JP2008072878A - Electric car controlling apparatus - Google Patents
Electric car controlling apparatus Download PDFInfo
- Publication number
- JP2008072878A JP2008072878A JP2006251616A JP2006251616A JP2008072878A JP 2008072878 A JP2008072878 A JP 2008072878A JP 2006251616 A JP2006251616 A JP 2006251616A JP 2006251616 A JP2006251616 A JP 2006251616A JP 2008072878 A JP2008072878 A JP 2008072878A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power
- storage element
- charge
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
本発明は、パンタグラフの離線時に蓄電素子からの電力供給若しくは蓄電素子への電力回生により離線補償する電気車制御装置に関する。 The present invention relates to an electric vehicle control device that compensates for disconnection by supplying power from a power storage element or regenerating power to the power storage element when the pantograph is disconnected.
従来、図7に示すような構成の電気車制御装置は、例えばEDLC(電気二重槽キャパシタ)やバッテリのような電力の充放電が可能な蓄電素子1と、この蓄電素子1に対して直流電力を充放電させる充放電装置2と、この充放電装置2の直流電圧を平滑化する直流コンデンサ3と、直流電圧を交流電圧に変換するインバータ4と、このインバータ4の交流電圧で駆動するモータ5と、直流電圧を検出する直流電圧センサ6と、インバータ4の直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に充放電装置2にて直流電力を蓄電素子1に蓄電させ、直流電圧が所定基準値よりも低い場合に充放電装置2にて蓄電素子1から直流電力を放電させる制御をする充放電制御装置7、そして架線15の直流電力を直流コンデンサ3を介してインバータ4に給電するパンタグラフ16を備えた構成である。 Conventionally, an electric vehicle control device having a configuration as shown in FIG. 7 includes a storage element 1 capable of charging and discharging electric power, such as an EDLC (electric double tank capacitor) and a battery, and a direct current with respect to the storage element 1. A charging / discharging device 2 for charging / discharging electric power, a DC capacitor 3 for smoothing the DC voltage of the charging / discharging device 2, an inverter 4 for converting the DC voltage into an AC voltage, and a motor driven by the AC voltage of the inverter 4 5, the DC voltage sensor 6 for detecting the DC voltage, and the DC voltage of the inverter 4 are monitored. When the DC voltage is higher than a predetermined reference value, the charge / discharge device 2 stores DC power in the storage element 1. A charge / discharge control device 7 for controlling the charge / discharge device 2 to discharge DC power from the storage element 1 when the DC voltage is lower than a predetermined reference value, and the DC power of the overhead wire 15 via the DC capacitor 3. A configuration in which a pantograph 16 that supplies power to the inverter 4.
このような電気車制御装置では、モータ5が低速回転し、電気車が低速走行していて力行運転が開始されると、モータ5は大電力を必要とするため、パンタグラフ16の受電電力ではモータ駆動電力が不足して直流電圧が低下する。このため、充放電制御装置7は直流電圧の低下を判定して蓄電素子1から放電させるように充放電装置2を制御する。逆に電気車が高速走行していて減速し、モータ5が回生運転状態に移行すれば、インバータ4の直流側の電圧は上昇するので、充放電制御装置7は充放電装置2を充電側に切り換えて蓄電素子1に回生電力を充電させるように制御する。そして余剰電力はパンタグラフ16を介して架線15に返す。 In such an electric vehicle control device, when the motor 5 rotates at a low speed and the electric vehicle is running at a low speed and the power running operation is started, the motor 5 requires a large amount of power. Driving voltage is insufficient and the DC voltage decreases. For this reason, the charging / discharging control device 7 determines the decrease in the DC voltage and controls the charging / discharging device 2 so as to discharge from the power storage element 1. Conversely, if the electric vehicle is running at high speed and decelerates, and the motor 5 shifts to the regenerative operation state, the voltage on the DC side of the inverter 4 rises, so the charge / discharge control device 7 moves the charge / discharge device 2 to the charge side. Control is performed so that the storage element 1 is charged with regenerative power by switching. The surplus power is returned to the overhead line 15 via the pantograph 16.
ところで、電気車が走行中には、パンタグラフのばたつきによって離線が発生したり、エアセクションで集電靴離線が発生したりする。ところが、蓄電素子1が放電状態にあり、しかも力行運転中という状況で離線が発生した場合、その離線期間中はモータ5への直流電力の供給ができなくなってしまう。逆に、蓄電素子1が満充電状態にあり、しかもモータ5が回生運転中という状況で離線が発生すると、その回生電力を消費する場所がなくなり、OVRが発生してしまう。 By the way, while the electric vehicle is traveling, the pantograph fluttering may cause a separation line, or the air section may cause a current collecting shoe separation line. However, when the power storage element 1 is in a discharged state and a disconnection occurs in a state where the powering operation is in progress, the DC power cannot be supplied to the motor 5 during the disconnection period. On the other hand, if the power storage element 1 is in a fully charged state and the disconnection occurs when the motor 5 is in the regenerative operation, there is no place where the regenerative power is consumed, and OVR is generated.
電気車の力行運転中であれば、蓄電素子1からの電力供給、すなわち放電要求が発生するが、蓄電素子1に対する充電要求は発生することはなく、逆に、回生運転中であれば、蓄電素子1への充電要求は発生しても、放電要求が発生することはない。そこで、蓄電素子1の充放電深度を予め調整しておき、力行運転状況では十分な放電が可能であるような充電深度まで予め充電させておき、逆に回生運転状況では十分な充電が可能であるような放電深度まで予め放電させておくことで、上述したようなOVRの発生を回避できる。 If the electric vehicle is in a power running operation, a power supply from the power storage element 1, that is, a discharge request is generated, but a charge request for the power storage element 1 is not generated. Even if a charge request to the element 1 is generated, a discharge request is not generated. Therefore, the charge / discharge depth of the electricity storage device 1 is adjusted in advance, charged in advance to a charge depth that allows sufficient discharge in powering operation conditions, and conversely, sufficient charge is possible in regenerative operation conditions. By discharging in advance to a certain discharge depth, the occurrence of OVR as described above can be avoided.
本発明は、上述した従来の技術的課題に鑑みてなされたもので、蓄電素子の充放電深度を今後に必要とされる放電量あるいは充電量に対応できるように予め調整し、効果的に離線補償が図れる電気車制御装置を提供することを目的とする。 The present invention has been made in view of the above-described conventional technical problems, and the charge / discharge depth of the power storage element is adjusted in advance so as to correspond to a discharge amount or a charge amount that will be required in the future, and is effectively separated. An object of the present invention is to provide an electric vehicle control device capable of compensating.
本発明の1つの特徴は、電力を蓄積する蓄電素子と、前記蓄電素子に対して直流電力を充放電させる充放電手段と、充放電手段の直流電圧を平滑化する直流コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧で駆動するモータと、前記モータの回転速度を検出する速度検出手段と、前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記速度検出手段による前記モータの検出速度が低速度判定基準値以下の時に、前記蓄電素子に充放電深度を最大充電深度まで充電させる制御をする充放電制御手段とを備えた電気車制御装置である。 One feature of the present invention is that a storage element for storing electric power, charging / discharging means for charging / discharging the storage element with DC power, a DC capacitor for smoothing a DC voltage of the charging / discharging means, and the DC voltage Is converted to an AC voltage, a motor driven by the AC voltage, speed detecting means for detecting the rotational speed of the motor, and the DC voltage of the inverter is monitored, and the DC voltage is higher than a predetermined reference value. In this case, the charge / discharge means stores DC power in the storage element, and when the DC voltage is lower than a predetermined reference value, the charge / discharge means discharges DC power from the storage element, and the speed An electric charge / discharge control unit configured to control the storage element to charge the charge / discharge depth to the maximum charge depth when a detection speed of the motor by the detection unit is equal to or lower than a low speed determination reference value; A control device.
本発明の別の特徴は、電力を蓄積する蓄電素子と、前記蓄電素子に対して直流電力を充放電させる充放電手段と、充放電手段の直流電圧を平滑化する直流コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧で駆動するモータと、前記モータの回転速度を検出する速度検出手段と、前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記速度検出手段による前記モータの検出速度が高速度判定基準値以上の時に、前記蓄電素子に充放電深度を最大放電深度まで放電させる制御をする充放電制御手段とを備えた電気車制御装置である。 Another feature of the present invention is that a storage element for storing electric power, charging / discharging means for charging / discharging the storage element with DC power, a DC capacitor for smoothing the DC voltage of the charging / discharging means, and the DC voltage Is converted to an AC voltage, a motor driven by the AC voltage, speed detecting means for detecting the rotational speed of the motor, and the DC voltage of the inverter is monitored, and the DC voltage is higher than a predetermined reference value. In this case, the charge / discharge means stores DC power in the storage element, and when the DC voltage is lower than a predetermined reference value, the charge / discharge means discharges DC power from the storage element, and the speed An electric vehicle comprising: charge / discharge control means for controlling the storage element to discharge the charge / discharge depth to the maximum discharge depth when a detection speed of the motor by the detection means is equal to or higher than a high speed determination reference value; A control device.
本発明のまた別の特徴は、電力を蓄積する蓄電素子と、前記蓄電素子に対して直流電力を充放電させる充放電手段と、充放電手段の直流電圧を平滑化する直流コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧で駆動するモータと、前記モータの回転速度を検出する速度検出手段と、前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記蓄電素子の充放電深度を前記速度検出手段の検出する速度に対応した一定のレベル範囲に保持する制御をする充放電制御手段とを備えた電気車制御装置である。 Another feature of the present invention is that a storage element for storing electric power, charging / discharging means for charging / discharging DC power to the storage element, a DC capacitor for smoothing a DC voltage of the charging / discharging means, and the DC An inverter for converting the voltage into an AC voltage, a motor driven by the AC voltage, speed detecting means for detecting the rotational speed of the motor, and the DC voltage of the inverter is monitored, and the DC voltage is lower than a predetermined reference value. DC power is stored in the power storage element by the charge / discharge means when high, the DC power is discharged from the power storage element by the charge / discharge means when the DC voltage is lower than a predetermined reference value, and An electric vehicle control device comprising charge / discharge control means for controlling to maintain a charge / discharge depth of a power storage element in a certain level range corresponding to a speed detected by the speed detection means.
本発明のさらに別の特徴は、電力を蓄積する蓄電素子と、前記蓄電素子に対して直流電力を充放電させる充放電手段と、充放電手段の直流電圧を平滑化する直流コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧で駆動するモータと、前記モータの回転速度を検出する速度検出手段と、予め離線の発生箇所を算出した走行データベースと、自車の走行地点を検出する自車位置検出手段と、前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記走行データベースを検索して前記自車の走行地点が前記予め離線の発生箇所に到達したときに前記蓄電素子の充放電深度を前記速度検出手段の検出する速度に対応した最適状態に制御する充放電制御手段とを備えた電気車制御装置である。 Still another feature of the present invention is that a storage element for storing electric power, charging / discharging means for charging / discharging DC power to the storage element, a DC capacitor for smoothing a DC voltage of the charging / discharging means, and the DC An inverter that converts the voltage into an AC voltage, a motor that is driven by the AC voltage, a speed detection means that detects the rotational speed of the motor, a travel database that has previously calculated the location where the separation occurs, and a travel point of the host vehicle The vehicle position detecting means for detecting and the DC voltage of the inverter are monitored, and when the DC voltage is higher than a predetermined reference value, DC power is stored in the storage element by the charge / discharge means, and the DC voltage is When the charging / discharging means discharges DC power from the power storage element when the value is lower than a predetermined reference value, and the travel database is searched, the travel point of the own vehicle An electric vehicle controller having a charge and discharge control means for controlling the charging and discharge depth of the storage element when it reaches the point in the optimum state corresponding to the speed of detection of the speed detecting means.
本発明のさらに別の特徴は、電力を蓄積する蓄電素子と、前記蓄電素子に対して直流電力を充放電させる充放電手段と、充放電手段の直流電圧を平滑化する直流コンデンサと、前記直流電圧を交流電圧に変換するインバータと、前記交流電圧で駆動するモータと、前記モータの回転速度を検出する速度検出手段と、走行時の前記パンタグラフばたつきによる離線頻度を蓄積する離線頻度蓄積データベースと、パンタグラフのばたつき挙動を検出するパンタグラフ挙動検出手段と、前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記パンタグラフ挙動検出手段の検出するパンタグラフのばたつき挙動を前記離線頻度蓄積データベースのデータと照合して当該パンタグラフの離線発生を予測し、離線発生の直前までに前記速度検出手段の検出する回転速度に対応して前記蓄電素子の充放電深度を最適状態に制御する充放電制御手段とを備えた電気車制御装置である。 Still another feature of the present invention is that a storage element for storing electric power, charging / discharging means for charging / discharging DC power to the storage element, a DC capacitor for smoothing a DC voltage of the charging / discharging means, and the DC An inverter that converts the voltage into an AC voltage, a motor that is driven by the AC voltage, a speed detection unit that detects a rotation speed of the motor, a separation frequency accumulation database that accumulates a separation frequency due to the pantograph fluttering during traveling, Pantograph behavior detecting means for detecting the fluttering behavior of the pantograph, and monitoring the DC voltage of the inverter.When the DC voltage is higher than a predetermined reference value, the charge / discharge means stores DC power in the storage element, When the DC voltage is lower than a predetermined reference value, the charge / discharge means discharges DC power from the power storage element, and the panter The fluttering behavior of the pantograph detected by the rough behavior detecting means is collated with the data in the separation frequency accumulation database to predict the occurrence of the separation of the pantograph, and corresponds to the rotational speed detected by the speed detecting means immediately before the occurrence of the separation. And a charge / discharge control means for controlling the charge / discharge depth of the power storage element to an optimum state.
本発明の電気車制御装置によれば、モータ速度が低速度判定基準値以下の時に、蓄電素子に充放電深度を最大充電深度まで充電させる制御をするので、その後の力行運転時に離線が発生しても必要な直流電力を蓄電素子から十分に給電することができる。 According to the electric vehicle control device of the present invention, when the motor speed is equal to or lower than the low speed determination reference value, the storage element is controlled to charge the charging / discharging depth to the maximum charging depth, so that a disconnection occurs during subsequent powering operation. However, the necessary DC power can be sufficiently supplied from the storage element.
また、本発明の電気車制御装置によれば、モータ速度が高速度判定基準値以上の時に、蓄電素子に充放電深度を最大放電深度まで放電させる制御をするので、その後の回生運転時に離線が発生してもモータの回生電力を蓄電素子に十分に回収することができる。 In addition, according to the electric vehicle control device of the present invention, when the motor speed is equal to or higher than the high speed determination reference value, the storage element is controlled to discharge the charge / discharge depth to the maximum discharge depth. Even if it occurs, the regenerative power of the motor can be sufficiently recovered in the storage element.
また、本発明の電気車制御装置によれば、蓄電素子の充放電深度をモータ速度に対応した一定のレベル範囲に保持するので、その後の力行運転中にあるいは回生運転中に離線が発生しても、蓄電素子からモータへ直流電力を給電しあるいはモータの回生電力を蓄電素子に回収して不足電力の給電あるいは余剰電力の回収ができる。 In addition, according to the electric vehicle control device of the present invention, the charge / discharge depth of the power storage element is maintained within a certain level range corresponding to the motor speed, so that a disconnection occurs during subsequent powering operation or regenerative operation. However, it is possible to supply DC power from the power storage element to the motor, or recover the regenerative power of the motor to the power storage element to supply insufficient power or recover surplus power.
また、本発明の電気車制御装置によれば、走行データベースを検索して自車の走行地点が発生箇所に到達する前に予め蓄電素子の充放電深度をモータ速度に対応した最適状態に制御するので、該当箇所で離線が発生しても、蓄電素子からモータへ直流電力を給電しあるいはモータの回生電力を蓄電素子に回収して不足電力の給電あるいは余剰電力の回収ができる。 Further, according to the electric vehicle control device of the present invention, the charge / discharge depth of the storage element is controlled in advance to the optimum state corresponding to the motor speed before the travel point of the host vehicle reaches the occurrence point by searching the travel database. Therefore, even if disconnection occurs at a corresponding location, DC power can be supplied from the power storage element to the motor, or regenerative power of the motor can be recovered to the power storage element to supply insufficient power or recover surplus power.
さらに、本発明の電気車制御装置によれば、パンタグラフのばたつき挙動を離線頻度蓄積データベースのデータと照合して当該パンタグラフの離線発生を予測し、離線発生の直前までにモータ速度に対応して蓄電素子の充放電深度を最適状態に制御するので、該当箇所で離線が発生しても、蓄電素子からモータへ直流電力を給電しあるいはモータの回生電力を蓄電素子に回収して不足電力の給電あるいは余剰電力の回収ができる。 Further, according to the electric vehicle control device of the present invention, the fluttering behavior of the pantograph is collated with the data in the separation line frequency accumulation database to predict the occurrence of the separation line of the pantograph, and the electric power is stored corresponding to the motor speed immediately before the occurrence of the separation line. Since the charge / discharge depth of the element is controlled to the optimum state, even if a disconnection occurs at the relevant location, DC power is supplied from the power storage element to the motor, or the regenerative power of the motor is recovered to the power storage element, or power supply of insufficient power or Surplus power can be recovered.
以下、本発明の実施の形態を図に基づいて詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第1の実施の形態)図1に示すように、本発明の第1の実施の形態の電気車制御装置は、例えばEDLCやバッテリのような直流電力の充放電が可能な蓄電素子1と、この蓄電素子1に対して直流電力を充放電させる充放電装置2と、この充放電装置2の直流電圧を平滑化する直流コンデンサ3と、直流電圧を交流電圧に変換するインバータ4と、このインバータ4の交流電力で駆動するモータ5と、直流電圧を検出する直流電圧センサ6と、インバータ4の直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に充放電装置2にて直流電力を蓄電素子1に蓄電させ、直流電圧が所定基準値よりも低い場合に充放電装置2にて蓄電素子1から直流電力を放電させる制御をする充放電制御装置7、モータ5の回転速度を検出する速度センサ8、そして架線15の直流電力を直流コンデンサ3を介してインバータ4に給電するパンタグラフ16を備えた構成である。 (First Embodiment) As shown in FIG. 1, an electric vehicle control apparatus according to a first embodiment of the present invention includes a storage element 1 capable of charging / discharging DC power, such as an EDLC or a battery. A charging / discharging device 2 for charging / discharging DC power to / from the storage element 1, a DC capacitor 3 for smoothing the DC voltage of the charging / discharging device 2, an inverter 4 for converting the DC voltage to an AC voltage, The motor 5 driven by the AC power of the inverter 4, the DC voltage sensor 6 for detecting the DC voltage, and the DC voltage of the inverter 4 are monitored. When the DC voltage is higher than a predetermined reference value, the charge / discharge device 2 The charge / discharge control device 7 that controls the charge / discharge device 2 to discharge the DC power from the power storage device 1 when the DC power is stored in the power storage device 1 and the DC voltage is lower than a predetermined reference value. Detecting speed Capacitors 8, and a configuration in which a pantograph 16 that supplies power to the inverter 4 DC power through the DC capacitor 3 in overhead line 15.
本実施の形態の電気車制御装置では、力行運転時に、架線15からパンタグラフ16を介して直流電力を取り込み、インバータ4にて所定周波数、所定電圧の交流電力に変換し、モータ5に給電して回転駆動させる。そして、モータ5の所定速度の回転に対して必要な直流電圧が不足する場合には蓄電素子1から直流電力を放電させ、インバータ4を介してモータ5に供給する。他方、高速走行中に減速したり停止したりする必要が生じた場合、モータ5からの回生電力をインバータ4にて逆変換し、直流電力にしてパンタグラフ16を通じて架線15に返し、また、蓄電素子1の蓄電状態が空に近ければその直流電力を回収して蓄電する。 In the electric vehicle control apparatus of the present embodiment, during power running, DC power is taken from the overhead line 15 via the pantograph 16, converted into AC power of a predetermined frequency and a predetermined voltage by the inverter 4, and supplied to the motor 5 Drive to rotate. When the DC voltage necessary for the rotation of the motor 5 at a predetermined speed is insufficient, DC power is discharged from the storage element 1 and supplied to the motor 5 via the inverter 4. On the other hand, when it is necessary to decelerate or stop during high-speed traveling, the regenerative power from the motor 5 is reversely converted by the inverter 4 to be converted into DC power to the overhead line 15 through the pantograph 16, and the storage element If the storage state of 1 is close to empty, the DC power is recovered and stored.
本実施の形態における蓄電素子1の充放電深度制御は、次のようにして行う。充放電制御装置7は蓄電素子1の蓄電量を監視しており、所定の充電深度よりも多く蓄電されていれば充放電装置2によって放電させる制御をし、逆に所定の放電深度よりも少ない蓄電量であれば充放電装置2によってインバータ4の直流側電力を充電させる。 The charge / discharge depth control of power storage element 1 in the present embodiment is performed as follows. The charge / discharge control device 7 monitors the amount of electricity stored in the electricity storage element 1 and controls the discharge by the charge / discharge device 2 if it is stored more than the predetermined depth of charge, and conversely less than the predetermined depth of discharge. If the amount of electricity is stored, the DC power of the inverter 4 is charged by the charging / discharging device 2.
そして、本実施の形態の場合、充放電制御装置7は、モータ速度が低速域にあれば、今後、モータ供給電力を上げて力行運転に移行することになるので、蓄電素子1から直流電力を放電させる必要が大きくなることが予想される。そこで図2に示すように、速度センサ8の検出するモータ速度がこのような低速域SPlowにあれば、充放電制御装置7は充放電装置2を充電側に切り換え、蓄電素子1の充電深度Dhighを上げて十分な量の直流電力を蓄電素子1に充電させ、力行運転中にパンタグラフ16が離線して架線15からの直流電力の給電が停止しても蓄電素子1から十分な量の直流電力をインバータ4に供給できるように制御する。 In the case of the present embodiment, if the motor speed is in the low speed range, the charge / discharge control device 7 will increase the motor supply power and shift to the power running operation. It is expected that the need to discharge will increase. Therefore, as shown in FIG. 2, if the motor speed detected by the speed sensor 8 is in such a low speed range SPlow, the charge / discharge control device 7 switches the charge / discharge device 2 to the charge side, and the charge depth Dhigh of the power storage element 1. The power storage device 1 is charged with a sufficient amount of DC power, and even if the pantograph 16 is disconnected during powering operation and the power supply of the DC power from the overhead line 15 is stopped, a sufficient amount of DC power is stored from the power storage device 1. Is controlled so as to be supplied to the inverter 4.
逆に、モータ速度が高速域SPhighにあれば、今後、モータ速度を下げて回生ブレーキをかける回生運転に移行することになるので、充放電制御装置7は充放電装置2を放電側に切り換えて蓄電素子1の放電深度Dlowを深くし(つまり、空に近い状態まで放電させた状態にし)、その回生運転中にパンタグラフ16の離線が発生し、回生直流電力を架線15に戻せなくなった状態でも蓄電素子1側に効果的に回生電力を回収することで正常動作が継続できるように制御する。 On the other hand, if the motor speed is in the high speed range SPhigh, the motor speed will be lowered and the operation will shift to the regenerative operation where the regenerative brake is applied. Therefore, the charge / discharge control device 7 switches the charge / discharge device 2 to the discharge side. Even when the discharge depth Dlow of the electricity storage device 1 is increased (that is, the state is discharged to a state close to the sky), the pantograph 16 is disconnected during the regenerative operation, and the regenerative DC power cannot be returned to the overhead line 15. Control is performed so that normal operation can be continued by effectively collecting regenerative power on the power storage element 1 side.
このように、本実施の形態では、停車時や低速域SPlowでは蓄電素子1を最大充電深度Dhighまで充電し、力行時に蓄電素子1から直流電力を放電できる状態にし、高速域SPhighでは最大放電深度Dlowまで放電させることで、回生時に蓄電素子1がエネルギーを充電できる状態になるよう制御することにより、離線時でも蓄電素子1からの電力授受により電気車の正常走行を継続することができ、また回生率も向上できる。 As described above, in the present embodiment, when the vehicle is stopped or in the low speed range SPlow, the power storage element 1 is charged to the maximum charge depth Dhigh, the DC power can be discharged from the power storage element 1 during power running, and the maximum discharge depth in the high speed range SPhigh. By controlling the electric storage element 1 to be in a state in which energy can be charged during regeneration by discharging to Dlow, it is possible to continue normal driving of the electric vehicle by transferring electric power from the electric storage element 1 even when disconnected. The regeneration rate can also be improved.
(第2の実施の形態)本発明の第2の実施の形態の電気車制御装置は、構成は図1に示した第1の実施の形態と同様であるが、低速域SPlow、高速域SPhighでは充放電制御装置7により図2に示した第1の実施の形態と同様の充放電制御を行う上に、力行時、回生時それぞれには図3に示す制御方式をとることを特徴とする。 (Second Embodiment) The electric vehicle control apparatus according to the second embodiment of the present invention has the same configuration as that of the first embodiment shown in FIG. 1, but the low speed region SPlow and the high speed region SPhigh. Then, the charge / discharge control device 7 performs the same charge / discharge control as that of the first embodiment shown in FIG. 2, and further adopts the control method shown in FIG. 3 at the time of power running and regeneration. .
すなわち、本実施の形態によれば、充放電制御装置7は、図2に示したように、停車時や低速域SPlowでは蓄電素子1を最大充電深度Dhighまで充電して、力行時に蓄電素子1から直流電力を放電できる状態にし、逆に高速域SPhighでは最大放電深度Dlowまで放電させることで、回生時に蓄電素子1がエネルギーを充電できる状態になるよう制御する。そして、実際に力行運転や回生運転に移行した時には、図3に示すように、充放電制御装置7は蓄電素子1の充放電深度が常に最大充電深度Dhighと最大放電深度Dlowとの中間値レベルDmidを保持するように充放電装置2を制御する。すなわち、低速域で充電して中間レベルDmidを上回った分は力行時に中間レベルDmidまで放電し、高速域で放電した分は回生時に中間レベルDmidまで充電するように制御する。これにより、離線時でも蓄電素子からの電力授受により正常走行を継続することができ、また回生率も向上できる。 That is, according to the present embodiment, as shown in FIG. 2, the charge / discharge control device 7 charges the electricity storage device 1 to the maximum charge depth Dhigh when the vehicle is stopped or in the low speed region SPlow, and In the high speed region SPhigh, on the contrary, by discharging to the maximum discharge depth Dlow, control is performed so that the energy storage device 1 can be charged with energy during regeneration. And when it transfers to power running operation or regenerative operation actually, as shown in FIG. 3, the charging / discharging control apparatus 7 always has the intermediate value level of the charging / discharging depth of the electrical storage element 1 between the maximum charging depth Dhigh and the maximum discharging depth Dlow. The charging / discharging device 2 is controlled to maintain Dmid. That is, the control is performed so that the portion charged in the low speed range and exceeding the intermediate level Dmid is discharged to the intermediate level Dmid during power running, and the portion discharged in the high speed range is charged to the intermediate level Dmid during regeneration. As a result, normal travel can be continued by power transfer from the storage element even when the line is disconnected, and the regeneration rate can be improved.
(第3の実施の形態)図4に示すように、第3の実施の形態の電気車制御装置は、
EDLCやバッテリのような直流電力の充放電が可能な蓄電素子1と、この蓄電素子1に対して直流電力を充放電させる充放電装置2と、この充放電装置2の直流電圧を平滑化する直流コンデンサ3と、直流電圧を交流電圧に変換するインバータ4と、このインバータ4の交流電力で駆動するモータ5と、直流電圧を検出する直流電圧センサ6と、インバータ4の直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に充放電装置2にて直流電力を蓄電素子1に蓄電させ、直流電圧が所定基準値よりも低い場合に充放電装置2にて蓄電素子1から直流電力を放電させる制御をする充放電制御装置7、モータ速度を検出する速度センサ8、モータ速度の積算により、地上アンテナからの信号により、あるいはGPSからの信号により、あるいはその他の方法によって自車位置を検出する自車位置センサ9、離線が発生しやすい架線10のセクション位置情報を保持するセクション位置データベース10、そして架線15の直流電力を直流コンデンサ3を介してインバータ4に給電するパンタグラフ16を備えた構成である。
(Third Embodiment) As shown in FIG. 4, the electric vehicle control apparatus of the third embodiment is
A storage element 1 capable of charging / discharging DC power, such as EDLC or a battery, a charging / discharging device 2 for charging / discharging the storage element 1 with DC power, and a DC voltage of the charging / discharging device 2 are smoothed. A DC capacitor 3, an inverter 4 for converting DC voltage to AC voltage, a motor 5 driven by AC power of the inverter 4, a DC voltage sensor 6 for detecting DC voltage, and the DC voltage of the inverter 4 are monitored. When the DC voltage is higher than a predetermined reference value, the charging / discharging device 2 stores DC power in the power storage element 1, and when the DC voltage is lower than the predetermined reference value, the charging / discharging device 2 performs direct current from the power storage element 1. Charge / discharge control device 7 for controlling electric power discharge, speed sensor 8 for detecting motor speed, integration of motor speed, signal from ground antenna, or signal from GPS The vehicle position sensor 9 that detects the vehicle position by other methods, the section position database 10 that holds the section position information of the overhead line 10 that is likely to be disconnected, and the DC power of the overhead line 15 through the DC capacitor 3 This is a configuration including a pantograph 16 for supplying power to the inverter 4.
本実施の形態の電気車制御装置でも、力行運転時に、架線15からパンタグラフ16を介して直流電力を取り込み、インバータ4にて所定周波数、所定電圧の交流電力に変換し、モータ5に給電して回転駆動させる。他方、回生運転時には、モータ5の回生電力をインバータ4にて逆変換し、直流電力にしてパンタグラフ16を通じて架線15に戻す。そして、充放電制御装置7は蓄電素子1の蓄電量を監視しており、所定の充電深度よりも多く蓄電されていれば充放電装置2によって放電させる制御をし、逆に所定の放電深度よりも少ない蓄電量であれば充放電装置2によってインバータ4の直流側電力を充電させる。 Also in the electric vehicle control device of the present embodiment, during power running, DC power is taken from the overhead line 15 via the pantograph 16, converted into AC power of a predetermined frequency and a predetermined voltage by the inverter 4, and supplied to the motor 5 Drive to rotate. On the other hand, at the time of regenerative operation, the regenerative power of the motor 5 is reversely converted by the inverter 4 to be converted to DC power and returned to the overhead line 15 through the pantograph 16. The charge / discharge control device 7 monitors the amount of electricity stored in the electricity storage element 1 and controls the discharge by the charge / discharge device 2 if it is stored more than the predetermined depth of charge, and conversely from the predetermined depth of discharge. If the amount of electricity stored is small, the charging / discharging device 2 charges the DC power of the inverter 4.
本実施の形態の場合、充放電制御装置7はさらに、自車位置センサ9の検出する自車の走行位置をセクション位置データベース10のセクション位置情報と照合し、予めパンタグラフ16の離線が発生すると想定できるセクション位置情報に基づき、蓄電素子1の充放電深度が最適となるよう調整する。 In the case of the present embodiment, the charging / discharging control device 7 further collates the traveling position of the own vehicle detected by the own vehicle position sensor 9 with the section position information in the section position database 10 and assumes that the pantograph 16 is disconnected beforehand. Based on the possible section position information, the charge / discharge depth of the electricity storage device 1 is adjusted to be optimum.
例えば、充放電制御装置7は、速度センサ8が検出するモータ速度が低速域にあってセクション位置を通過しようとする場合、離線によって直流電力を架線15から力行運転のための直流電力を受電できなくなることが予期できる。そこで、そのような場合には、セクションに入る前に蓄電素子1の充電深度を高くしておき、セクション通過時に不足の電力を蓄電素子1から供給できるように備える制御をする。 For example, when the motor speed detected by the speed sensor 8 is in the low speed range and tries to pass through the section position, the charge / discharge control device 7 can receive DC power from the overhead line 15 for powering operation by disconnection. Can be expected to disappear. Therefore, in such a case, the charging depth of the electricity storage element 1 is increased before entering the section, and control is performed so that insufficient electricity can be supplied from the electricity storage element 1 when passing through the section.
充放電制御装置7は逆に、速度センサ8が検出するモータ速度が高速域にあってセクション位置を通過しようとする場合、離線によって回生電力を架線15へ戻せなくなることが予期できる。そこで、そのような場合には、セクションに入る前に蓄電素子1の放電深度を深くしておき、セクション通過時に回生電力を蓄電素子1に回収できるように備える制御をする。 Conversely, when the motor speed detected by the speed sensor 8 is in the high speed range and tries to pass through the section position, the charge / discharge control device 7 can expect that the regenerative power cannot be returned to the overhead line 15 due to the separation. Therefore, in such a case, the depth of discharge of the electricity storage device 1 is increased before entering the section, and control is performed so that the regenerative power can be collected in the electricity storage device 1 when passing through the section.
本実施の形態によれば、予め離線の発生箇所を算出したセクション位置データベース10から蓄電素子1の充放電深度を最適にすることができ、セクション通過時に離線が発生しても電気車に正常走行を継続させることができる。 According to the present embodiment, it is possible to optimize the charge / discharge depth of the electricity storage device 1 from the section position database 10 in which the occurrence location of the separation line has been calculated in advance, and even if the separation line occurs when the section passes, the electric vehicle can travel normally. Can be continued.
(第4の実施の形態)図5に、本発明の第4の実施の形態の電気車制御装置を示している。本実施の形態の電気車制御装置は、EDLCやバッテリのような直流電力の充放電が可能な蓄電素子1と、この蓄電素子1に対して直流電力を充放電させる充放電装置2と、この充放電装置2の直流電圧を平滑化する直流コンデンサ3と、直流電圧を交流電圧に変換するインバータ4と、このインバータ4の交流電力で駆動するモータ5と、直流電圧を検出する直流電圧センサ6と、インバータ4の直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に充放電装置2にて直流電力を蓄電素子1に蓄電させ、直流電圧が所定基準値よりも低い場合に充放電装置2にて蓄電素子1から直流電力を放電させる制御をする充放電制御装置7と、モータ5の回転速度を検出する速度センサ8と、パンタグラフ16のふらつきを監視するパンタグラフ挙動センサ11と、実際に離線が発生する前にパンタグラフ16がどんなふらつき挙動をするのか、そのパンタグラフ16のふらつきパターンを1又は複数種記憶する離線頻度蓄積データベース12と、そして架線15の直流電力を直流コンデンサ3を介してインバータ4に給電するパンタグラフ16を備えた構成である。 (Fourth Embodiment) FIG. 5 shows an electric vehicle control apparatus according to a fourth embodiment of the present invention. The electric vehicle control apparatus according to the present embodiment includes a power storage element 1 that can charge / discharge direct current power, such as an EDLC or a battery, a charge / discharge device 2 that charges / discharges direct current power to / from the power storage element 1, and A DC capacitor 3 that smoothes the DC voltage of the charging / discharging device 2, an inverter 4 that converts the DC voltage into an AC voltage, a motor 5 that is driven by the AC power of the inverter 4, and a DC voltage sensor 6 that detects the DC voltage When the DC voltage of the inverter 4 is monitored and the DC voltage is higher than a predetermined reference value, the charge / discharge device 2 stores DC power in the power storage element 1 and the DC voltage is lower than the predetermined reference value. A charge / discharge control device 7 that controls the discharge of DC power from the storage element 1 by the charge / discharge device 2, a speed sensor 8 that detects the rotational speed of the motor 5, and a pantograph that monitors the fluctuation of the pantograph 16 The rough behavior sensor 11, the fluctuation behavior of the pantograph 16 before actual occurrence of the separation line, the separation frequency accumulation database 12 that stores one or more kinds of the fluctuation pattern of the pantograph 16, and the DC power of the overhead line 15 Is provided with a pantograph 16 that feeds power to the inverter 4 via the DC capacitor 3.
本実施の形態の電気車制御装置では、力行運転時に、架線15からパンタグラフ16を介して直流電力を取り込み、インバータ4にて所定周波数、所定電圧の交流電力に変換し、モータ5に給電して回転駆動させる。そして、モータ5の所定速度の回転に対して必要な直流電圧が不足する場合には蓄電素子1から直流電力を放電させ、インバータ4を介してモータ5に供給する。他方、高速走行中に減速したり停止したりする必要が生じた場合、モータ5からの回生電力をインバータ4にて逆変換し、直流電力にしてパンタグラフ16を通じて架線15に返し、また、蓄電素子1の蓄電状態が空に近ければその直流電力を回収して蓄電する。 In the electric vehicle control apparatus of the present embodiment, during power running, DC power is taken from the overhead line 15 via the pantograph 16, converted into AC power of a predetermined frequency and a predetermined voltage by the inverter 4, and supplied to the motor 5 Drive to rotate. When the DC voltage necessary for the rotation of the motor 5 at a predetermined speed is insufficient, DC power is discharged from the storage element 1 and supplied to the motor 5 via the inverter 4. On the other hand, when it is necessary to decelerate or stop during high-speed traveling, the regenerative power from the motor 5 is reversely converted by the inverter 4 to be converted into DC power to the overhead line 15 through the pantograph 16, and the storage element If the storage state of 1 is close to empty, the DC power is recovered and stored.
本実施の形態における蓄電素子1の充放電深度制御は、次のようにして行う。充放電制御装置7は蓄電素子1の蓄電量を監視しており、所定の充電深度よりも多く蓄電されていれば充放電装置2によって放電させる制御をし、逆に所定の放電深度よりも少ない蓄電量であれば充放電装置2によってインバータ4の直流側電力を充電させる。 The charge / discharge depth control of power storage element 1 in the present embodiment is performed as follows. The charge / discharge control device 7 monitors the amount of electricity stored in the electricity storage element 1 and controls the discharge by the charge / discharge device 2 if it is stored more than the predetermined depth of charge, and conversely less than the predetermined depth of discharge. If the amount of electricity is stored, the DC power of the inverter 4 is charged by the charging / discharging device 2.
そして、本実施の形態の場合、充放電制御装置7は、モータ速度が低速域にあれば、今後、モータ供給電力を上げて力行運転に移行することになるので、蓄電素子1から直流電力を放電させる必要が大きくなることが予想される。そこでパンタグラフ挙動センサ9が監視するパンタグラフ16のふらつき挙動を離線頻度蓄積データベース12に記録されている離線発生前のパンタグラフ16のふらつきパターンと比較照合し、離線が発生するふらつきパターンであれば、速度センサ8の検出するモータ速度が低速域SPlowにあれば、充放電制御装置7は充放電装置2を充電側に切り換え、蓄電素子1の充電深度をDhighまで上げて十分な量の直流電力を蓄電素子1に充電させ、力行運転中にパンタグラフ16が離線して架線15からの直流電力の給電が停止しても蓄電素子1から十分な量の直流電力をインバータ4に供給できるように制御する。逆に、離線が発生するふらつきパターンにあり、かつ、速度センサ8の検出するモータ速度が高速域SPhighにあれば、充放電制御装置7は充放電装置2を充電側に切り換え、蓄電素子1の放電深度をDlowまで下げて十分な量の直流電力を蓄電素子1から放電させておき、回生運転中にパンタグラフ16が離線して架線15へ回生電力を戻すことができなくなっても蓄電素子1にて回生電力を吸収できるように制御する。 In the case of the present embodiment, if the motor speed is in the low speed range, the charge / discharge control device 7 will increase the motor supply power and shift to the power running operation. It is expected that the need to discharge will increase. Therefore, the wandering behavior of the pantograph 16 monitored by the pantograph behavior sensor 9 is compared with the wandering pattern of the pantograph 16 before occurrence of the segregation recorded in the segregation frequency accumulation database 12, and the speed sensor If the motor speed detected by 8 is in the low speed range SPlow, the charge / discharge control device 7 switches the charge / discharge device 2 to the charge side, raises the charge depth of the electricity storage device 1 to Dhigh, and supplies a sufficient amount of DC power to the electricity storage device. 1 is charged, and control is performed so that a sufficient amount of DC power can be supplied from the power storage element 1 to the inverter 4 even if the pantograph 16 is disconnected during power running and the supply of DC power from the overhead line 15 is stopped. On the other hand, if the pattern is a wobbling pattern in which separation occurs and the motor speed detected by the speed sensor 8 is in the high speed range SPhigh, the charge / discharge control device 7 switches the charge / discharge device 2 to the charge side, Even if the depth of discharge is lowered to Dlow and a sufficient amount of DC power is discharged from the power storage element 1 and the pantograph 16 is disconnected during the regenerative operation and the regenerative power cannot be returned to the overhead line 15, Control to absorb regenerative power.
このように、本実施の形態では、パンタグラフのふらつき挙動を監視し、離線が発生しやすい状況では、停車時や低速域SPlowでは蓄電素子1を最大充電深度Dhighまで充電し、その後の力行時に離線が発生しても蓄電素子1から直流電力を放電できる状態にし、高速域SPhighでは最大放電深度Dlowまで放電させることで、回生時に離線が発生して架線15に回生電力を戻せなくなっても蓄電素子1に回生エネルギーを充電できるよう制御することにより、離線時でも蓄電素子1からの電力授受により電気車の正常走行を継続することができ、また回生率も向上できる。 As described above, in the present embodiment, the fluctuation behavior of the pantograph is monitored, and in a situation where disconnection is likely to occur, the storage element 1 is charged to the maximum charge depth Dhigh when the vehicle is stopped or in the low speed range SPlow, and is disconnected during subsequent power running. Even if the electric power is generated, the DC power can be discharged from the power storage element 1 and discharged to the maximum discharge depth Dlow in the high speed region SPhigh. By controlling so that the regenerative energy can be charged to 1, the electric vehicle can continue to travel normally by receiving power from the power storage element 1 even when disconnected, and the regeneration rate can be improved.
(第5の実施の形態)図6に、本発明の第5の実施の形態の電気車制御装置を示している。本実施の形態の電気車制御装置は、第4の実施の形態と同様の構成要素である蓄電素子1、充放電装置2、直流コンデンサ3、インバータ4、モータ5、直流電圧センサ6、充放電制御装置7、モータ5の回転速度を検出する速度センサ8、パンタグラフ16を備えている。 (Fifth Embodiment) FIG. 6 shows an electric vehicle control apparatus according to a fifth embodiment of the present invention. The electric vehicle control device according to the present embodiment includes a power storage element 1, a charging / discharging device 2, a DC capacitor 3, an inverter 4, a motor 5, a DC voltage sensor 6, and charging / discharging, which are the same components as in the fourth embodiment. A control device 7, a speed sensor 8 that detects the rotational speed of the motor 5, and a pantograph 16 are provided.
本実施の形態の電気車制御装置は、さらに、第3の実施の形態と同様の自車位置センサ8、また、直流電圧からパンタグラフの離線を判定する離線判定部13、自車位置との対応で最適充放電パターンを計算し、記憶する最適充放電パターン計算・記憶部14を備えている。 The electric vehicle control apparatus according to the present embodiment further includes the own vehicle position sensor 8 similar to that of the third embodiment, the separation line determination unit 13 that determines the separation of the pantograph from the DC voltage, and the correspondence with the own vehicle position. The optimum charge / discharge pattern is calculated and stored, and an optimum charge / discharge pattern calculation / storage unit 14 is provided.
本実施の形態の電気車制御装置では、力行運転時に、架線15からパンタグラフ16を介して直流電力を取り込み、インバータ4にて所定周波数、所定電圧の交流電力に変換し、モータ5に給電して回転駆動させる。そして、モータ5の所定速度の回転に対して必要な直流電圧が不足する場合には蓄電素子1から直流電力を放電させ、インバータ4を介してモータ5に供給する。他方、高速走行中に減速したり停止したりする必要が生じた場合、モータ5からの回生電力をインバータ4にて逆変換し、直流電力にしてパンタグラフ16を通じて架線15に返し、また、蓄電素子1の蓄電状態が空に近ければその直流電力を回収して蓄電する。 In the electric vehicle control apparatus of the present embodiment, during power running, DC power is taken from the overhead line 15 via the pantograph 16, converted into AC power of a predetermined frequency and a predetermined voltage by the inverter 4, and supplied to the motor 5 Drive to rotate. When the DC voltage necessary for the rotation of the motor 5 at a predetermined speed is insufficient, DC power is discharged from the storage element 1 and supplied to the motor 5 via the inverter 4. On the other hand, when it is necessary to decelerate or stop during high-speed traveling, the regenerative power from the motor 5 is reversely converted by the inverter 4 to be converted into DC power to the overhead line 15 through the pantograph 16, and the storage element If the storage state of 1 is close to empty, the DC power is recovered and stored.
本実施の形態における蓄電素子1の充放電深度制御は、次のようにして行う。最初に電気車を実際の路線を試験走行させ、その試験走行の間に、最適充放電パターン計算・記憶部14にて、離線判定部部13にて離線発生と判定した時にその直前期間の走行速度を見て低速であれば、第1の実施の形態の場合と同様にその離線地点の直前期間では充電深度をDhighに設定し、逆に離線発生と判定した時にその直前期間の走行速度が高速であればその離線地点の直前期間では放電深度をDlowに設定する操作を繰り返し、その演算結果を自車位置と対応させた最適充放電パターンとして記憶させる。 The charge / discharge depth control of power storage element 1 in the present embodiment is performed as follows. First, the electric vehicle is run on a test route on an actual route, and during the test run, the optimum charge / discharge pattern calculation / storage unit 14 determines that a disconnection has occurred in the disconnection determination unit 13 and travels immediately before that period. If the speed is low when the speed is low, the charging depth is set to High in the period immediately before the separation point as in the case of the first embodiment. If the speed is high, the operation of setting the discharge depth to Dlow is repeated in the period immediately before the separation point, and the calculation result is stored as an optimum charge / discharge pattern corresponding to the vehicle position.
こうして試験走行にて、最適充放電パターン計算・記憶部14に自車位置と対応させた最適充放電パターンを記憶させると、以降の実走行においては、充放電制御装置はこの最適充放電パターン計算・記憶部14の情報を参照し、自車位置との対応で蓄電素子1の充放電深度を最適に制御しながら走行させる。これにより、本実施の形態の電気車制御装置では、パンタグラフ16の離線時でも蓄電素子1からの電力授受により電気車の正常走行を継続することができ、また回生率も向上できる。 Thus, when the optimum charge / discharge pattern calculation / storage unit 14 stores the optimum charge / discharge pattern corresponding to the vehicle position in the test running, the charge / discharge control device calculates the optimum charge / discharge pattern in the subsequent actual running. -Refer to the information of the memory | storage part 14, and drive | work, optimally controlling the charging / discharging depth of the electrical storage element 1 by correspondence with the own vehicle position. Thereby, in the electric vehicle control apparatus of the present embodiment, normal traveling of the electric vehicle can be continued by power transfer from the power storage element 1 even when the pantograph 16 is disconnected, and the regeneration rate can be improved.
1 蓄電素子
2 充放電装置
3 直流コンデンサ
4 インバータ
5 モータ
6 直流電圧検出器
7 充放電制御装置
8 速度センサ
9 自車位置センサ
10 セクション位置データベース
11 パンタグラフ挙動センサ
12 離線頻度蓄積データベース
13 離線判定部
14 最適充放電パターン計算・記憶部
15 架線
16 パンタグラフ
DESCRIPTION OF SYMBOLS 1 Storage element 2 Charging / discharging apparatus 3 DC capacitor 4 Inverter 5 Motor 6 DC voltage detector 7 Charging / discharging control apparatus 8 Speed sensor 9 Own vehicle position sensor 10 Section position database 11 Pantograph behavior sensor 12 Debonding frequency accumulation database 13 Debonding judgment part 14 Optimal charge / discharge pattern calculation / storage unit 15 overhead line 16 pantograph
Claims (6)
前記蓄電素子に対して直流電力を充放電させる充放電手段と、
充放電手段の直流電圧を平滑化する直流コンデンサと、
前記直流電圧を交流電圧に変換するインバータと、
前記交流電圧で駆動するモータと、
前記モータの回転速度を検出する速度検出手段と、
前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記速度検出手段による前記モータの検出速度が低速度判定基準値以下の時に、前記蓄電素子に充放電深度を最大充電深度まで充電させる制御をする充放電制御手段とを備えたことを特徴とする電気車制御装置。 A storage element for storing electric power;
Charging / discharging means for charging / discharging direct-current power with respect to the storage element;
A DC capacitor for smoothing the DC voltage of the charging / discharging means;
An inverter that converts the DC voltage into an AC voltage;
A motor driven by the AC voltage;
Speed detecting means for detecting the rotational speed of the motor;
The DC voltage of the inverter is monitored, and when the DC voltage is higher than a predetermined reference value, DC power is stored in the storage element by the charging / discharging means, and when the DC voltage is lower than the predetermined reference value, When the charging / discharging means discharges DC power from the power storage element and the detection speed of the motor by the speed detection means is equal to or lower than a low speed determination reference value, the charge / discharge depth of the power storage element is charged to the maximum charging depth. An electric vehicle control device comprising charge / discharge control means for performing control.
前記蓄電素子に対して直流電力を充放電させる充放電手段と、
充放電手段の直流電圧を平滑化する直流コンデンサと、
前記直流電圧を交流電圧に変換するインバータと、
前記交流電圧で駆動するモータと、
前記モータの回転速度を検出する速度検出手段と、
前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記速度検出手段による前記モータの検出速度が高速度判定基準値以上の時に、前記蓄電素子に充放電深度を最大放電深度まで放電させる制御をする充放電制御手段とを備えたことを特徴とする電気車制御装置。 A storage element for storing electric power;
Charging / discharging means for charging / discharging direct-current power with respect to the storage element;
A DC capacitor for smoothing the DC voltage of the charging / discharging means;
An inverter that converts the DC voltage into an AC voltage;
A motor driven by the AC voltage;
Speed detecting means for detecting the rotational speed of the motor;
The DC voltage of the inverter is monitored, and when the DC voltage is higher than a predetermined reference value, DC power is stored in the storage element by the charging / discharging means, and when the DC voltage is lower than the predetermined reference value, When the charging / discharging means discharges DC power from the electricity storage element, and the speed detected by the speed detection means is equal to or higher than a high speed determination reference value, the electricity storage element is discharged to a maximum discharge depth. An electric vehicle control device comprising charge / discharge control means for performing control.
前記蓄電素子に対して直流電力を充放電させる充放電手段と、
充放電手段の直流電圧を平滑化する直流コンデンサと、
前記直流電圧を交流電圧に変換するインバータと、
前記交流電圧で駆動するモータと、
前記モータの回転速度を検出する速度検出手段と、
前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記蓄電素子の充放電深度を前記速度検出手段の検出する速度に対応した一定のレベル範囲に保持する制御をする充放電制御手段とを備えたことを特徴とする電気車制御装置。 A storage element for storing electric power;
Charging / discharging means for charging / discharging direct-current power with respect to the storage element;
A DC capacitor for smoothing the DC voltage of the charging / discharging means;
An inverter that converts the DC voltage into an AC voltage;
A motor driven by the AC voltage;
Speed detecting means for detecting the rotational speed of the motor;
The DC voltage of the inverter is monitored, and when the DC voltage is higher than a predetermined reference value, DC power is stored in the storage element by the charging / discharging means, and when the DC voltage is lower than the predetermined reference value, Charge / discharge control means for controlling the charge / discharge means to discharge DC power from the power storage element and to maintain the charge / discharge depth of the power storage element in a certain level range corresponding to the speed detected by the speed detection means. An electric vehicle control device comprising:
前記蓄電素子に対して直流電力を充放電させる充放電手段と、
充放電手段の直流電圧を平滑化する直流コンデンサと、
前記直流電圧を交流電圧に変換するインバータと、
前記交流電圧で駆動するモータと、
前記モータの回転速度を検出する速度検出手段と、
予め離線の発生箇所を算出した走行データベースと、
自車の走行地点を検出する自車位置検出手段と、
前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記走行データベースを検索して前記自車の走行地点が前記予め離線の発生箇所に到達したときに前記蓄電素子の充放電深度を前記速度検出手段の検出する速度に対応した最適状態に制御する充放電制御手段とを備えたことを特徴とする電気車制御装置。 A storage element for storing electric power;
Charging / discharging means for charging / discharging direct-current power with respect to the storage element;
A DC capacitor for smoothing the DC voltage of the charging / discharging means;
An inverter that converts the DC voltage into an AC voltage;
A motor driven by the AC voltage;
Speed detecting means for detecting the rotational speed of the motor;
A travel database in which the occurrence point of the separation line is calculated in advance,
Own vehicle position detecting means for detecting the traveling point of the own vehicle;
The DC voltage of the inverter is monitored, and when the DC voltage is higher than a predetermined reference value, DC power is stored in the storage element by the charging / discharging means, and when the DC voltage is lower than the predetermined reference value, The charge / discharge means discharges DC power from the electricity storage element, and searches the travel database to determine the charge / discharge depth of the electricity storage element when the travel point of the vehicle reaches the location where the separation line has occurred in advance. An electric vehicle control device comprising charge / discharge control means for controlling to an optimum state corresponding to the speed detected by the speed detection means.
前記蓄電素子に対して直流電力を充放電させる充放電手段と、
充放電手段の直流電圧を平滑化する直流コンデンサと、
前記直流電圧を交流電圧に変換するインバータと、
前記交流電圧で駆動するモータと、
前記モータの回転速度を検出する速度検出手段と、
走行時の前記パンタグラフばたつきによる離線頻度を蓄積する離線頻度蓄積データベースと、
パンタグラフのばたつき挙動を検出するパンタグラフ挙動検出手段と、
前記インバータの直流電圧を監視し、当該直流電圧が所定基準値よりも高い場合に前記充放電手段にて直流電力を前記蓄電素子に蓄電させ、前記直流電圧が所定基準値よりも低い場合に前記充放電手段にて前記蓄電素子から直流電力を放電させ、かつ、前記パンタグラフ挙動検出手段の検出するパンタグラフのばたつき挙動を前記離線頻度蓄積データベースのデータと照合して当該パンタグラフの離線発生を予測し、離線発生の直前までに前記速度検出手段の検出する回転速度に対応して前記蓄電素子の充放電深度を最適状態に制御する充放電制御手段とを備えたことを特徴とする電気車制御装置。 A storage element for storing electric power;
Charging / discharging means for charging / discharging direct-current power with respect to the storage element;
A DC capacitor for smoothing the DC voltage of the charging / discharging means;
An inverter that converts the DC voltage into an AC voltage;
A motor driven by the AC voltage;
Speed detecting means for detecting the rotational speed of the motor;
A separation frequency accumulation database for accumulating separation frequency due to fluttering of the pantograph during running,
Pantograph behavior detecting means for detecting the fluttering behavior of the pantograph;
The DC voltage of the inverter is monitored, and when the DC voltage is higher than a predetermined reference value, DC power is stored in the storage element by the charging / discharging means, and when the DC voltage is lower than the predetermined reference value, DC power is discharged from the electricity storage element in the charging / discharging means, and the pantograph fluttering behavior detected by the pantograph behavior detecting means is collated with the data of the separation frequency storage database to predict the occurrence of the separation of the pantograph. An electric vehicle control device comprising charge / discharge control means for controlling the charge / discharge depth of the power storage element to an optimum state corresponding to the rotational speed detected by the speed detection means immediately before the occurrence of the separation line.
前記充放電制御手段は、前記離線頻度蓄積データベースに記憶されている前記最適充放電パターンを基に前記蓄電素子の充放電深度を最適となるよう調整することを特徴とする請求項5に記載の電気車制御装置。 The derailment frequency accumulation database stores optimum charge / discharge patterns along standard operation curves,
The said charge / discharge control means adjusts so that the charge / discharge depth of the said electrical storage element may be optimized based on the said optimal charge / discharge pattern memorize | stored in the said segregation frequency accumulation | storage database. Electric vehicle control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006251616A JP2008072878A (en) | 2006-09-15 | 2006-09-15 | Electric car controlling apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006251616A JP2008072878A (en) | 2006-09-15 | 2006-09-15 | Electric car controlling apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008072878A true JP2008072878A (en) | 2008-03-27 |
Family
ID=39293967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006251616A Pending JP2008072878A (en) | 2006-09-15 | 2006-09-15 | Electric car controlling apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008072878A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009273198A (en) * | 2008-04-30 | 2009-11-19 | Kawasaki Heavy Ind Ltd | Power flow control method and control device of battery-driven vehicle |
JP2009296731A (en) * | 2008-06-03 | 2009-12-17 | Hitachi Ltd | Vehicle controller receiving power intermittently |
KR101151123B1 (en) * | 2009-09-30 | 2012-06-01 | 가부시키가이샤 히타치세이사쿠쇼 | Control device for vehicle |
JP2012139013A (en) * | 2010-12-27 | 2012-07-19 | Hitachi Ltd | Vehicle control system |
WO2013115365A1 (en) * | 2012-02-02 | 2013-08-08 | 三菱重工業株式会社 | Electrical charging/discharging controller, charging control method, discharging control method, and program |
-
2006
- 2006-09-15 JP JP2006251616A patent/JP2008072878A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009273198A (en) * | 2008-04-30 | 2009-11-19 | Kawasaki Heavy Ind Ltd | Power flow control method and control device of battery-driven vehicle |
JP2009296731A (en) * | 2008-06-03 | 2009-12-17 | Hitachi Ltd | Vehicle controller receiving power intermittently |
KR101151123B1 (en) * | 2009-09-30 | 2012-06-01 | 가부시키가이샤 히타치세이사쿠쇼 | Control device for vehicle |
JP2012139013A (en) * | 2010-12-27 | 2012-07-19 | Hitachi Ltd | Vehicle control system |
WO2013115365A1 (en) * | 2012-02-02 | 2013-08-08 | 三菱重工業株式会社 | Electrical charging/discharging controller, charging control method, discharging control method, and program |
JP2013162582A (en) * | 2012-02-02 | 2013-08-19 | Mitsubishi Heavy Ind Ltd | Charge and discharge controller, charge control method, discharge control method, and program |
CN104053572A (en) * | 2012-02-02 | 2014-09-17 | 三菱重工业株式会社 | Electrical charging/discharging controller, charging control method, discharging control method, and program |
CN104053572B (en) * | 2012-02-02 | 2016-06-22 | 三菱重工业株式会社 | Charge-discharge controller, charge control method, discharge control method |
US9694704B2 (en) | 2012-02-02 | 2017-07-04 | Mitsubishi Heavy Industries, Ltd. | Electrical charging/discharging controller, charging control method, discharging control method, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4189023B2 (en) | Electric vehicle control device | |
JP4244060B2 (en) | Moving body | |
KR101478717B1 (en) | System, sub-station and method for recovering brake energy of rail vehicles, rail vehicles for this system | |
US8686591B2 (en) | Electrically-driven vehicle and charge control system which enable simultaneous performance of driving of an accessory unit and a charging process of a battery | |
JP5382341B2 (en) | Traveling vehicle system and contactless power feeding method to traveling vehicle | |
CN102272032B (en) | Transportation system | |
WO2008144752A2 (en) | Energy recapture for an industrial vehicle | |
JP6279748B2 (en) | Railway system | |
KR20180030403A (en) | Vehicle driven by motor and control method of charging and discharging of secondary battery provided in vehicle | |
JP2008072878A (en) | Electric car controlling apparatus | |
JP4772718B2 (en) | Railway vehicle drive system | |
JPH11299275A (en) | Power unit for elevator | |
JP4583154B2 (en) | Control device for feeder system power storage system | |
JP4576465B2 (en) | Charging method and charging system for overhead line-less traffic vehicle | |
JP2014039415A (en) | Charge control device | |
US10279688B2 (en) | Charge-discharge control device for controlling temperature of a power storage device | |
JP2005086876A (en) | Intermittent power supply type electric vehicle system and the electric vehicle | |
KR101454307B1 (en) | Crane system using regenerative energy with power storage equipment and control method thereof | |
JP2010089855A (en) | Crane device and control method of crane device | |
JP2003220859A (en) | Power accumulation unit for dc electrical equipment and railway electrical system | |
JP2005102410A (en) | Control unit of elevator | |
JP2005295680A (en) | Noncontact power supply apparatus and noncontact power supply system | |
JP2000253503A (en) | Energy regenerator for electric vehicles | |
CN109466353B (en) | Automatic guided vehicle charging system and method | |
KR102132764B1 (en) | Economic driving apparatus for a railway vehicle and the method thereof |