Nothing Special   »   [go: up one dir, main page]

JP4418028B2 - Cu-Ni-Si alloy for electronic materials - Google Patents

Cu-Ni-Si alloy for electronic materials Download PDF

Info

Publication number
JP4418028B2
JP4418028B2 JP2009509224A JP2009509224A JP4418028B2 JP 4418028 B2 JP4418028 B2 JP 4418028B2 JP 2009509224 A JP2009509224 A JP 2009509224A JP 2009509224 A JP2009509224 A JP 2009509224A JP 4418028 B2 JP4418028 B2 JP 4418028B2
Authority
JP
Japan
Prior art keywords
compound
alloy
mass
strength
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009509224A
Other languages
Japanese (ja)
Other versions
JPWO2008123433A1 (en
Inventor
尚彦 江良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Application granted granted Critical
Publication of JP4418028B2 publication Critical patent/JP4418028B2/en
Publication of JPWO2008123433A1 publication Critical patent/JPWO2008123433A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は析出硬化型銅合金に関し、とりわけ各種電子機器部品に用いるのに好適なCu−Ni−Si−Cr系合金に関する。   The present invention relates to a precipitation hardening type copper alloy, and more particularly to a Cu—Ni—Si—Cr alloy suitable for use in various electronic device parts.

リードフレーム、コネクタ、ピン、端子、リレー、スイッチ等の各種電子機器部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。近年、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに対応して電子機器部品に使用される銅合金に対する要求レベルはますます高度化している。   Copper alloys for electronic materials used in various electronic equipment components such as lead frames, connectors, pins, terminals, relays, switches, etc., have both high strength and high conductivity (or thermal conductivity) as basic characteristics. Required. In recent years, high integration, miniaturization, and thinning of electronic components have been rapidly progressing, and the level of demand for copper alloys used in electronic device components has been increased accordingly.

高強度及び高導電性の観点から、近年、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、析出硬化型の銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, in recent years, the amount of precipitation hardening type copper alloys has increased in place of conventional solid solution strengthened copper alloys such as phosphor bronze and brass as copper alloys for electronic materials. ing. In precipitation-hardened copper alloys, by aging the supersaturated solid solution that has undergone solution treatment, fine precipitates are uniformly dispersed, increasing the strength of the alloy and reducing the amount of solid solution elements in the copper. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

析出硬化型銅合金のうち、コルソン系合金と一般に呼ばれるCu−Ni−Si系銅合金は比較的高い導電性、強度、応力緩和特性及び曲げ加工性を兼備する代表的な銅合金であり、業界において現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることによって強度と導電率の向上が図れる。   Among precipitation hardening copper alloys, Cu-Ni-Si copper alloys, commonly called Corson alloys, are representative copper alloys that have relatively high electrical conductivity, strength, stress relaxation characteristics and bending workability. Is one of the alloys that is currently under active development. In this copper alloy, strength and conductivity can be improved by precipitating fine Ni—Si intermetallic compound particles in a copper matrix.

Ni−Si系金属間化合物粒子の析出物は化学量論組成で一般に構成されており、例えば、特許文献1では合金中のNiとSiの質量比を金属間化合物であるNi2Siの質量組成比(Niの原子量×2:Siの原子量×1)に近づけることにより、すなわちNiとSiの重量濃度比をNi/Si=3〜7とすることにより良好な電気伝導性が得られることが記載されている。The precipitate of Ni—Si-based intermetallic compound particles is generally configured with a stoichiometric composition. For example, in Patent Document 1, the mass ratio of Ni and Si in an alloy is set to the mass composition of Ni 2 Si, which is an intermetallic compound. It is described that good electrical conductivity can be obtained by approaching the ratio (Ni atomic weight × 2: Si atomic weight × 1), that is, by setting the weight concentration ratio of Ni and Si to Ni / Si = 3-7. Has been.

しかし、特許文献1で記載されるようにはNiとSiの質量比を金属間化合物であるNi2Siの質量組成比(Niの原子量×2:Siの原子量×1)に近づけることにより、特性改善が図れるが、現実には、過剰なSiによって幾分かの導電率の低下が見られる。
そこで、CrなどのSiと化合物を作る元素を添加し、過剰となったSiと化合させることで導電率を上げることが考えられる。Crはその1つの元素であり、Cr含有Cu−Ni−Si系合金がある。
However, as described in Patent Document 1, characteristics can be obtained by bringing the mass ratio of Ni and Si close to the mass composition ratio of Ni 2 Si, which is an intermetallic compound (Ni atomic weight × 2: Si atomic weight × 1). Although improvement can be achieved, in reality, there is some decrease in conductivity due to excess Si.
Therefore, it is conceivable to increase the conductivity by adding an element that forms a compound with Si, such as Cr, and combining it with excess Si. Cr is one of the elements, and there is a Cr-containing Cu—Ni—Si alloy.

合金元素としてCrが添加されたCu−Ni−Si系合金としては特許文献2、特許文献3に記載のものが挙げられる。
特許文献2では、Ni:1.5〜4.0重量%、Si:0.35〜1.0重量%、随意的に、Zr、Cr、Snの群から選ばれる少なくとも1種の金属:0.05〜1.0重量%、残部がCuおよび不可避的不純物から成るコルソン合金を加熱(又は冷却)する際に、400〜800℃の温度域では、前記コルソン合金の引張熱歪が1×10-4以下となるように前記コルソン合金を加熱(又は冷却)することを特徴とするコルソン合金の熱処理方法が記載されている。この方法によれば、熱処理時の鋳塊割れを防止することができるとされている。
Examples of Cu—Ni—Si based alloys to which Cr is added as an alloy element include those described in Patent Document 2 and Patent Document 3.
In Patent Document 2, Ni: 1.5 to 4.0% by weight, Si: 0.35 to 1.0% by weight, and optionally at least one metal selected from the group of Zr, Cr, Sn: 0 When heating (or cooling) a Corson alloy consisting of 0.05 to 1.0% by weight, the balance being Cu and inevitable impurities, in the temperature range of 400 to 800 ° C., the tensile thermal strain of the Corson alloy is 1 × 10 The Corson alloy heat treatment method is characterized in that the Corson alloy is heated (or cooled) to be -4 or less. According to this method, it is said that ingot cracking during heat treatment can be prevented.

特許文献3には、Ni:2〜5重量%、Si:0.5〜1.5重量%、Zn:0.1〜2重量%、Mn:0.01〜0.1重量%、Cr:0.001〜0.1重量%、Al:0.001〜0.15重量%、Co:0.05〜2重量%を含有し、不純物成分のSの含有量を15ppm以下に規制し、残部がCu及び不可避的不純物からなることを特徴とする曲げ加工性が優れた高力銅合金が記載されている。この発明によれば、Crは鋳塊の粒界を強化して、熱間加工性を高める元素であるとされている。また、0.1重量%を超えてCrが含有されると溶湯が酸化し、鋳造性が劣化するとされている。その他、該銅合金はクリプトル炉において大気中で木炭を被覆して溶解鋳造することが記載されている。   In Patent Document 3, Ni: 2 to 5% by weight, Si: 0.5 to 1.5% by weight, Zn: 0.1 to 2% by weight, Mn: 0.01 to 0.1% by weight, Cr: 0.001 to 0.1 wt%, Al: 0.001 to 0.15 wt%, Co: 0.05 to 2 wt%, the content of S as an impurity component is regulated to 15 ppm or less, and the balance Describes a high-strength copper alloy having excellent bending workability, characterized by comprising Cu and inevitable impurities. According to this invention, Cr is said to be an element that strengthens the grain boundary of the ingot and enhances hot workability. Further, when Cr is contained exceeding 0.1% by weight, the molten metal is oxidized and castability is deteriorated. In addition, it is described that the copper alloy is melt cast by coating charcoal in the atmosphere in a kryptor furnace.

また、CrとSiの化合物という観点では特許文献4が挙げられる。特許文献4には、Cr:0.1〜0.25重量%、Si:0.005〜0.1重量%、Zn:0.1〜0.5重量%、Sn:0.05〜0.5重量%を含み、CrとSiの重量比が3〜25で残部がCuおよび不可避的不純物から成る銅合金において、銅母相中に0.05μm〜10μmの大きさを有するCrSi化合物が1×103〜5×105個/mm2の個数密度で存在し、且つ、Cr化合物(CrSi化合物以外)の大きさを10μm以下とするエッチング加工性および打ち抜き加工性に優れた電子機器用銅合金について、鋳塊の熱間加工温度と時効熱処理温度が記載されている。この方法によれば、エッチング加工性とプレス打ち抜き性の双方を好適に使用することができるとされている。Patent Document 4 is cited from the viewpoint of a compound of Cr and Si. In Patent Document 4, Cr: 0.1 to 0.25% by weight, Si: 0.005 to 0.1% by weight, Zn: 0.1 to 0.5% by weight, Sn: 0.05 to 0. In a copper alloy containing 5% by weight and having a Cr to Si weight ratio of 3 to 25 and the balance being Cu and inevitable impurities, a CrSi compound having a size of 0.05 μm to 10 μm is 1 × in the copper matrix. Copper alloy for electronic equipment excellent in etching workability and punching workability which exists at a number density of 10 3 to 5 × 10 5 pieces / mm 2 and has a Cr compound (other than CrSi compound) having a size of 10 μm or less Is described with respect to the hot working temperature of the ingot and the aging heat treatment temperature. According to this method, it is said that both etching processability and press punchability can be suitably used.

特開2001−207229号公報JP 2001-207229 A 特許第2862942号公報Japanese Patent No. 2862942 特許第3049137号公報Japanese Patent No. 3049137 特開2005−113180号公報JP-A-2005-113180

近年の電子部品の急速な高集積化と小型化・薄肉化における材料特性の飛躍的な向上の要求は、本発明の合金系であるCr含有Cu−Ni−Si系合金も同様である。
しかしながら、特許文献1ではCrは添加されておらず、現実には、過剰なNi、Siによって幾分かの導電率の低下が見られ、飛躍的に特性の向上に至ってはいない。特許文献2及び特許文献3ではCu−Ni-Si系合金にCrを添加しているが、特許文献2では添加して固溶強化を図る、特許文献3では熱間加工性を高めることを目的としており、本発明の鍵であるCr−Si化合物に関する記載は見当たらない。従って、これらの特許文献から本発明が解決しようとする課題の解決手段を容易に想定させるものではない。
The demand for dramatic improvement in material characteristics in recent rapid integration and downsizing / thinning of electronic parts is the same for the Cr-containing Cu—Ni—Si alloy which is the alloy system of the present invention.
However, in Patent Document 1, Cr is not added, and in reality, some decrease in conductivity is observed due to excessive Ni and Si, and the characteristics have not been dramatically improved. In Patent Document 2 and Patent Document 3, Cr is added to the Cu—Ni—Si-based alloy. However, Patent Document 2 aims to enhance the solid solution by adding, and Patent Document 3 aims to improve hot workability. Therefore, there is no description regarding the Cr—Si compound which is the key of the present invention. Therefore, the solution means of the problem to be solved by the present invention is not easily assumed from these patent documents.

特許文献4では、CrSi化合物の個数密度と大きさを制御することでエッチング加工性および打ち抜き加工性を改善するとの記載はあるが、Niが添加されていないことからNi−Si化合物の形成を考慮することなく、Cr−Si化合物形成のみの条件を考えればよく、本発明が解決しようとする課題の解決手段を容易に想定させるものではない。
そこで、本発明の課題は、Cu−Ni−Si系合金においてCr添加の効果をより良く発揮させることで飛躍的に特性の向上即ち、高強度・高導電性のコルソン系合金を提供することである。
Patent Document 4 describes that etching processability and punching processability are improved by controlling the number density and size of the CrSi compound, but considering the formation of the Ni-Si compound because Ni is not added. However, it is sufficient to consider only the conditions for forming the Cr—Si compound, and it does not easily assume the solution of the problem to be solved by the present invention.
Accordingly, an object of the present invention is to provide a Corson alloy having a high strength and high conductivity by dramatically improving the characteristics by better exhibiting the effect of Cr addition in the Cu-Ni-Si alloy. is there.

本発明者は上記課題を解決するために鋭意研究を行った結果、以下の発明を見出した。Cu−Ni−Si系合金においてNiに対してSiが過剰となる組成とし、Ni添加分のNiシリサイドを確実に析出させて高強度化させる一方、過剰となったSiを添加したCrとの化合物として生成させ、高導電化を図る。そして本発明の重要なポイントは、CrとSiとの化合が成長しすぎて、Niと化合するべきSiが不足しないようにCr−Si化合物の成長を制御することにある。具体的には、本発明者はCr-Si化合物の組成と大きさ、個数密度に着目するに至り、熱処理工程の温度と冷却速度を制御することでその効果をより良く引き出すことができることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found the following inventions. In a Cu-Ni-Si-based alloy, the composition is such that Si is excessive with respect to Ni, and Ni silicide corresponding to Ni addition is surely precipitated to increase the strength, while the compound with Cr added with excess Si is added. To increase the conductivity. An important point of the present invention is to control the growth of the Cr—Si compound so that the combination of Cr and Si grows too much and the Si to be combined with Ni is not insufficient. Specifically, the present inventor has focused on the composition, size, and number density of the Cr—Si compound, and found out that the effect can be better achieved by controlling the temperature and cooling rate of the heat treatment process. It was.

すなわち、本発明は
(1)Ni:1.0〜4.5質量%、Si:0.50〜1.2質量%、Cr:0.003〜0.3質量%を含有し(但し、NiとSiの重量比が3≦Ni/Si≦5.5である。)、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、材料中に分散する大きさが0.1μm〜5μmのCr−Si化合物について、その分散粒子中のSiに対するCrの原子濃度比が1〜5であって、その分散密度が1×106個/mm2以下である電子材料用銅合金。
(2)大きさが0.1μm〜5μmのCr−Si化合物について、その分散密度が1×104個/mm2よりも高い請求項1記載の電子材料用銅合金。
(3)更にSn、及びZnから選択される1種又は2種以上を0.05〜2.0質量%含有する(1)又は(2)に記載の電子材料用銅合金。
(4)更にMg、Mn、Ag、P、As、Sb、Be、B、Ti、Zr、Al、Co及びFeから選択される1種又は2種以上を0.001〜2.0質量%含有する(1)〜(3)の何れか一項に記載の電子材料用銅合金。
(5)(1)〜(4)の何れか一項に記載の銅合金を用いた伸銅品。
(6)(1)〜(4)の何れか一項に記載の銅合金を用いた電子機器部品。
である。
That is, the present invention contains (1) Ni: 1.0-4.5 mass%, Si: 0.50-1.2 mass%, Cr: 0.003-0.3 mass% (provided that Ni The weight ratio of Si and Si is 3 ≦ Ni / Si ≦ 5.5.), A copper alloy for electronic materials composed of the balance Cu and inevitable impurities, and the size dispersed in the material is 0.1 μm A copper alloy for electronic materials having an atomic concentration ratio of Cr to Si in the dispersed particles of 1 to 10 6 / mm 2 with a dispersion density of 1 × 10 6 pieces / mm 2 or less of a Cr—Si compound of ˜5 μm.
(2) The copper alloy for electronic materials according to claim 1, wherein the dispersion density of the Cr—Si compound having a size of 0.1 μm to 5 μm is higher than 1 × 10 4 pieces / mm 2 .
(3) The copper alloy for electronic materials according to (1) or (2), further containing 0.05 to 2.0% by mass of one or more selected from Sn and Zn.
(4) Further, 0.001 to 2.0% by mass of one or more selected from Mg, Mn, Ag, P, As, Sb, Be, B, Ti, Zr, Al, Co, and Fe The copper alloy for electronic materials according to any one of (1) to (3).
(5) A rolled copper product using the copper alloy according to any one of (1) to (4).
(6) Electronic device parts using the copper alloy according to any one of (1) to (4).
It is.

本発明によれば、合金元素であるCr添加の効果がより良く発揮されるため、強度及び導電率が顕著に向上した電子材料用コルソン系銅合金が得られる。   According to the present invention, since the effect of addition of Cr, which is an alloy element, is better exhibited, a Corson-based copper alloy for electronic materials with significantly improved strength and electrical conductivity can be obtained.

Ni及びSiの添加量
Ni及びSiは、適当な熱処理を施すことにより金属間化合物としてNiシリサイド(Ni2Si等)を形成し、導電率を劣化させずに高強度化が図れる。SiとNiの質量比は上述したように量論組成に近い3≦Ni/Si≦5.5が好ましく、3.5≦Ni/Si≦5.0がより好ましい。
Addition amounts of Ni and Si Ni and Si form Ni silicide (Ni 2 Si or the like) as an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating conductivity. As described above, the mass ratio of Si and Ni is preferably 3 ≦ Ni / Si ≦ 5.5 close to the stoichiometric composition, and more preferably 3.5 ≦ Ni / Si ≦ 5.0.

しかしながら、Ni/Siが上記範囲の比を有していてもSi添加量が0.5質量%未満では所望の強度が得られず、1.2質量%を超えると高強度化は図れるが導電率が著しく低下し、更には偏析部で液相を生成して熱間加工性が低下するので好ましくない。そこで、Si:0.5〜1.2質量%とすればよく、好ましくは0.5〜0.8質量%である。Ni添加量はSi添加量に応じて上記の好ましい比を満足するように設定すればよく、Si添加量とバランスをとるためにNi:2.5〜4.5質量%とすればよく、好ましくはNi:3.2〜4.2質量%,より好ましくはNi:3.5〜4.0質量%である。   However, even if Ni / Si has a ratio within the above range, the desired strength cannot be obtained if the amount of Si added is less than 0.5% by mass. The rate is remarkably lowered, and further, a liquid phase is generated at the segregation part and the hot workability is lowered. Therefore, Si may be 0.5 to 1.2% by mass, and preferably 0.5 to 0.8% by mass. The addition amount of Ni may be set so as to satisfy the above-mentioned preferable ratio according to the addition amount of Si, and Ni: 2.5 to 4.5% by mass is preferable in order to balance the addition amount of Si, preferably Ni: 3.2 to 4.2% by mass, more preferably Ni: 3.5 to 4.0% by mass.

Crの添加量
通常のCu−Ni−Si系合金においてはNi−Si濃度を上昇させると、析出粒子の総数が増加するので、析出強化による強度上昇が図れる。一方、添加濃度上昇に伴い、析出に寄与しない固溶量も増すので、導電率は低下し、結局時効析出のピーク強度は上昇するが、ピーク強度となる導電率は低下する。しかしながら、上記のCu−Ni−Si系合金にCrを0.003〜0.3質量%、好ましくは0.01〜0.1質量%添加すると最終特性において、同じのNi−Si濃度を有するCu−Ni−Si系合金と比べて強度を損なわずに導電率を上昇でき、更に熱間加工性が改善されて歩留が高くなる。
Addition amount of Cr In a normal Cu—Ni—Si based alloy, when the Ni—Si concentration is increased, the total number of precipitated particles increases, so that the strength can be increased by precipitation strengthening. On the other hand, as the additive concentration increases, the amount of solid solution that does not contribute to precipitation also increases, so the conductivity decreases, and eventually the peak intensity of aging precipitation increases, but the conductivity that becomes the peak intensity decreases. However, when Cr is added to the Cu—Ni—Si based alloy in an amount of 0.003 to 0.3% by mass, preferably 0.01 to 0.1% by mass, Cu having the same Ni—Si concentration in the final characteristics. The electrical conductivity can be increased without impairing the strength as compared with the -Ni-Si alloy, and the hot workability is improved and the yield is increased.

Cu−Ni−Si系合金にCrを添加した場合に析出する粒子の組成はCrを主成分としたbcc構造の析出粒子を単体析出しやすいが、Siとの化合物も析出しやすい。Crは、適当な熱処理を施すことにより銅母相中でSiとの化合物であるクロムシリサイド(Cr3Si等)を容易に析出することができるため、溶体化処理、冷延、時効処理を組み合わせて合金特性を作り込む工程でNi2Si等として析出しなかった固溶Si成分をCr−Si化合物として析出させることができる。このため、固溶Siによる導電率の低下を抑制し、強度を損なわずに導電率の上昇を図ることができる。The composition of particles precipitated when Cr is added to a Cu—Ni—Si based alloy tends to precipitate single particles of bcc structure mainly composed of Cr, but also a compound with Si. Cr can easily precipitate chromium silicide (Cr 3 Si, etc.), which is a compound with Si, in a copper matrix by appropriate heat treatment, so it combines solution treatment, cold rolling, and aging treatment. Thus, a solid solution Si component that did not precipitate as Ni 2 Si or the like in the process of creating alloy characteristics can be precipitated as a Cr—Si compound. For this reason, the fall of the electrical conductivity by solid solution Si can be suppressed, and the raise of electrical conductivity can be aimed at without impairing intensity | strength.

このとき、Cr粒子中のSi濃度が低いと、母相にSiが残留するため導電率が低下し、一方Cr粒子中のSi濃度が高いとNi-Si粒子を析出するためのSi濃度が減少するため強度が低下する。更に、Cr中のSi濃度が高い場合には、粗大なCr−Si化合物が増え、曲げ、疲労強度などが劣化する。更に、溶体化後の冷却速度を徐冷したり、時効熱処理時間を過度に延長したりしてもCr−Si化合物が粗大化してNi−Si化合物を形成するSi濃度が減少し、強化に寄与するNi−Si化合物が不足する。これはCu中でのSiとCrの拡散速度がNiよりも速いのでCr−Si化合物は粗大化しやすく、Cr−Si化合物の析出速度は、Ni−Si化合物の析出速度より速くなるためである。   At this time, if the Si concentration in the Cr particles is low, Si remains in the parent phase, and thus the conductivity is reduced. On the other hand, if the Si concentration in the Cr particles is high, the Si concentration for precipitating the Ni—Si particles is reduced. Therefore, the strength decreases. Furthermore, when the Si concentration in Cr is high, coarse Cr—Si compounds increase, and bending, fatigue strength, and the like deteriorate. Furthermore, even if the cooling rate after solution heat treatment is slowed down or the aging heat treatment time is excessively extended, the Cr concentration of the Cr-Si compound is increased and the Si concentration forming the Ni-Si compound is reduced, contributing to strengthening. Ni-Si compound to be used is insufficient. This is because the diffusion rate of Si and Cr in Cu is faster than that of Ni, so that the Cr—Si compound is easily coarsened, and the precipitation rate of the Cr—Si compound is faster than the precipitation rate of the Ni—Si compound.

よって溶体化後の冷却速度を制御し、最大強度となる時効条件より高温、長時間となる条件を回避すれば、Cr−Si化合物の組成と大きさと密度を制御できる。よってCr濃度を0.003質量%以上、0.3質量%とし、Cr−Si化合物におけるSiに対するCrの原子濃度比を1〜5とした。   Therefore, the composition, size, and density of the Cr—Si compound can be controlled by controlling the cooling rate after solution treatment and avoiding conditions that are higher in temperature and longer than the aging conditions that provide maximum strength. Therefore, the Cr concentration is set to 0.003 mass% or more and 0.3 mass%, and the atomic concentration ratio of Cr to Si in the Cr—Si compound is set to 1 to 5.

また、Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。すなわち、溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時に珪化物を生成する。通常のCu−Ni−Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、従来のCu−Ni−Si系合金に比べて、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。   In addition, Cr preferentially precipitates at the crystal grain boundaries during the cooling process during melt casting, so that the grain boundaries can be strengthened, cracks during hot working are less likely to occur, and yield reduction can be suppressed. That is, Cr that has precipitated at the grain boundaries during melt casting re-dissolves by solution treatment or the like, but produces silicide during subsequent aging precipitation. In a normal Cu—Ni—Si based alloy, Si that does not contribute to aging precipitation suppresses the increase in conductivity while being dissolved in the matrix, but the silicide forming element Cr is not added. By adding and precipitating silicide further, the amount of solid solution Si can be reduced as compared with the conventional Cu-Ni-Si alloy, and the conductivity can be increased without impairing the strength.

Cr−Si化合物の大きさ、分散密度
Cr−Si化合物の大きさは、曲げ加工性および疲労強度等に影響を及ぼし、これが5μmを超えるか、または0.1〜5μmのCr−Si化合物の分散密度が1×106個/mm2を超える場合には曲げ加工性や疲労強度が顕著に劣化する。さらに個数密度は母相中のSi濃度の過不足に影響するため、大きな粒子が多数個分散した状態では所望の強度特性が得られない。よって分散密度の上限は1×106個/mm2以下であればよく、好ましくは5×105個/mm2以下、より好ましくは1×105個/mm2以下であればよい。また、1×104個/mm2以下の場合はCr添加による改善効果が小さいため、これを超えることが望ましい。
The size of the Cr—Si compound and the dispersion density The size of the Cr—Si compound affects the bending workability, fatigue strength, etc., which exceeds 5 μm, or the dispersion of the Cr—Si compound of 0.1 to 5 μm. When the density exceeds 1 × 10 6 pieces / mm 2 , bending workability and fatigue strength are remarkably deteriorated. Furthermore, since the number density affects the excess or deficiency of the Si concentration in the matrix, desired strength characteristics cannot be obtained in a state where a large number of large particles are dispersed. Therefore, the upper limit of the dispersion density may be 1 × 10 6 pieces / mm 2 or less, preferably 5 × 10 5 pieces / mm 2 or less, more preferably 1 × 10 5 pieces / mm 2 or less. Moreover, since the improvement effect by the addition of Cr in the case of 1 × 10 4 pieces / mm 2 or less is small, it is desirable to exceed this.

Sn及びZn
本発明に係るCu−Ni−Si系合金にSn及びZnから選択される1種又は2種以上を総量で0.05〜2.0質量%添加することで強度、導電率を大きく損なわずに応力緩和特性等を改善できる。その添加量は、0.05質量%未満では効果が不足し、2.0質量%を超えると鋳造性、熱間加工性などの製造性、製品の導電率を損なうので0.05〜2.0質量%添加するのが好ましい。
Sn and Zn
By adding 0.05% to 2.0% by mass of one or more selected from Sn and Zn to the Cu—Ni—Si based alloy according to the present invention in a total amount, the strength and conductivity are not significantly impaired. Stress relaxation characteristics can be improved. If the amount added is less than 0.05% by mass, the effect is insufficient, and if it exceeds 2.0% by mass, the manufacturability such as castability and hot workability, and the electrical conductivity of the product are impaired, so 0.05-2. It is preferable to add 0% by mass.

その他の添加元素
Mg、Mn、Ag、P、As、Sb、Be、B、Ti、Zr、Al、Co及びFe所定量を添加することで様々な効果を示すが、相互に補完し、強度、導電率だけでなく曲げ加工性、めっき性や鋳塊組織の微細化による熱間加工性の改善のような製造性をも改善する効果もあるので本発明に係るCu−Ni−Si系合金にこれらの1種又は2種以上を求められる特性に応じて総量を2.0質量%以下として適宜添加することができる。その添加量は、これらの元素の総量が0.001質量%未満だと所望の効果が得られず、2.0質量%を超えると導電率の低下や製造性の劣化が顕著になるので総量で0.001〜2.0質量%とするのが好ましく、0.01〜1.0質量%とするのがより好ましい。
なお、本発明に係るCu−Ni−Si系合金の特性に悪影響を与えない範囲で本明細書に具体的に記載されていない元素が添加されてもよい。
Other additive elements Mg, Mn, Ag, P, As, Sb, Be, B, Ti, Zr, Al, Co, and Fe show various effects, but complement each other, strength, The Cu-Ni-Si alloy according to the present invention has an effect of improving not only electrical conductivity but also productivity such as bending workability, plating workability and improvement of hot workability by refining the ingot structure. Depending on the properties for which one or more of these are required, the total amount can be added as 2.0% by mass or less as appropriate. If the total amount of these elements is less than 0.001% by mass, the desired effect cannot be obtained. If the total amount exceeds 2.0% by mass, the decrease in conductivity and the deterioration of manufacturability become significant. It is preferable to set it as 0.001-2.0 mass% by weight, and it is more preferable to set it as 0.01-1.0 mass%.
In addition, elements not specifically described in the present specification may be added as long as the characteristics of the Cu—Ni—Si alloy according to the present invention are not adversely affected.

次に本発明の製造方法に関して説明する。本発明に係るCu−Ni−Si系合金は、Ni−Si化合物、Cr−Si化合物を制御する溶体化処理、時効処理の条件を除いて、Cu−Ni−Si系合金の慣例の製造方法により製造可能であり、当業者であれば組成や求められる特性に応じて最適な製法を選択することができるため特別の説明を要しないと考えられるが、以下に例示目的のための一般的な製造方法を説明する。   Next, the manufacturing method of the present invention will be described. The Cu—Ni—Si based alloy according to the present invention is obtained by a conventional method for producing a Cu—Ni—Si based alloy, except for the conditions of solution treatment and aging treatment for controlling the Ni—Si compound and the Cr—Si compound. Although it is possible to manufacture and a person skilled in the art can select an optimal manufacturing method according to the composition and required characteristics, it is considered that no special explanation is required. A method will be described.

まず大気溶解炉を用い、電気銅、Ni、Si、Cr等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、700〜1000℃の高温で加熱して、Ni−Si系化合物やCr−Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。   First, using an air melting furnace, raw materials such as electrolytic copper, Ni, Si, and Cr are melted to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of 700 to 1000 ° C. to solid-dissolve the Ni—Si compound or Cr—Si compound in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling.

この溶体化処理では、加熱温度とともに冷却速度も重要である。従来は加熱後の冷却速度を制御していなかったため、加熱炉の出側に水槽を設けて水冷とするか、大気雰囲気での空冷を採用していた。この場合には加熱温度の設定により冷却速度が変動しやすく、従来の冷却速度は1℃/秒以下から10℃/秒以上の範囲で変動していた。よって、本発明例のような合金系の特性の制御が困難であった。   In this solution treatment, the cooling rate is important as well as the heating temperature. Conventionally, since the cooling rate after heating has not been controlled, a water tank is provided on the exit side of the heating furnace for water cooling or air cooling in an air atmosphere has been adopted. In this case, the cooling rate easily fluctuates depending on the heating temperature setting, and the conventional cooling rate fluctuates in the range of 1 ° C./second or less to 10 ° C./second or more. Therefore, it is difficult to control the characteristics of the alloy system as in the present invention example.

冷却速度は、1℃/秒から10℃/秒の範囲が望ましい。時効処理では、350〜550℃の温度範囲で1h以上、典型的には3〜24h加熱し、溶体化処理で固溶させたNi及びSiの化合物とCr及びSiの化合物を微細粒子として析出させる。この時効処理で強度と導電率が上昇する。より高い強度を得るために、時効前及び/又は時効後に冷間圧延を行なうことがある。また、時効後に冷間圧延を行なう場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行なうことがある。   The cooling rate is desirably in the range of 1 ° C./second to 10 ° C./second. In the aging treatment, heating is performed for 1 hour or more in a temperature range of 350 to 550 ° C., typically 3 to 24 hours, and Ni and Si compounds and Cr and Si compounds dissolved in the solution treatment are precipitated as fine particles. . This aging treatment increases strength and conductivity. In order to obtain higher strength, cold rolling may be performed before and / or after aging. Moreover, when performing cold rolling after aging, strain relief annealing (low temperature annealing) may be performed after cold rolling.

本発明に係るCu−Ni−Si系銅合金は一実施形態において、0.2%耐力が780MPa以上でかつ導電率が45%IACS以上とすることができ、更には0.2%耐力が860MPa以上でかつ導電率が43%IACS以上とすることができ、更には0.2%耐力が890MPa以上でかつ導電率が40%IACS以上とすることもできる。   In one embodiment, the Cu—Ni—Si based copper alloy according to the present invention can have a 0.2% yield strength of 780 MPa or more and a conductivity of 45% IACS or more, and further a 0.2% yield strength of 860 MPa. In addition, the electrical conductivity can be 43% IACS or higher, and the 0.2% proof stress can be 890 MPa or higher and the electrical conductivity can be 40% IACS or higher.

本発明に係るCu−Ni−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、本発明によるCu−Ni−Si系銅合金は、高い強度及び高い電気伝導性(又は熱伝導性)を両立させることが要求されるリードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品に使用することができる。   The Cu—Ni—Si based alloy according to the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires, and the Cu—Ni—Si based copper alloy according to the present invention is It can be used for electronic equipment parts such as lead frames, connectors, pins, terminals, relays, switches, and secondary battery foil materials that require both high strength and high electrical conductivity (or thermal conductivity). it can.

以下に本発明の具体例を示すが、これら実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Specific examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.

本発明の実施例に用いる銅合金は、表1に示すようにNi、Si及びCrの含有量をいくつか変化させた銅合金に適宜Sn、Zn、Mg、Mn、Co及びAgを添加した組成を有する。また、比較例に用いる銅合金は、それぞれ本発明の範囲外のパラメータをもつCu−Ni−Si系合金である。   As shown in Table 1, the copper alloy used in the examples of the present invention has a composition in which Sn, Zn, Mg, Mn, Co, and Ag are appropriately added to a copper alloy in which some contents of Ni, Si, and Cr are changed. Have Moreover, the copper alloy used for a comparative example is a Cu-Ni-Si type | system | group alloy with a parameter outside the range of this invention, respectively.

表1に記載の各種成分組成の銅合金を、高周波溶解炉で1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で加熱後、板厚10mmまで熱間圧延し、速やかに冷却を行った。表面のスケール除去のため厚さ8mmまで面削を施した後、冷間圧延により厚さ0.2mmの板とした。次に溶体化処理をArガス雰囲気中でNiおよびCrの添加量に応じて800〜900℃に120秒保持した後、冷却速度を変化させて室温まで冷却した。冷却速度は、加熱後の試料に吹き付けるガス流量を変化させて制御し、試料の最高到達温度から400℃まで冷却する時間を計測して冷却速度とした。ガスを吹き付けないときの炉冷速度は5℃/sであり、更に冷却速度を遅くした例として加熱出力を制御しながら降温した場合の冷却速度を1℃/sとした。その後0.1mmまで冷間圧延して、最後に添加量に応じて400〜550℃で各1〜12時間かけて不活性雰囲気中で時効処理を施して、試料を製造した。   Copper alloys having various component compositions shown in Table 1 were melted at 1300 ° C. in a high-frequency melting furnace and cast into an ingot having a thickness of 30 mm. Next, the ingot was heated at 1000 ° C., then hot-rolled to a plate thickness of 10 mm, and quickly cooled. After surface chamfering to a thickness of 8 mm for removing scale on the surface, a plate having a thickness of 0.2 mm was formed by cold rolling. Next, the solution treatment was held in an Ar gas atmosphere at 800 to 900 ° C. for 120 seconds in accordance with the addition amounts of Ni and Cr, and then cooled to room temperature by changing the cooling rate. The cooling rate was controlled by changing the flow rate of the gas blown to the heated sample, and the cooling time was measured by measuring the time to cool the sample from the highest temperature reached to 400 ° C. The furnace cooling rate when the gas was not blown was 5 ° C./s, and the cooling rate was 1 ° C./s when the temperature was lowered while controlling the heating output as an example of further decreasing the cooling rate. Thereafter, the sample was cold-rolled to 0.1 mm, and finally subjected to aging treatment in an inert atmosphere at 400 to 550 ° C. for 1 to 12 hours according to the amount added to produce a sample.

このようにして得られた各合金につき強度及び導電率の特性評価を行った。強度については圧延平行方向での引っ張り試験を行って0.2%耐力(YS;MPa)を測定し、導電率(EC;%IACS)についてはWブリッジによる体積抵抗率測定により求めた。
曲げ性の評価は、W字型の金型を用いて試料板厚と曲げ半径の比が1となる条件で90°曲げ加工を行なった。評価は曲げ加工部表面を光学顕微鏡で観察し、クラックが観察されない場合を実用上問題ないと判断して○とし、クラックが認められた場合を×とした。疲労試験は、JIS Z 2273に従って両振り応力を負荷し、破断までの繰返し数が107回となる応力(MPa)を求めた。
The characteristics of strength and conductivity were evaluated for each alloy thus obtained. The strength was determined by performing a tensile test in the rolling parallel direction to measure 0.2% yield strength (YS; MPa), and the conductivity (EC;% IACS) was determined by volume resistivity measurement using a W bridge.
The bendability was evaluated by performing 90 ° bending using a W-shaped mold under the condition that the ratio of the sample plate thickness to the bending radius was 1. In the evaluation, the surface of the bent portion was observed with an optical microscope, and when the crack was not observed, it was judged that there was no problem in practical use, and the case where the crack was recognized was made x. In the fatigue test, a swing stress was applied according to JIS Z 2273, and the stress (MPa) at which the number of repetitions until breakage was 10 7 was obtained.

Cr−Si化合物の観察は、材料の板面を電解研磨後FE-AES観察により、多数箇所において大きさ0.1μm以上の粒子を対象とし、実際にその表層の吸着元素(C、O)を除くためAr+でスパッタリングを行い、各粒子ごとのオージェスペクトルを測定し、検出された元素を感度係数法により半定量値として重量濃度換算した際に、CrとSiが検出された粒子を対象とした。Cr−Si化合物の「組成」「大きさ」「分散密度」は、FE−AES観察下で多数箇所分析した大きさ0.1〜5μmのCr−Si粒子の平均組成、最小円の直径、各観察視野での平均個数とした。
表1及び表2に結果を示す。
The observation of the Cr—Si compound is based on the FE-AES observation after electropolishing the plate surface of the material, and the particles having a size of 0.1 μm or more are actually targeted at many locations. Sputtering with Ar + is performed to measure the Auger spectrum of each particle, and when the detected element is converted into weight concentration as a semi-quantitative value by the sensitivity coefficient method, the particles in which Cr and Si are detected are targeted. did. The “composition”, “size”, and “dispersion density” of the Cr—Si compound are the average composition of the 0.1 to 5 μm size Cr-Si particles analyzed at a number of locations under FE-AES observation, the diameter of the minimum circle, It was set as the average number in the observation visual field.
Tables 1 and 2 show the results.

Figure 0004418028
Figure 0004418028

Figure 0004418028
Figure 0004418028

発明例1〜25では、適正な冷却速度によりCr−Si化合物の分散密度が1×106以下かつ、Cr/Siが1〜5の範囲であるために、良好な特性が得られている。
一方、比較例1〜3は冷却速度が遅いため、Cr−Si化合物が成長しすぎて、十分な強度が得られず、また曲げ加工性も悪かった。
比較例4、5では、冷却速度が早いため、成長せず、過剰なSiが合金中に固溶し、強度と導電率が劣った。比較例6、7は時効温度が高いためにCr−Si化合物が成長しすぎて、十分な強度が得られず、また曲げ加工性も悪かった。比較例8、9は、Crの濃度が高すぎるため、Cr−Si化合物が成長しすぎて、十分な強度が得られず、また曲げ加工性も悪かった。
In Invention Examples 1 to 25, the dispersion density of 1 × 10 6 or less and the Cr-Si compound appropriate cooling rate, because Cr / Si is in the range of 1 to 5, and satisfactory characteristics were obtained.
On the other hand, in Comparative Examples 1 to 3, since the cooling rate was slow, the Cr—Si compound grew too much to obtain sufficient strength, and the bending workability was also poor.
In Comparative Examples 4 and 5, since the cooling rate was fast, it did not grow and excessive Si was dissolved in the alloy, resulting in poor strength and electrical conductivity. In Comparative Examples 6 and 7, since the aging temperature was high, the Cr—Si compound grew too much to obtain sufficient strength, and the bending workability was also poor. In Comparative Examples 8 and 9, since the Cr concentration was too high, the Cr—Si compound grew too much to obtain sufficient strength, and the bending workability was also poor.

Claims (6)

Ni:1.0〜4.5質量%、Si:0.50〜1.2質量%、Cr:0.003〜0.3質量%を含有し(但し、NiとSiの重量比が3≦Ni/Si≦5.5である。)、残部Cuおよび不可避的不純物から構成される電子材料用銅合金であって、材料中に分散する大きさが0.1μm〜5μmのCr−Si化合物について、その分散粒子中のSiに対するCrの原子濃度比が1〜5であって、その分散密度が1×106個/mm2以下である電子材料用銅合金。Ni: 1.0-4.5 mass%, Si: 0.50-1.2 mass%, Cr: 0.003-0.3 mass% (however, the weight ratio of Ni and Si is 3 ≦ Ni / Si ≦ 5.5), a copper alloy for electronic materials composed of the balance Cu and inevitable impurities, and a Cr—Si compound having a size of 0.1 μm to 5 μm dispersed in the material A copper alloy for electronic materials having an atomic concentration ratio of Cr to Si in the dispersed particles of 1 to 5 and a dispersion density of 1 × 10 6 pieces / mm 2 or less. 大きさが0.1μm〜5μmのCr−Si化合物について、その分散密度が1×104個/mm2より高い請求項1記載の電子材料用銅合金。The copper alloy for electronic materials according to claim 1, wherein the dispersion density of the Cr—Si compound having a size of 0.1 μm to 5 μm is higher than 1 × 10 4 pieces / mm 2 . 更にSn、及びZnから選択される1種又は2種以上を0.05〜2.0質量%含有する請求項1又は2に記載の電子材料用銅合金。  Furthermore, the copper alloy for electronic materials of Claim 1 or 2 which contains 0.05-2.0 mass% of 1 type, or 2 or more types selected from Sn and Zn. 更にMg、Mn、Ag、P、As、Sb、Be、B、Ti、Zr、Al、Co及びFeから選択される1種又は2種以上を0.001〜2.0質量%含有する請求項1〜3の何れか一項に記載の電子材料用銅合金。  Furthermore, 0.001-2.0 mass% of 1 type (s) or 2 or more types selected from Mg, Mn, Ag, P, As, Sb, Be, B, Ti, Zr, Al, Co, and Fe is contained. The copper alloy for electronic materials as described in any one of 1-3. 請求項1〜4の何れか一項に記載の銅合金を用いた伸銅品。  The copper-stretched product using the copper alloy as described in any one of Claims 1-4. 請求項1〜4の何れか一項に記載の銅合金を用いた電子機器部品。  The electronic device component using the copper alloy as described in any one of Claims 1-4.
JP2009509224A 2007-03-30 2008-03-28 Cu-Ni-Si alloy for electronic materials Active JP4418028B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007094441 2007-03-30
JP2007094441 2007-03-30
PCT/JP2008/056138 WO2008123433A1 (en) 2007-03-30 2008-03-28 Cu-ni-si-based alloy for electronic material

Publications (2)

Publication Number Publication Date
JP4418028B2 true JP4418028B2 (en) 2010-02-17
JPWO2008123433A1 JPWO2008123433A1 (en) 2010-07-15

Family

ID=39830918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509224A Active JP4418028B2 (en) 2007-03-30 2008-03-28 Cu-Ni-Si alloy for electronic materials

Country Status (7)

Country Link
US (1) US20100086435A1 (en)
EP (1) EP2154257B1 (en)
JP (1) JP4418028B2 (en)
KR (1) KR101211984B1 (en)
CN (1) CN101646792B (en)
TW (1) TWI395824B (en)
WO (1) WO2008123433A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270242B1 (en) * 2008-03-31 2014-06-04 The Furukawa Electric Co., Ltd. Copper alloy material for electric or electronic apparatuses, method for producing it and component
JP4653239B2 (en) * 2008-03-31 2011-03-16 古河電気工業株式会社 Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP4809935B2 (en) * 2009-12-02 2011-11-09 古河電気工業株式会社 Copper alloy sheet having low Young's modulus and method for producing the same
EP2554691A4 (en) * 2010-04-02 2014-03-12 Jx Nippon Mining & Metals Corp Cu-ni-si alloy for electronic material
JP5045784B2 (en) * 2010-05-14 2012-10-10 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5714863B2 (en) 2010-10-14 2015-05-07 矢崎総業株式会社 Female terminal and method for manufacturing female terminal
JP5712585B2 (en) * 2010-12-03 2015-05-07 三菱マテリアル株式会社 Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5684022B2 (en) * 2011-03-28 2015-03-11 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in stress relaxation resistance, fatigue resistance after bending and spring characteristics, and method for producing the same
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
JP5903842B2 (en) 2011-11-14 2016-04-13 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, and method for producing copper alloy plastic working material
KR101274063B1 (en) * 2013-01-22 2013-06-12 한국기계연구원 A metal matrix composite with two-way shape precipitation and method for manufacturing thereof
KR101709560B1 (en) 2013-09-27 2017-02-23 주식회사 엘지화학 Secondary Battery with Electrode Tab Having Low Resistance
JP6452472B2 (en) * 2014-01-27 2019-01-16 古河電気工業株式会社 Copper alloy material and method for producing the same
CN105385890A (en) * 2015-11-27 2016-03-09 宁波博威合金材料股份有限公司 Nickel and silicon contained bronze alloy and application thereof
CN105821238B (en) * 2016-05-31 2018-01-02 黄河科技学院 A kind of Cu alloy material and preparation method thereof
CN106191725B (en) * 2016-06-24 2018-01-26 河南江河机械有限责任公司 High-intensity high-conductivity copper alloy nanometer phase precipitation technique method
CN108193080B (en) * 2016-12-08 2019-12-17 北京有色金属研究总院 High-strength high-conductivity stress relaxation-resistant copper-nickel-silicon alloy material and preparation method thereof
CN109609801A (en) * 2018-12-06 2019-04-12 宁波博威合金材料股份有限公司 High property copper alloy and preparation method thereof
CN115386766A (en) * 2022-08-11 2022-11-25 中国科学院金属研究所 Cu-Ni-Si-Cr-Mg quinary copper alloy and preparation method thereof
JP7563652B2 (en) 2022-10-24 2024-10-08 三菱マテリアル株式会社 Copper alloy powder for metal AM and method for manufacturing laminated objects

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115249A (en) 1984-11-09 1986-06-02 Sanyo Electric Co Ltd Supporting device of electromechanical transducer
JP2862942B2 (en) 1990-03-20 1999-03-03 古河電気工業株式会社 Heat treatment method of Corson alloy
JP3049137B2 (en) * 1991-12-27 2000-06-05 株式会社神戸製鋼所 High strength copper alloy excellent in bending workability and method for producing the same
JPH0718356A (en) * 1993-07-01 1995-01-20 Mitsubishi Electric Corp Copper alloy for electronic equipment, its production and ic lead frame
JP2001207229A (en) * 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic material
JP4177221B2 (en) 2003-10-06 2008-11-05 古河電気工業株式会社 Copper alloy for electronic equipment
JP3864965B2 (en) 2004-06-08 2007-01-10 日立電線株式会社 Manufacturing method of copper alloy for terminals and connectors
CN101166840B (en) * 2005-02-28 2012-07-18 古河电气工业株式会社 Copper alloy
CN1776997B (en) * 2005-12-13 2010-05-05 江苏科技大学 Large-capacity steam turbine generator rotor copper alloy slot wedge and its preparing method

Also Published As

Publication number Publication date
CN101646792A (en) 2010-02-10
CN101646792B (en) 2012-02-22
JPWO2008123433A1 (en) 2010-07-15
EP2154257A4 (en) 2012-01-11
KR101211984B1 (en) 2012-12-13
EP2154257A1 (en) 2010-02-17
KR20090123017A (en) 2009-12-01
TWI395824B (en) 2013-05-11
EP2154257B1 (en) 2016-10-05
TW200902732A (en) 2009-01-16
WO2008123433A1 (en) 2008-10-16
US20100086435A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4440313B2 (en) Cu-Ni-Si-Co-Cr alloy for electronic materials
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5619389B2 (en) Copper alloy material
JP5261161B2 (en) Ni-Si-Co-based copper alloy and method for producing the same
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP4175920B2 (en) High strength copper alloy
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
KR100878165B1 (en) Copper-nickel-silicon based copper alloy for electronic material, wrought copper and copper alloy using thereof and electronic device part using therof
JP5595961B2 (en) Cu-Ni-Si based copper alloy for electronic materials and method for producing the same
JP2012012630A (en) Method of manufacturing copper alloy for electronic material

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Ref document number: 4418028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250