JP3962751B2 - Copper alloy sheet for electric and electronic parts with bending workability - Google Patents
Copper alloy sheet for electric and electronic parts with bending workability Download PDFInfo
- Publication number
- JP3962751B2 JP3962751B2 JP2005229678A JP2005229678A JP3962751B2 JP 3962751 B2 JP3962751 B2 JP 3962751B2 JP 2005229678 A JP2005229678 A JP 2005229678A JP 2005229678 A JP2005229678 A JP 2005229678A JP 3962751 B2 JP3962751 B2 JP 3962751B2
- Authority
- JP
- Japan
- Prior art keywords
- orientation
- copper alloy
- alloy plate
- strength
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 126
- 238000005452 bending Methods 0.000 title claims description 78
- 238000009826 distribution Methods 0.000 claims description 58
- 239000010949 copper Substances 0.000 claims description 46
- 239000004065 semiconductor Substances 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910001369 Brass Inorganic materials 0.000 claims description 8
- 239000010951 brass Substances 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 3
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 238000005097 cold rolling Methods 0.000 description 52
- 238000000137 annealing Methods 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- 229910017824 Cu—Fe—P Inorganic materials 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000005096 rolling process Methods 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 239000013078 crystal Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000005315 distribution function Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
本発明は、高強度かつ高導電率で、かつ曲げ加工性が優れた銅合金に関し、例えば、半導体装置用リードフレームの素材として好適な銅合金に関する。
尚、本発明の銅合金は、半導体装置用リードフレーム以外にも、その他の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、ブスバー、端子・コネクタ等の機構部品など様々な電気電子部品用として使用されるものであるが、以下では、代表的な用途例として、半導体部品であるリードフレームに使用する場合を中心に説明を進める。
The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bending workability, for example, a copper alloy suitable as a material for a lead frame for a semiconductor device.
In addition to the lead frame for semiconductor devices, the copper alloy of the present invention can be used for various semiconductor parts, electrical / electronic parts materials such as printed wiring boards, switch parts, mechanical parts such as bus bars, terminals / connectors, etc. Although it is used for electric and electronic parts, in the following, as a typical application example, description will be made focusing on the case where it is used for a lead frame which is a semiconductor part.
半導体リードフレーム用銅合金としては、従来よりFeとPとを含有する、Cu−Fe−P系の銅合金が一般に用いられている。これらCu−Fe−P系の銅合金としては、例えば、Fe:0.05〜0.15%、P:0.025〜0.040%を含有する銅合金(C19210合金)や、Fe:2.1〜2.6%、P:0.015〜0.15%、Zn:0.05〜0.20%を含有する銅合金(CDA194合金)が例示される。これらのCu−Fe−P系の銅合金は、銅母相中にFe又はFe−P等の金属間化合物を析出させると、銅合金の中でも、強度、導電性および熱伝導性に優れていることから、国際標準合金として汎用されている。 As a copper alloy for a semiconductor lead frame, a Cu—Fe—P based copper alloy containing Fe and P has been generally used. Examples of these Cu-Fe-P-based copper alloys include, for example, a copper alloy containing Fe: 0.05 to 0.15% and P: 0.025 to 0.040% (C19210 alloy), Fe: 2 An example is a copper alloy (CDA194 alloy) containing 0.1 to 2.6%, P: 0.015 to 0.15%, and Zn: 0.05 to 0.20%. These Cu-Fe-P-based copper alloys are excellent in strength, conductivity and thermal conductivity among copper alloys when an intermetallic compound such as Fe or Fe-P is precipitated in the copper matrix. Therefore, it is widely used as an international standard alloy.
近年、電子機器に用いられる半導体装置の大容量化、小型化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されている。これに伴い、これら半導体装置に使用されるリードフレームに用いられる銅合金部品にも、より一層の高強度化、高導電率化、熱伝導性が求められている。 In recent years, along with the increase in capacity, size, and functionality of semiconductor devices used in electronic devices, lead frames used in semiconductor devices have become smaller in cross-sectional area, resulting in greater strength, conductivity, and thermal conductivity. Is required. Accordingly, copper alloy parts used in lead frames used in these semiconductor devices are required to have higher strength, higher conductivity, and thermal conductivity.
例えば、リードフレームに用いられる銅合金板の、この高強度化、高導電率化の目安として、銅合金板の強度が硬さで150Hv以上、導電率が75%IACS以上が求められる。これら高強度化、高導電率化は、リードフレームのみならず、他の電気・電子部品における、コネクタ、端子、スイッチ、リレーなどの導電性部品に用いられる銅合金にも当てはまる。 For example, as a measure for increasing the strength and conductivity of a copper alloy plate used in a lead frame, the strength of the copper alloy plate is required to be 150 Hv or higher in hardness and 75% IACS or higher in conductivity. These increases in strength and conductivity apply not only to lead frames, but also to copper alloys used in conductive parts such as connectors, terminals, switches and relays in other electrical and electronic parts.
前記Cu−Fe−P系銅合金は高導電率が特徴であるが、従来から、高強度化のためには、FeとPとの含有量を増したり、Sn、Mg、Ca等の第3元素を添加したりしていた。しかし、これらの元素量を増加させると、強度は増加するが、必然的に導電率が低下する。このため、銅合金における成分組成の制御のみで、前記した半導体装置の大容量化、小型化及び高機能化に伴い要求される、高導電率化と高強度化とのバランスの良い、あるいはこれらの特性を両立したCu−Fe−P系銅合金を実現するのは困難であった。 The Cu-Fe-P-based copper alloy is characterized by high electrical conductivity. Conventionally, in order to increase the strength, the content of Fe and P can be increased, or a third such as Sn, Mg, Ca, etc. can be used. The element was added. However, increasing the amount of these elements increases the strength, but inevitably decreases the conductivity. For this reason, only by controlling the component composition in the copper alloy, there is a good balance between the increase in conductivity and the increase in strength required as the capacity, size and function of the semiconductor device described above are increased. It has been difficult to realize a Cu—Fe—P-based copper alloy satisfying both of these characteristics.
そこで従来から、Cu−Fe−P系銅合金の組織や晶・析出物粒子の析出状態を制御することが種々提案されており、例えば0.2μm以下のFe−P系化合物を均一に分散させることで、高強度高導電性の銅合金が提案されている(特許文献1参照)。 Therefore, various proposals have conventionally been made to control the structure of Cu—Fe—P-based copper alloys and the precipitation state of crystal / precipitate particles. For example, an Fe—P-based compound of 0.2 μm or less is uniformly dispersed. Therefore, a high-strength, high-conductivity copper alloy has been proposed (see Patent Document 1).
ところで、リードフレーム、端子、コネクタ、スイッチ、リレーなどに用いられる銅合金板は、高強度、高導電率はもちろんのこと、密着曲げあるいはノッチング後の90°曲げなど、厳しい曲げ加工に耐える優れた曲げ加工性が要求されてきている。 By the way, the copper alloy plates used for lead frames, terminals, connectors, switches, relays, etc. have excellent strength and durability, as well as withstand severe bending such as tight bending or 90 ° bending after notching. Bending workability has been required.
しかしながら、上記SnやMgの固溶強化元素の添加や、冷間圧延の加工率増加による高強度化では、必然的に曲げ加工性の劣化を伴い、必要な強度と曲げ加工性を両立させることはできない。 However, the addition of the Sn or Mg solid solution strengthening element and the increase in the strength due to the increase in the cold rolling process rate inevitably involves the deterioration of the bending processability, so that both the required strength and the bending processability are achieved. I can't.
一方で、結晶粒を微細化したり、晶・析出物の分散状態を制御することによって、曲げ加工性をある程度向上できることは知られている(特許文献2 、3 参照)。但し、近年の電子部品の軽薄短小化に対応できるようなCu−Fe−P系の高強度材料 (銅合金板の硬さ150Hv以上、導電率が75%IACS以上) を得るためには、冷間圧延の強加工による加工硬化量の増大が必須となってきている。 On the other hand, it is known that bending workability can be improved to some extent by refining crystal grains and controlling the dispersion state of crystals and precipitates (see Patent Documents 2 and 3). However, in order to obtain a Cu-Fe-P-based high-strength material (copper alloy sheet hardness of 150 Hv or more and conductivity of 75% IACS or more) that can cope with the recent reduction in size and size of electronic components. It has become essential to increase the amount of work hardening due to the strong work of hot rolling.
このため、このような高強度化材料では、特許文献1、2 、3 などの結晶粒微細化や、晶・析出物の分散状態制御などの組織制御手段によっては、前記密着曲げあるいはノッチング後の90°曲げなどの厳しい曲げ加工に対し、曲げ加工性を十分に向上させることができない。 For this reason, in such a high-strength material, depending on the structure control means such as the refinement of crystal grains and the dispersion state control of crystals / precipitates described in Patent Documents 1, 2, 3 and the like, Bending workability cannot be sufficiently improved for severe bending such as 90 ° bending.
これに対して、Cu−Fe−P系銅合金において、集合組織を制御することが提案されている(特許文献4、5参照)。より具体的には、特許文献4では、銅合金板の、(200)面のX線回折強度I(200)と、(220)面のX線回折強度I(220)との比、I(200)/I(220)が0.5以上10以下であることか、または、Cube方位の方位密度:D(Cube方位)が1以上50以下であること、あるいは、Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)が0.1以上5以下であることが提案されている。
また、特許文献5では、銅合金板の、(200)面のX線回折強度I(200)と(311)面のX線回折強度I(311)との和と、(220)面のX線回折強度I(220)との比、〔I(200)+I(311)〕/I(220)が0.4以上であることが提案されている。
In Patent Document 5, the sum of the X-ray diffraction intensity I (200) of the (200) plane and the X-ray diffraction intensity I (311) of the (311) plane of the copper alloy plate and the X of the (220) plane are described. It has been proposed that the ratio [I (200) + I (311)] / I (220) to the line diffraction intensity I (220) is 0.4 or more.
確かに、特許文献4のように、銅合金板の、(200)面のX線回折強度I(200)と(220)面のX線回折強度I(220)との比I(200)/I(220)または、Cube方位の方位密度:D(Cube方位)、あるいは、Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)を規定すれば、曲げ加工性を向上させることができる。
また、特許文献5のように、銅合金板の、(200)面のX線回折強度I(200)と(311)面のX線回折強度I(311)との和と、(220)面のX線回折強度I(220)との比、〔I(200)+I(311)〕/I(220)が0.4以上としても、曲げ加工性を向上させることができる。
Certainly, as in Patent Document 4, the ratio of the X-ray diffraction intensity I (200) of the (200) plane and the X-ray diffraction intensity I (220) of the (220) plane of the copper alloy plate I (200) / I (220) or Cube orientation density: D (Cube orientation) or Cube orientation density: D (Cube orientation) to S orientation density: D (S orientation) ratio: D (Cube) By defining (azimuth) / D (S orientation), the bending workability can be improved.
Further, as in Patent Document 5, the sum of the (200) plane X-ray diffraction intensity I (200) and the (311) plane X-ray diffraction intensity I (311) of the copper alloy plate, and the (220) plane Even when the ratio [I (200) + I (311)] / I (220) to the X-ray diffraction intensity I (220) is 0.4 or more, the bending workability can be improved.
しかし、特許文献4の改良された銅合金板においても、銅合金板の硬さは最大で150Hv程度、導電率も最大で65%IACS程度の強度と導電率であり、銅合金板の強度を150Hv以上に高くすると、やはり導電性や、特に曲げ加工性は低下する。即ち、特許文献4の集合組織制御では大きな限界が有り、特に、Cu−Fe−P系の高強度材料 (銅合金板の硬さ150Hv以上、導電率が75%IACS以上) の曲げ加工性を向上させることができない。
また、特許文献5の改良された銅合金板においても、その実施例において、引張強さが最大の520MPaの例の導電率は35%IACS程度と著しく低い。一方、導電率が75%IACS以上の例では、引張強さが最大でも480MPaと、銅合金板の硬度で150Hvを僅かに超える程度である。このため、やはり、強度と導電率のいずれかが犠牲になっており、特許文献5の集合組織制御ではCu−Fe−P系の高強度材料の曲げ加工性を向上させることができない。
However, even in the improved copper alloy plate of Patent Document 4, the hardness of the copper alloy plate is about 150 Hv at the maximum, and the conductivity is about 65% IACS at the maximum, and the strength of the copper alloy plate is When it is increased to 150 Hv or more, the conductivity and particularly the bending workability are also lowered. That is, there is a big limit in the texture control of Patent Document 4, especially the bending workability of Cu-Fe-P-based high-strength materials (copper alloy sheet hardness 150 Hv or more, conductivity 75% IACS or more). It cannot be improved.
Also in the improved copper alloy plate of Patent Document 5, in the example, the conductivity of an example having a maximum tensile strength of 520 MPa is remarkably as low as about 35% IACS. On the other hand, in the example where the electrical conductivity is 75% IACS or more, the tensile strength is 480 MPa at the maximum, which is slightly higher than 150 Hv in the hardness of the copper alloy plate. For this reason, either strength or conductivity is sacrificed, and the texture control of Patent Document 5 cannot improve the bending workability of Cu-Fe-P-based high-strength materials.
本発明はこのような課題を解決するためになされたものであって、高強度高導電率化と優れた曲げ加工性を両立させたCu−Fe−P系銅合金板を提供することである。 The present invention has been made to solve such a problem, and is to provide a Cu-Fe-P-based copper alloy sheet that achieves both high strength and high electrical conductivity and excellent bending workability. .
この目的を達成するために、本発明の曲げ加工性を備えた電気電子部品用銅合金板の要旨は、質量%で、Fe:0.01〜3.0%、P:0.01〜0.3%を各々含有し、残部Cuおよび不可避的不純物からなる銅合金板であって、その集合組織が、Brass方位の方位分布密度が20以下であり、且つBrass方位とS方位とCopper方位の方位分布密度の和が10以上50以下であることとする。
In order to achieve this object, the gist of the copper alloy plate for electric and electronic parts having bending workability according to the present invention is mass%, Fe: 0.01 to 3.0%, P: 0.01 to 0. .3% of copper alloy plate each comprising Cu and unavoidable impurities , the texture of which is an orientation distribution density of Brass orientation of 20 or less, and of Brass orientation, S orientation, and Copper orientation The sum of the orientation distribution densities is 10 or more and 50 or less.
本発明は、強度が硬さで150Hv以上、導電率が75%IACS以上である高強度、高導電率の電気電子部品用銅合金板の曲げ加工性を向上させるために適用されることが好ましい。 The present invention is preferably applied in order to improve the bending workability of a copper alloy plate for electric and electronic parts having a high strength and a high conductivity having a hardness of 150 Hv or more and a conductivity of 75% IACS or more. .
また、上記高強度、高導電率を達成するために、本発明銅合金板は、更に、質量%で、Sn:0.001〜0.5%を含有しても良い。 Moreover, in order to achieve the said high intensity | strength and high electrical conductivity, this invention copper alloy plate may contain Sn: 0.001-0.5% by the mass% further.
本発明の銅合金板は、様々な電気電子部品用に適用可能であるが、特に、半導体部品である半導体リードフレーム用途に使用されることが好ましい。 The copper alloy plate of the present invention can be applied to various electric and electronic parts, but is particularly preferably used for a semiconductor lead frame which is a semiconductor part.
通常の銅合金板の場合、主に、以下に示す如きCube方位、Goss方位、Brass 方位(以下、B方位ともいう)、Copper方位(以下、Cu方位ともいう)、S方位等と呼ばれる集合組織を形成し、それらに応じた結晶面が存在する。 In the case of a normal copper alloy sheet, the texture called Cube orientation, Goss orientation, Brass orientation (hereinafter also referred to as B orientation), Copper orientation (hereinafter also referred to as Cu orientation), S orientation, etc. as shown below. And there are crystal planes corresponding to them.
これらの集合組織の形成は同じ結晶系の場合でも加工、熱処理方法によって異なる。圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{ABC}で表現され、圧延方向は<DEF>で表現される。かかる表現に基づき、各方位は下記の如く表現される。 The formation of these textures differs depending on the processing and heat treatment methods even in the case of the same crystal system. In the case of the texture of the plate material by rolling, the rolling surface and the rolling direction are represented, the rolling surface is represented by {ABC}, and the rolling direction is represented by <DEF>. Based on this expression, each direction is expressed as follows.
Cube方位 {001}<100>
Goss方位 {011}<100>
Rotated-Goss方位 {011}<011>
Brass 方位(B方位) {011}<211>
Copper方位(Cu方位) {112}<111>
(若しくはD方位{4 4 11}<11 11 8 >
S方位 {123}<634>
B/G方位 {011}<511>
B/S方位 {168}<211>
P方位 {011}<111>
Cube orientation {001} <100>
Goss direction {011} <100>
Rotated-Goss orientation {011} <011>
Brass direction (B direction) {011} <211>
Copper orientation (Cu orientation) {112} <111>
(Or D direction {4 4 11} <11 11 8>
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>
本発明においては、基本的に、これらの結晶面から±10°以内のずれのものは同一の結晶面に属するものとする。ここで、B方位〜Cu方位〜S方位は各方位間で連続的に変化するファイバー集合組織(β−fiber)で存在している。 In the present invention, basically, the deviations within ± 10 ° from these crystal planes belong to the same crystal plane. Here, the B orientation, the Cu orientation, and the S orientation exist in a fiber texture (β-fiber) that continuously changes between the orientations.
通常の銅合金板の集合組織は、上述のように、かなり多くの方位因子からなるが、これらの構成比率が変化すると板材の塑性異方性が変化し、曲げなどの加工性が変化する。 As described above, the texture of a normal copper alloy plate is composed of a considerable number of orientation factors. However, when these constituent ratios change, the plastic anisotropy of the plate changes and the workability such as bending changes.
前記した特許文献4は、この集合組織の中で、特に、Cube方位の方位密度〔以下、D(Cube)ともいう〕を適正範囲に制御することにより、曲げ加工性の向上と安定化とを達成しようとしている。これは、半導体リードフレーム用途におけるスタンピング加工等の曲げ加工の際に、変形中に均一変形させることを狙いとしている。 Patent Document 4 described above improves the bending workability and stabilizes by controlling the orientation density (hereinafter also referred to as D (Cube)) of the Cube orientation within the texture. Trying to achieve. This is aimed at uniform deformation during deformation during bending such as stamping in semiconductor lead frame applications.
即ち、Cube方位が強く発達し過ぎ、D(Cube)が適正範囲よりも高くなると、板面内の塑性異方性が強くなり、部分的に変形し易い個所と変形し難い個所が発生し、前述の如きスタンピング加工での曲がりやバリの発生等の問題が発生し易くなるとしている。一方、Cube方位が少なくても、D(Cube)が適正範囲よりも低くても、他の結晶方位の発達が強くなり、別の面内異方性により、上記と同様の問題が発生するとしている。 That is, if the Cube orientation develops too strongly and D (Cube) is higher than the appropriate range, the plastic anisotropy in the plate surface becomes strong, and there are places that are easily deformed and parts that are difficult to deform, Problems such as bending and burrs in the stamping process as described above are likely to occur. On the other hand, even if the Cube orientation is small, even if D (Cube) is lower than the appropriate range, the development of other crystal orientations becomes strong, and the same problem as above occurs due to another in-plane anisotropy. Yes.
しかし、本発明者らの知見によれば、このようなCube方位の制御では、特に、銅合金板の硬さ150Hv以上、導電率が75%IACS以上のCu−Fe−P系の高強度材料の曲げ加工性を向上させることができない。 However, according to the knowledge of the present inventors, in such control of the Cube orientation, in particular, a Cu-Fe-P-based high-strength material having a copper alloy plate hardness of 150 Hv or more and a conductivity of 75% IACS or more. The bending workability cannot be improved.
即ち、先ず、上記高強度を維持したまま曲げ加工性を向上させるためには、Brass方位(B方位)の方位分布密度を低くする。その上で、更に、上記高強度と曲げ加工性とをバランスよく兼備するために、B方位とS方位とCu方位の方位分布密度の和を特定範囲に制御する。 That is, first, in order to improve the bending workability while maintaining the high strength, the orientation distribution density of the Brass orientation (B orientation) is lowered. In addition, in order to combine the high strength and bending workability in a well-balanced manner, the sum of the orientation distribution densities of the B, S, and Cu orientations is controlled within a specific range.
硬さ150Hv以上のCu−Fe−P系の銅合金板では、上記集合組織の中では、特に、B方位の方位分布密度と、更に、B方位とS方位の方位とCu方位の分布密度が強度に大きく影響する。B方位、S方位、Cu方位の方位分布密度が大きいほど、圧延集合組織が発達しており、強度が高くなる。 In the Cu-Fe-P-based copper alloy plate having a hardness of 150 Hv or more, among the textures described above, in particular, the orientation distribution density in the B direction, and further, the distribution density in the B orientation, the S orientation, and the Cu orientation are It greatly affects the strength. The larger the orientation distribution density of the B, S, and Cu orientations, the more the rolling texture is developed and the higher the strength.
しかし、一方で、B方位の方位分布密度が大きい、あるいはB方位とS方位とCu方位の方位分布密度の和が大きいほど、逆に、曲げ加工性は低下する。これに対して、B方位の方位分布密度を小さく、あるいはB方位とS方位とCu方位の方位分布密度の和を小さくするほど、結晶方位がランダム化して強度が低下し、曲げ加工性が向上する。 However, on the other hand, the bending workability decreases as the orientation distribution density of the B orientation increases or the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation increases. On the other hand, the smaller the orientation distribution density of the B orientation, or the smaller the sum of orientation distribution densities of the B orientation, S orientation, and Cu orientation, the more random the crystal orientation and the lower the strength, improving the bending workability. To do.
即ち、硬さ150Hv以上のCu−Fe−P系の銅合金板において、高強度を維持したまま曲げ加工性を向上させるためには、B方位の方位分布密度を小さくするとともに、B方位とS方位とCu方位の方位分布密度の和を特定範囲に制御することが有効である。 That is, in order to improve the bending workability while maintaining high strength in a Cu—Fe—P based copper alloy plate having a hardness of 150 Hv or more, the orientation distribution density of the B orientation is reduced, and the B orientation and S It is effective to control the sum of the orientation distribution density of the orientation and the Cu orientation within a specific range.
(方位分布密度の測定)
本発明におけるB方位の方位分布密度、B方位とS方位とCu方位の方位分布密度の和の測定は、通常のX線回折法を用いて行うことができる。
(Measurement of orientation distribution density)
The measurement of the orientation distribution density of the B orientation and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation in the present invention can be performed using a normal X-ray diffraction method.
これら各方位の方位密度は、(100)、(110)、(111)の完全極点図(Pole Figure)を測定し、それから、結晶方位分布関数(Orientation Distribution Function : ODF )を用いて、各方位の強度ピーク値の合計に対する、特定各方位(Cu方位、B方位、S方位)の強度ピークの割合を計算することによって求められる。これらの測定方法は、例えば、長島晋一編著「集合組織」、丸善株式会社刊、1984、P8〜44や、金属学会セミナー「集合組織」、日本金属学会編,1981、P3〜7 等に開示されている。 The orientation density of each of these orientations is determined by measuring the complete pole figure (Pole Figure) of (100), (110), (111), and then using the orientation distribution function (ODF). It is calculated | required by calculating the ratio of the intensity peak of each specific azimuth | direction (Cu azimuth | direction, B azimuth | direction, S azimuth | direction) with respect to the sum total of an intensity peak value. These measurement methods are disclosed in, for example, Nagashima Shinichi edited by “Aggregate”, published by Maruzen Co., Ltd., 1984, P8-44, Metallurgy Seminar “Aggregate”, Japan Institute of Metals, 1981, P3-7. ing.
また、これら各方位の方位密度は、TEM による電子線回折法、又は、SEM(Scanning Electron Microscopy)-ECP(Electron Chaneling Pattern) 法、或いは、SEM-EBSP〔Electron Back Scattering(Scattered) Pattern 、若しくはEBSD(Diffraction) ともいう〕を用いて測定したデータを基に、結晶方位分布関数を用いて方位密度を求めることによっても得られる。 In addition, the orientation density of each of these orientations is determined by electron beam diffraction using TEM, SEM (Scanning Electron Microscopy) -ECP (Electron Chaneling Pattern), or SEM-EBSP (Electron Back Scattering (Scattered) Pattern, or EBSD (Also referred to as (Diffraction)) to obtain the orientation density using the crystal orientation distribution function based on the data measured using
なお、これらの方位分布は板厚方向に変化しているため、板厚方向に何点か任意にとって平均をとることによって求める方が好ましい。但し、リードフレーム等の半導体用材料に用いられる銅合金板の場合、板厚が0.1 〜0.3mmw程度の薄板であるため、そのままの板厚で測定した値でも評価できる。 Since these orientation distributions change in the plate thickness direction, it is preferable to obtain them by taking an average for some points in the plate thickness direction. However, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, it is a thin plate having a thickness of about 0.1 to 0.3 mmw. Therefore, even a value measured with the plate thickness can be evaluated.
(方位分布密度の意義)
本発明では、前記した通り、Cu−Fe−P系銅合金板の高強度高導電率化と優れた曲げ加工性とを両立させるために、その圧延集合組織の発達を、特定方位について、調整する。このために、B方位の方位分布密度が20以下であり、且つB方位とS方位とCu方位の方位分布密度の和が10以上50以下であることと規定する。
(Significance of orientation distribution density)
In the present invention, as described above, in order to achieve both high strength and high conductivity of the Cu-Fe-P-based copper alloy plate and excellent bending workability, the development of the rolling texture is adjusted in a specific direction. To do. For this reason, the orientation distribution density of the B orientation is 20 or less, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is defined as 10 or more and 50 or less.
前記した、電子部品の軽薄短小化に対応できる、冷間圧延の強加工による加工硬化量を増大させた、通常のCu−Fe−P系の高強度銅合金板 (硬さ150Hv以上)では、必然的に、圧延集合組織が発達しすぎる。このため、B方位の方位分布密度が必然的に20を超え、また、B方位とS方位とCu方位の方位分布密度の和は必然的に50を超えて大きくなる。これは前記特許文献4の銅合金板を強加工した場合でも同様である。 In the usual Cu-Fe-P-based high-strength copper alloy plate (hardness of 150 Hv or more), which has increased the work hardening amount by strong cold rolling, which can cope with light and thin electronic components as described above, Inevitably, the rolling texture is too developed. For this reason, the orientation distribution density of the B orientation necessarily exceeds 20, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation necessarily exceeds 50. This is the same even when the copper alloy plate of Patent Document 4 is strongly processed.
この圧延集合組織の発達は、前記したCube方位など他の方位密度にも影響を及ぼす。しかし、特に、硬さ150Hv以上の高強度な銅合金板の領域では、前記したCube方位など他の方位に比して、Cu方位、B方位とS方位の発達の曲げ加工性への影響が格段に大きい。 The development of the rolling texture also affects other orientation densities such as the Cube orientation described above. However, particularly in the region of a high strength copper alloy plate having a hardness of 150 Hv or more, the development of the Cu, B, and S orientations has an effect on the bending workability compared to other orientations such as the Cube orientation described above. It is much bigger.
このように、B方位の方位分布密度が20を超えた場合、あるいは、B方位とS方位とCu方位の方位分布密度の和が50を超えた場合には、後述する実施例の通り、上記高強度において、曲げ加工性を向上させることができなくなる。 As described above, when the orientation distribution density of the B orientation exceeds 20, or when the sum of orientation distribution densities of the B orientation, the S orientation, and the Cu orientation exceeds 50, as described in the examples described later, Bending workability cannot be improved at high strength.
したがって、本発明では、B方位の方位分布密度が20以下とするとともに、B方位とS方位とCu方位の方位分布密度の和を50以下とする。これによって、後述する実施例の通り、上記高強度を維持したまま曲げ加工性を向上させることができる。 Therefore, in the present invention, the orientation distribution density of the B orientation is set to 20 or less, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is set to 50 or less. This makes it possible to improve the bending workability while maintaining the high strength as in the examples described later.
一方、B方位とS方位とCu方位の方位分布密度の和を10未満とするためには、冷間圧延による加工硬化量を小さくせざるを得ない。このため、B方位とS方位とCu方位の方位分布密度の和が10未満では、後述する実施例の通り、曲げ加工性を向上させることができるものの、上記高強度を維持できず、硬さが150Hv未満となる。このため、半導体リードフレーム用銅合金として、必要強度が不足する。 On the other hand, in order to make the sum of the orientation distribution densities of the B, S, and Cu orientations less than 10, the work hardening amount by cold rolling must be reduced. For this reason, when the sum of orientation distribution densities of the B, S, and Cu orientations is less than 10, although the bending workability can be improved as in the examples described later, the high strength cannot be maintained and the hardness is increased. Is less than 150 Hv. For this reason, the required strength is insufficient as a copper alloy for semiconductor lead frames.
(銅合金板の成分組成)
以下に、半導体リードフレーム用などとして、必要強度や導電率を満たすための、本発明Cu−Fe−P系銅合金板における化学成分組成を説明する。
(Component composition of copper alloy sheet)
The chemical component composition in the Cu—Fe—P based copper alloy plate of the present invention for satisfying the required strength and electrical conductivity for semiconductor lead frames and the like will be described below.
本発明では、強度が硬さで150Hv以上、導電率が75%IACS以上である高強度、高導電率を達成するために、質量%で、Feの含有量が0.01〜3.0%の範囲、前記Pの含有量が0.01〜0.3%の範囲とした、残部Cuおよび不可避的不純物からなる基本組成とする。この基本組成に対し、Zn、Snの一種または二種を、更に下記範囲で含有する態様でも良い。また、その他の選択的添加元素および不純物元素も、これら特性を阻害しない範囲での含有を許容する。なお、以下の含有量の表示は全て質量%である。 In the present invention, in order to achieve high strength and high electrical conductivity with strength of 150 Hv or higher in hardness and electrical conductivity of 75% IACS or higher, the content of Fe is 0.01 to 3.0% by mass. And a basic composition consisting of the remainder Cu and inevitable impurities, with the P content in the range of 0.01 to 0.3%. With respect to this basic composition, one or two of Zn and Sn may be further contained within the following range. Further, other selectively added elements and impurity elements are allowed to be contained within a range that does not impair these characteristics. In addition, the display of the following content is all the mass%.
(Fe)
Feは、Fe又はFe基金属間化合物として析出し、銅合金の強度や耐熱性を向上させる主要元素である。Feの含有量が0.01%未満では、製造条件によっては、上記析出粒子の生成量が少なく、導電率の向上は満たされるものの、強度向上への寄与が不足し、強度が不足する。一方、Feの含有量が3.0%を超えると、導電率が低下しやすく、導電率を無理に増加させるために析出量を増やそうとすると、逆に、析出粒子の成長・粗大化を招き、強度と曲げ加工性が低下する。したがって、Feの含有量は0.01〜3.0%の範囲とする。
(Fe)
Fe is a main element that precipitates as Fe or an Fe-based intermetallic compound and improves the strength and heat resistance of the copper alloy. If the Fe content is less than 0.01%, depending on the production conditions, the amount of the precipitated particles produced is small and the improvement in conductivity is satisfied, but the contribution to strength improvement is insufficient and the strength is insufficient. On the other hand, if the Fe content exceeds 3.0%, the conductivity tends to decrease, and if the amount of precipitation is increased in order to increase the conductivity forcibly, conversely, growth and coarsening of the precipitated particles are caused. , Strength and bending workability are reduced. Therefore, the Fe content is in the range of 0.01 to 3.0%.
(P)
Pは、脱酸作用がある他、Feと化合物を形成して、銅合金の高強度化させる主要元素である。P含有量が0.01%未満では、製造条件によっては、化合物の析出が不十分であるため、所望の強度が得られない。一方、P含有量が0.3%を超えると、導電性が低下するだけでなく、熱間加工性が低下する。したがって、Pの含有量は0.01〜0.3%の範囲とする。
(P)
In addition to deoxidizing action, P is a main element that forms a compound with Fe to increase the strength of the copper alloy. If the P content is less than 0.01%, depending on the production conditions, precipitation of the compound is insufficient, so that the desired strength cannot be obtained. On the other hand, when the P content exceeds 0.3%, not only the conductivity is lowered but also the hot workability is lowered. Therefore, the P content is in the range of 0.01 to 0.3%.
(Zn)
Znは、リードフレームなどに必要な、銅合金のはんだ及びSnめっきの耐熱剥離性を改善する。Znの含有量が0.005%未満の場合は所望の効果が得られない。一方、3.0%を超えるとはんだ濡れ性が低下するだけでなく、導電率の低下も大きくなる。したがって、選択的に含有させる場合のZnの含有量は0.005〜3.0%とする。
(Zn)
Zn improves the heat-resistant peelability of copper alloy solder and Sn plating required for lead frames and the like. If the Zn content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, not only the solder wettability is lowered but also the conductivity is greatly lowered. Therefore, the Zn content in the case of selective inclusion is set to 0.005 to 3.0%.
(Sn)
Snは、銅合金の強度向上に寄与する。Snの含有量が0.001%未満の場合は高強度化に寄与しない。一方、Snの含有量が多くなると、その効果が飽和し、逆に、導電率の低下を招くばかりか、曲げ加工性も劣化する。
この点、銅合金板の強度を硬さで150Hv以上、導電率を75%IACS以上とするためには、Snを0.001〜0.5%の範囲で選択的に含有させる。 また、銅合金板の強度をより高く、硬さで190Hv以上とし、導電率を50%IACS以上とするためには、Snを0.5%を越え、5.0%以下の範囲で選択的に含有させる。このように、Sn含有量は、用途に要求される強度(硬さ)と導電率のバランスに応じて、全体としては0.001〜5.0%の範囲から選択して含有させることとする。
(Sn)
Sn contributes to improving the strength of the copper alloy. When the Sn content is less than 0.001%, it does not contribute to high strength. On the other hand, when the Sn content is increased, the effect is saturated, and conversely, the conductivity is lowered and the bending workability is also deteriorated.
In this respect, Sn is selectively contained in the range of 0.001 to 0.5% in order to make the strength of the copper alloy plate 150Hv or more in hardness and 75% IACS or more in electrical conductivity. Further, in order to make the strength of the copper alloy plate higher, the hardness to be 190 Hv or more, and the conductivity to be 50% IACS or more, Sn is selectively in the range of more than 0.5% and 5.0% or less. To contain. As described above, the Sn content is selected from the range of 0.001 to 5.0% as a whole, depending on the balance of strength (hardness) and conductivity required for the application. .
(Mn、Mg、Ca量)
Mn、Mg、Caは、銅合金の熱間加工性の向上に寄与するので、これらの効果が必要な場合に選択的に含有される。Mn、Mg、Caの1種又は2種以上の含有量が合計で0.0001%未満の場合、所望の効果が得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して曲げ加工性を低下させるだけでなく、導電率の低下も激しくなる。従って、これらの元素の含有量は総量で0.0001〜1.0%の範囲で選択的に含有させる。
(Mn, Mg, Ca content)
Since Mn, Mg and Ca contribute to the improvement of hot workability of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of Mn, Mg, and Ca is less than 0.0001% in total, a desired effect cannot be obtained. On the other hand, when the total content exceeds 1.0%, coarse crystallized substances and oxides are generated, and not only the bending workability is lowered, but also the conductivity is severely lowered. Therefore, the content of these elements is selectively contained in the range of 0.0001 to 1.0% in total.
(Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Pt量)
これらの成分は銅合金の強度を向上させる効果があるので、これらの効果が必要な場合に選択的に含有される。これらの成分の1種又は2種以上の含有量が合計で0.001%未満の場合、所望の効果か得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して曲げ加工性を低下させるだけでなく、導電率の低下も激しく、好ましくない。従って、これらの元素の含有量は合計で0.001〜1.0%の範囲で選択的に含有させる。なお、これらの成分を、上記Mn、Mg、Caと共に含有する場合、これら含有する元素の合計含有量は1.0%以下とする。
(Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, Pt amount)
Since these components have an effect of improving the strength of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of these components is less than 0.001% in total, the desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystallized substances and oxides are generated and not only the bending workability is lowered, but also the electrical conductivity is severely lowered, which is not preferable. Therefore, the content of these elements is selectively contained in the range of 0.001 to 1.0% in total. In addition, when these components are contained with the said Mn, Mg, and Ca, the total content of these contained elements shall be 1.0% or less.
(Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタル量)
これらの成分は不純物元素であり、これらの元素の含有量の合計が0.1%を越えた場合、粗大な晶出物や酸化物が生成して曲げ加工性を低下させる。従って、これらの元素の含有量は合計で0.1%以下とすることが好ましい。
(Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B , Misch metal amount)
These components are impurity elements, and when the total content of these elements exceeds 0.1%, coarse crystallized substances and oxides are formed, and bending workability is lowered. Therefore, the total content of these elements is preferably 0.1% or less.
(製造条件)
次に、銅合金板組織を上記本発明規定の組織とするための、好ましい製造条件について以下に説明する。本発明銅合金板は、上記本発明規定の組織とするための、最終冷間圧延での加工率(冷延率)や低温の焼鈍などの好ましい条件を除き、通常の製造工程自体を大きく変えることは不要で、常法と同じ工程で製造できる。
(Production conditions)
Next, preferable manufacturing conditions for making the copper alloy sheet structure the structure defined in the present invention will be described below. The copper alloy sheet of the present invention greatly changes the normal manufacturing process itself except for preferable conditions such as the processing rate (cold rolling ratio) in the final cold rolling and the low-temperature annealing in order to obtain the structure defined in the present invention. This is unnecessary and can be manufactured in the same process as the conventional method.
即ち、先ず、上記好ましい成分組成に調整した銅合金溶湯を鋳造する。そして、鋳塊を面削後、加熱または均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。 That is, first, a molten copper alloy adjusted to the preferred component composition is cast. Then, after chamfering the ingot, it is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled.
その後、中延べと言われる一次冷間圧延して、焼鈍、洗浄後、更に仕上げ(最終)冷間圧延、低温焼鈍(最終焼鈍、仕上げ焼鈍)して、製品板厚の銅合金板などとする。例えば、リードフレーム等の半導体用材料に用いられる銅合金板の場合は、製品板厚が0.1〜0.3mm程度である。 After that, the first cold rolling, which is said to be intermediate, is annealed, washed, and then finished (final) cold rolled and low-temperature annealed (final annealing, final annealing) to obtain a copper alloy sheet having a product thickness. . For example, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, the product plate thickness is about 0.1 to 0.3 mm.
なお、一次冷間圧延の前に銅合金板の溶体化処理および水冷による焼き入れ処理を行なっても良い。この際、溶体化処理温度は、例えば750 〜1000℃の範囲から選択される。 In addition, you may perform the solution treatment of a copper alloy plate, and the quenching process by water cooling before primary cold rolling. At this time, the solution treatment temperature is selected from a range of 750 to 1000 ° C., for example.
ここにおいて、上記した、B方位の方位分布密度が20以下であり、且つB方位とS方位とCu方位の方位分布密度の和が10以上50以下となるよう制御するには、1パスあたり10〜50%の冷延率で、上記最終冷延を行い、その後に100〜400℃で0.2分以上300分以下の低温条件で、上記最終焼鈍を行うことが有効である。 Here, in order to control the azimuth distribution density of the B azimuth to be 20 or less and the sum of the azimuth distribution densities of the B azimuth, S azimuth, and Cu azimuth to be 10 or more and 50 or less, it is 10 per pass. It is effective to perform the final cold rolling at a cold rolling rate of ˜50% and then perform the final annealing at a low temperature of 0.2 to 300 minutes at 100 to 400 ° C.
(最終冷間圧延)
Cu−Fe−P系の高強度銅合金板の硬さ150Hv以上を得るために、本発明でも、最終冷間圧延の強加工による加工硬化量の増大 (オロワン機構による導入転位の高堆積化) を行なう。但し、これによって、圧延集合組織が発達しすぎないように、最終冷間圧延の1パスあたりの冷延率を10〜50%とすることが好ましい。最終冷間圧延のパス数は、過少や過多のパス数を避けて、通常の3〜4回のパス数で行なうことが好ましい。
(Final cold rolling)
In order to obtain a Cu-Fe-P-based high-strength copper alloy sheet having a hardness of 150 Hv or more, the present invention also increases the amount of work hardening due to the strong work of the final cold rolling (high deposition of introduced dislocations by the Orowan mechanism). To do. However, it is preferable that the cold rolling rate per pass of the final cold rolling is 10 to 50% so that the rolling texture does not develop too much. The number of final cold rolling passes is preferably 3 to 4 times as usual, avoiding too few or too many passes.
この通常のパス数の際、最終冷間圧延の1パスあたりの冷延率が50%を超えると、銅合金の成分組成、それまでの製造履歴や製造条件にもよるが、B方位の方位分布密度が20を超えるか、B方位とS方位とCu方位の方位分布密度の和が50を超えて大きくなる可能性が高い。 In the case of this normal number of passes, if the cold rolling rate per pass of final cold rolling exceeds 50%, depending on the composition of the copper alloy, production history and production conditions so far, the orientation of the B direction There is a high possibility that the distribution density exceeds 20, or the sum of the orientation distribution densities of the B, S, and Cu directions exceeds 50 and becomes large.
一方、最終冷間圧延の1パスあたりの冷延率が10%未満では、B方位とS方位とCu方位の方位分布密度の和が10未満となりやすく、冷間圧延による加工硬化量も不足する可能性が高い。このため、曲げ加工性を向上させることができるものの、上記高強度を維持できず、硬さが150Hv未満となる可能性が高い。 On the other hand, if the cold rolling rate per pass of the final cold rolling is less than 10%, the sum of orientation distribution densities of the B, S, and Cu orientations tends to be less than 10, and the amount of work hardening by cold rolling is insufficient. Probability is high. For this reason, although bending workability can be improved, the said high intensity | strength cannot be maintained and possibility that hardness will be less than 150 Hv is high.
(最終焼鈍)
本発明では、最終冷間圧延後に、敢えて低温での最終焼鈍を行なって、集合組織の制御を行なうことが好ましい。通常のリードフレームに用いられる銅合金板の製造方法では、強度が低下するため、前記特許文献5の実施例で施している歪み取りのための焼鈍(350℃×20秒)を除き、前記特許文献4のように、最終冷間圧延後に最終焼鈍はしない。しかし、本発明では、前記冷間圧延条件によって、また、最終焼鈍の低温化によって、この強度低下が抑制される。そして、最終焼鈍を低温で行なうことにより、各方位密度が上記範囲内に制御され、強度と曲げ加工性が向上する。
(Final annealing)
In the present invention, after the final cold rolling, it is preferable to control the texture by intentionally performing final annealing at a low temperature. In the manufacturing method of a copper alloy plate used for a normal lead frame, since the strength is reduced, the above-mentioned patent is applied except for the annealing (350 ° C. × 20 seconds) for removing strain applied in the embodiment of Patent Document 5. As in Reference 4, the final annealing is not performed after the final cold rolling. However, in the present invention, this strength reduction is suppressed by the cold rolling conditions and by lowering the final annealing. And by performing final annealing at low temperature, each orientation density is controlled in the said range, and an intensity | strength and bending workability improve.
焼鈍温度が100℃よりも低い温度や、焼鈍時間が0.2分未満の時間条件、あるいは、この低温焼鈍をしない条件では、銅合金板の組織・特性は、最終冷延後の状態からほとんど変化しない可能性が高い。このため、B方位の方位分布密度が20を超えるか、B方位とS方位とCu方位の方位分布密度の和が50を超えて大きくなるなど、各方位密度が上記範囲内に制御できなくなる可能性が高い。逆に、焼鈍温度が400℃を超える温度や、焼鈍時間が300分を超える時間で焼鈍を行うと、再結晶が生じ、転位の再配列や回復現象が過度に生じ、析出物も粗大化するため、強度が低下する可能性が高い。 Under conditions where the annealing temperature is lower than 100 ° C, the annealing time is less than 0.2 minutes, or the conditions where this annealing is not performed, the structure and properties of the copper alloy sheet are almost the same as those after the final cold rolling. It is likely that it will not change. For this reason, the orientation density of the B orientation exceeds 20, or the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation exceeds 50, and each orientation density cannot be controlled within the above range. High nature. Conversely, if annealing is performed at a temperature exceeding 400 ° C. or annealing time exceeding 300 minutes, recrystallization occurs, rearrangement of dislocations and recovery phenomenon occur excessively, and precipitates also become coarse. Therefore, there is a high possibility that the strength will decrease.
以下に本発明の実施例を説明する。最終冷間圧延の1パス当たりの冷延率と、最終焼鈍における温度と時間とを変えて、種々の集合組織を有する銅合金薄板を製造し、硬さ、導電率、曲げ性などの特性を評価した。 Examples of the present invention will be described below. By changing the cold rolling rate per pass of final cold rolling and the temperature and time in final annealing, copper alloy sheets with various textures are manufactured, and properties such as hardness, conductivity, and bendability are produced. evaluated.
具体的には、表1、2に示す各化学成分組成の銅合金をそれぞれコアレス炉にて溶製した後、半連続鋳造法で造塊して、厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。各鋳塊を表面を面削して加熱後、950℃の温度で熱間圧延を行って厚さ16mmの板とし、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延(中延べ)を行った。この板を面削後、中間焼鈍を入れながら冷間圧延を3パス行なう最終冷間圧延を行い、次いで最終焼鈍を行って、厚さ約0.15mmの銅合金板を得た。 Specifically, after each copper alloy having the chemical composition shown in Tables 1 and 2 was melted in a coreless furnace, it was ingoted by a semi-continuous casting method, and was 70 mm thick × 200 mm wide × 500 mm long. An ingot was obtained. Each ingot was chamfered on the surface and heated, and then hot rolled at a temperature of 950 ° C. to form a plate having a thickness of 16 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, primary cold rolling (intermediate rolling) was performed. After chamfering the plate, final cold rolling was performed in which three passes of cold rolling were performed while intermediate annealing was performed, and then final annealing was performed to obtain a copper alloy plate having a thickness of about 0.15 mm.
なお、表1、2に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、その他の不純物元素として、Hf、Th、Li、Na、K、Sr、Pd、W、S、Si、C、Nb、Al、V、Y、Mo、Pb、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量は、表1に記載の元素を含めて、これらの元素全体の合計で0.1質量%以下であった。
また、Mn、Mg、Caのうち1種又は2種以上を含む場合は、合計量を0.0001〜1.0質量%の範囲とし、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を場合は、合計量を0.001〜1.0質量%の範囲とし、更に、これらの元素全体の合計量も1.0質量%以下とした。
In each of the copper alloys shown in Tables 1 and 2, the remaining composition excluding the element amount described is Cu, and other impurity elements are Hf, Th, Li, Na, K, Sr, Pd, W, S, Si, C, Nb, Al, V, Y, Mo, Pb, In, Ga, Ge, As, Sb, Bi, Te, B, misch metal content, including the elements listed in Table 1, The total amount of all elements was 0.1% by mass or less.
Further, when one or more of Mn, Mg, and Ca are included, the total amount is in the range of 0.0001 to 1.0 mass%, and Zr, Ag, Cr, Cd, Be, Ti, Co, In the case of one or more of Ni, Au, and Pt, the total amount is in the range of 0.001 to 1.0% by mass, and the total amount of these elements is also 1.0% by mass or less. did.
最終冷間圧延の1パス当たりの冷延率(%)と、最終焼鈍における温度と時間(℃×分)を表1、2に各々示す。 Tables 1 and 2 show the cold rolling rate (%) per pass of the final cold rolling and the temperature and time (° C. × min) in the final annealing, respectively.
このようにして得た銅合金板に対して、各例とも、銅合金板から試料を切り出し、集合組織を測定し、硬さ測定、導電率測定、曲げ試験、プレス成形性試験を行った。これらの結果を表1、2に各々示す。 In each example, a sample was cut out of the copper alloy plate, the texture was measured, and the hardness measurement, conductivity measurement, bending test, and press formability test were performed on the copper alloy plate thus obtained. These results are shown in Tables 1 and 2, respectively.
上記プレス成形性試験は、曲げ加工性改善によって、逆に、リードフレーム材などに必要な特性の一つであるプレス成形性が低下していないかを確認するためである。 The above press formability test is intended to confirm whether the press formability, which is one of the characteristics necessary for the lead frame material, has been lowered due to the improvement of the bending workability.
(集合組織の測定)
銅合金板試料について、通常のX線回折法により、ターゲットにCuを用い、管電圧50KV、管電流200mA の条件で、(100)、(110)、(111)の完全極点図(Pole Figure)を測定した。この測定結果から、結晶方位分布関数(Orientation Distribution Function : ODF )を用いて、各方位の強度ピーク値の合計に対する、特定各方位の強度ピークの割合を計算し、B方位の方位分布密度、B方位とS方位とCu方位の方位分布密度の和を求めた。X線回折強度については、リガク製X線回折装置を用いて、(200) 面〔=(100) 面〕、(220) 面〔=(110) 面〕の回折強度を測定し、それより、(200) 面/(220) 面のX線回折強度比を求めた。
(Measurement of texture)
For a copper alloy plate sample, a complete pole figure of (100), (110), and (111) is obtained by a normal X-ray diffraction method using Cu as a target, tube voltage of 50 KV, and tube current of 200 mA. Was measured. From this measurement result, using the crystal orientation distribution function (Orientation Distribution Function: ODF), the ratio of the intensity peak of each specific orientation to the sum of the intensity peak values of each orientation is calculated, and the orientation distribution density of B orientation, B The sum of the orientation distribution density of the orientation, S orientation, and Cu orientation was determined. For the X-ray diffraction intensity, the diffraction intensity of the (200) plane [= (100) plane], (220) plane [= (110) plane] was measured using a Rigaku X-ray diffractometer. The (200) plane / (220) plane X-ray diffraction intensity ratio was determined.
(硬さ測定)
銅合金板試料の硬さ測定は、マイクロビッカース硬度計にて、0.5kg の荷重を加えて4箇所行い、硬さはそれらの平均値とした。
(Hardness measurement)
The hardness of the copper alloy plate sample was measured with a micro Vickers hardness tester by applying a load of 0.5 kg at four locations, and the hardness was an average value thereof.
(導電率測定)
銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。
(Conductivity measurement)
The electrical conductivity of the copper alloy sheet sample was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electric resistance with a double bridge type resistance measuring device.
(曲げ加工性の評価試験)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。各試料から幅10mm、長さ30mmの試験片を採取し、Bad Way (B. W. : 曲げ軸が圧延方向に平行)曲げを行い、割れの発生しない最小曲げ半径Rと試料板厚tの比R/tにて評価した。R/tの値が0の場合は最小曲げ半径Rが0である180°密着曲げが可能であることを意味する。R/tの値が小さい方が曲げ性に優れ、R/tが1.0以下が実際のリードフレームにおける密着曲げあるいはノッチング後の90°曲げにも対応できる曲げ性を有していると言える。
(Evaluation test for bending workability)
The bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. A specimen of width 10mm and length 30mm is taken from each sample, bent in a bad way (BW: bending axis is parallel to the rolling direction), and the ratio R / of the minimum bending radius R and sample thickness t where no cracks occur. Evaluation was made at t. When the value of R / t is 0, it means that 180 ° contact bending with a minimum bending radius R of 0 is possible. Smaller values of R / t are superior in bendability, and R / t of 1.0 or less can be said to have bendability that can cope with close contact bending or 90 ° bending after notching in an actual lead frame. .
なお、この曲げ加工性の評価は、前記した特許文献4のような曲げ試験(0.25mmRで90°曲げを行い、曲げ部の外面側を光学顕微鏡で観察して肌荒れの有無及びクラックの有無で評価する)よりも、実際のリードフレームにおける密着曲げあるいはノッチング後の90°曲げに対応した、より厳しい曲げ試験条件となる。前記した特許文献4は試験片の採取方向が記載されていないが、通常の曲げ性評価は、G. W (曲げ軸が圧延方向に直角)とされる。したがって、この点でも、本発明の曲げ試験条件は厳しいと言える。 This bending workability is evaluated by the bending test as described in Patent Document 4 described above (bending at 90 ° at 0.25 mmR and observing the outer surface side of the bent portion with an optical microscope for the presence or absence of rough skin and the presence or absence of cracks. This is a stricter bending test condition corresponding to close bending or notching 90 ° after notching in an actual lead frame. Although the above-mentioned Patent Document 4 does not describe the specimen sampling direction, the normal bendability evaluation is G. W (the bending axis is perpendicular to the rolling direction). Therefore, it can be said that the bending test conditions of the present invention are severe also in this respect.
(プレス成形性の評価試験)
銅合金板試料について機械式プレスにより0.3mm 幅のリードを打ち抜き、打ち抜いたリードのばり高さを測定し、プレス性を評価した。このとき、ばり高さは、10個のリードのばり面を走査型電子顕微鏡で観察する方法により測定し、各最大ばり高さの平均値とした。そして、ばり高さが3μm以下のものをプレス成形性が優れるとして○、ばり高さが3〜6μmのものを△、ばり高さが6μmを超えるものをプレス成形性が劣るとして×、と各々評価した。
(Evaluation test of press formability)
A copper alloy plate sample was punched with a 0.3 mm wide lead by a mechanical press, and the flash height of the punched lead was measured to evaluate the pressability. At this time, the burr height was measured by a method of observing the burr surfaces of 10 leads with a scanning electron microscope, and was defined as an average value of the maximum burr heights. When the flash height is 3 μm or less, the press formability is excellent, ○, when the flash height is 3-6 μm, Δ, when the flash height exceeds 6 μm, the press formability is poor, and x, respectively. evaluated.
表1から明らかな通り、本発明組成内の銅合金である発明例1〜7は、最終冷間圧延の1パス当たりの冷延率(%)と、最終焼鈍における温度と時間(℃×分)などの製造方法も好ましい条件内で製造されている。このため、発明例1〜7の集合組織は、B方位の方位分布密度が20以下であり、且つB方位とS方位とCu方位の方位分布密度の和が10以上50以下である。 As is apparent from Table 1, Invention Examples 1 to 7, which are copper alloys within the composition of the present invention, have a cold rolling rate (%) per pass of final cold rolling, temperature and time in final annealing (° C. × min. ) And the like are also manufactured within preferable conditions. For this reason, in the textures of Invention Examples 1 to 7, the orientation distribution density of the B orientation is 20 or less, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is 10 or more and 50 or less.
この結果、発明例1〜7は、硬さが150Hv以上、導電率が75%IACS以上の高強度、高導電率であって、曲げ加工性に優れている。しかも、他の重要な特性であるプレス成形性を低下させていない。 As a result, Invention Examples 1 to 7 have a high strength and a high conductivity of 150 Hv or higher in hardness and 75% IACS or higher in conductivity, and are excellent in bending workability. In addition, the press formability, which is another important characteristic, is not deteriorated.
これに対して、比較例8の銅合金は、Feの含有量が0.006%と、下限0.01%を低めに外れている。最終冷間圧延、最終焼鈍などの製造方法は好ましい条件内で製造されているため、集合組織は発明範囲内となり、曲げ加工性に優れている。しかし、硬さが低く、導電率も低く、高強度、高導電率化が達成できていない。 On the other hand, the copper alloy of Comparative Example 8 has an Fe content of 0.006%, which is slightly lower than the lower limit of 0.01%. Since the manufacturing methods such as final cold rolling and final annealing are manufactured within preferable conditions, the texture is within the scope of the invention and is excellent in bending workability. However, the hardness is low, the electrical conductivity is low, and high strength and high electrical conductivity cannot be achieved.
比較例9の銅合金は、Feの含有量が4.5%と、上限3.0%を高めに外れている。最終冷間圧延、最終焼鈍などの製造方法は好ましい条件内で製造されているため、集合組織は発明範囲内となり、硬度も高いものの、導電率が著しく低く、曲げ加工性も劣っている。 In the copper alloy of Comparative Example 9, the Fe content is 4.5%, which is out of the upper limit of 3.0%. Since the manufacturing methods such as final cold rolling and final annealing are manufactured within preferable conditions, the texture is within the scope of the invention and the hardness is high, but the conductivity is remarkably low and the bending workability is also inferior.
比較例10の銅合金は、Pの含有量が0.007%と、下限0.01%を低めに外れている。最終冷間圧延、最終焼鈍などの製造方法は好ましい条件内で製造されているため、集合組織は発明範囲内となり、曲げ加工性に優れている。しかし、硬さが低く、導電率も低く、高強度、高導電率化が達成できていない。 The copper alloy of Comparative Example 10 has a P content of 0.007%, which is slightly lower than the lower limit of 0.01%. Since the manufacturing methods such as final cold rolling and final annealing are manufactured within preferable conditions, the texture is within the scope of the invention and is excellent in bending workability. However, the hardness is low, the electrical conductivity is low, and high strength and high electrical conductivity cannot be achieved.
比較例11の銅合金は、Pの含有量が0.35%と、上限0.3%を高めに外れている。最終冷間圧延、最終焼鈍などの製造方法は好ましい条件内で製造されているため、集合組織は発明範囲内となり、硬度も高いものの、導電率が著しく低く、曲げ加工性も劣っている。 The copper alloy of Comparative Example 11 has a P content of 0.35%, which is higher than the upper limit of 0.3%. Since the manufacturing methods such as final cold rolling and final annealing are manufactured within preferable conditions, the texture is within the scope of the invention and the hardness is high, but the conductivity is remarkably low and the bending workability is also inferior.
比較例12の銅合金は本発明組成内の銅合金であり、最終冷間圧延も好ましい条件内で製造されているものの、最終焼鈍していない。このため、集合組織は、B方位の方位分布密度が高過ぎ、且つB方位とS方位とCu方位の方位分布密度の和も高過ぎる。この結果、強度レベルが低い割には、曲げ加工性や導電率が著しく劣る。なお、この比較例12は、最終冷間圧延など圧延条件が若干異なるが、銅合金組成や最終焼鈍していないなどの点で、特許文献4 の発明例3に相当する。 The copper alloy of Comparative Example 12 is a copper alloy within the composition of the present invention, and although the final cold rolling is produced within preferable conditions, it is not final annealed. For this reason, in the texture, the orientation distribution density of the B orientation is too high, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is too high. As a result, although the strength level is low, bending workability and electrical conductivity are remarkably inferior. This Comparative Example 12 corresponds to Invention Example 3 of Patent Document 4 in that the rolling conditions such as final cold rolling are slightly different, but the copper alloy composition and the final annealing are not performed.
比較例13の銅合金は本発明組成内の銅合金であるが、最終焼鈍における温度が低過ぎ、かつ時間が長過ぎる。このため、硬度は高いものの、導電率が著しく低い。また、集合組織は、B方位の方位分布密度が高過ぎ、且つB方位とS方位とCu方位の方位分布密度の和も高過ぎる。この結果、曲げ加工性が著しく劣る。 The copper alloy of Comparative Example 13 is a copper alloy within the composition of the present invention, but the temperature in the final annealing is too low and the time is too long. For this reason, although the hardness is high, the conductivity is remarkably low. In addition, the texture has an orientation distribution density in the B orientation that is too high, and the sum of orientation distribution densities in the B orientation, the S orientation, and the Cu orientation is too high. As a result, bending workability is remarkably inferior.
比較例14は、本発明組成内の銅合金であり、最終冷間圧延も好ましい条件内で製造されているものの、最終焼鈍における温度が高過ぎる。このため、硬度が120Hvと著しく低い。集合組織も、B方位とS方位とCu方位の方位分布密度の和が低過ぎ、また、硬度が著しく低いために、曲げ性は良好な結果となっている。 Although the comparative example 14 is a copper alloy within the composition of the present invention and the final cold rolling is also manufactured under preferable conditions, the temperature in the final annealing is too high. For this reason, the hardness is as extremely low as 120 Hv. The texture also has good bendability because the sum of orientation distribution densities of the B, S, and Cu orientations is too low and the hardness is extremely low.
比較例15は、本発明組成内の銅合金で、最終冷間圧延も好ましい条件内で製造されているものの、最終焼鈍していない。このため、集合組織は、B方位の方位分布密度が高過ぎ、且つB方位とS方位とCu方位の方位分布密度の和も高過ぎる。この結果、曲げ加工性や導電率が著しく劣る。なお、この比較例15と前記比較例12とを含めて、このように最終焼鈍していない例は、通常の(普通の)最終焼鈍しない製造方法による代表例とも言える。したがって、本発明における低温焼鈍による集合組織制御の意義が分かる。 Comparative Example 15 is a copper alloy within the composition of the present invention, and final cold rolling is also performed under preferable conditions, but is not final annealed. For this reason, in the texture, the orientation distribution density of the B orientation is too high, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is too high. As a result, bending workability and electrical conductivity are remarkably inferior. In addition, including this comparative example 15 and the said comparative example 12, it can be said that the example which is not finally annealed in this way is a typical example by the manufacturing method which does not carry out normal (normal) final annealing. Therefore, the significance of texture control by low temperature annealing in the present invention can be understood.
比較例16は、本発明組成内の銅合金だが、最終冷間圧延の1パス当たりの冷延率が低過ぎる。このため、硬度が138Hvと著しく低い。集合組織も、B方位とS方位とCu方位の方位分布密度の和が低過ぎ、また、硬度が著しく低いために、曲げ性は良好な結果となっている。 Although the comparative example 16 is a copper alloy within the composition of the present invention, the cold rolling rate per pass of the final cold rolling is too low. For this reason, hardness is remarkably as low as 138Hv. The texture also has good bendability because the sum of orientation distribution densities of the B, S, and Cu orientations is too low and the hardness is extremely low.
比較例17は、本発明組成内の銅合金だが、最終冷間圧延の1パス当たりの冷延率が高過ぎる。B方位の方位分布密度が高過ぎ、且つB方位とS方位とCu方位の方位分布密度の和は範囲内であるものの、曲げ加工性が著しく劣る。この比較例17が、謂わば、冷延強加工によって高強度を得る、従来のこの種高強度銅合金板の典型とも言える。 Although the comparative example 17 is a copper alloy within the composition of the present invention, the cold rolling rate per pass of the final cold rolling is too high. Although the orientation distribution density of the B orientation is too high and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is within the range, the bending workability is extremely inferior. It can be said that this comparative example 17 is a typical example of this kind of conventional high strength copper alloy plate that obtains high strength by so-called cold-rolling strong processing.
また、表2から明らかな通り、選択的添加元素を含み、本発明組成内の銅合金である発明例18〜20も、最終冷間圧延の1パス当たりの冷延率(%)と、最終焼鈍における温度と時間(℃×分)などの製造方法も好ましい条件内で製造されている。このため、発明例18〜20の集合組織は、B方位の方位分布密度が20以下であり、且つB方位とS方位とCu方位の方位分布密度の和が10以上50以下である。 In addition, as is apparent from Table 2, Invention Examples 18 to 20 which are copper alloys within the composition of the present invention containing a selective additive element also have a cold rolling rate (%) per pass of the final cold rolling, and the final Manufacturing methods such as temperature and time (° C. × min) in annealing are also manufactured within preferable conditions. For this reason, the textures of Invention Examples 18 to 20 have an orientation distribution density of B orientation of 20 or less, and the sum of orientation distribution densities of B orientation, S orientation, and Cu orientation is 10 or more and 50 or less.
この結果、発明例18〜20も、硬さが150Hv以上、導電率が75%IACS以上の高強度、高導電率であって、曲げ加工性に優れている。しかも、他の重要な特性であるプレス成形性を低下させていない。 As a result, the inventive examples 18 to 20 also have high strength and high conductivity of 150 Hv or more in hardness and 75% IACS or more in conductivity, and are excellent in bending workability. In addition, the press formability, which is another important characteristic, is not deteriorated.
更に、表2の発明例21〜24は、本発明組成内の銅合金であるが、Snの含有量が比較的高めの場合を示している。発明例21〜24は、最終冷間圧延の1パス当たりの冷延率(%)と、最終焼鈍における温度と時間(℃×分)などの製造方法も好ましい条件内で製造されている。このため、集合組織は、B方位の方位分布密度が20以下であり、且つB方位とS方位とCu方位の方位分布密度の和が10以上50以下である。 Furthermore, invention examples 21 to 24 in Table 2 are copper alloys within the composition of the present invention, but show a case where the content of Sn is relatively high. Inventive Examples 21 to 24 are manufactured under preferable conditions for manufacturing methods such as the cold rolling rate (%) per pass of the final cold rolling and the temperature and time (° C. × min) in the final annealing. For this reason, the texture has an orientation distribution density in the B direction of 20 or less, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is 10 or more and 50 or less.
この結果、発明例発明例21〜24は、硬さが190Hv以上の高強度であって、導電率も50%IACS以上あり、曲げ加工性に優れている。しかも、他の重要な特性であるプレス成形性を低下させていない。 As a result, Invention Examples Invention Examples 21 to 24 have a high strength of 190 Hv or more, an electrical conductivity of 50% IACS or more, and excellent bending workability. In addition, the press formability, which is another important characteristic, is not deteriorated.
比較例25の銅合金は、比較例11と同様に、Pの含有量が上限0.3%を高めに外れている。最終冷間圧延、最終焼鈍などの製造方法は好ましい条件内で製造されているため、集合組織は発明範囲内となるものの、硬度の割に導電率が著しく低く、曲げ加工性も劣っている。 In the copper alloy of Comparative Example 25, as in Comparative Example 11, the P content deviates from the upper limit of 0.3%. Since manufacturing methods such as final cold rolling and final annealing are manufactured within preferable conditions, the texture is within the scope of the invention, but the conductivity is remarkably low for the hardness and the bending workability is also inferior.
比較例26の銅合金は、比較例9と同様に、Feの含有量が上限3.0%を高めに外れている。最終冷間圧延、最終焼鈍などの製造方法は好ましい条件内で製造されているため、集合組織は発明範囲内となるものの、硬度の割に導電率が著しく低く、曲げ加工性も劣っている。 In the copper alloy of Comparative Example 26, as in Comparative Example 9, the Fe content is higher than the upper limit of 3.0%. Since manufacturing methods such as final cold rolling and final annealing are manufactured within preferable conditions, the texture is within the scope of the invention, but the conductivity is remarkably low for the hardness and the bending workability is also inferior.
比較例27の銅合金は本発明組成内の銅合金であるが、比較例13と同様に、最終焼鈍における温度が低過ぎ、かつ時間が長過ぎる。このため、硬度の割りには導電率が著しく低い。また、集合組織は、B方位の方位分布密度が高過ぎ、且つB方位とS方位とCu方位の方位分布密度の和も高過ぎる。この結果、曲げ加工性が著しく劣る。 The copper alloy of Comparative Example 27 is a copper alloy within the composition of the present invention, but, as in Comparative Example 13, the temperature in the final annealing is too low and the time is too long. For this reason, electrical conductivity is remarkably low for the hardness. In addition, the texture has an orientation distribution density in the B orientation that is too high, and the sum of orientation distribution densities in the B orientation, the S orientation, and the Cu orientation is too high. As a result, bending workability is remarkably inferior.
比較例28は、本発明組成内の銅合金で、最終冷間圧延も好ましい条件内で製造されているものの、比較例12、15と同様に、最終焼鈍していない。このため、集合組織は、B方位の方位分布密度が高過ぎ、且つB方位とS方位とCu方位の方位分布密度の和も高過ぎる。この結果、硬度が低く曲げ加工性が劣る。 Comparative Example 28 is a copper alloy within the composition of the present invention, and final cold rolling is also performed under preferable conditions. However, as in Comparative Examples 12 and 15, final annealing is not performed. For this reason, in the texture, the orientation distribution density of the B orientation is too high, and the sum of the orientation distribution densities of the B orientation, the S orientation, and the Cu orientation is too high. As a result, the hardness is low and the bending workability is poor.
以上の結果から、高強度、高導電率化させた上で、曲げ加工性にも優れさせるための、本発明銅合金板の成分組成、集合組織の臨界的な意義および集合組織を得るための好ましい製造条件の意義が裏付けられる。 From the above results, in order to obtain high strength and high electrical conductivity, and to improve the bending workability, the composition of the copper alloy sheet of the present invention, the critical significance of the texture and the texture The significance of preferred production conditions is supported.
以上説明したように、本発明によれば、プレス成形性などの他の特性を低下させずに、高強度高導電率化と優れた曲げ加工性を両立させたCu−Fe−P系銅合金板を提供することができる。この結果、小型化及び軽量化した電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コネクタ、端子、スイッチ、リレーなどの、高強度高導電率化と、厳しい曲げ加工性が要求される用途に適用することができる。 As described above, according to the present invention, a Cu-Fe-P-based copper alloy that achieves both high strength and high conductivity and excellent bending workability without reducing other properties such as press formability. Board can be provided. As a result, for electrical and electronic parts that have been reduced in size and weight, in addition to semiconductor device lead frames, lead frames, connectors, terminals, switches, relays, etc. have high strength and high conductivity, and severe bending workability. It can be applied to the required use.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229678A JP3962751B2 (en) | 2004-08-17 | 2005-08-08 | Copper alloy sheet for electric and electronic parts with bending workability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004237490 | 2004-08-17 | ||
JP2005229678A JP3962751B2 (en) | 2004-08-17 | 2005-08-08 | Copper alloy sheet for electric and electronic parts with bending workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006083465A JP2006083465A (en) | 2006-03-30 |
JP3962751B2 true JP3962751B2 (en) | 2007-08-22 |
Family
ID=36162212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005229678A Expired - Fee Related JP3962751B2 (en) | 2004-08-17 | 2005-08-08 | Copper alloy sheet for electric and electronic parts with bending workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3962751B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2339039B8 (en) * | 2006-07-21 | 2016-12-07 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy sheet for electric and electronic part |
EP2388347B1 (en) * | 2006-10-02 | 2014-04-16 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for producing a copper alloy sheet for electric and electronic parts |
CN101743333A (en) * | 2007-08-07 | 2010-06-16 | 株式会社神户制钢所 | copper alloy sheet |
JP5214282B2 (en) * | 2008-03-07 | 2013-06-19 | 株式会社神戸製鋼所 | Copper alloy plate for QFN package with excellent dicing workability |
JP5320541B2 (en) * | 2009-04-07 | 2013-10-23 | 株式会社Shカッパープロダクツ | Copper alloy material for electrical and electronic parts |
JP5464659B2 (en) * | 2010-02-19 | 2014-04-09 | 株式会社神戸製鋼所 | Copper tube for heat exchanger with excellent fracture strength and bending workability |
JP5067817B2 (en) * | 2010-05-27 | 2012-11-07 | 三菱伸銅株式会社 | Cu-Fe-P-based copper alloy plate excellent in conductivity and heat resistance and method for producing the same |
JP5623169B2 (en) * | 2010-07-23 | 2014-11-12 | 三菱伸銅株式会社 | Method for producing irregular cross-section copper alloy strip |
JP5794817B2 (en) * | 2010-09-06 | 2015-10-14 | 古河電気工業株式会社 | Copper alloy sheet and method for producing the same |
JP5623309B2 (en) * | 2011-02-24 | 2014-11-12 | 三菱伸銅株式会社 | Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof |
JP5827090B2 (en) * | 2011-09-29 | 2015-12-02 | 三菱伸銅株式会社 | Cu-Fe-P based copper alloy plate excellent in conductivity, heat resistance and bending workability, and method for producing the same |
JP2013231224A (en) * | 2012-05-01 | 2013-11-14 | Sh Copper Products Co Ltd | Copper alloy material for electric and electronic components having excellent bending processability |
JP2014074223A (en) * | 2012-09-12 | 2014-04-24 | Jx Nippon Mining & Metals Corp | Copper alloy sheet excellent in conductivity and stress relaxation property |
JP5467163B1 (en) * | 2013-03-26 | 2014-04-09 | Jx日鉱日石金属株式会社 | Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate |
-
2005
- 2005-08-08 JP JP2005229678A patent/JP3962751B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006083465A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
US8715431B2 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
JP4584692B2 (en) | High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof | |
JP4934759B2 (en) | Copper alloy sheet, connector using the same, and method for producing copper alloy sheet | |
JP4418028B2 (en) | Cu-Ni-Si alloy for electronic materials | |
JP6385382B2 (en) | Copper alloy sheet and method for producing copper alloy sheet | |
TWI382097B (en) | Cu-Ni-Si-Co-Cr alloy for electronic materials | |
KR102126731B1 (en) | Copper alloy sheet and method for manufacturing copper alloy sheet | |
JP4117327B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent press punchability | |
WO2010126046A1 (en) | Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY | |
JP5619389B2 (en) | Copper alloy material | |
JP2002180165A (en) | Copper based alloy having excellent press blanking property and its production method | |
JP2008248333A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR | |
JP4157899B2 (en) | High strength copper alloy sheet with excellent bending workability | |
JP4168077B2 (en) | Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion | |
JP2008081762A (en) | Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP3798260B2 (en) | Copper alloy for electric and electronic parts and electric and electronic parts | |
JP4006467B1 (en) | Copper alloy with high strength, high conductivity, and excellent bending workability | |
JP4006468B1 (en) | Copper alloy with high strength, high conductivity, and excellent bending workability | |
JP4754930B2 (en) | Cu-Ni-Si based copper alloy for electronic materials | |
JP5098096B2 (en) | Copper alloy, terminal or bus bar, and method for producing copper alloy | |
JP4459067B2 (en) | High strength and high conductivity copper alloy | |
JP5291494B2 (en) | High strength high heat resistance copper alloy sheet | |
JP4664584B2 (en) | High strength copper alloy plate and method for producing high strength copper alloy plate | |
JP2008024995A (en) | Copper alloy plate for electrical/electronic component having excellent heat resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070515 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070521 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3962751 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100525 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110525 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120525 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130525 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140525 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |