JP2008127605A - High-strength copper alloy sheet superior in bend formability - Google Patents
High-strength copper alloy sheet superior in bend formability Download PDFInfo
- Publication number
- JP2008127605A JP2008127605A JP2006311899A JP2006311899A JP2008127605A JP 2008127605 A JP2008127605 A JP 2008127605A JP 2006311899 A JP2006311899 A JP 2006311899A JP 2006311899 A JP2006311899 A JP 2006311899A JP 2008127605 A JP2008127605 A JP 2008127605A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- strength
- alloy plate
- alloy sheet
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 114
- 238000005096 rolling process Methods 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims abstract description 17
- 238000005452 bending Methods 0.000 claims description 59
- 229910052749 magnesium Inorganic materials 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052790 beryllium Inorganic materials 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910017824 Cu—Fe—P Inorganic materials 0.000 abstract description 33
- 239000010953 base metal Substances 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 33
- 238000005097 cold rolling Methods 0.000 description 28
- 239000013078 crystal Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 230000009467 reduction Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
本発明は、高強度および優れた曲げ加工性を備えた銅合金に関し、例えば、半導体装置用リードフレーム等の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、ブスバー、端子・コネクタ等の機構部品などに用いられる銅合金の素材板条として好適な銅合金板に関する。 The present invention relates to a copper alloy having high strength and excellent bending workability, for example, semiconductor parts such as lead frames for semiconductor devices, electrical / electronic parts materials such as printed wiring boards, switchgear parts, bus bars, terminals, The present invention relates to a copper alloy plate suitable as a copper alloy material strip used for mechanical parts such as connectors.
半導体リードフレーム用などを始めとする上記各種用途の銅合金としては、従来よりFeとPとを含有する、Cu−Fe−P系の銅合金(Cu−Fe−P系合金とも言う)が汎用されている。これらCu−Fe−P系の銅合金としては、例えば、Fe:0.05〜0.15%、P:0.025〜0.040%を含有する銅合金(C19210合金)や、Fe:2.1〜2.6%、P:0.015〜0.15%、Zn:0.05〜0.20%を含有する銅合金(CDA194合金)が例示される。これらのCu−Fe−P系の銅合金は、銅母相中にFe又はFe−P等の金属間化合物を析出させると、銅合金の中でも、強度、導電性および熱伝導性に優れていることから、国際標準合金として汎用されている。 As a copper alloy for the above-mentioned various uses including those for semiconductor lead frames, a Cu-Fe-P-based copper alloy (also referred to as a Cu-Fe-P-based alloy) containing Fe and P has been widely used. Has been. Examples of these Cu-Fe-P-based copper alloys include, for example, a copper alloy containing Fe: 0.05 to 0.15% and P: 0.025 to 0.040% (C19210 alloy), Fe: 2 An example is a copper alloy (CDA194 alloy) containing 0.1 to 2.6%, P: 0.015 to 0.15%, and Zn: 0.05 to 0.20%. These Cu-Fe-P-based copper alloys are excellent in strength, conductivity and thermal conductivity among copper alloys when an intermetallic compound such as Fe or Fe-P is precipitated in the copper matrix. Therefore, it is widely used as an international standard alloy.
近年、Cu−Fe−P系の銅合金の用途拡大や、電気、電子機器の軽量化、薄肉化、小型化などに伴い、これら銅合金にも、一段と高い強度や、電導性、優れた曲げ加工性が求められている。このような曲げ加工性としては、密着曲げあるいはノッチング後の90°曲げなどの厳しい曲げ加工ができる特性が要求される。 In recent years, with the expansion of Cu-Fe-P-based copper alloys and the reduction in weight, thickness, and size of electrical and electronic equipment, these copper alloys have even higher strength, electrical conductivity, and superior bending. Workability is required. Such bending workability is required to be capable of severe bending such as contact bending or 90 ° bending after notching.
これに対して、従来から、結晶粒を微細化したり、晶・析出物の分散状態を制御することによって、曲げ加工性をある程度向上できることは知られている(特許文献1、2参照)。 On the other hand, it has been conventionally known that bending workability can be improved to some extent by refining crystal grains or controlling the dispersion state of crystals and precipitates (see Patent Documents 1 and 2).
また、Cu−Fe−P系合金において、曲げ加工性などの諸特性を向上させるために、集合組織を制御することも提案されている。より具体的には、銅合金板の、(200)面のX線回折強度I(200)と、(220)面のX線回折強度I(220)との比、I(200)/I(220)が0.5以上10以下であることか、または、Cube方位の方位密度:D(Cube方位)が1以上50以下であること、あるいは、Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)が0.1以上5以下であることが提案されている(特許文献3参照)。 It has also been proposed to control the texture in order to improve various properties such as bending workability in Cu—Fe—P based alloys. More specifically, the ratio of the X-ray diffraction intensity I (200) of the (200) plane and the X-ray diffraction intensity I (220) of the (220) plane of the copper alloy plate, I (200) / I ( 220) is 0.5 or more and 10 or less, or orientation density of Cube orientation: D (Cube orientation) is 1 or more and 50 or less, or orientation density of Cube orientation: D (Cube orientation) It has been proposed that a ratio of orientation density of S orientation: D (S orientation): D (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less (see Patent Document 3).
更に、銅合金板の、(200)面のX線回折強度I(200)と(311)面のX線回折強度I(311)との和と、(220)面のX線回折強度I(220)との比、〔I(200)+I(311)〕/I(220)が0.4以上であることが提案されている(特許文献4参照)。
これまでの銅合金高強度化の手段である、SnやMgの固溶強化元素の添加や、冷間圧延の加工率増加による強加工による加工硬化量増大では、必然的に曲げ加工性の劣化を伴い、必要な強度と曲げ加工性を両立させることは困難である。しかしながら、近年の電気、電子部品の前記軽薄短小化に対応できるような、引張強度500MPa以上の高強度Cu−Fe−P系合金を得るためには、このような冷間圧延の強加工による加工硬化量の増大が必須となる。 Bending workability inevitably deteriorates with the addition of solid solution strengthening elements such as Sn and Mg, which has been a means of increasing the strength of copper alloys, and by increasing the work hardening amount due to strong processing due to an increase in the processing rate of cold rolling. Therefore, it is difficult to achieve both necessary strength and bending workability. However, in order to obtain a high-strength Cu-Fe-P-based alloy having a tensile strength of 500 MPa or more that can cope with recent reductions in the thickness of electrical and electronic parts, processing by such strong processing of cold rolling. Increase in the amount of curing is essential.
このような高強度Cu−Fe−P系合金に対しては、上記特許文献1、2などの結晶粒微細化や、晶・析出物の分散状態制御などの組織制御手段、更には、上記特許文献3、4などの集合組織の制御手段だけでは、前記密着曲げあるいはノッチング後の90°曲げなどの厳しい曲げ加工に対し、曲げ加工性を十分に向上させることができない。 For such a high-strength Cu—Fe—P alloy, the structure control means such as crystal grain refinement, crystal / precipitate dispersion state control as described in Patent Documents 1 and 2, and the patent With only texture control means such as Documents 3 and 4, bending workability cannot be sufficiently improved with respect to severe bending such as contact bending or 90 ° bending after notching.
本発明はこのような課題を解決するためになされたものであって、高強度および優れた曲げ加工性を兼備したCu−Fe−P系銅合金板を提供することである。 The present invention has been made to solve such problems, and it is an object of the present invention to provide a Cu—Fe—P-based copper alloy sheet having both high strength and excellent bending workability.
この目的を達成するために、本発明の曲げ加工性に優れた高強度銅合金板の要旨は、質量%で、Fe:0.01〜0.50%、P:0.01〜0.15%を各々含有し、残部Cuおよび不可避的不純物からなる銅合金板であって、引張強度が500MPa以上、硬さが150Hv以上であり、銅合金板の圧延方向に対して平行方向のr値が0.3以上であることとする。 In order to achieve this object, the gist of the high-strength copper alloy sheet excellent in bending workability of the present invention is mass%, Fe: 0.01 to 0.50%, P: 0.01 to 0.15. %, And the balance Cu and inevitable impurities, the tensile strength is 500 MPa or more, the hardness is 150 Hv or more, the r value in the direction parallel to the rolling direction of the copper alloy plate It shall be 0.3 or more.
本発明銅合金板は、高強度を達成するために、更に、質量%で0.005〜5.0%のSnを、あるいは、はんだ及びSnめっきの耐熱剥離性改善のために、更に、質量%で0.005〜3.0%のZnを、各々含有しても良い。 In order to achieve high strength, the copper alloy plate of the present invention further contains 0.005 to 5.0% Sn by mass, or further improves the heat-resistant peelability of solder and Sn plating. % 0.005 to 3.0% Zn may be contained.
本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%含有しても良い。 The copper alloy sheet of the present invention may further contain 0.0001 to 1.0% of one or more of Mn, Mg, and Ca in total by mass%.
本発明銅合金板は、更に、質量%で、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%含有しても良い。 The copper alloy sheet of the present invention is further in mass%, and one or more of Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, and Pt are added in a total amount of 0.001 to 1.0. % May be contained.
本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%と、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%とを各々含有するとともに、これら含有する元素の合計含有量を1.0%以下として、含有しても良い。 The copper alloy sheet of the present invention is further in mass%, and 0.001 to 1.0% in total of one or more of Mn, Mg, and Ca, Zr, Ag, Cr, Cd, Be, Ti In addition, 0.001 to 1.0% in total of one or more of Co, Ni, Au, and Pt, respectively, and the total content of these elements as 1.0% or less, It may be contained.
本発明銅合金板は、更に、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素全体の合計で0.1質量%以下とすることが好ましい。 The copper alloy plate of the present invention further includes Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As. , Sb, Bi, Te, B, misch metal content is preferably 0.1% by mass or less in total of these elements.
本発明の銅合金板は、様々な電気電子部品用に適用可能であるが、特に、半導体部品である半導体リードフレーム用途に使用されることが好ましい。 The copper alloy plate of the present invention can be applied to various electric and electronic parts, but is particularly preferably used for a semiconductor lead frame which is a semiconductor part.
本発明は、Cu−Fe−P系銅合金板の圧延方向に対して平行方向のr値を上記0.3以上の一定値以上として、引張強度が500MPa以上の高強度銅合金板であっても、曲げ加工性を向上させる。 The present invention is a high-strength copper alloy plate having a tensile strength of 500 MPa or more, wherein the r value in the direction parallel to the rolling direction of the Cu-Fe-P-based copper alloy plate is a constant value of 0.3 or more. Even improve the bending workability.
ここで、銅以外の、鋼板やアルミニウム合金板の分野において、r値を向上させて、高強度な鋼板やアルミニウム合金板であっても、曲げ加工性を向上させることは公知である。しかし、銅合金、特にCu−Fe−P系銅合金板では、r値に着目して、曲げ加工性を向上させることは必ずしも公知ではなかった。 Here, in the field of steel plates and aluminum alloy plates other than copper, it is known that the r value is improved and the bending workability is improved even with high strength steel plates and aluminum alloy plates. However, in copper alloys, particularly Cu—Fe—P based copper alloy plates, it has not always been known to improve bending workability by paying attention to the r value.
この理由は、前記した従来技術のように、Cu−Fe−P系銅合金板分野では、曲げ加工性向上のために、結晶粒微細化や、晶・析出物の分散状態制御、そして、集合組織の制御など銅合金板の結晶方位分布密度の制御などが主流であったためと推考される。また、Cu−Fe−P系銅合金板においては、曲げ加工性向上のためには、r値以外の要素の影響が大きく、r値は曲げ加工性向上にあまり効かない、との常識があったためとも推考される。 This is because, in the field of Cu-Fe-P-based copper alloy sheets as in the prior art described above, in order to improve bending workability, crystal grain refinement, crystal / precipitate dispersion state control, and aggregation This is presumably because the control of the crystal orientation distribution density of the copper alloy sheet, such as the control of the structure, was the mainstream. Moreover, in the Cu—Fe—P based copper alloy plate, there is a common sense that elements other than the r value are greatly affected by the improvement of the bending workability, and the r value is not so effective in improving the bending workability. It is also inferred from the reason.
前記した通り、他のコルソン合金などと違い、固溶強化元素の含有量に大きな限界があるCu−Fe−P系銅合金板では、高強度化は、必然的に、冷間圧延の加工率増加による強加工による加工硬化量増大にて行わざるを得ない。 As described above, unlike other Corson alloys and the like, Cu-Fe-P-based copper alloy sheets that have a large limit on the content of solid solution strengthening elements inevitably increase the strength of the cold rolling process rate. It must be done by increasing the amount of work hardening by strong processing due to the increase.
この冷間圧延の強加工では、当然、結晶粒径が圧延方向に大きく(長く)伸長した結晶方位の大きな異方性を有するようになる。このため、特に、圧延方向に対して平行方向の曲げ加工性が著しく低下することが知られている。したがって、この曲げ加工性を向上させるために、当然、曲げ加工性低下の大きな原因となっている上記結晶方位の大きな異方性、即ち、銅合金板の結晶方位分布密度を制御することが、当業者の間で大きな関心事となる。 In this cold rolling strong processing, naturally, the crystal grain size has a large anisotropy of the crystal orientation which is elongated (longer) in the rolling direction. For this reason, in particular, it is known that the bending workability in the direction parallel to the rolling direction is significantly reduced. Therefore, in order to improve the bending workability, naturally, the large anisotropy of the crystal orientation, which is a major cause of the decrease in bending workability, that is, controlling the crystal orientation distribution density of the copper alloy plate, Of great interest among those skilled in the art.
しかしながら、このような銅合金板の結晶方位分布密度制御は、所望の曲げ加工性を得るために、各結晶方位を所望の分布密度に制御すること、即ち、実際に製造することが非常に難しい。 However, it is very difficult to control the crystal orientation distribution density of such a copper alloy sheet to control each crystal orientation to a desired distribution density in order to obtain a desired bending workability. .
これに対して、本発明では、Cu−Fe−P系銅合金板のr値を向上させて、高強度銅合金板であっても曲げ加工性を向上させる。r値は、塑性ひずみ比とも呼ばれ、Cu−Fe−P系銅合金板などの材料の引張試験における、材料の板幅と板厚の減少の割合を示している。材料の板幅の減少に対する板厚の減少の割合が小さいとr値は大きくなる。この点、曲げ加工性の方も、材料の板幅の減少に対する板厚の減少の割合が小さいほど良くなるので、Cu−Fe−P系銅合金板などの材料としては、r値が大きいほど、破断しにくく、曲げ加工性が向上することとなる。 On the other hand, in this invention, the r value of a Cu-Fe-P type copper alloy plate is improved, and even if it is a high strength copper alloy plate, bending workability is improved. The r value is also referred to as a plastic strain ratio, and indicates a reduction rate of the material width and thickness in a tensile test of a material such as a Cu—Fe—P copper alloy plate. The r value increases when the ratio of the reduction in the plate thickness to the reduction in the plate width of the material is small. In this respect, the bending workability also becomes better as the rate of reduction of the plate thickness with respect to the reduction of the plate width of the material is smaller. Therefore, as a material such as a Cu—Fe—P-based copper alloy plate, the larger the r value is, It is difficult to break and the bending workability is improved.
このような曲げ加工性とr値との相関乃至帰結は、他方で、r値が公知のように塑性異方性を表す指標であって、上記結晶方位分布密度と密接な関係を有することからも裏付けられる。 On the other hand, the correlation or the consequence of the bending workability and the r value, on the other hand, is an index representing the plastic anisotropy as is well known, and is closely related to the crystal orientation distribution density. Is also supported.
ただ、このように、Cu−Fe−P系銅合金板において、曲げ加工性とr値との相関が例えあったとしても、前記した通り、r値に曲げ加工性を実際に向上させるだけの効果があるか否かは、全く別の問題となる。また、このr値を、曲げ加工性を向上させるだけ、向上させることができるか否かも、全く別の問題となる。即ち、Cu−Fe−P系銅合金板において、r値を向上させて、曲げ加工性を向上させることは、実際にやってみないと分からない課題である。 However, as described above, even if there is a correlation between the bending workability and the r value in the Cu-Fe-P-based copper alloy sheet, as described above, the bending workability is merely improved to the r value. Whether it is effective or not is a completely different problem. Further, whether or not the r value can be improved only by improving the bending workability is another problem. That is, improving the r value and improving the bending workability in the Cu—Fe—P-based copper alloy plate is a problem that cannot be understood unless it is actually performed.
この点、本発明では、後述する通り、冷間圧延後の低温焼鈍を連続焼鈍にて行い、この際に適切な張力を通板中の板に加えるという特別な方法(手段)などによって、Cu−Fe−P系銅合金板の圧延方向に対して平行方向のr値を上記0.3以上の一定値以上とする。そして、引張強度が500MPa以上の高強度銅合金板であっても、曲げ加工性を向上させる。 In this regard, in the present invention, as will be described later, the low temperature annealing after the cold rolling is performed by continuous annealing, and at this time, an appropriate tension is applied to the plate in the plate by a special method (means) or the like. The r value in the direction parallel to the rolling direction of the -Fe-P-based copper alloy sheet is set to a certain value of 0.3 or more. And even if it is a high intensity | strength copper alloy board whose tensile strength is 500 Mpa or more, bending workability is improved.
(r値)
本発明では、上記した通り、引張強度が500MPa以上、硬さが150Hv以上のCu−Fe−P系銅合金板の曲げ加工性を向上させるために、銅合金板の圧延方向に対して平行方向のr値を0.3以上とする。
(R value)
In the present invention, as described above, in order to improve the bending workability of the Cu—Fe—P-based copper alloy plate having a tensile strength of 500 MPa or more and a hardness of 150 Hv or more, the direction parallel to the rolling direction of the copper alloy plate R value of 0.3 or more.
上記した通り、冷間圧延の加工率増加による強加工による加工硬化量増大にて高強度化を行うCu−Fe−P系銅合金板では、結晶粒径が圧延方向に大きく(長く)伸長した結晶方位の大きな異方性を有する。 As described above, in the Cu-Fe-P-based copper alloy sheet that is strengthened by increasing the work hardening amount due to the strong processing by increasing the processing rate of the cold rolling, the crystal grain size is increased (longer) in the rolling direction. It has large anisotropy of crystal orientation.
この結果、冷間圧延後のCu−Fe−P系銅合金板では、圧延方向に対して平行方向のr値よりも、圧延方向に対して直角方向のr値の方が必然的に高くなる。 As a result, in the Cu-Fe-P copper alloy sheet after cold rolling, the r value in the direction perpendicular to the rolling direction is inevitably higher than the r value in the direction parallel to the rolling direction. .
本発明のCu−Fe−P系銅合金板の前記したリードフレーム等の用途では、その曲げ加工は、もっぱら、圧延方向に対して平行方向の曲げ加工、即ちGood Way(曲げ軸が圧延方向に直角)曲げが行われる。 In the use of the above-described lead frame or the like of the Cu-Fe-P-based copper alloy plate of the present invention, the bending process is exclusively a bending process parallel to the rolling direction, that is, the Good Way (the bending axis is in the rolling direction). A right angle bend is performed.
したがって、本発明では、主として、このGood Way曲げを向上させるために、r値が必然的に低くなる、銅合金板の圧延方向に対して平行方向側のr値を規定する。言い換えると、前記高強度化ための冷間圧延によって、必然的に低くなる側のr値(銅合金板の圧延方向に対して平行方向)を高くしてやれば、同じく必然的に高くなる側のr値(圧延方向に対して直角方向)は、より高くなる。 Therefore, in the present invention, in order to improve this Good Way bending, the r value on the parallel direction side with respect to the rolling direction of the copper alloy sheet, which inevitably decreases the r value, is defined. In other words, if the r value on the inevitably low side (in the direction parallel to the rolling direction of the copper alloy sheet) is increased by the cold rolling for increasing the strength, the r on the side that inevitably increases. The value (perpendicular to the rolling direction) is higher.
例えば、銅合金板の圧延方向に対して平行方向のr値を0.3以上としてやれば、圧延方向に対して直角方向のr値は概ね0.4以上と必然的に高くなる。 For example, if the r value in the direction parallel to the rolling direction of the copper alloy sheet is set to 0.3 or more, the r value in the direction perpendicular to the rolling direction is inevitably increased to about 0.4 or more.
(r値測定)
銅合金板の圧延方向に対して平行方向のr値は、圧延方向に対して平行となる方向が、試験片の長手方向となるようにJIS5号試験片を作成して引張試験を行う。引張試験は、再現性のために、JIS5号試験片を引張試験機に固定してから、伸び計を取り付け、引張速度10mm/min一定で行う。
(R value measurement)
For the r value in the direction parallel to the rolling direction of the copper alloy plate, a tensile test is performed by preparing a JIS No. 5 test piece so that the direction parallel to the rolling direction is the longitudinal direction of the test piece. For reproducibility, the tensile test is performed at a constant tensile speed of 10 mm / min after fixing a JIS No. 5 test piece to a tensile tester and then attaching an extensometer.
r値は、塑性ひずみ比として、0点から0.5%ひずみ間における材料の板幅と板厚の減少の割合から求めるために、縦方向弾性ゲージ値L(初期値L0 )と、横方向弾性ゲージ値W(初期値W0 )などを用いて、次式にて算出する。
r値=In(W/W0 )/[In(L/L0 )−In(W/W0 )]
In order to obtain the r value as a plastic strain ratio from the rate of reduction of the plate width and thickness of the material between 0 point and 0.5% strain, the longitudinal elastic gauge value L (initial value L 0 ) Using the directional elastic gauge value W (initial value W 0 ) or the like, the calculation is performed by the following equation.
r value = In (W / W 0 ) / [In (L / L 0 ) −In (W / W 0 )]
(銅合金板の成分組成)
本発明では、半導体リードフレーム用などとして、引張強度が500MPa以上の高強度や、硬さが150Hv以上などの基本特性を有する必要がある。そして、これらの基本特性を満足した上で、あるいは、これらの基本特性を低下させないことを前提に、メッキの異常析出を防止する優れためっき性を有する。このために、Cu−Fe−P系銅合金板として、質量%で、Feの含有量が0.01〜0.50%の範囲、Pの含有量が0.01〜0.15%の範囲とした、残部Cuおよび不可避的不純物からなる基本組成とする。
(Component composition of copper alloy sheet)
In the present invention, it is necessary to have basic characteristics such as high strength with a tensile strength of 500 MPa or more and hardness of 150 Hv or more for a semiconductor lead frame. And it has the outstanding plating property which prevents abnormal precipitation of plating, on the assumption that these basic characteristics are not deteriorated while satisfying these basic characteristics. For this reason, the Cu-Fe-P-based copper alloy sheet is in mass%, the Fe content is in the range of 0.01 to 0.50%, and the P content is in the range of 0.01 to 0.15%. The basic composition consisting of the remaining Cu and inevitable impurities.
この基本組成に対し、後述するZn、Snなどの元素を、更に選択的に含有させても良い。また、記載する以外の元素(不純物元素)も、本発明の特性を阻害しない範囲での含有を許容する。なお、これら合金元素や不純物元素の含有量の表示%は全て質量%の意味である。 You may further selectively contain elements, such as Zn and Sn mentioned later, with respect to this basic composition. Further, elements other than those described (impurity elements) are allowed to be contained within a range that does not impair the characteristics of the present invention. In addition, all the indication% of content of these alloy elements and impurity elements means the mass%.
(Fe)
Feは、Fe又はFe基金属間化合物として析出し、銅合金の強度や耐熱性を向上させる主要元素である。Feの含有量が少なすぎると、強度向上への寄与が不足し、導電率の向上は満たされるものの、最終冷間圧延を強加工側で行っても、強度が不足する。一方、Feの含有量が多すぎると導電率が低下する。さらに、晶出物量が増えて破断の起点となるため、強度や耐熱性も却って低下し、強度の割には曲げ加工性が低くなる。したがって、Feの含有量は0.01〜0.50%、好ましくは0.15〜0.35%の範囲とする。
(Fe)
Fe is a main element that precipitates as Fe or an Fe-based intermetallic compound and improves the strength and heat resistance of the copper alloy. If the Fe content is too small, the contribution to strength improvement is insufficient, and the improvement in electrical conductivity is satisfied, but the strength is insufficient even if the final cold rolling is performed on the strong working side. On the other hand, if the Fe content is too large, the electrical conductivity is lowered. Furthermore, since the amount of crystallized substances increases and becomes the starting point of fracture, the strength and heat resistance are also lowered, and the bending workability is lowered for the strength. Therefore, the Fe content is 0.01 to 0.50%, preferably 0.15 to 0.35%.
(P)
Pは、脱酸作用がある他、Feと化合物を形成して、銅合金の高強度化させる主要元素である。P含有量が少なすぎると、化合物の析出が不十分であるため、強度向上への寄与が不足し、導電率の向上は満たされるものの、最終冷間圧延を強加工側で行っても、強度が不足する。一方、P含有量が多すぎると、導電性が低下するだけでなく、熱間加工性が低下し、割れが生じやすくなる。したがって、Pの含有量は0.01〜0.15%、好ましくは0.05〜0.12%の範囲とする。
(P)
In addition to deoxidizing action, P is a main element that forms a compound with Fe to increase the strength of the copper alloy. If the P content is too small, the precipitation of the compound is insufficient, so the contribution to strength improvement is insufficient and the improvement in conductivity is satisfied, but even if the final cold rolling is performed on the strong working side, the strength Is lacking. On the other hand, when there is too much P content, not only electrical conductivity will fall, but hot workability will fall and it will become easy to produce a crack. Therefore, the P content is in the range of 0.01 to 0.15%, preferably 0.05 to 0.12%.
(Zn)
Znは、リードフレームなどに必要な、銅合金のはんだ及びSnめっきの耐熱剥離性を改善し、これらの効果が必要な場合の選択的な添加元素である。Znの含有量が0.005%未満の場合は所望の効果が得られない。一方、3.0%を超えるとはんだ濡れ性が低下するだけでなく、導電率の低下も大きくなる。したがって、選択的に含有させる場合のZnの含有量は、用途に要求される導電率とはんだ及びSnめっきの耐熱剥離性とのバランスに応じて(バランスを考慮して)、0.005〜3.0%の範囲から選択的に含有させることとする。
(Zn)
Zn is a selective additive element for improving the heat-resistant peelability of the copper alloy solder and Sn plating necessary for the lead frame and the like, and when these effects are required. If the Zn content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, not only the solder wettability is lowered but also the conductivity is greatly lowered. Therefore, the Zn content in the case of selective inclusion is 0.005 to 3 depending on the balance between the electrical conductivity required for the application and the heat resistance peelability of the solder and Sn plating (in consideration of the balance). It is supposed to be contained selectively from the range of 0.0%.
(Sn)
Snは、銅合金の強度向上に寄与し、これらの効果が必要な場合の選択的な添加元素である。Snの含有量が0.001%未満の場合は高強度化に寄与しない。一方、Snの含有量が多くなると、その効果が飽和し、逆に、導電率の低下を招く。したがって、選択的に含有させる場合のSn含有量は、用途に要求される強度(硬さ)と導電率のバランスに応じて(バランスを考慮して)、0.001〜5.0%の範囲から選択的に含有させることとする。
(Sn)
Sn contributes to improving the strength of the copper alloy, and is a selective additive element when these effects are necessary. When the Sn content is less than 0.001%, it does not contribute to high strength. On the other hand, when the Sn content is increased, the effect is saturated, and conversely, the conductivity is lowered. Accordingly, the Sn content in the case of selective inclusion is in the range of 0.001 to 5.0% depending on the balance between strength (hardness) and conductivity required for the application (in consideration of the balance). To be selectively contained.
(Mn、Mg、Ca量)
Mn、Mg、Caは、銅合金の熱間加工性の向上に寄与するので、これらの効果が必要な場合に選択的に含有される。Mn、Mg、Caの1種又は2種以上の含有量が合計で0.0001%未満の場合、所望の効果が得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して強度や耐熱性を低下させるだけでなく、導電率の低下も激しくなる。従って、これらの元素の含有量は総量で0.0001〜1.0%の範囲で選択的に含有させる。
(Mn, Mg, Ca content)
Since Mn, Mg and Ca contribute to the improvement of hot workability of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of Mn, Mg, and Ca is less than 0.0001% in total, a desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystals or oxides are generated, not only reducing the strength and heat resistance, but also reducing the conductivity. Therefore, the content of these elements is selectively contained in the range of 0.0001 to 1.0% in total.
(Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Pt量)
これらの成分は銅合金の強度を向上させる効果があるので、これらの効果が必要な場合に選択的に含有される。これらの成分の1種又は2種以上の含有量が合計で0.001%未満の場合、所望の効果か得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して、強度や耐熱性を低下させるだけでなく、導電率の低下も激しく、好ましくない。従って、これらの元素の含有量は合計で0.001〜1.0%の範囲で選択的に含有させる。なお、これらの成分を、上記Mn、Mg、Caと共に含有する場合、これら含有する元素の合計含有量は1.0%以下とする。
(Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, Pt amount)
Since these components have an effect of improving the strength of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of these components is less than 0.001% in total, the desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystallized substances and oxides are generated, which not only lowers the strength and heat resistance, but also causes a significant decrease in conductivity, which is not preferable. Therefore, the content of these elements is selectively contained in the range of 0.001 to 1.0% in total. In addition, when these components are contained with the said Mn, Mg, and Ca, the total content of these contained elements shall be 1.0% or less.
(Hf、Th、Li、Na、K、Sr、Pd、W、Si、Nb、Al、V、Y、Mo、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタル)
これらの成分は不純物元素であり、これらの元素の含有量の合計が0.1%を越えた場合、粗大な晶出物や酸化物が生成して強度や耐熱性を低下させる。従って、これらの元素の含有量は合計で0.1%以下とすることが好ましい。
(Hf, Th, Li, Na, K, Sr, Pd, W, Si, Nb, Al, V, Y, Mo, In, Ga, Ge, As, Sb, Bi, Te, B, Misch metal)
These components are impurity elements, and when the total content of these elements exceeds 0.1%, coarse crystallized products and oxides are formed, and the strength and heat resistance are lowered. Therefore, the total content of these elements is preferably 0.1% or less.
(製造条件)
次に、銅合金板組織を上記本発明規定の組織とするための、好ましい製造条件について以下に説明する。本発明銅合金板は、上記r値を制御するための、後述する好ましい最終低温連続焼鈍条件を除き、通常の製造工程自体を大きく変えることは不要で、常法と同じ工程で製造できる。
(Production conditions)
Next, preferable manufacturing conditions for making the copper alloy sheet structure the structure defined in the present invention will be described below. The copper alloy sheet of the present invention can be produced in the same process as that of a conventional method, except that the usual production process itself is not greatly changed except for the preferable final low temperature continuous annealing condition described later for controlling the r value.
即ち、先ず、上記好ましい成分組成に調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。この熱間圧延は通常の条件で良い。 That is, first, a molten copper alloy adjusted to the preferred component composition is cast. Then, after chamfering the ingot, it is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. This hot rolling may be performed under normal conditions.
その後、中延べと言われる一次冷間圧延して、焼鈍、洗浄後、更に仕上げ(最終)冷間圧延、低温焼鈍(最終焼鈍、仕上げ焼鈍)して、製品板厚の銅合金板などとする。これら焼鈍と冷間圧延を繰返し行ってもよい。例えば、リードフレーム等の半導体用材料に用いられる銅合金板の場合は、製品板厚が0.1〜0.4mm程度である。 After that, the first cold rolling, which is said to be intermediate, is annealed, washed, and then finished (final) cold rolled and low-temperature annealed (final annealing, final annealing) to obtain a copper alloy sheet having a product thickness. . These annealing and cold rolling may be repeated. For example, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, the product plate thickness is about 0.1 to 0.4 mm.
なお、一次冷間圧延の前に銅合金板の溶体化処理および水冷による焼き入れ処理を行なっても良い。この際、溶体化処理温度は、例えば750〜1000℃の範囲から選択される。 In addition, you may perform the solution treatment of a copper alloy plate, and the quenching process by water cooling before primary cold rolling. At this time, the solution treatment temperature is selected from a range of 750 to 1000 ° C., for example.
(最終冷間圧延)
最終冷間圧延も常法による。但し、前記した通り、固溶強化元素の含有量に大きな限界があるCu−Fe−P系銅合金板で、引張強度が500MPa以上、硬さが150Hv以上である高強度を得るために、それまでの冷間圧延の加工率との関係で、最終冷間圧延の加工率を強加工側に決定する。
(Final cold rolling)
Final cold rolling is also according to conventional methods. However, as described above, in order to obtain a high strength with a tensile strength of 500 MPa or more and a hardness of 150 Hv or more in a Cu—Fe—P based copper alloy plate having a large limit in the content of the solid solution strengthening element, The processing rate of the final cold rolling is determined on the strong processing side in relation to the processing rate of the cold rolling up to.
なお、最終冷間圧延の1パスあたりの最小圧下率(冷延率)を20%以上とすることが好ましい。この最終冷間圧延の1パスあたりの最小圧下率が20%より低いと、板の幅方向に生じる圧縮力が小さいため、板厚ひずみが大きくなり、r値が増加しない。 In addition, it is preferable that the minimum rolling reduction (cold rolling ratio) per pass of final cold rolling shall be 20% or more. If the minimum rolling reduction per pass of this final cold rolling is lower than 20%, the compressive force generated in the width direction of the plate is small, so that the plate thickness strain increases and the r value does not increase.
(最終焼鈍)
最終冷間圧延後の最終低温焼鈍条件は、Cu−Fe−P系銅合金板の圧延方向に対して平行方向のr値に大きく影響する。この点、本発明では、Cu−Fe−P系銅合金板の圧延方向に対して平行方向のr値を制御し、上記0.3以上とするために、この低温焼鈍を連続焼鈍にて行い、この際に、0.1〜8kgf/mm2 の範囲の適切な張力を通板中の板に加える。これにより、板厚変化の小さい引張圧縮変形が与えられる。その塑性変形によって、板のr値が増加する。
(Final annealing)
The final low temperature annealing condition after the final cold rolling greatly affects the r value in the direction parallel to the rolling direction of the Cu—Fe—P based copper alloy sheet. In this respect, in the present invention, in order to control the r value in the direction parallel to the rolling direction of the Cu—Fe—P based copper alloy sheet and to make it 0.3 or more, this low temperature annealing is performed by continuous annealing. At this time, an appropriate tension in the range of 0.1 to 8 kgf / mm 2 is applied to the plate in the plate. Thereby, the tensile compression deformation with a small plate | board thickness change is given. The r value of the plate increases due to the plastic deformation.
この張力が小さすぎ、0.1kgf/mm2 未満では、設備条件や板厚にもよるが、板に負荷する張力が不足し、Cu−Fe−P系銅合金板の圧延方向に対して平行方向のr値が0.3以上とならない。また、張力が大きすぎ、8kgf/mm2 を超えた場合には、設備条件や板厚にもよるが、前記0.1〜0.4mmの薄い製品板厚範囲では、通板中の板が破断しやすくなる。 If this tension is too small and less than 0.1 kgf / mm 2 , depending on the equipment conditions and the plate thickness, the tension applied to the plate is insufficient and parallel to the rolling direction of the Cu—Fe—P copper alloy plate. The r value in the direction does not exceed 0.3. In addition, when the tension is too large and exceeds 8 kgf / mm 2 , depending on the equipment conditions and plate thickness, in the thin product plate thickness range of 0.1 to 0.4 mm, the plate in the through plate is It becomes easy to break.
この最終低温連続焼鈍条件は、このr値の他、強度、伸びなどの基本特性にも大きく影響する。この点、本発明では、伸びなどの特性を得るために、この連続的な熱処理炉での最終連続焼鈍条件は、100〜400℃で0.2分以上300分以下の低温条件とすることが好ましい。通常のリードフレームに用いられる銅合金板の製造方法では、強度が低下するため、歪み取りのための焼鈍(350℃×20秒程度)を除き、最終冷間圧延後に最終焼鈍はしない。しかし、本発明では、最終焼鈍の低温化によって、この強度低下が抑制される。そして、最終焼鈍を低温で行なうことにより、曲げ加工性などが向上する。 This final low-temperature continuous annealing condition greatly affects basic properties such as strength and elongation in addition to the r value. In this respect, in the present invention, in order to obtain characteristics such as elongation, the final continuous annealing condition in this continuous heat treatment furnace should be a low temperature condition of 100 to 400 ° C. and not less than 0.2 minutes and not more than 300 minutes. preferable. In the manufacturing method of the copper alloy plate used for a normal lead frame, since the strength is lowered, the final annealing is not performed after the final cold rolling except for annealing for removing strain (about 350 ° C. × 20 seconds). However, in the present invention, this strength reduction is suppressed by lowering the temperature of the final annealing. And bending workability etc. improve by performing final annealing at low temperature.
連続焼鈍温度が100℃よりも低い温度や、焼鈍時間が0.2分未満の時間条件、あるいは、この低温焼鈍をしない条件では、銅合金板の組織・特性は、最終冷延後の状態からほとんど変化しない可能性が高い。逆に、焼鈍温度が400℃を超える温度や、焼鈍時間が300分を超える時間で焼鈍を行うと、再結晶が生じ、転位の再配列や回復現象が過度に生じ、析出物も粗大化するため、プレス打ち抜き性や強度が低下する可能性が高い。 Under conditions where the continuous annealing temperature is lower than 100 ° C, the annealing time is less than 0.2 minutes, or the conditions where this low-temperature annealing is not performed, the structure and properties of the copper alloy sheet are from the state after the final cold rolling. Most likely not changed. Conversely, if annealing is performed at a temperature exceeding 400 ° C. or annealing time exceeding 300 minutes, recrystallization occurs, rearrangement of dislocations and recovery phenomenon occur excessively, and precipitates also become coarse. For this reason, there is a high possibility that the press punchability and the strength are lowered.
また、連続焼鈍における通板速度を10〜100m/minの範囲に制御することが好ましい。この通板速度が遅すぎると、材料の回復・再結晶が進行しすぎる。このため、強度、伸びが低下する。但し、連続焼鈍炉における設備的な制約(能力限界)や、板切れの可能性から、この通板速度を100m/minを超えて速くする必要はない。 Moreover, it is preferable to control the plate-feeding speed in the continuous annealing in the range of 10 to 100 m / min. If the plate passing speed is too slow, material recovery / recrystallization proceeds excessively. For this reason, strength and elongation decrease. However, due to equipment limitations (capacity limits) in the continuous annealing furnace and the possibility of plate breakage, it is not necessary to increase the plate passing speed beyond 100 m / min.
これに対して、バッチ式の最終焼鈍では、焼鈍中に張力を板に加えられず、Cu−Fe−P系銅合金板の圧延方向に対して平行方向のr値が向上しない。また、連続焼鈍における通板速度が遅すぎるのと同じ理由で、強度、伸びなどの基本特性が得られない。 On the other hand, in batch-type final annealing, tension cannot be applied to the plate during annealing, and the r value in the direction parallel to the rolling direction of the Cu—Fe—P-based copper alloy plate is not improved. In addition, basic characteristics such as strength and elongation cannot be obtained for the same reason that the sheet passing speed in continuous annealing is too slow.
以下に本発明の実施例を説明する。表1に示す各化学成分組成のCu−Fe−P系銅合金薄板を、表2に示す通り、最終低温焼鈍時の板の張力条件だけを種々変えて製造した。そして、これら各銅合金薄板の圧延方向に対して平行方向のr値と曲げ加工性を評価した。これらの結果を表2に示す。 Examples of the present invention will be described below. As shown in Table 2, Cu-Fe-P-based copper alloy thin plates having the respective chemical composition shown in Table 1 were produced by changing only the tension conditions of the plate during the final low-temperature annealing. And the r value and bending workability of the parallel direction with respect to the rolling direction of each copper alloy sheet were evaluated. These results are shown in Table 2.
具体的には、表1に示す各化学成分組成の銅合金をそれぞれコアレス炉にて溶製した後、半連続鋳造法で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。各鋳塊の表面を面削して加熱後、熱間圧延を行って厚さ16mmの板とし、650℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延(中延べ)を行った。この板を面削後、中間焼鈍を入れながら冷間圧延を行い、次いで400℃で最終低温焼鈍を行って、リードフレームの薄板化に対応した厚さ0.15mmの銅合金板を得た。 Specifically, after each copper alloy having the chemical composition shown in Table 1 was melted in a coreless furnace, it was ingoted by a semi-continuous casting method, and the ingot was 70 mm thick × 200 mm wide × 500 mm long. Got. The surface of each ingot was chamfered and heated, and then hot-rolled to form a plate having a thickness of 16 mm, and rapidly cooled into water from a temperature of 650 ° C. or higher. Next, after removing the oxide scale, primary cold rolling (intermediate rolling) was performed. After chamfering the plate, cold rolling was performed with intermediate annealing, followed by final low-temperature annealing at 400 ° C. to obtain a copper alloy plate having a thickness of 0.15 mm corresponding to the thinning of the lead frame.
最終冷間圧延での1パスあたりの最小圧下率および最終低温焼鈍時の板へ負荷された張力を表2に示す。このように、最終冷間圧延での1パスあたりの最小圧下率および最終低温焼鈍時の板の張力条件だけを種々変えて、各銅合金薄板の圧延方向に対して平行方向のr値を制御した。 Table 2 shows the minimum rolling reduction per pass in the final cold rolling and the tension applied to the plate during the final low-temperature annealing. In this way, the r value in the direction parallel to the rolling direction of each copper alloy sheet is controlled by variously changing only the minimum rolling reduction per pass in final cold rolling and the tension condition of the plate during final low temperature annealing. did.
なお、表1に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、その他の不純物元素として、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量は、これらの元素全体の合計で0.1質量%以下であった。 In each of the copper alloys shown in Table 1, the remaining composition excluding the described element amount is Cu, and other impurity elements are Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, The content of C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, and misch metal is 0.1% by mass or less in total of these elements. Met.
また、Mn、Mg、Caのうち1種又は2種以上を含む場合は、合計量を0.0001〜1.0質量%の範囲とし、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を含む場合は、合計量を0.001〜1.0質量%の範囲とし、更に、これらの元素全体の合計量も1.0質量%以下とした。 Further, when one or more of Mn, Mg, and Ca are included, the total amount is in the range of 0.0001 to 1.0 mass%, and Zr, Ag, Cr, Cd, Be, Ti, Co, When one or more of Ni, Au, and Pt are included, the total amount is in the range of 0.001 to 1.0% by mass, and the total amount of these elements is also 1.0% by mass or less. It was.
また、各例とも、得た銅合金板から試料を切り出し、引張試験、導電率測定、曲げ試験を行った。これらの結果も表2に示す。 In each example, a sample was cut out from the obtained copper alloy plate, and a tensile test, conductivity measurement, and a bending test were performed. These results are also shown in Table 2.
(引張試験)
引張試験は、前記したr値測定の条件にて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、引張強度、0.2%耐力、r値を測定した。
(Tensile test)
The tensile test was performed under the conditions of r value measurement described above using a 5882 type Instron universal testing machine under the conditions of room temperature, test speed 10.0 mm / min, GL = 50 mm, tensile strength, 0.2% proof stress. The r value was measured.
(導電率測定)
銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。
(Conductivity measurement)
The electrical conductivity of the copper alloy plate sample was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electrical resistance with a double bridge type resistance measuring device.
(曲げ加工性の評価試験)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅10mm×長さ30mmに切出し、Good Way(曲げ軸が圧延方向に直角)の曲げを行いながら、曲げ部における割れの有無を50倍の光学顕微鏡で観察した。そして、割れが生じない最小曲げ半径Rと、銅合金板の板厚t(0.15mm)との比R/tを求めた。このR/tが小さい方が曲げ加工性に優れている。ただし、強度が高いほど必然的に曲げ加工性が低下するため、リードフレーム等の半導体用材料に用いられる銅合金板の場合は、硬さが150〜200HvではR/tが1.5未満、200Hv以上では2.0未満であることが求められる。因みに150Hv未満は、本発明の対象外の低硬度(低強度)であるが、150Hv未満ではR/tが0.5未満であることが求められる。
(Evaluation test for bending workability)
The bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. The plate material was cut into a width of 10 mm and a length of 30 mm, and the presence or absence of cracks in the bent portion was observed with a 50 × optical microscope while bending the Good Way (the bending axis was perpendicular to the rolling direction). And ratio R / t of minimum bending radius R which a crack does not produce, and board thickness t (0.15mm) of a copper alloy board was calculated | required. The smaller this R / t, the better the bending workability. However, since the bending workability inevitably decreases as the strength increases, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, R / t is less than 1.5 at a hardness of 150 to 200 Hv, It is calculated | required that it is less than 2.0 at 200 Hv or more. Incidentally, less than 150 Hv is low hardness (low strength) outside the scope of the present invention, but R / t is required to be less than 0.5 below 150 Hv.
表1、2から明らかな通り、本発明組成内の銅合金である発明例1〜13は、引張強さが500MPa以上、硬さが150Hv以上の高強度である。その上で、発明例1〜13は、最終連続焼鈍時に好ましい張力を板に負荷しているために、銅合金薄板の圧延方向に対して平行方向のr値が0.3以上である。したがって、発明例1〜13は、半導体母材としての曲げ加工性に優れる。 As is apparent from Tables 1 and 2, Invention Examples 1 to 13, which are copper alloys within the composition of the present invention, have high strength with a tensile strength of 500 MPa or more and a hardness of 150 Hv or more. In addition, since the inventive examples 1 to 13 apply a preferable tension to the plate during the final continuous annealing, the r value in the direction parallel to the rolling direction of the copper alloy thin plate is 0.3 or more. Therefore, Invention Examples 1 to 13 are excellent in bending workability as a semiconductor base material.
これに対して、比較例14、15は、最終連続焼鈍時に張力を板に負荷していない。この結果、比較例14、15は、本発明組成内の銅合金であり、引張強さが500MPa以上、硬さが150Hv以上の高強度であるにもかかわらず、銅合金薄板の圧延方向に対して平行方向のr値が0.3未満である。したがって、比較例14、15は、半導体母材としての曲げ加工性が劣る。 On the other hand, Comparative Examples 14 and 15 do not apply tension to the plate during the last continuous annealing. As a result, Comparative Examples 14 and 15 are copper alloys within the composition of the present invention, and despite the high strength of tensile strength of 500 MPa or more and hardness of 150 Hv or more, relative to the rolling direction of the copper alloy sheet. The r value in the parallel direction is less than 0.3. Therefore, Comparative Examples 14 and 15 are inferior in bending workability as a semiconductor base material.
比較例16は、Feの含有量が下限0.01%を低めに外れ、強度レベルが低く、この点で、銅合金薄板の圧延方向に対して平行方向のr値が0.3以上であるものの、半導体母材として使用できない。 In Comparative Example 16, the Fe content falls below the lower limit of 0.01% and the strength level is low, and in this respect, the r value in the direction parallel to the rolling direction of the copper alloy sheet is 0.3 or more. However, it cannot be used as a semiconductor base material.
比較例17は、Feの含有量が上限5.0%を高めに外れ、強度の割りには、曲げ加工性が劣る。また、発明例の同じ強度レベル例と比較しても、強度の割りには導電率が著しく低いこともあり、半導体母材として使用できない。 In Comparative Example 17, the upper limit of the Fe content is 5.0%, and the bending workability is inferior to the strength. Further, even when compared with the same strength level example of the inventive example, the electrical conductivity may be remarkably low for the strength, so that it cannot be used as a semiconductor base material.
比較例18は、Pの含有量が下限0.01%を低めに外れ、強度レベルが低く、この点で、銅合金薄板の圧延方向に対して平行方向のr値が0.3以上であるものの、半導体母材として使用できない。 In Comparative Example 18, the content of P deviates slightly from the lower limit of 0.01%, and the strength level is low. In this respect, the r value in the direction parallel to the rolling direction of the copper alloy sheet is 0.3 or more. However, it cannot be used as a semiconductor base material.
比較例19は、Pの含有量が上限0.15%を高めに外れ、熱間圧延中に割れを生じたため、その時点で試作を中断した。 In Comparative Example 19, since the P content was higher than the upper limit of 0.15% and cracking occurred during hot rolling, the trial production was stopped at that time.
比較例20は、最終冷間圧延の1パスあたりの最小圧下率が20%未満である。このため、本発明組成内の銅合金であるにもかかわらず、銅合金薄板の圧延方向に対して平行方向のr値が0.3未満であり、曲げ加工性が劣る。 In Comparative Example 20, the minimum rolling reduction per pass of the final cold rolling is less than 20%. For this reason, although it is a copper alloy within the composition of the present invention, the r value in the direction parallel to the rolling direction of the copper alloy sheet is less than 0.3, and the bending workability is poor.
以上の結果から、高強度させた上で、曲げ加工性にも優れさせるための、本発明銅合金板の成分組成、r値規定の臨界的な意義や、更には、このr値や高強度を得るための好ましい製造条件の意義が裏付けられる。 From the above results, the component composition of the copper alloy sheet of the present invention, the critical significance of the r-value definition, and further the r-value and high-strength for improving the bending workability after increasing the strength. The significance of preferable production conditions for obtaining the above is supported.
以上説明したように、本発明によれば、高強度化させた上で、曲げ加工性にも優れ、これら特性を両立(兼備)させたCu−Fe−P系銅合金板を提供することができる。この結果、信頼性が高い半導体母材を提供できる。したがって、小型化及び軽量化した電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コネクタ、端子、スイッチ、リレーなどの、高強度化と、曲げ加工性が要求される用途に適用することができる。 As described above, according to the present invention, it is possible to provide a Cu—Fe—P-based copper alloy sheet that is excellent in bending workability and has both of these characteristics (combined), while having high strength. it can. As a result, a highly reliable semiconductor base material can be provided. Therefore, for electrical and electronic parts that are reduced in size and weight, besides lead frames for semiconductor devices, such as lead frames, connectors, terminals, switches, relays, etc., for applications that require high strength and bending workability. Can be applied.
Claims (8)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006311899A JP4157899B2 (en) | 2006-11-17 | 2006-11-17 | High strength copper alloy sheet with excellent bending workability |
US12/441,904 US8063471B2 (en) | 2006-10-02 | 2007-09-26 | Copper alloy sheet for electric and electronic parts |
EP07807885A EP2088214B1 (en) | 2006-10-02 | 2007-09-26 | Copper alloy plate for electrical and electronic components |
KR1020127008888A KR20120041808A (en) | 2006-10-02 | 2007-09-26 | Copper alloy plate for electrical and electronic components |
KR1020097006693A KR101158113B1 (en) | 2006-10-02 | 2007-09-26 | Copper alloy plate for electrical and electronic components |
EP11004732.1A EP2388348B1 (en) | 2006-10-02 | 2007-09-26 | Copper alloy sheet for electric and electronic parts |
CN200780036755.5A CN101522926B (en) | 2006-10-02 | 2007-09-26 | Copper alloy plate for electrical and electronic components |
EP11004733.9A EP2388349B1 (en) | 2006-10-02 | 2007-09-26 | Copper alloy sheet for electric and electronic parts |
PCT/JP2007/068670 WO2008041584A1 (en) | 2006-10-02 | 2007-09-26 | Copper alloy plate for electrical and electronic components |
AT07807885T ATE518968T1 (en) | 2006-10-02 | 2007-09-26 | COPPER ALLOY PLATE FOR ELECTRICAL AND ELECTRONIC COMPONENTS |
EP11004731.3A EP2388347B1 (en) | 2006-10-02 | 2007-09-26 | Method for producing a copper alloy sheet for electric and electronic parts |
US13/282,915 US20120039742A1 (en) | 2006-10-02 | 2011-10-27 | Copper alloy sheet for electric and electronic parts |
US13/282,823 US20120039741A1 (en) | 2006-10-02 | 2011-10-27 | Copper alloy sheet for electric and electronic parts |
US13/283,012 US20120039743A1 (en) | 2006-10-02 | 2011-10-27 | Copper alloy sheet for electric and electronic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006311899A JP4157899B2 (en) | 2006-11-17 | 2006-11-17 | High strength copper alloy sheet with excellent bending workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008127605A true JP2008127605A (en) | 2008-06-05 |
JP4157899B2 JP4157899B2 (en) | 2008-10-01 |
Family
ID=39553751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006311899A Expired - Fee Related JP4157899B2 (en) | 2006-10-02 | 2006-11-17 | High strength copper alloy sheet with excellent bending workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4157899B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010031339A (en) * | 2008-07-30 | 2010-02-12 | Kobe Steel Ltd | COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL |
JP2010248592A (en) * | 2009-04-17 | 2010-11-04 | Hitachi Cable Ltd | Method for producing copper alloy and copper alloy |
JP2011246772A (en) * | 2010-05-27 | 2011-12-08 | Mitsubishi Shindoh Co Ltd | Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN CONDUCTIVITY AND HEAT RESISTANCE, AND METHOD OF MANUFACTURING THE SAME |
JP2013072128A (en) * | 2011-09-29 | 2013-04-22 | Mitsubishi Shindoh Co Ltd | Cu-fe-p-based copper alloy sheet excellent in electrical conductivity, heat resistance, and bending workability, and method for producing the same |
JP2014025089A (en) * | 2012-07-24 | 2014-02-06 | Mitsubishi Shindoh Co Ltd | Cu-Mg-P BASED COPPER ALLOY SHEET HAVING EXCELLENT SPRING CRITICAL VALUE CHARACTERISTIC AND FATIGUE RESISTANCE AFTER BENDING, AND METHOD FOR PRODUCING THE SAME |
JP2014029016A (en) * | 2012-07-06 | 2014-02-13 | Jx Nippon Mining & Metals Corp | Copper alloy sheet excellent in conductivity and stress relaxation property |
JP5470499B1 (en) * | 2013-09-25 | 2014-04-16 | Jx日鉱日石金属株式会社 | Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5822895B2 (en) | 2013-11-08 | 2015-11-25 | Jx日鉱日石金属株式会社 | Copper alloy plate and heat dissipating electronic component including the same |
JP5632063B1 (en) | 2013-11-19 | 2014-11-26 | Jx日鉱日石金属株式会社 | Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same |
JP6050738B2 (en) | 2013-11-25 | 2016-12-21 | Jx金属株式会社 | Copper alloy sheet with excellent conductivity, moldability and stress relaxation properties |
-
2006
- 2006-11-17 JP JP2006311899A patent/JP4157899B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010031339A (en) * | 2008-07-30 | 2010-02-12 | Kobe Steel Ltd | COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL |
JP2010248592A (en) * | 2009-04-17 | 2010-11-04 | Hitachi Cable Ltd | Method for producing copper alloy and copper alloy |
JP2011246772A (en) * | 2010-05-27 | 2011-12-08 | Mitsubishi Shindoh Co Ltd | Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN CONDUCTIVITY AND HEAT RESISTANCE, AND METHOD OF MANUFACTURING THE SAME |
JP2013072128A (en) * | 2011-09-29 | 2013-04-22 | Mitsubishi Shindoh Co Ltd | Cu-fe-p-based copper alloy sheet excellent in electrical conductivity, heat resistance, and bending workability, and method for producing the same |
JP2014029016A (en) * | 2012-07-06 | 2014-02-13 | Jx Nippon Mining & Metals Corp | Copper alloy sheet excellent in conductivity and stress relaxation property |
JP2014025089A (en) * | 2012-07-24 | 2014-02-06 | Mitsubishi Shindoh Co Ltd | Cu-Mg-P BASED COPPER ALLOY SHEET HAVING EXCELLENT SPRING CRITICAL VALUE CHARACTERISTIC AND FATIGUE RESISTANCE AFTER BENDING, AND METHOD FOR PRODUCING THE SAME |
JP5470499B1 (en) * | 2013-09-25 | 2014-04-16 | Jx日鉱日石金属株式会社 | Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same |
KR101613357B1 (en) | 2013-09-25 | 2016-04-18 | 제이엑스 킨조쿠 가부시키가이샤 | Copper alloy plate, and electronic component for high current and electronic component for radiating heat each having the same |
Also Published As
Publication number | Publication date |
---|---|
JP4157899B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4157899B2 (en) | High strength copper alloy sheet with excellent bending workability | |
JP4157898B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent press punchability | |
TWI237665B (en) | Silver containing copper alloy | |
JP4418028B2 (en) | Cu-Ni-Si alloy for electronic materials | |
JP4934759B2 (en) | Copper alloy sheet, connector using the same, and method for producing copper alloy sheet | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
JP5476149B2 (en) | Copper alloy with low strength anisotropy and excellent bending workability | |
JP3838521B1 (en) | Copper alloy having high strength and excellent bending workability and method for producing the same | |
KR102126731B1 (en) | Copper alloy sheet and method for manufacturing copper alloy sheet | |
JP4117327B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent press punchability | |
CN102112641B (en) | Copper alloy material for electrical/electronic component | |
JP2008095185A (en) | Copper alloy plate material for electrical/electronic equipment and process for producing the same | |
JP2006200036A (en) | Copper alloy having bendability and stress relaxation property | |
JP2008196042A (en) | Copper alloy sheet for electrical/electronic component having excellent strength and formability | |
WO2006019035A1 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
WO2013018228A1 (en) | Copper alloy | |
JP4503696B2 (en) | Electronic parts made of copper alloy sheets with excellent bending workability | |
JP2006219733A (en) | Copper alloy sheet for electric-electronic component having reduced anisotropy | |
JP2008081762A (en) | Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP2010007174A (en) | Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL | |
WO2014157249A1 (en) | Copper alloy sheet having outstanding electro-conductivity and stress release characteristics | |
JP3797882B2 (en) | Copper alloy sheet with excellent bending workability | |
JP2007126739A (en) | Copper alloy for electronic material | |
JP2015028201A (en) | Cu-Co-Si-BASED COPPER ALLOY BAR AND METHOD FOR PRODUCING THE SAME | |
JP5557761B2 (en) | Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080708 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080714 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4157899 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |