JP2008209022A - マルチ型空気調和装置 - Google Patents
マルチ型空気調和装置 Download PDFInfo
- Publication number
- JP2008209022A JP2008209022A JP2007043277A JP2007043277A JP2008209022A JP 2008209022 A JP2008209022 A JP 2008209022A JP 2007043277 A JP2007043277 A JP 2007043277A JP 2007043277 A JP2007043277 A JP 2007043277A JP 2008209022 A JP2008209022 A JP 2008209022A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- compressor
- outdoor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
【課題】デフロスト運転時に圧縮機の油面切れを防ぐことができるマルチ型空気調和装置を提供すること。
【解決手段】冷媒を圧縮する圧縮機11を備えた室外機ユニット10と、室内熱交換器21を備えた複数の室内機ユニット20とを具備し、前記室外機ユニット10の圧縮機11出力を制御する制御指令が各室内機ユニット20から出力されるマルチ型空気調和装置において、前記室外機ユニット10が備える室外熱交換器13を加熱するデフロスト運転を行なう制御部を備え、該制御部は、前記デフロスト運転の開始時に、前記室外機が備える室外熱交換器13に溜まった冷媒を前記圧縮機11に回収する冷媒回収運転を行なう。
【選択図】図1
【解決手段】冷媒を圧縮する圧縮機11を備えた室外機ユニット10と、室内熱交換器21を備えた複数の室内機ユニット20とを具備し、前記室外機ユニット10の圧縮機11出力を制御する制御指令が各室内機ユニット20から出力されるマルチ型空気調和装置において、前記室外機ユニット10が備える室外熱交換器13を加熱するデフロスト運転を行なう制御部を備え、該制御部は、前記デフロスト運転の開始時に、前記室外機が備える室外熱交換器13に溜まった冷媒を前記圧縮機11に回収する冷媒回収運転を行なう。
【選択図】図1
Description
本発明は、空調運転(冷房運転、暖房運転及び除湿運転)により空調空気を噴出する複数の室内機ユニットを備え、各室内機ユニット毎に異なる運転制御が可能なマルチ型空気調和装置に関する。
室内の冷暖房や除湿(以下、総称して「空調」と呼ぶ)を行う空気調和装置は、室内機ユニットと室外機ユニットとの間を冷媒配管及び電気配線で接続した構成とされる。このような空気調和装置は、圧縮機、室外熱交換器、絞り機構、室内熱交換器及び四方弁を主な構成要素として冷媒の循環回路を形成するヒートポンプを用いており、圧縮機から送出される冷媒の循環方向を四方弁の操作によって切り換えることで、所望の空調運転を行っている。
このような空気調和装置には、一式の室外機ユニットに対し、室内機ユニットが一台接続された構成のシングル型と、それぞれ独自の運転制御を可能にした室内機ユニットが複数接続された構成のマルチ型とがある。
暖房運転時、室外熱交換器の凍結防止のため、デフロスト運転を行なっている。デフロスト運転では冷房サイクル方向に冷媒を流し、室外機に対して高温冷媒を流すことにより、凍結した熱交換器の温度を上昇させる。なお、圧縮機回転数と電子膨張弁(EEV)開度は、凍結した熱交換器を溶かし、かつ、冷媒流動音を許容できる範囲に設定している。
特許第2503633号公報
このような空気調和装置には、一式の室外機ユニットに対し、室内機ユニットが一台接続された構成のシングル型と、それぞれ独自の運転制御を可能にした室内機ユニットが複数接続された構成のマルチ型とがある。
暖房運転時、室外熱交換器の凍結防止のため、デフロスト運転を行なっている。デフロスト運転では冷房サイクル方向に冷媒を流し、室外機に対して高温冷媒を流すことにより、凍結した熱交換器の温度を上昇させる。なお、圧縮機回転数と電子膨張弁(EEV)開度は、凍結した熱交換器を溶かし、かつ、冷媒流動音を許容できる範囲に設定している。
上述したマルチエアコンの場合、接続室内機が多く、総配管長も長い。このため、冷媒に含まれる冷凍機油を圧縮機に回収できず、デフロスト運転中に圧縮機が油面切れに至る場合があった。これは外気温が低いほど顕著である。
この結果、圧縮機内部の摩耗・破損を招く可能性があった。
この結果、圧縮機内部の摩耗・破損を招く可能性があった。
本発明は上記事情に鑑みてなされたものであり、デフロスト運転時に圧縮機の油面切れを防ぐことができるマルチ型空気調和装置を提供することを目的とする。
請求項1に記載の発明は、冷媒を圧縮する圧縮機を備えた室外機ユニットと、室内熱交換器を備えた複数の室内機ユニットとを具備したマルチ型空気調和装置において、前記室外機ユニットが備える室外熱交換器を加熱するデフロスト運転を行なう制御部を備え、該制御部は、前記デフロスト運転の際に、前記室外熱交換器に溜まった冷媒を前記圧縮機に回収する冷媒回収運転を行なうことを特徴とする。
このようなマルチ型空気調和装置によれば、冷媒に混入した冷凍機油が本来のデフロスト運転に先立って圧縮機に回収される。
請求項2に記載の発明は、請求項1に記載のマルチ型空気調和装置において、前記制御部は、前記冷媒回収運転として、前記圧縮機の回転数を前記室外熱交換器から冷媒を排出できる回転数とし、かつ、冷媒流路を絞る電子膨張弁の開度を通常の前記デフロスト運転よりも大きい開度とすることを特徴とする。
このようなマルチ型空気調和装置によれば、電子膨張弁の開度を開き気味にしても、冷媒循環が少ないため、冷媒流動音は大きくならない。
請求項3に記載の発明は、前記制御部は、前記圧縮機の吸入管温度から、前記室外熱交換器の液相側冷媒温度を引いた値が、0℃未満となるまで前記冷媒回収運転を行なうことを特徴とする。
このようなマルチ型空気調和装置によれば、冷媒回収が終了したことを判定する条件として、以下の(1)式を満足することを制御部が判定することができる。
圧縮機の吸入管温度−室外熱交換器の液相側冷媒温度<0℃・・・(1)
圧縮機の吸入管温度−室外熱交換器の液相側冷媒温度<0℃・・・(1)
請求項4に記載の発明は、前記圧縮機の吸入管温度から、運転中の前記室内機ユニットが備える室内熱交器温度平均値を引いた値が、0℃未満となるまで前記冷媒回収運転を行なうことを特徴とする。
このようなマルチ型空気調和装置によれば、冷媒回収が終了したことを判定する条件として、以下の(2)式を満足することを制御部が判定することができる。
圧縮機の吸入管温度−運転中の室内機ユニットが備える室内熱交器温度平均値<0℃・・・(2)
圧縮機の吸入管温度−運転中の室内機ユニットが備える室内熱交器温度平均値<0℃・・・(2)
本発明のマルチ型空気調和装置によれば、デフロスト運転時に圧縮機の油面切れを防ぐことができ、圧縮機内部の摩耗・破損を防止することができる。
以下、本実施形態に係るマルチ型空気調和装置の一実施形態について、図面を参照して説明する。図1は、マルチ型空気調和装置の全体構成例を示す説明図である。このマルチ型空気調和装置は、室外機ユニット10と、同室外機ユニット10に接続された複数台の室内機ユニット20(図示の例では、室内機ユニット20A,20Bの2台)とを具備して構成される。これら室内機ユニット20及び室外機ユニット10は、冷媒を流す冷媒配管30や図示しない電気配線等により接続されている。
室外機ユニット10は、冷媒を圧縮して送出する圧縮機11と、冷媒の循環方向を切り換える四方弁12と、冷媒と外気との間で熱交換を行う室外熱交換器13と、絞り機構として機能する電子膨張弁14とを主な構成要素とし、さらに、消音の目的で圧縮機11の吐出側配管に配設されたマフラ15と、同じく消音の目的で圧縮機11の吸入管配管に配設された吸入マフラ16と、各種の運転制御を行う室外制御部(制御部)17とを具備して構成される。なお、この室外機ユニット10には、この他にも図示省略の室外ファン、レシーバ、サービスバルブ及びストレーナ等の機器類や温度センサ等のセンサ類が設けられている。
室内機ユニット20は、ケーシング内に室内熱交換器21や室内制御部(制御部)22などの他、図示しない室内ファン等の機器を収納した構成とされる。また、室内熱交換器21には、二相流部の温度を検出する二相流部温度センサ23と、気相側の温度を検出する気相部温度センサ24と、室内気吸込温度センサ25とが設けられており、これらの温度センサで検出した温度データは室内制御部22に入力される。ここで、二相流部温度センサ23は、室内熱交換器21のパス中間部に取り付けた温度センサであり、二相流部における圧力飽和温度を検出している。また、室内気吸込温度センサ25は、室内機ユニット20に吸い込む室内気の温度、すなわちこれから空調しようとする室内気の温度を検出するため、吸込口から室内熱交換器21に至る流路の適所に取り付けられている温度センサである。
なお、図中の各符号に付記されたA,Bは、2つの室内機ユニットを区別して説明する場合にのみ使用するものとする。
なお、図中の各符号に付記されたA,Bは、2つの室内機ユニットを区別して説明する場合にのみ使用するものとする。
この室内機ユニット20は、室内ファンで吸引した室内の空気を室内熱交換器21に導いて通過させ、上述した室外機ユニット10から供給される冷媒との間で熱交換した空調空気を室内に吹き出すように構成されている。また、2台の室内機ユニット20A,20Bは、それぞれ異なる空調対象の部屋に設置され、各部屋の状況に応じて異なる運転制御が可能に構成されている。なお、ここでの異なる運転制御とは、冷房運転または暖房運転のいずれか一方を選択し、部屋毎に異なる空調負荷に対応した運転制御を行うこと意味しており、二つの室内機ユニット20A,20Bが暖房運転及び冷房運転のように異なる空調運転を同時に行うものではない。
2台の室内機ユニット20A,20Bは、それぞれ室外機ユニット10内のパイプコネクタ31,ヘッダー32で分岐した冷媒配管30A,30Bに接続されている。また、室外機ユニット10内の各冷媒配管30A,30Bには、それぞれ独立して動作する電子膨張弁14A,14Bが、室外熱交換器13と室内機ユニット20A,20Bとの間に配設されている。
なお、上述した室外機ユニット10には、圧縮機11の吸入管センサ11a及び吐出管センサ11bと、室外熱交換器13の液相側に設けられた室外熱交センサ13aと、外気温を検出する外温センサ18とを具備し、それぞれの検出値が室外制御部17に入力されるようになっている。
なお、上述した室外機ユニット10には、圧縮機11の吸入管センサ11a及び吐出管センサ11bと、室外熱交換器13の液相側に設けられた室外熱交センサ13aと、外気温を検出する外温センサ18とを具備し、それぞれの検出値が室外制御部17に入力されるようになっている。
以下では、上述した構成のマルチ型空気調和装置の作用について、暖房運転時及び冷房運転時のそれぞれの場合に分けて説明する。
最初に、暖房運転時の空調作用について、図中に矢印で示した冷媒の流れとともに説明する。なお、暖房運転及び冷房運転は、四方弁12の操作により変化する冷媒の流れ方向に応じて選択切換えされる。
最初に、暖房運転時の空調作用について、図中に矢印で示した冷媒の流れとともに説明する。なお、暖房運転及び冷房運転は、四方弁12の操作により変化する冷媒の流れ方向に応じて選択切換えされる。
さて、圧縮機11の圧縮で高温高圧の気体とされた冷媒は、マフラ15及び四方弁12を通過してヘッダー32に導かれる。この気体冷媒は、さらに、ヘッダー32から室内機ユニット20の室内熱交換器21へ導かれ、室内気と熱交換して放熱する。この放熱により凝縮した高温高圧の液冷媒は、電子膨張弁14を通過する際に減圧されて低温低圧の気液二相冷媒となり、室外熱交換器13に流れ込む。
室外熱交換器13に流れ込んだ気液二相冷媒は、この熱交換器を通過する際に室外の空気(以下、「室外気」と呼ぶ)と熱交換して吸熱し、蒸発気化して低温低圧の気体冷媒となる。この気体冷媒は、四方弁12及び吸入マフラ16を通過して圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環することになる。
このような暖房運転時において、室内機ユニット20A,20Bの空調負荷が異なる状況で同時に運転する場合、両ユニットに分配される冷媒循環量は、電子膨張弁14A,14Bの開度により調整される。なお、運転停止中の室内機ユニット20については、同ユニットに接続されている電子膨張弁14が全閉または微開とされる。
このような暖房運転時において、室内機ユニット20A,20Bの空調負荷が異なる状況で同時に運転する場合、両ユニットに分配される冷媒循環量は、電子膨張弁14A,14Bの開度により調整される。なお、運転停止中の室内機ユニット20については、同ユニットに接続されている電子膨張弁14が全閉または微開とされる。
次に、冷房運転について簡単に説明する。この冷房運転は、上述した暖房運転から四方弁12を操作して冷媒の循環方向を切り換えることにより実施される。
この冷房運転では、圧縮機11から四方弁12までの冷媒の流れは暖房運転時と同様であるが、四方弁12を出た高温高圧の気相冷媒は室外熱交換器13に導かれ、室外気と熱交換する。この熱交換により、高温高圧の気体冷媒が室外気に熱を与えて凝縮液化し、高温高圧の液冷媒となる。この液冷媒は、電子膨張弁14を通過することで減圧され、低温低圧の気液二相冷媒となり、再び冷媒配管30を通り室内機ユニット20の室内熱交換器21に送られる。
この冷房運転では、圧縮機11から四方弁12までの冷媒の流れは暖房運転時と同様であるが、四方弁12を出た高温高圧の気相冷媒は室外熱交換器13に導かれ、室外気と熱交換する。この熱交換により、高温高圧の気体冷媒が室外気に熱を与えて凝縮液化し、高温高圧の液冷媒となる。この液冷媒は、電子膨張弁14を通過することで減圧され、低温低圧の気液二相冷媒となり、再び冷媒配管30を通り室内機ユニット20の室内熱交換器21に送られる。
低温低圧の気液二相冷媒は、室内熱交換器21で室内気と熱交換し、空調対象である室内気から熱を奪って当該室内気を冷却するとともに、冷媒自身が蒸発気化して低温低圧の気体冷媒となる。
この気体冷媒は、ヘッダー32,四方弁12及び吸入マフラ16を通過して再び圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環する。
この気体冷媒は、ヘッダー32,四方弁12及び吸入マフラ16を通過して再び圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環する。
次に、室外制御部17によるデフロスト制御を以下に示す。
暖房運転中に所定の運転時間が経過し、室外機ユニット10の室外熱交換器13の配管に取り付けた室外熱交センサ13aによって検出された室外熱交液管センサ温度TOPLと外温センサ18により検出された外温センサ温度TOが所定の温度になればデフロスト制御に入り、室外熱交液管センサ温度TOPLの温度が上昇して所定の温度になれば通常の運転となる。
暖房運転中に所定の運転時間が経過し、室外機ユニット10の室外熱交換器13の配管に取り付けた室外熱交センサ13aによって検出された室外熱交液管センサ温度TOPLと外温センサ18により検出された外温センサ温度TOが所定の温度になればデフロスト制御に入り、室外熱交液管センサ温度TOPLの温度が上昇して所定の温度になれば通常の運転となる。
上述のマルチ型空気調和装置において、デフロスト制御の開始から終了するまでの条件について、以下に説明する。
[1]開始条件
デフロスト制御に入る条件(デフロスト条件)は、次の条件を全て満足した場合とする。なお、<1>通常運転と、<2>デフロスト促進運転とに分けて判断する。ここで、デフロスト促進運転時とは、デフロスト終了条件[5](b)に示すとおり、1回前のデフロスト終了が、デフロスト時間10分経過によりデフロスト終了となった場合をいう。通常運転とは上記以外をいう。また、電源投入時及び全停止・異常停止・冷房運転から暖房運転に運転切替後は通常運転とする。また、デフロスト促進運転を終了した場合、次回のデフロストは通常運転とする。
<1>通常運転時
(a)運転モード:暖房
(b)運転開始あるいはデフロスト制御終了後:40分経過後(室外回転数0rps以外のコンプ実運転累積時間)
(c)TOPLの温度:37分経過後から3分間継続して−2℃以下(圧縮機実運転中に限る)
(d)(TO−TOPL)の温度:0.44×TO+A℃以上
(e)圧縮機実運転中
ただし、(d)の温度は(b)が経過してから読み取る。
[1]開始条件
デフロスト制御に入る条件(デフロスト条件)は、次の条件を全て満足した場合とする。なお、<1>通常運転と、<2>デフロスト促進運転とに分けて判断する。ここで、デフロスト促進運転時とは、デフロスト終了条件[5](b)に示すとおり、1回前のデフロスト終了が、デフロスト時間10分経過によりデフロスト終了となった場合をいう。通常運転とは上記以外をいう。また、電源投入時及び全停止・異常停止・冷房運転から暖房運転に運転切替後は通常運転とする。また、デフロスト促進運転を終了した場合、次回のデフロストは通常運転とする。
<1>通常運転時
(a)運転モード:暖房
(b)運転開始あるいはデフロスト制御終了後:40分経過後(室外回転数0rps以外のコンプ実運転累積時間)
(c)TOPLの温度:37分経過後から3分間継続して−2℃以下(圧縮機実運転中に限る)
(d)(TO−TOPL)の温度:0.44×TO+A℃以上
(e)圧縮機実運転中
ただし、(d)の温度は(b)が経過してから読み取る。
(f)上記(a)から(e)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致した後180秒後にデフロスト入運転を実施する。
<2>デフロスト促進運転時
(a)運転モード:暖房
(b)デフロスト終了後、40分経過(室外回転数0rps以外のコンプ実運転累積時間)
(c)圧縮機実運転中
(d)上記(a)から(c)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致したのち180秒後にデフロスト入運転を実施する。
<2>デフロスト促進運転時
(a)運転モード:暖房
(b)デフロスト終了後、40分経過(室外回転数0rps以外のコンプ実運転累積時間)
(c)圧縮機実運転中
(d)上記(a)から(c)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致したのち180秒後にデフロスト入運転を実施する。
[2]暖房時のマルチ指令回転数が0rpsに変わった回数をカウントして、10回以上となったならば、次の条件を全て満足した場合にデフロスト制御となる。
(室外保護機能の作動による停止の回数はカウントしない)
<1>通常運転時
(a)運転モード 暖房
(b)運転開始後、あるいはデフロスト制御終了後 40分経過(室外回転数0rps以外の圧縮機実運転累積時間)
(c)TOPLの温度 37分経過後から3分間経過して−2℃以下
(d)圧縮機 実運転中
(e)TO≦3℃
(f)上記(a)から(e)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致したのち180秒後にデフロスト入運転を実施する。
これは、負荷が小さい部屋にエアコンを設置した際、サーモON−OFFを繰返しデフロスト制御が行なわれないことの対策である。
<2>デフロスト促進運転時には[1]<2>に従う。
[3]暖房時のマルチ指令回転数0rpsの回数カウント及び累積時間は、次の場合リセットされる。(0回に戻る)
(a)デフロスト制御を行なったとき
(b)運転モードが変更されたとき
(c)全ての室内コントロールから停止信号を受信したとき(全停止時)
(d)電源投入時
(室外保護機能の作動による停止の回数はカウントしない)
<1>通常運転時
(a)運転モード 暖房
(b)運転開始後、あるいはデフロスト制御終了後 40分経過(室外回転数0rps以外の圧縮機実運転累積時間)
(c)TOPLの温度 37分経過後から3分間経過して−2℃以下
(d)圧縮機 実運転中
(e)TO≦3℃
(f)上記(a)から(e)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致したのち180秒後にデフロスト入運転を実施する。
これは、負荷が小さい部屋にエアコンを設置した際、サーモON−OFFを繰返しデフロスト制御が行なわれないことの対策である。
<2>デフロスト促進運転時には[1]<2>に従う。
[3]暖房時のマルチ指令回転数0rpsの回数カウント及び累積時間は、次の場合リセットされる。(0回に戻る)
(a)デフロスト制御を行なったとき
(b)運転モードが変更されたとき
(c)全ての室内コントロールから停止信号を受信したとき(全停止時)
(d)電源投入時
[4]制御内容
デフロスト制御中の各アクチュエータの動作は図2の通りである。
デフロスト運転開始時に、冷媒回収運転(符号A)を行なう。この時には、運転中の各室内機ユニット20の電子膨張弁(EEV)14の開度を上げ(X3パルス)、圧縮機11回転数を、冷媒回収可能な回転数(R3rps)とする。圧縮機回転数R3及びEEV開度X3は、油を回収する冷媒流速を満たすために必要な流量を達成するように、運転する室内機の台数から予め算出した値である。
デフロスト制御中の各アクチュエータの動作は図2の通りである。
デフロスト運転開始時に、冷媒回収運転(符号A)を行なう。この時には、運転中の各室内機ユニット20の電子膨張弁(EEV)14の開度を上げ(X3パルス)、圧縮機11回転数を、冷媒回収可能な回転数(R3rps)とする。圧縮機回転数R3及びEEV開度X3は、油を回収する冷媒流速を満たすために必要な流量を達成するように、運転する室内機の台数から予め算出した値である。
冷媒回収運転の終了、すなわちR3rps、X3パルスからR1rps、X1パルスへ移行するタイミングは、以下の条件から判定する。ただし、デフロスト運転開始30秒以降から判定する。
TCS−TOPL<0℃となったとき
上記の判定条件(温度)は外温センサ温度TOの値によって値を変更しても良い。
TCS−TOPL<0℃となったとき
上記の判定条件(温度)は外温センサ温度TOの値によって値を変更しても良い。
これら値を図3のモリエル線図上に示した。本来冷房サイクルであるデフロスト運転中は、圧縮機11の吸入管温度TCSのほうが電子膨張弁(EEV)14で減圧される前のTOPLよりも低いため、TSCとTOPLの差(TCS−TOPL)はゼロより小さくなる。TCSとTOPLの差(TCS−TOPL)がゼロより大きいことは、室外熱交換器13の過冷却域が多く冷凍機油を含んだ液冷媒が溜まり込んでいることを意味している。したがって、これらの差が0℃よりも低くなった場合に冷媒回収が終了したと判定する。
なお、以下の(3)式を満足することを条件として吸入過熱度により判定しても良い。
TCS−運転中の室内機ユニット20が備える室内熱交器温度平均値(TIPave)<0℃・・・(3)
TCS−運転中の室内機ユニット20が備える室内熱交器温度平均値(TIPave)<0℃・・・(3)
冷媒回収運転終了によりEEVをX1パルスとすることで、デフロスト運転中の冷媒流動音を抑える。圧縮機回転数を、熱交換器の解凍に見合った回転数に上昇させる。
また、デフロスト運転開始30秒以降からTOPL≧2℃を判定し、これが成立する場合、圧縮機回転数をR2rpsに下げるとともにEEV開度をX2に上げることで、さらに冷媒流動音を抑える。
[5]終了条件
デフロスト運転からデフロスト終了運転に移る条件は、次の項目のどれか一方を満たした場合である。ただし、デフロスト運転開始90秒以降から判定する。
(a)熱交液管センサ温度TOPL 20℃以上
(b)デフロスト運転時間:デフロスト運転開始後10分経過
(c)熱交液管センサ温度TOPL 10℃以上を2分間継続時
デフロスト運転からデフロスト終了運転に移る条件は、次の項目のどれか一方を満たした場合である。ただし、デフロスト運転開始90秒以降から判定する。
(a)熱交液管センサ温度TOPL 20℃以上
(b)デフロスト運転時間:デフロスト運転開始後10分経過
(c)熱交液管センサ温度TOPL 10℃以上を2分間継続時
以上のように、本実施形態のマルチ型空気調和装置によれば、室外制御部17によるデフロスト運転に先立って、冷媒回収運転が行なわれ、室外熱交換器13に溜まり込んだ冷凍機油を含む冷媒が圧縮機11に回収される。このため、デフロスト運転での油面切れが防止され、圧縮機内部の摩耗・破損を防ぐことができる。
10…室外機ユニット、11…圧縮機、17…室外制御部(制御部)、18…外温センサ、20…室内機ユニット、22…室内制御部(制御部)、23…二相流部温度センサ
Claims (4)
- 冷媒を圧縮する圧縮機を備えた室外機ユニットと、
室内熱交換器を備えた複数の室内機ユニットとを具備したマルチ型空気調和装置において、
前記室外機ユニットが備える室外熱交換器を加熱するデフロスト運転を行なう制御部を備え、
該制御部は、前記デフロスト運転の際に、前室外熱交換器に溜まった冷媒を前記圧縮機に回収する冷媒回収運転を行なう、マルチ型空気調和装置。 - 前記制御部は、前記冷媒回収運転として、前記圧縮機の回転数を前記室外熱交換器から冷媒を排出できる回転数とし、かつ、冷媒流路を絞る電子膨張弁の開度を通常の前記デフロスト運転よりも大きい開度とする、請求項1に記載のマルチ型空気調和装置。
- 前記制御部は、前記圧縮機の吸入管温度から、前記室外熱交換器の液相側冷媒温度を引いた値が、0℃未満となるまで前記冷媒回収運転を行なう、請求項1または2に記載のマルチ型空気調和装置。
- 前記制御部は、前記圧縮機の吸入管温度から、運転中の前記室内機ユニットが備える室内熱交器温度平均値を引いた値が、0℃未満となるまで前記冷媒回収運転を行なう、請求項1または2に記載のマルチ型空気調和装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043277A JP2008209022A (ja) | 2007-02-23 | 2007-02-23 | マルチ型空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043277A JP2008209022A (ja) | 2007-02-23 | 2007-02-23 | マルチ型空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008209022A true JP2008209022A (ja) | 2008-09-11 |
Family
ID=39785473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007043277A Pending JP2008209022A (ja) | 2007-02-23 | 2007-02-23 | マルチ型空気調和装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008209022A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085320A (ja) * | 2009-10-15 | 2011-04-28 | Mitsubishi Electric Corp | ヒートポンプ装置 |
EP2363654A2 (en) | 2010-02-24 | 2011-09-07 | Mitsubishi Heavy Industries | Air conditioner |
JP2013155964A (ja) * | 2012-01-31 | 2013-08-15 | Fujitsu General Ltd | 空気調和装置 |
JP2017125665A (ja) * | 2016-01-15 | 2017-07-20 | ダイキン工業株式会社 | 冷凍装置 |
JP2021012020A (ja) * | 2015-07-30 | 2021-02-04 | ダイキン工業株式会社 | 冷凍装置 |
CN115789864A (zh) * | 2022-12-09 | 2023-03-14 | 宁波奥克斯电气股份有限公司 | 多联空调室外机化霜控制方法、控制装置、空调器和存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02230058A (ja) * | 1989-02-28 | 1990-09-12 | Daikin Ind Ltd | 冷凍装置の運転制御装置 |
JPH04222368A (ja) * | 1991-03-14 | 1992-08-12 | Komatsu Ltd | エンジンヒートポンプのデフロスト方法 |
JPH08128763A (ja) * | 1994-10-31 | 1996-05-21 | Daikin Ind Ltd | 空気調和機の運転制御装置 |
JP2000346470A (ja) * | 1999-06-03 | 2000-12-15 | Bosch Automotive Systems Corp | 車両用空調装置 |
JP2001280767A (ja) * | 2000-03-29 | 2001-10-10 | Daikin Ind Ltd | 冷凍装置 |
-
2007
- 2007-02-23 JP JP2007043277A patent/JP2008209022A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02230058A (ja) * | 1989-02-28 | 1990-09-12 | Daikin Ind Ltd | 冷凍装置の運転制御装置 |
JPH04222368A (ja) * | 1991-03-14 | 1992-08-12 | Komatsu Ltd | エンジンヒートポンプのデフロスト方法 |
JPH08128763A (ja) * | 1994-10-31 | 1996-05-21 | Daikin Ind Ltd | 空気調和機の運転制御装置 |
JP2000346470A (ja) * | 1999-06-03 | 2000-12-15 | Bosch Automotive Systems Corp | 車両用空調装置 |
JP2001280767A (ja) * | 2000-03-29 | 2001-10-10 | Daikin Ind Ltd | 冷凍装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085320A (ja) * | 2009-10-15 | 2011-04-28 | Mitsubishi Electric Corp | ヒートポンプ装置 |
EP2363654A2 (en) | 2010-02-24 | 2011-09-07 | Mitsubishi Heavy Industries | Air conditioner |
JP2013155964A (ja) * | 2012-01-31 | 2013-08-15 | Fujitsu General Ltd | 空気調和装置 |
JP2021012020A (ja) * | 2015-07-30 | 2021-02-04 | ダイキン工業株式会社 | 冷凍装置 |
JP7303172B2 (ja) | 2015-07-30 | 2023-07-04 | ダイキン工業株式会社 | 冷凍装置 |
JP2017125665A (ja) * | 2016-01-15 | 2017-07-20 | ダイキン工業株式会社 | 冷凍装置 |
EP3404344A4 (en) * | 2016-01-15 | 2019-01-02 | Daikin Industries, Ltd. | Refrigeration device |
US10473374B2 (en) | 2016-01-15 | 2019-11-12 | Daikin Industries, Ltd. | Refrigeration apparatus for oil and defrost control |
CN115789864A (zh) * | 2022-12-09 | 2023-03-14 | 宁波奥克斯电气股份有限公司 | 多联空调室外机化霜控制方法、控制装置、空调器和存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013099047A1 (ja) | 空気調和装置 | |
JP4069947B2 (ja) | 冷凍装置 | |
US20160238271A1 (en) | Air conditioner | |
JP2011149659A (ja) | 空気調和機 | |
JP4909093B2 (ja) | マルチ型空気調和機 | |
WO2015122056A1 (ja) | 空気調和装置 | |
JP2006105560A (ja) | 空気調和装置 | |
CN114364933B (zh) | 空调机 | |
JP2008128498A (ja) | マルチ型空気調和機 | |
US20190360725A1 (en) | Refrigeration apparatus | |
JP2008209022A (ja) | マルチ型空気調和装置 | |
JP2007051825A (ja) | 空気調和装置 | |
JPWO2016117113A1 (ja) | 空気調和機 | |
WO2015060384A1 (ja) | 冷凍装置 | |
JP2006132797A (ja) | 空気調和装置 | |
JP2010048506A (ja) | マルチ型空気調和機 | |
JP2009145032A (ja) | 冷凍サイクル装置およびそれを備えた空気調和機 | |
WO2006115051A1 (ja) | 空気調和機 | |
JP4889714B2 (ja) | 冷凍サイクル装置及びこれを搭載した空気調和機 | |
KR101151529B1 (ko) | 냉매시스템 | |
JP4164566B2 (ja) | 空気調和装置 | |
JP4301987B2 (ja) | マルチ型空気調和装置 | |
JP2006300374A (ja) | 空気調和機 | |
JP2007051824A (ja) | 空気調和装置 | |
JP4023386B2 (ja) | 冷凍装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120110 |