(図9)の波長成分であり、565nmのピーク波長が第2のLED列44(図9)の波長成分である。
図18(a)は、白色LED列40(図9)のみを点灯させたときの分光分布図であり、図18(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは4402K(色度偏差duv=−0.5)で、平均演色評価数Raは94である。
図18(a)は、白色LED列40(図9)のみを点灯させたときの分光分布図であり、図18(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは4402K(色度偏差duv=−0.5)で、平均演色評価数Raは94である。
図19(a)は、白色LED列40と橙色LED列50を同時に点灯させた際の分光分布図であり、図19(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは2938K(色度偏差duv=0.2)で、平均演色評価数Raは89である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(6)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4402から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=3.7であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2500≦Tc≦4402の範囲において、平均演色評価数Raは80以上となり、3030≦Tc≦4402の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(6)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4402から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=3.7であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2500≦Tc≦4402の範囲において、平均演色評価数Raは80以上となり、3030≦Tc≦4402の範囲において平均演色評価数Raは90以上となる。
(実施例7)
図20は、実施例7における橙色LED列50(図9)の分光分布図である。620nmのピーク波長が第1のLED列42(図9)の波長成分であり、570nmのピーク波長が第2のLED列(図9)の波長成分である。
図21(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4402K(色度偏差duv=−0.5)で、平均演色評価数Raは94である。
図20は、実施例7における橙色LED列50(図9)の分光分布図である。620nmのピーク波長が第1のLED列42(図9)の波長成分であり、570nmのピーク波長が第2のLED列(図9)の波長成分である。
図21(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4402K(色度偏差duv=−0.5)で、平均演色評価数Raは94である。
図21(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは3020K(色度偏差duv=−5.0)で、平均演色評価数Raは87である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(7)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4402から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−3.6であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2600≦Tc≦4402の範囲において、平均演色評価数Raは80以上となり、3290≦Tc≦4402の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(7)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4402から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−3.6であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2600≦Tc≦4402の範囲において、平均演色評価数Raは80以上となり、3290≦Tc≦4402の範囲において平均演色評価数Raは90以上となる。
(実施例8)
図22は、実施例8における橙色LED列50(図9)の分光分布図である。615nmのピーク波長が第1のLED列42(図9)の波長成分であり、575nmのピーク波長が第2のLED列44(図9)の波長成分である。
図23(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4499K(色度偏差duv=3.6)で、平均演色評価数Raは94である。
図22は、実施例8における橙色LED列50(図9)の分光分布図である。615nmのピーク波長が第1のLED列42(図9)の波長成分であり、575nmのピーク波長が第2のLED列44(図9)の波長成分である。
図23(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4499K(色度偏差duv=3.6)で、平均演色評価数Raは94である。
図23(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは3122K(色度偏差duv=−4.0)で、平均演色評価数Raは82である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(8)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4499から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−4.2であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3030≦Tc≦4499の範囲において、平均演色評価数Raは80以上となり、3800≦Tc≦4499の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図2の(8)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4499から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−4.2であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3030≦Tc≦4499の範囲において、平均演色評価数Raは80以上となり、3800≦Tc≦4499の範囲において平均演色評価数Raは90以上となる。
(実施例9)
実施例9は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例3と同じ構成である。
図24(a)は、白色LED列40(図9)のみを点灯させたときの分光分布図であり、図24(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは7017K(色度偏差duv=0.7)で、平均演色評価数Raは91である。
実施例9は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例3と同じ構成である。
図24(a)は、白色LED列40(図9)のみを点灯させたときの分光分布図であり、図24(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは7017K(色度偏差duv=0.7)で、平均演色評価数Raは91である。
図25(a)は、白色LED列40と橙色LED列50を同時に点灯させた際の分光分布図であり、図25(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは4114K(色度偏差duv=1.0)で、平均演色評価数Raは90である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(9)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7017≧Tc≧3120の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3460≦Tc≦7017の範囲において、平均演色評価数Raは80以上となり、4150≦Tc≦7017の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(9)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7017≧Tc≧3120の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3460≦Tc≦7017の範囲において、平均演色評価数Raは80以上となり、4150≦Tc≦7017の範囲において平均演色評価数Raは90以上となる。
(実施例10)
実施例10は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例4と同じ構成である。
図26(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは7017K(色度偏差duv=0.7)で、平均演色評価数Raは91である。
実施例10は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例4と同じ構成である。
図26(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは7017K(色度偏差duv=0.7)で、平均演色評価数Raは91である。
図26(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは4400K(色度偏差duv=−4.2)で、平均演色評価数Raは90である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(10)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7017≧Tc≧2550の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3560≦Tc≦7017の範囲において、平均演色評価数Raは80以上となり、4390≦Tc≦7017の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(10)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7017≧Tc≧2550の範囲において、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3560≦Tc≦7017の範囲において、平均演色評価数Raは80以上となり、4390≦Tc≦7017の範囲において平均演色評価数Raは90以上となる。
(実施例11)
実施例11は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例5と同じ構成である。
図27(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは7107K(色度偏差duv=3.9)で、平均演色評価数Raは93である。
実施例11は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例5と同じ構成である。
図27(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは7107K(色度偏差duv=3.9)で、平均演色評価数Raは93である。
図27(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは4650K(色度偏差duv=−4.4)で、平均演色評価数Raは88である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(11)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=7107から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=0.0であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3700≦Tc≦7107の範囲において、平均演色評価数Raは80以上となり、4900≦Tc≦7107の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(11)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=7107から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=0.0であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが3700≦Tc≦7107の範囲において、平均演色評価数Raは80以上となり、4900≦Tc≦7107の範囲において平均演色評価数Raは90以上となる。
(実施例12)
実施例12は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例7と同じ構成である。
図28(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4043K(色度偏差duv=−0.6)で、平均演色評価数Raは94である。
実施例12は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例7と同じ構成である。
図28(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4043K(色度偏差duv=−0.6)で、平均演色評価数Raは94である。
図28(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは2914K(色度偏差duv=−4.6)で、平均演色評価数Raは90である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(12)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4043から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−4.0であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2400≦Tc≦4043の範囲において、平均演色評価数Raは80以上となり、2900≦Tc≦4043の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(12)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4043から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−4.0であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2400≦Tc≦4043の範囲において、平均演色評価数Raは80以上となり、2900≦Tc≦4043の範囲において平均演色評価数Raは90以上となる。
(実施例13)
実施例13は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例8と同じ構成である。
図29(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4227K(色度偏差duv=3.6)で、平均演色評価数Raは95である。
実施例13は、白色LED6(図9)として近紫外LEDチップによるものを用いた以外は、実施例8と同じ構成である。
図29(a)は、白色LED列40(図9)のみを点灯させたときの色度図上の位置等を示している。このときの白色光の相関色温度Tcは4227K(色度偏差duv=3.6)で、平均演色評価数Raは95である。
図29(b)は、白色LED列40と橙色LED列50を同時に点灯させた際の色度図上の位置等を示している。このときの白色光の相関色温度Tcは3242K(色度偏差duv=−3.3)で、平均演色評価数Raは90である。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(13)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4227から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−4.0であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2700≦Tc≦4227の範囲において、平均演色評価数Raは80以上となり、3270≦Tc≦4227の範囲において平均演色評価数Raは90以上となる。
また、橙色LED列50の白色LED列40に対する相対強度を任意に変化させることによって、図3の(13)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tc=4227から低色温度側へ変化させた場合、相関色温度2600Kにおいて、duv=−4.0であり、この色温度範囲であれば、duvは−5≦duv≦10の範囲に収まる。また、相関色温度Tcが2700≦Tc≦4227の範囲において、平均演色評価数Raは80以上となり、3270≦Tc≦4227の範囲において平均演色評価数Raは90以上となる。
以上説明した実施の形態2によれば、上記した実施の形態1の効果に加え、比較的広い範囲に渡って高演色性を維持したままの調色が可能となる。このことを、図2、図3を参照しながら説明する。図2の(1)と図3の(2)は、実施の形態1での調色ラインを示していた。これによれば、各ラインの右端(すなわち、第1の光源のみの点灯)から、第2の光源の発光強度があまり強くなく、調色の度合いが少ないところでは、Raは90以上となるが、第2の光源の発光強度を増して調色が進むと(左向きに進行すると)、急激にRaが低下することがわかる。これに対し、実施の形態2での調色ライン(図2の(3)〜(7)、図3の(9)〜(13))から明らかなように、実施の形態1よりも広範囲でRaが90以上に維持されることとなる。これは、調色用光源である第2の光源を、主発光ピーク波長の異なる2種類の発光素子(橙色LED)で構成したことに起因するものと思われる。
なお、上記実施例では、2種類の発光素子(LED)で第2の光源を構成することとしたが、異なるピーク波長を有する3種類以上の発光素子(LED)で構成することとしても構わない。言うまでも無く、この場合でも、発光素子(LED)間は、電気的に直列または並列に接続し、一つの電力供給系統によって給電するようにする。
(実施の形態3)
実施の形態3は、実施の形態2の照明光源に、第3の光源を加えた構成としている。
(実施の形態3)
実施の形態3は、実施の形態2の照明光源に、第3の光源を加えた構成としている。
図1に戻り、第3の光源は、色度図上の第3の点P3に対応する第3の光源色で発光する光源である。
第3の点P3の第1の点P1との関係における色度図上の位置関係は、上述した第2の点P2の第1の点との位置関係と同様である。すなわち、第3の点P3は、当該第3の点P3と第1の点P1を結ぶ線分が、第1の点Pを通る前記黒体軌跡PLの法線に対応する接線とほぼ平行となる関係となるようなところに位置する。ここで、「線分が、…接線とほぼ平行となるような」の趣旨は、上述した第2の点P2の場合と同様である。また、第3の点P3は、第1の点P1を挟んで第2の点P2と相対する位置に存在する。
第3の点P3の第1の点P1との関係における色度図上の位置関係は、上述した第2の点P2の第1の点との位置関係と同様である。すなわち、第3の点P3は、当該第3の点P3と第1の点P1を結ぶ線分が、第1の点Pを通る前記黒体軌跡PLの法線に対応する接線とほぼ平行となる関係となるようなところに位置する。ここで、「線分が、…接線とほぼ平行となるような」の趣旨は、上述した第2の点P2の場合と同様である。また、第3の点P3は、第1の点P1を挟んで第2の点P2と相対する位置に存在する。
実施の形態3において、第1〜第3の光源の内、同時に点灯するのは、2つの光源のみである。すなわち、第1の光源と第2の光源を同時に点灯させるか、第1の光源と第3の光源を同時に点灯させかのどちらかである。もちろん、第1の光源のみを点灯させることとしても構わないのは、実施の形態1,2の場合と同様である。
第1の光源と第2の光源を同時に点灯させる場合は、実施の形態2と同様の結果となる。実施の形態3では、色度図上、第2の光源と相対する位置に存する第3の光源を第1の光源と同時に点灯させることにより、実施の形態2の照明光源よりも、より広範囲な調色を可能にするものである。
第1の光源と第2の光源を同時に点灯させる場合は、実施の形態2と同様の結果となる。実施の形態3では、色度図上、第2の光源と相対する位置に存する第3の光源を第1の光源と同時に点灯させることにより、実施の形態2の照明光源よりも、より広範囲な調色を可能にするものである。
図30(a)は実施の形態3に係る照明光源62の概略構成を示す平面図であり、図30(b)は同正面図であり、図30(c)は、回路図である。図30において、実施の形態2の照明光源32と同様の構成のものには同じ符号を付して、その説明については省略する。
実施の形態3に係る照明光源62は、実施の形態2に係る照明光源32(図9)において9個ある白色LED6の個数を3個減らして6個とし、減らした分の3個を青色LED64に充てることとした。
実施の形態3に係る照明光源62は、実施の形態2に係る照明光源32(図9)において9個ある白色LED6の個数を3個減らして6個とし、減らした分の3個を青色LED64に充てることとした。
6個の白色LED6は直列に接続されて、白色LED列66を構成し、3個の青色LED64が直列に接続されて青色LED列68が構成されている。実施の形態3では、第1の光源を白色LED列66で構成し、第3の光源を青色LED列68で構成することとした。なお、多層プリント配線板70上、符号72で示しているのは、青色LED列68に対する給電端子である。
実施の形態3の具体例を実施例14に基づいて説明する。
(実施例14)
実施例14で用いる白色LED6は、近紫外LEDチップによるものである。また、橙色LED列50は、実施例7のものと同様である。
図31に、青色LED64の分光分布図を示す。当該青色LED64は、本図に示すように、主発光ピーク波長が475nmであるものが用いられる。
(実施例14)
実施例14で用いる白色LED6は、近紫外LEDチップによるものである。また、橙色LED列50は、実施例7のものと同様である。
図31に、青色LED64の分光分布図を示す。当該青色LED64は、本図に示すように、主発光ピーク波長が475nmであるものが用いられる。
図32(a)は、白色LED列66(図30)のみを点灯させたときの分光分布図であり、図32(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは4043K(色度偏差duv=−0.6)で、平均演色評価数Raは94である。なお、仮に青色LED列68のみを点灯したとした際の色度図上における位置を黒塗りの四角「■」で示している。
図33(a)は、白色LED列66と橙色LED列50を同時に点灯させた際の分光分布図であり、図33(b)は、色度図上の位置等を示している。このときの白色光の相関色温度Tcは2566K(色度偏差duv=−2.7)で、平均演色評価数Raは94である。
図34(a)は、白色LED列66と青色LED列68を同時に点灯させた際の分光分布図であり、図34(b)は、色度図上の位置(□)等を示している。このときの白色光の相関色温度Tcは7193K(色度偏差duv=−4.3)で、平均演色評価数Raは68である。
図34(a)は、白色LED列66と青色LED列68を同時に点灯させた際の分光分布図であり、図34(b)は、色度図上の位置(□)等を示している。このときの白色光の相関色温度Tcは7193K(色度偏差duv=−4.3)で、平均演色評価数Raは68である。
また、橙色LED列50または青色LED列68の白色LED列66に対する相対強度を任意に変化させることによって、図3の(14)に示すように広範囲に合成色を変化させることが可能である。この場合、相関色温度Tcが7100≧Tc≧2600の範囲において、duvは−5≦duv≦10の範囲に収まる。因みに、Tc=7100のときはduv=−4.3であり、Tc=2600のときはduv=−2.9である。また、相関色温度Tcが2500≦Tc≦5370の範囲において、平均演色評価数Raは80以上となり、2500≦Tc≦4380の範囲において平均演色評価数Raは90以上となる。
以上説明した実施の形態3によれば、上記した実施の形態1、2よりも、一つの照明光源で、より広範囲に渡って光源色を変化(調色)させることが可能となる。このことを図2、図3を参照しながら説明する。図3の(14)で示すのが、実施の形態3における調色ラインである。図3および図2から明らかなように、図3の(14)で示すラインは、実施の形態1、2の他のラインよりも相関色温度を示す横軸方向、長い区間に渡って調色が可能である。また、この調色において、同時に点灯するのは、二つの光源のみであるので、従来のR,G、Bの各LEDの給電電力(3系統の給電電力)を制御しなければならないものと比較して、簡易な制御となることに変わりは無い。
以上、本発明を実施の形態に基づいて説明してきたが、本発明は、上記した形態のものに限らないことは言うまでも無く、例えば、以下の形態とすることも可能である。
(1)第1〜第3の各光源を構成するLEDの種類と個数は、上記したものに限らず他の種類のLEDとすることができ、また、個数も任意に選択可能である。
(2)第1の光源を構成する白色LEDに用いる蛍光体は、上記したものに限らない。
(1)第1〜第3の各光源を構成するLEDの種類と個数は、上記したものに限らず他の種類のLEDとすることができ、また、個数も任意に選択可能である。
(2)第1の光源を構成する白色LEDに用いる蛍光体は、上記したものに限らない。
(3)上記実施の形態では、照明光源を複数個の砲弾型LEDで構成したが、これに限らず、いわゆるチップオンボードタイプとして構成しても構わない。すなわち、回路基板上に直接LEDチップを密接に配列して(搭載して)照明光源を構成するのである。
(4)上記実施の形態では、第1の光源に対する給電電力(電流値)は一定とし、第2の光源または第3の光源に対する給電電力(電流値)を変化させて、調色させることとしたが、第1の光源に対する給電電力も同時に変化させることとしても構わない。こうすることにより、調光(輝度制御)の幅も広げることが可能となる。
(4)上記実施の形態では、第1の光源に対する給電電力(電流値)は一定とし、第2の光源または第3の光源に対する給電電力(電流値)を変化させて、調色させることとしたが、第1の光源に対する給電電力も同時に変化させることとしても構わない。こうすることにより、調光(輝度制御)の幅も広げることが可能となる。
この場合に、第2の光源または第3の光源の輝度の増減に応じて、第1の光源の輝度を増減させ、照明光源全体としての輝度を一定に保持することとしても構わない。すなわち、照明光源の輝度を一定に保持したまま、光源色を変化させることとしても構わない。
簡易な制御で光源色を自然光に近い状態のまま変化させ得る光源を必要とする照明分野で好適に利用可能である。
2、32、62 照明光源
10、40.66 白色LED列
12、50 橙色LED列
68 青色LED列
10、40.66 白色LED列
12、50 橙色LED列
68 青色LED列
Claims (13)
- CIE1931色度図上における第1の点に対応する第1の光源色で発光する第1の光源と、
前記色度図上における第2の点に対応する第2の光源色で発光し、給電電力の大きさによって発光強度が変化する第2の光源とを有し、
前記第1の点は、前記色度図における黒体軌跡上にほぼ位置し、
前記第2の点は、当該第2の点と前記第1の点を結ぶ線分が、第1の点を通る前記黒体軌跡の法線に対応する接線とほぼ平行となる関係となるようなところに位置し、
前記第1の光源色と前記第2の光源色が混色された光源色を呈する照明光源。 - 前記第2の光源は、少なくとも、第1のピーク波長を有する第1の発光素子と第1のピーク波長とは異なる第2のピーク波長を有する第2の発光素子とを含み、両発光素子が電気的に直列または並列に接続されている請求項1に記載の照明光源。
- 前記照明光源は、さらに、
前記色度図上における第3の点に対応する第3の光源色で発光し、給電電力の大きさによって発光強度が変化する第3の光源を有し、
前記第3の点は、前記第1の点を挟んで前記第2の点と相対する位置であって、当該第3の点と前記第1の点を結ぶ線分が、前記接線とほぼ平行となる関係となるようなところに位置する請求項2に記載の照明光源。 - 前記第1の光源は、近紫外光を発する近紫外発光素子と前記近紫外光を青色光、緑色光、黄色光、赤色光のそれぞれに変換する青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体を含む請求項3に記載の照明光源。
- 前記第1の発光素子、前記第2の発光素子、および前記近紫外発光素子は、LEDである請求項4に記載の照明光源。
- 前記照明光源は、さらに、
前記色度図上における第3の点に対応する第3の光源色で発光し、給電電力の大きさによって発光強度が変化する第3の光源を有し、
前記第3の点は、前記第1の点を挟んで前記第2の点と相対する位置であって、当該第3の点と前記第1の点を結ぶ線分が、前記接線とほぼ平行となる関係となるようなところに位置する請求項1に記載の照明光源。 - 前記第1の光源は、近紫外光を発する近紫外発光素子と前記近紫外光を青色光、緑色光、黄色光、赤色光のそれぞれに変換する青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体を含む請求項6に記載の照明光源。
- 前記近紫外発光素子は、LEDである請求項7に記載の照明光源。
- 前記第1の光源は、青色光を発する青色発光素子と前記青色光を緑色光に変換する緑色蛍光体と前記青色光を赤色光に変換する赤色蛍光体とを含む請求項1に記載の照明光源。
- 前記青色発光素子は、LEDである請求項9に記載の照明光源。
- 前記第1の光源は、近紫外光を発する近紫外発光素子と前記近紫外光を青色光、緑色光、黄色光、赤色光のそれぞれに変換する青色蛍光体、緑色蛍光体、黄色蛍光体、赤色蛍光体を含む請求項1に記載の照明光源。
- 前記近紫外発光素子は、LEDである請求項11に記載の照明光源。
- 前記第1の光源は、給電電力の大きさによって発光強度が変化する請求項1に記載の照明光源。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192153 | 2004-06-29 | ||
PCT/JP2005/011080 WO2006001221A1 (en) | 2004-06-29 | 2005-06-10 | Illumination source |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008505433A true JP2008505433A (ja) | 2008-02-21 |
Family
ID=34970389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006552269A Pending JP2008505433A (ja) | 2004-06-29 | 2005-06-10 | 照明光源 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20070291467A1 (ja) |
EP (1) | EP1790199B1 (ja) |
JP (1) | JP2008505433A (ja) |
TW (1) | TWI365550B (ja) |
WO (1) | WO2006001221A1 (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008210855A (ja) * | 2007-02-23 | 2008-09-11 | Matsushita Electric Works Ltd | Led制御システム |
JP2009032524A (ja) * | 2007-07-26 | 2009-02-12 | Panasonic Electric Works Co Ltd | Led照明装置 |
JP2009049000A (ja) * | 2007-07-26 | 2009-03-05 | Panasonic Electric Works Co Ltd | Led照明装置 |
JP2009224074A (ja) * | 2008-03-13 | 2009-10-01 | Panasonic Electric Works Co Ltd | Led照明装置 |
JP2010003756A (ja) * | 2008-06-18 | 2010-01-07 | Panasonic Electric Works Co Ltd | Led発光装置、プリント配線基板及び表示器具 |
JP2011222723A (ja) * | 2010-04-08 | 2011-11-04 | Panasonic Electric Works Co Ltd | 発光装置 |
JP2012113959A (ja) * | 2010-11-24 | 2012-06-14 | Panasonic Corp | 発光装置 |
JP2012221770A (ja) * | 2011-04-11 | 2012-11-12 | Mitsubishi Electric Corp | 照明装置 |
JP2012248554A (ja) * | 2011-05-25 | 2012-12-13 | Panasonic Corp | 可変色発光装置及びそれを用いた照明器具 |
JP2013515354A (ja) * | 2009-12-21 | 2013-05-02 | クリー インコーポレイテッド | 高criで色温度調整可能な照明デバイス |
JP2013258037A (ja) * | 2012-06-12 | 2013-12-26 | Panasonic Corp | 照明装置 |
US8698171B2 (en) | 2005-01-10 | 2014-04-15 | Cree, Inc. | Solid state lighting component |
JP2015026585A (ja) * | 2013-07-29 | 2015-02-05 | パナソニック株式会社 | 照明システム |
JP2015115507A (ja) * | 2013-12-12 | 2015-06-22 | パナソニックIpマネジメント株式会社 | 光源モジュール及び光源ユニット |
JP2015159124A (ja) * | 2015-04-27 | 2015-09-03 | 三菱電機株式会社 | 照明装置 |
US9184353B2 (en) | 2008-03-03 | 2015-11-10 | Sharp Kabushiki Kaisha | Light-emitting device |
JP2016054070A (ja) * | 2014-09-03 | 2016-04-14 | 株式会社キルトプランニングオフィス | 照明装置 |
JP2016062887A (ja) * | 2014-09-12 | 2016-04-25 | パナソニックIpマネジメント株式会社 | 照明装置 |
US9335006B2 (en) | 2006-04-18 | 2016-05-10 | Cree, Inc. | Saturated yellow phosphor converted LED and blue converted red LED |
US9425172B2 (en) | 2008-10-24 | 2016-08-23 | Cree, Inc. | Light emitter array |
US9786811B2 (en) | 2011-02-04 | 2017-10-10 | Cree, Inc. | Tilted emission LED array |
US9793247B2 (en) | 2005-01-10 | 2017-10-17 | Cree, Inc. | Solid state lighting component |
US10295147B2 (en) | 2006-11-09 | 2019-05-21 | Cree, Inc. | LED array and method for fabricating same |
KR20200036906A (ko) * | 2017-07-31 | 2020-04-07 | 커런트 라이팅 솔루션즈, 엘엘씨 | 협대역 녹색 인광체를 갖는 인광체 변환형 백색 발광 다이오드 |
US10842016B2 (en) | 2011-07-06 | 2020-11-17 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
JP2021052175A (ja) * | 2019-09-17 | 2021-04-01 | Zigenライティングソリューション株式会社 | 発光装置、及び照明装置 |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9070850B2 (en) | 2007-10-31 | 2015-06-30 | Cree, Inc. | Light emitting diode package and method for fabricating same |
DE102006055615A1 (de) | 2006-04-07 | 2007-10-11 | Ledon Lighting Gmbh | Farbtemperatur- und Farbortsteuerung für eine Leuchte |
US7821194B2 (en) * | 2006-04-18 | 2010-10-26 | Cree, Inc. | Solid state lighting devices including light mixtures |
US8513875B2 (en) | 2006-04-18 | 2013-08-20 | Cree, Inc. | Lighting device and lighting method |
JP5681364B2 (ja) * | 2006-04-20 | 2015-03-04 | クリー インコーポレイテッドCree Inc. | 照明装置 |
EP2043165B1 (en) * | 2006-06-27 | 2014-12-03 | Mitsubishi Chemical Corporation | Illuminating device |
US7513671B2 (en) * | 2006-09-18 | 2009-04-07 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Efficient solid state light source for generating light in a limited region of the color space |
US9441793B2 (en) | 2006-12-01 | 2016-09-13 | Cree, Inc. | High efficiency lighting device including one or more solid state light emitters, and method of lighting |
KR20080049947A (ko) * | 2006-12-01 | 2008-06-05 | 엘지전자 주식회사 | 방송 시스템, 인터페이스 방법, 및 데이터 구조 |
US7851987B2 (en) * | 2007-03-30 | 2010-12-14 | Eastman Kodak Company | Color electro-luminescent display with improved efficiency |
KR20100017668A (ko) * | 2007-05-08 | 2010-02-16 | 크리 엘이디 라이팅 솔루션즈, 인크. | 조명 장치 및 조명 방법 |
WO2009014219A1 (ja) * | 2007-07-26 | 2009-01-29 | Panasonic Electric Works Co., Ltd. | Led照明デバイス |
GB0813834D0 (en) * | 2008-07-29 | 2008-09-03 | Brandon Medical Company Ltd | Illumination assembly |
KR100986359B1 (ko) * | 2008-03-14 | 2010-10-08 | 엘지이노텍 주식회사 | 발광 장치 및 이를 구비한 표시 장치 |
US8415321B2 (en) | 2008-04-15 | 2013-04-09 | Raymond F. Schinazi | Nucleoside derivatives for treatment of Caliciviridae infections, including Norovirus infections |
FR2939493B1 (fr) * | 2008-12-08 | 2013-07-05 | Jwr | Dispositifs et procede d'eclairage a base de diodes electroluminescentes (led) pour emettre une lumiere blanche. |
US8598809B2 (en) | 2009-08-19 | 2013-12-03 | Cree, Inc. | White light color changing solid state lighting and methods |
NL2003472C2 (en) * | 2009-09-11 | 2013-12-31 | Stichting Administratiekantoor Vormgroup | Led assembly for generating white light. |
US20110115407A1 (en) * | 2009-11-13 | 2011-05-19 | Polar Semiconductor, Inc. | Simplified control of color temperature for general purpose lighting |
JP2011254064A (ja) * | 2010-05-06 | 2011-12-15 | Funai Electric Co Ltd | 面発光装置 |
US8684559B2 (en) | 2010-06-04 | 2014-04-01 | Cree, Inc. | Solid state light source emitting warm light with high CRI |
US9827439B2 (en) | 2010-07-23 | 2017-11-28 | Biological Illumination, Llc | System for dynamically adjusting circadian rhythm responsive to scheduled events and associated methods |
US8743023B2 (en) | 2010-07-23 | 2014-06-03 | Biological Illumination, Llc | System for generating non-homogenous biologically-adjusted light and associated methods |
US8686641B2 (en) | 2011-12-05 | 2014-04-01 | Biological Illumination, Llc | Tunable LED lamp for producing biologically-adjusted light |
US9681522B2 (en) | 2012-05-06 | 2017-06-13 | Lighting Science Group Corporation | Adaptive light system and associated methods |
US9532423B2 (en) | 2010-07-23 | 2016-12-27 | Lighting Science Group Corporation | System and methods for operating a lighting device |
SE1000801A2 (sv) * | 2010-07-29 | 2012-04-30 | Andreas Vinnberg | LED lampa |
US8403530B2 (en) | 2010-09-21 | 2013-03-26 | Honeywell International Inc. | LED spotlight including elliptical and parabolic reflectors |
US8901850B2 (en) | 2012-05-06 | 2014-12-02 | Lighting Science Group Corporation | Adaptive anti-glare light system and associated methods |
US9173269B2 (en) | 2011-05-15 | 2015-10-27 | Lighting Science Group Corporation | Lighting system for accentuating regions of a layer and associated methods |
US8754832B2 (en) | 2011-05-15 | 2014-06-17 | Lighting Science Group Corporation | Lighting system for accenting regions of a layer and associated methods |
USD700584S1 (en) | 2011-07-06 | 2014-03-04 | Cree, Inc. | LED component |
US9402294B2 (en) | 2012-05-08 | 2016-07-26 | Lighting Science Group Corporation | Self-calibrating multi-directional security luminaire and associated methods |
US9174067B2 (en) | 2012-10-15 | 2015-11-03 | Biological Illumination, Llc | System for treating light treatable conditions and associated methods |
US20140268731A1 (en) | 2013-03-15 | 2014-09-18 | Lighting Science Group Corpporation | Low bay lighting system and associated methods |
KR101616193B1 (ko) * | 2014-09-03 | 2016-04-29 | 송인실 | 혼합광 생성장치 |
JP6655822B2 (ja) * | 2016-03-03 | 2020-02-26 | パナソニックIpマネジメント株式会社 | 照明装置 |
JP6628140B2 (ja) * | 2016-03-03 | 2020-01-08 | パナソニックIpマネジメント株式会社 | 照明装置 |
JP7016038B2 (ja) * | 2017-07-26 | 2022-02-04 | パナソニックIpマネジメント株式会社 | 照明装置及び照明制御システム |
CN107896398B (zh) * | 2017-11-09 | 2020-04-07 | 四川九洲光电科技股份有限公司 | 多路led几何混光方法 |
WO2021025120A1 (ja) * | 2019-08-07 | 2021-02-11 | 京セラ株式会社 | 照明装置 |
EP4090886B1 (en) * | 2020-01-15 | 2024-01-03 | Harman Professional Denmark ApS | Illumination device with white and non-white light sources |
CN113795065B (zh) * | 2021-08-04 | 2024-04-19 | 安徽三安科技有限公司 | 色温调节方法和照明模组 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09263181A (ja) * | 1996-03-28 | 1997-10-07 | Toyoda Gosei Co Ltd | 異常接近警告表示装置 |
WO2003019072A1 (fr) * | 2001-08-23 | 2003-03-06 | Yukiyasu Okumura | Eclairage par del a temperature de couleur reglable |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5803579A (en) * | 1996-06-13 | 1998-09-08 | Gentex Corporation | Illuminator assembly incorporating light emitting diodes |
US6550949B1 (en) * | 1996-06-13 | 2003-04-22 | Gentex Corporation | Systems and components for enhancing rear vision from a vehicle |
US20040052076A1 (en) * | 1997-08-26 | 2004-03-18 | Mueller George G. | Controlled lighting methods and apparatus |
US7014336B1 (en) * | 1999-11-18 | 2006-03-21 | Color Kinetics Incorporated | Systems and methods for generating and modulating illumination conditions |
US6498440B2 (en) * | 2000-03-27 | 2002-12-24 | Gentex Corporation | Lamp assembly incorporating optical feedback |
US6577073B2 (en) * | 2000-05-31 | 2003-06-10 | Matsushita Electric Industrial Co., Ltd. | Led lamp |
US20030147242A1 (en) * | 2002-02-04 | 2003-08-07 | Whelen Engineering Company, Inc. | White LED array |
US6943379B2 (en) * | 2002-04-04 | 2005-09-13 | Toyoda Gosei Co., Ltd. | Light emitting diode |
TW569479B (en) * | 2002-12-20 | 2004-01-01 | Ind Tech Res Inst | White-light LED applying omnidirectional reflector |
US20050157499A1 (en) * | 2003-01-17 | 2005-07-21 | Eunjoo Kim | Interactive image illumination system and method for operating same |
US20040218387A1 (en) * | 2003-03-18 | 2004-11-04 | Robert Gerlach | LED lighting arrays, fixtures and systems and method for determining human color perception |
US7094362B2 (en) * | 2003-10-29 | 2006-08-22 | General Electric Company | Garnet phosphor materials having enhanced spectral characteristics |
US7250715B2 (en) * | 2004-02-23 | 2007-07-31 | Philips Lumileds Lighting Company, Llc | Wavelength converted semiconductor light emitting devices |
-
2005
- 2005-06-10 WO PCT/JP2005/011080 patent/WO2006001221A1/en active Application Filing
- 2005-06-10 US US11/596,034 patent/US20070291467A1/en not_active Abandoned
- 2005-06-10 JP JP2006552269A patent/JP2008505433A/ja active Pending
- 2005-06-10 EP EP05751277.4A patent/EP1790199B1/en not_active Not-in-force
- 2005-06-20 TW TW094120441A patent/TWI365550B/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09263181A (ja) * | 1996-03-28 | 1997-10-07 | Toyoda Gosei Co Ltd | 異常接近警告表示装置 |
WO2003019072A1 (fr) * | 2001-08-23 | 2003-03-06 | Yukiyasu Okumura | Eclairage par del a temperature de couleur reglable |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9076940B2 (en) | 2005-01-10 | 2015-07-07 | Cree, Inc. | Solid state lighting component |
US9793247B2 (en) | 2005-01-10 | 2017-10-17 | Cree, Inc. | Solid state lighting component |
US8698171B2 (en) | 2005-01-10 | 2014-04-15 | Cree, Inc. | Solid state lighting component |
US9335006B2 (en) | 2006-04-18 | 2016-05-10 | Cree, Inc. | Saturated yellow phosphor converted LED and blue converted red LED |
US10295147B2 (en) | 2006-11-09 | 2019-05-21 | Cree, Inc. | LED array and method for fabricating same |
JP2008210855A (ja) * | 2007-02-23 | 2008-09-11 | Matsushita Electric Works Ltd | Led制御システム |
JP2009032524A (ja) * | 2007-07-26 | 2009-02-12 | Panasonic Electric Works Co Ltd | Led照明装置 |
JP2009049000A (ja) * | 2007-07-26 | 2009-03-05 | Panasonic Electric Works Co Ltd | Led照明装置 |
US9184353B2 (en) | 2008-03-03 | 2015-11-10 | Sharp Kabushiki Kaisha | Light-emitting device |
US9455381B2 (en) | 2008-03-03 | 2016-09-27 | Ge Phosphors Technology, Llc | Light-emitting device |
JP2009224074A (ja) * | 2008-03-13 | 2009-10-01 | Panasonic Electric Works Co Ltd | Led照明装置 |
JP2010003756A (ja) * | 2008-06-18 | 2010-01-07 | Panasonic Electric Works Co Ltd | Led発光装置、プリント配線基板及び表示器具 |
US9425172B2 (en) | 2008-10-24 | 2016-08-23 | Cree, Inc. | Light emitter array |
US9484329B2 (en) | 2008-10-24 | 2016-11-01 | Cree, Inc. | Light emitter array layout for color mixing |
JP2013515354A (ja) * | 2009-12-21 | 2013-05-02 | クリー インコーポレイテッド | 高criで色温度調整可能な照明デバイス |
JP2011222723A (ja) * | 2010-04-08 | 2011-11-04 | Panasonic Electric Works Co Ltd | 発光装置 |
JP2012113959A (ja) * | 2010-11-24 | 2012-06-14 | Panasonic Corp | 発光装置 |
US9786811B2 (en) | 2011-02-04 | 2017-10-10 | Cree, Inc. | Tilted emission LED array |
JP2012221770A (ja) * | 2011-04-11 | 2012-11-12 | Mitsubishi Electric Corp | 照明装置 |
US8777447B2 (en) | 2011-05-25 | 2014-07-15 | Panasonic Corporation | Variable color light emitting device and illumination apparatus using the same |
JP2012248554A (ja) * | 2011-05-25 | 2012-12-13 | Panasonic Corp | 可変色発光装置及びそれを用いた照明器具 |
US10842016B2 (en) | 2011-07-06 | 2020-11-17 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
US9488333B2 (en) | 2012-06-12 | 2016-11-08 | Panasonic Intellectual Property Management Co., Ltd. | Lighting device |
JP2013258037A (ja) * | 2012-06-12 | 2013-12-26 | Panasonic Corp | 照明装置 |
JP2015026585A (ja) * | 2013-07-29 | 2015-02-05 | パナソニック株式会社 | 照明システム |
JP2015115507A (ja) * | 2013-12-12 | 2015-06-22 | パナソニックIpマネジメント株式会社 | 光源モジュール及び光源ユニット |
JP2016054070A (ja) * | 2014-09-03 | 2016-04-14 | 株式会社キルトプランニングオフィス | 照明装置 |
JP2016062887A (ja) * | 2014-09-12 | 2016-04-25 | パナソニックIpマネジメント株式会社 | 照明装置 |
JP2015159124A (ja) * | 2015-04-27 | 2015-09-03 | 三菱電機株式会社 | 照明装置 |
KR20200036906A (ko) * | 2017-07-31 | 2020-04-07 | 커런트 라이팅 솔루션즈, 엘엘씨 | 협대역 녹색 인광체를 갖는 인광체 변환형 백색 발광 다이오드 |
KR102396012B1 (ko) | 2017-07-31 | 2022-05-10 | 커런트 라이팅 솔루션즈, 엘엘씨 | 협대역 녹색 인광체를 갖는 인광체 변환형 백색 발광 다이오드 |
JP2021052175A (ja) * | 2019-09-17 | 2021-04-01 | Zigenライティングソリューション株式会社 | 発光装置、及び照明装置 |
Also Published As
Publication number | Publication date |
---|---|
EP1790199B1 (en) | 2013-08-14 |
TW200612582A (en) | 2006-04-16 |
WO2006001221A1 (en) | 2006-01-05 |
EP1790199A1 (en) | 2007-05-30 |
US20070291467A1 (en) | 2007-12-20 |
TWI365550B (en) | 2012-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008505433A (ja) | 照明光源 | |
US8766555B2 (en) | Tunable white color methods and uses thereof | |
US8193735B2 (en) | LED lamp with high efficacy and high color rendering and manufacturing method thereof | |
EP3122160B1 (en) | Light-emitting device and led light bulb | |
US7821194B2 (en) | Solid state lighting devices including light mixtures | |
JP2006164879A (ja) | 照明光源、照明システム、および調光方式 | |
US8829822B2 (en) | LED-based light source having decorative and illumination functions | |
JP4804421B2 (ja) | 照明装置及び照明器具 | |
JP2005101296A (ja) | 可変色発光ダイオード素子及び可変色発光ダイオードモジュール及び可変色発光ダイオード照明器具 | |
WO2014171394A1 (ja) | 照明装置、照明機器および表示装置 | |
JP5654328B2 (ja) | 発光装置 | |
JP2012525711A (ja) | 液晶ディスプレイバックライトの白色led | |
JP2009238729A5 (ja) | ||
WO2014064928A1 (ja) | 照明装置および点灯装置 | |
JP2007227681A (ja) | 発光ダイオードを用いた白色照明装置 | |
JP2009054633A (ja) | Led照明灯具 | |
JP2007027421A (ja) | Ledパッケージ及び照明装置 | |
JP2009260390A (ja) | 可変色発光ダイオード素子 | |
JP2002270899A (ja) | 色温度可変led光源モジュール | |
JP7426164B2 (ja) | 発光モジュール、及び、照明装置 | |
JP7373043B2 (ja) | 照明装置 | |
JP3248120U (ja) | 照明装置 | |
JP7577631B2 (ja) | 照明装置 | |
JP7296579B2 (ja) | 照明装置 | |
JP2022175497A (ja) | 照明システム、及び、照明方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110510 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111018 |