JP2007107122A - Polylactic acid fiber - Google Patents
Polylactic acid fiber Download PDFInfo
- Publication number
- JP2007107122A JP2007107122A JP2005297651A JP2005297651A JP2007107122A JP 2007107122 A JP2007107122 A JP 2007107122A JP 2005297651 A JP2005297651 A JP 2005297651A JP 2005297651 A JP2005297651 A JP 2005297651A JP 2007107122 A JP2007107122 A JP 2007107122A
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- fiber
- lactic acid
- resin powder
- spinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
本発明は、ポリ乳酸を主成分とする繊維であって、ポリテトラフルオロエチレン樹脂粉末を含有することにより耐屈曲摩耗性に優れ、衣料用途、産業資材用途に好適なポリ乳酸繊維に関するものである。 The present invention relates to a polylactic acid fiber having polylactic acid as a main component, which has excellent bending wear resistance by containing a polytetrafluoroethylene resin powder, and is suitable for use in clothing and industrial materials. .
脂肪族ポリエステルからなるポリ乳酸は、植物から抽出した澱粉を発酵することにより得られる乳酸を原料としたポリマーであり、バイオマス利用の生分解性ポリマーの中では力学特性、耐熱性、コストのバランスが最も優れ、使用後には微生物が多数存在する環境下や海水、淡水の存在する環境下に放置すると完全に分解消失する性質を持つた画期的なポリマーである。そして、これを利用した樹脂製品、繊維、フィルム、シート等の開発が急ピッチで行われている。 Polylactic acid made of aliphatic polyester is a polymer made from lactic acid obtained by fermenting starch extracted from plants. Among biodegradable polymers using biomass, it has a balance of mechanical properties, heat resistance, and cost. It is the epoch-making polymer that has the property of being completely decomposed and lost when left in an environment where a large number of microorganisms are present or in an environment where seawater or fresh water is present after use. Development of resin products, fibers, films, sheets, and the like using this has been performed at a rapid pitch.
ポリ乳酸繊維の開発としては、生分解性を活かした農業資材や土木資材等が先行しているが、それに続く大型の用途として衣料用途、カーテン、カーペット等のインテリア用途、車両内装用途、産業資材用途、土木資材用途への応用も期待されている。 The development of polylactic acid fibers is preceded by agricultural materials and civil engineering materials that make use of biodegradability, followed by large-scale applications such as clothing, interiors such as curtains and carpets, vehicle interiors, and industrial materials. Applications for civil engineering materials are also expected.
しかしながら、ポリ乳酸繊維は、表面摩擦係数が高いことにより耐屈曲摩耗性に劣るという欠点があり、紡糸、延伸及び後加工時にはプレートやガイド類との摩擦によって単糸毛羽や糸切れ等が起こりやすく、工程通過性に劣り、得られる製品品位も低下するといった問題があった。 However, polylactic acid fibers have the disadvantage that they are inferior in flexural wear resistance due to their high surface friction coefficient, and single yarn fluff and yarn breakage are likely to occur due to friction with plates and guides during spinning, drawing and post-processing. There is a problem that the process passability is inferior and the product quality obtained is also lowered.
このため、産業資材用途、土木資材用途、衣料用途、インテリア用途、車両内装材用途への用途展開がなかなか進んでいなかった。 For this reason, the use development for industrial material use, civil engineering material use, clothing use, interior use, and vehicle interior material use has not progressed easily.
そこで、添加剤や滑剤を添加して、耐屈曲摩耗性や工程通過性を向上させた繊維についてはいくつか提案されている。例えば特許文献1には、ポリ乳酸繊維に脂肪酸ビスアミド及び/またはアルキル置換型の脂肪酸モノアミドを繊維全体に対して0.1〜5.0質量%含有したポリ乳酸を溶融紡糸し、脂肪酸エステル、多加アルコールエステル、エーテルエステル、シリコーン、鉱物油から選ばれる平滑剤を少なくとも1種類含有する紡糸油剤を付与した繊維が提案されている。 Thus, some fibers have been proposed in which additives and lubricants are added to improve bending wear resistance and process passability. For example, Patent Document 1 discloses that polylactic acid containing 0.1 to 5.0% by mass of fatty acid bisamide and / or alkyl-substituted fatty acid monoamide in polylactic acid fiber is melt-spun, and fatty acid ester, polyalcohol ester, ether A fiber provided with a spinning oil agent containing at least one leveling agent selected from esters, silicones, and mineral oils has been proposed.
しかしながら、特許文献1記載の繊維では、摩擦抵抗を十分に低下させることができないばかりでなく、紡糸時におけるローラ延伸の過程で多量の毛羽が発生し、紡糸、延伸時の操業性が著しく不良となるという問題があり、工程通過性、製品品位を十分に向上させることは困難であった。 However, in the fiber described in Patent Document 1, not only the frictional resistance cannot be lowered sufficiently, but a large amount of fluff is generated in the process of roller stretching during spinning, and the operability during spinning and stretching is extremely poor. It has been difficult to sufficiently improve process passability and product quality.
また、特許文献2には、ポリエステルに滑性を付与する方法として、粒径が50μm以下のフッ素樹脂を添加する方法が提案されている。この方法により得られる繊維は、滑性はある程度改善されるものの、径の小さいフィラメントとした場合、耐屈曲摩耗性が十分でないといった問題点があった。 Patent Document 2 proposes a method of adding a fluororesin having a particle size of 50 μm or less as a method of imparting lubricity to polyester. The fiber obtained by this method has improved lubricity to some extent, but has a problem that the bending wear resistance is not sufficient when the filament has a small diameter.
さらに、耐屈曲摩耗性を高める方法として、金属粒子を添加する方法(特許文献3)、ポリエステルとナイロンとの芯鞘型複合繊維とする方法(特許文献4)等が提案されている。これらの方法により得られる繊維は、耐屈曲摩耗性はある程度改善されるものの、ローラ表面等の接触部分が摩耗し、長時間の安定した操業が困難となるという問題点があった。
本発明は上記のような問題点を解決し、耐屈曲摩耗性に優れ、紡糸、延伸、後加工工程での工程通過性も良好であり、優れた強伸度等の繊維特性を有するポリ乳酸繊維を提供することを技術的な課題とするものである。 The present invention solves the above-mentioned problems, has excellent bending wear resistance, has good process passability in spinning, drawing, and post-processing steps, and has excellent fiber properties such as high elongation. Providing fiber is a technical challenge.
本発明者は上記課題を解決するために検討した結果、本発明に到達した。 The present inventor has reached the present invention as a result of studies to solve the above problems.
すなわち、本発明は、ポリ乳酸を主成分とし、ポリテトラフルオロエチレン(以下「PTFE」という)樹脂粉末を繊維質量に対して0.01〜15質量%含有していることを特徴とするポリ乳酸繊維を要旨とするものである。 That is, the present invention provides a polylactic acid fiber comprising polylactic acid as a main component and containing 0.01 to 15% by mass of polytetrafluoroethylene (hereinafter referred to as “PTFE”) resin powder based on the mass of the fiber. It is a summary.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明でいうポリ乳酸とは、ポリD−乳酸、ポリL−乳酸、ポリD−乳酸とポリL−乳酸との共重合体であるポリDL−乳酸、ポリD−乳酸とポリL−乳酸との混合物(ステレオコンプレックス)、ポリD−乳酸とヒドロキシカルボン酸との共重合体、ポリL−乳酸とヒドロキシカルボン酸との共重合体、ポリD−乳酸又はポリL−乳酸と脂肪族ジカルボン酸及び脂肪族ジオールとの共重合体、あるいはこれらのブレンド体とすることが好ましい。 The polylactic acid referred to in the present invention is poly D-lactic acid, poly L-lactic acid, poly DL-lactic acid that is a copolymer of poly D-lactic acid and poly L-lactic acid, poly D-lactic acid, and poly L-lactic acid. (Stereo complex), poly D-lactic acid and hydroxycarboxylic acid copolymer, poly L-lactic acid and hydroxycarboxylic acid copolymer, poly D-lactic acid or poly L-lactic acid and aliphatic dicarboxylic acid, and It is preferable to use a copolymer with an aliphatic diol or a blend thereof.
そして、ポリ乳酸は、上記のようにL−乳酸とD−乳酸が単独で用いられているもの、もしくは併用されているものである。なお、ポリ乳酸のホモポリマーであるL−乳酸やD−乳酸の融点は約180℃であるが、D−乳酸とL−乳酸との共重合体の場合、いずれかの成分の割合を10モル%程度とすると、融点はおよそ130℃程度となる。さらに、いずれかの成分の割合を18モル%以上とすると、融点は120℃未満となって、ほぼ完全に非晶性の性質となる。このような非晶性のポリマーとなると、製造工程において特に熱延伸し難くなり、高強度の繊維が得られ難くくなるという問題が生じたり、繊維が得られたとしても、耐熱性、耐摩耗性等に劣ったものとなるため好ましくない。 The polylactic acid is one in which L-lactic acid and D-lactic acid are used alone or in combination as described above. The melting point of L-lactic acid and D-lactic acid, which are homopolymers of polylactic acid, is about 180 ° C., but in the case of a copolymer of D-lactic acid and L-lactic acid, the ratio of any component is 10 mol. When it is about%, the melting point is about 130 ° C. Furthermore, when the proportion of any of the components is 18 mol% or more, the melting point is less than 120 ° C., and almost completely amorphous properties are obtained. When such an amorphous polymer is used, it becomes difficult to heat-stretch particularly in the production process, and it becomes difficult to obtain high-strength fibers, and even if fibers are obtained, heat resistance, abrasion resistance Since it becomes inferior to property etc., it is not preferable.
そこで、本発明においては、中でも、ポリ乳酸としては、ラクチドを原料として重合する時のL−乳酸やD−乳酸の含有割合で示されるL−乳酸とD−乳酸の含有比(モル比)であるL/D又はD/Lが、82/18以上のものが好ましく、中でも90/10以上、さらには95/15以上とすることが好ましい。 Therefore, in the present invention, among the polylactic acids, in particular, the content ratio (molar ratio) of L-lactic acid and D-lactic acid indicated by the content ratio of L-lactic acid or D-lactic acid when polymerizing using lactide as a raw material. A certain L / D or D / L is preferably 82/18 or more, more preferably 90/10 or more, and even more preferably 95/15 or more.
本発明の繊維は、上記のようなポリ乳酸を主成分とするものであるが、本発明の効果を損なわない範囲であれば、他の成分をブレンド又は共重合していてもよい。共重合する場合は、ポリ乳酸を80モル%以上とすることが好ましい。80モル%未満であると、共重合ポリ乳酸の結晶性が低くなり、融点も低くなりやすい。 The fiber of the present invention is mainly composed of the above polylactic acid, but other components may be blended or copolymerized as long as the effects of the present invention are not impaired. When copolymerizing, it is preferable to make polylactic acid 80 mol% or more. If it is less than 80 mol%, the crystallinity of the copolymerized polylactic acid tends to be low, and the melting point tends to be low.
また、強度等の特性を良好にするために、ポリ乳酸の数平均分子量は高いほど好ましく、5万以上とすることが好ましく、中でも10万以上、さらには20万以上とすることが好ましい。数平均分子量が5万よりも低い場合には繊維の強度が低下するため好ましくない。一方、数平均分子量が30万を超えると、ポリ乳酸特有の分解性能を損なうこととなりやすい。 In order to improve properties such as strength, the number average molecular weight of polylactic acid is preferably as high as possible, preferably 50,000 or more, more preferably 100,000 or more, and more preferably 200,000 or more. When the number average molecular weight is lower than 50,000, the strength of the fiber decreases, which is not preferable. On the other hand, if the number average molecular weight exceeds 300,000, the degradation performance unique to polylactic acid tends to be impaired.
なお、本発明においては前述したポリ乳酸重合体に、必要に応じて例えば熱安定剤、結晶核剤、艶消し剤、顔料、耐光剤、耐候剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、表面改質剤、各種無機及び有機電解質、微粉体、難燃剤等の各種添加剤や結節強度を高める脂肪酸アミド類、例えばメタキシリレンビスステアリルアミド、メタキシリレンビスオレイルアミド、キシレンビスステアリン酸アミド、エチレンビスステアリルアミド、エチレンビスステアリン酸アミド等を本発明の効果を損なわない範囲で添加することができる。 In the present invention, the above-described polylactic acid polymer is added to the above-described polylactic acid polymer as necessary, for example, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light-resistant agent, a weathering agent, an antioxidant, an antibacterial agent, a fragrance, and a plasticizer , Dyes, surfactants, surface modifiers, various inorganic and organic electrolytes, fine powders, flame retardants and other additives and fatty acid amides that increase knot strength, such as metaxylylene bisstearylamide, metaxylylene bisoleyl Amide, xylene bis stearamide, ethylene bis stearyl amide, ethylene bis stearamide, and the like can be added as long as the effects of the present invention are not impaired.
本発明のポリ乳酸繊維は、PTFE樹脂粉末を繊維重量に対して0.01〜15質量%含有しており、繊維中のPTFE樹脂粉末の含有量は、好ましくは0.2〜10質量%、より好ましく0.5〜5.0質量%である。 The polylactic acid fiber of the present invention contains 0.01 to 15% by mass of PTFE resin powder based on the fiber weight, and the content of PTFE resin powder in the fiber is preferably 0.2 to 10% by mass, more preferably 0.5 to 5.0% by mass.
繊維中のPTFE樹脂粉末の含有量が0.1質量%未満であると、耐屈曲摩耗性向上効果が不十分となる。一方、15質量%を超えると、フィラメント内部にミクロボイドが多数形成されるため、強度をはじめとする繊維の特性値が劣るだけでなく、巻き取り時に糸切れが多発し、操業が不安定となり、好ましくない。 When the content of the PTFE resin powder in the fiber is less than 0.1% by mass, the effect of improving the bending wear resistance is insufficient. On the other hand, if it exceeds 15% by mass, a large number of microvoids are formed inside the filament, so not only the properties of the fiber, including strength, are inferior, but also yarn breaks occur frequently during winding, making the operation unstable. It is not preferable.
PTFEとしては、その効果を損なわない範囲であれば、PTFEに他の成分をブレンドしたり、共重合したものであってもよく、さらには、PTFEとパーフルオロアルコキシエチレンの共重合体のような変性された共重合体であってもよい。 As long as the effect of PTFE is not impaired, PTFE may be blended or copolymerized with other components, and further, such as a copolymer of PTFE and perfluoroalkoxyethylene. It may be a modified copolymer.
本発明で繊維に含有させるPTFE樹脂粉末の粒径としては、最大粒径2μm以下で平均粒子径100〜500nmのものが好ましく、中でも最大粒径1μm以下で平均粒子径200〜400nmのものが好ましい。最大粒径が2μmを超えると紡糸時にフィルター詰まりが生じたり、糸切れが多発する等の問題が発生するため好ましくない。 The particle size of the PTFE resin powder to be contained in the fiber in the present invention is preferably a maximum particle size of 2 μm or less and an average particle size of 100 to 500 nm, and more preferably a maximum particle size of 1 μm or less and an average particle size of 200 to 400 nm. . When the maximum particle size exceeds 2 μm, problems such as filter clogging during spinning and frequent thread breakage occur, which is not preferable.
また、上記のような粒径のPTFE樹脂粉末とするには、例えば、PTFEを冷凍粉砕等によって物理的に微粉化した樹脂粉末、もしくはPTFEを電子線照射で低分子量化し、微粉化した樹脂粉末等が挙げられる。 In addition, in order to obtain PTFE resin powder having a particle size as described above, for example, resin powder obtained by physically pulverizing PTFE by freeze pulverization or the like, or resin powder obtained by reducing the molecular weight of PTFE by electron beam irradiation and pulverizing Etc.
PTFE樹脂粉末は重合から紡糸工程までの任意の段階でポリ乳酸に添加、混合することが可能であり、予めポリ乳酸中にPTFE樹脂粉末を高濃度に含有するマスターチップを製造しておき、これを紡糸時にポリ乳酸に添加、混合してもよい。 PTFE resin powder can be added to and mixed with polylactic acid at any stage from polymerization to spinning process. A master chip containing a high concentration of PTFE resin powder in polylactic acid is manufactured in advance. May be added to and mixed with polylactic acid during spinning.
本発明のポリ乳酸繊維は、マルチフィラメント、モノフィラメントのいずれであってもよく、マルチフィラメントの場合、単糸繊度1〜200dtex、総繊度30〜2200dtexとすることが好ましい。モノフィラメントの場合は、150〜5000dtexとすることが好ましい。 The polylactic acid fiber of the present invention may be either a multifilament or a monofilament. In the case of a multifilament, the single yarn fineness is preferably 1 to 200 dtex and the total fineness is 30 to 2200 dtex. In the case of a monofilament, it is preferably 150 to 5000 dtex.
また、断面形状は特に丸断面に限定するものではなく、四角や三角等の多角形状のものや中空部を有するものでもよい。 The cross-sectional shape is not particularly limited to a round cross-section, and may be a polygonal shape such as a square or a triangle or a hollow portion.
次に、本発明のポリ乳酸繊維の製造方法について一例を用いて説明する。まず、D−乳酸とL−乳酸との共重合体の場合を製造するには、L−乳酸及び/またはD−乳酸を原料として、一旦環状二量体であるラクチドを生成させ、その後開環重合を行う二段階のラクチド法もしくは、L−乳酸及び/またはD−乳酸を原料として溶媒中で直接脱水縮合を行う一段階の直接重合法により製造する。 Next, the manufacturing method of the polylactic acid fiber of this invention is demonstrated using an example. First, in order to produce a copolymer of D-lactic acid and L-lactic acid, L-lactic acid and / or D-lactic acid is used as a raw material to once generate lactide which is a cyclic dimer, and then ring opening. It is produced by a two-step lactide method in which polymerization is performed or a one-step direct polymerization method in which dehydration condensation is directly performed in a solvent using L-lactic acid and / or D-lactic acid as raw materials.
そして、予めポリ乳酸中にPTFE樹脂粉末を高濃度に含有するマスターチップを製造しておき、これを紡糸時にポリ乳酸に添加、混合して溶融紡糸を行う。次に、紡糸口金より紡出された糸条に紡糸油剤を付与し、一旦捲き取ることなく、熱延伸を施し、巻き取ることにより本発明のポリ乳酸繊維(マルチフィラメント)を得る。 Then, a master chip containing a high concentration of PTFE resin powder in polylactic acid is manufactured in advance, and this is added to and mixed with polylactic acid during spinning to perform melt spinning. Next, a spinning oil agent is applied to the yarn spun from the spinneret, and the polylactic acid fiber (multifilament) of the present invention is obtained by subjecting it to hot drawing without winding up and winding it.
本発明のポリ乳酸繊維は、生分解性を有しているのはもちろんのこと、十分な耐屈曲摩耗性を有し、紡糸、延伸、後加工工程での工程通過性も良好であり、優れた強伸度等の繊維特性を有しているので、衣料用途のみならず、産業資材用途にも好適に用いることができる。 The polylactic acid fiber of the present invention is not only biodegradable, but also has sufficient bending wear resistance, and has excellent process passability in spinning, stretching, and post-processing steps, and is excellent. Furthermore, since it has fiber properties such as high elongation, it can be suitably used not only for clothing but also for industrial materials.
次に、実施例により本発明を具体的に説明する。なお、実施例における特性値の測定法等は次のとおりである。
(1)引張強度[cN/dtex]
島津製作所社製オートグラフ AG−1型を用い、試料長25cm、引張速度30cm/min、初荷重を繊度の1/20として測定した。
(2)耐屈曲摩耗性
得られた繊維に100g/dtexの荷重をかけ、SIANOR1600のサンドペーパーを巻きつけた直径20mmの丸断面金属棒に、90度の角度で接触させ、トラバース速度6.7mm/min、ストローク速度35回/minの速度条件で往復摩擦させ、フィラメントが破断に至るまでの回数を測定し、以下の4段階で評価した。
A:3000回以上、B:2000〜2999回、C:1000〜1999、D:999回以下
Next, the present invention will be described specifically by way of examples. In addition, the measuring method of the characteristic value in an Example, etc. are as follows.
(1) Tensile strength [cN / dtex]
Using an autograph AG-1 manufactured by Shimadzu Corporation, the sample length was 25 cm, the tensile speed was 30 cm / min, and the initial load was measured as 1/20 of the fineness.
(2) Bending and abrasion resistance A load of 100 g / dtex was applied to the obtained fiber, and it was brought into contact with a round cross-section metal rod with a diameter of 20 mm wrapped with SIANOR1600 sandpaper at an angle of 90 degrees and a traverse speed of 6.7 mm / Reciprocating friction was performed under the speed conditions of min and stroke speed of 35 times / min, and the number of times until the filament broke was measured and evaluated in the following four stages.
A: 3000 times or more, B: 2000-2999 times, C: 1000-1999, D: 999 times or less
実施例1
重合温度230℃とし、数平均分子量88200、L−乳酸を主体とするポリ乳酸樹脂〔L−乳酸とD−乳酸の含有比(モル比)であるL/Dが98.5/1.5〕を得、常法により乾燥した。このポリ乳酸に、最大粒径1μm、平均粒子径が300nmのPTFE樹脂粉末を繊維重量に対して2.0質量%となるように添加してエクストルーダー型溶融紡糸機に供給した。紡糸孔の直径0.35mm、孔数96の紡糸口金を用い、紡糸温度220℃で溶融紡糸を行った。次に、紡出した糸条に紡糸油剤を付与し、一旦捲き取ることなく、145℃に加熱した熱ローラで延伸倍率が6.52倍になるように熱延伸を施し、総繊度1100dtexのポリ乳酸繊維(マルチフィラメント)を得た。
Example 1
A polymerization temperature of 230 ° C., a number average molecular weight of 88200, and a polylactic acid resin mainly composed of L-lactic acid (L / D, which is the content ratio (molar ratio) of L-lactic acid to D-lactic acid is 98.5 / 1.5) are obtained. Dried by the method. To this polylactic acid, PTFE resin powder having a maximum particle size of 1 μm and an average particle size of 300 nm was added so as to be 2.0% by mass with respect to the fiber weight, and supplied to an extruder type melt spinning machine. Using a spinneret having a spinning hole diameter of 0.35 mm and a hole number of 96, melt spinning was performed at a spinning temperature of 220 ° C. Next, a spinning oil agent is applied to the spun yarn, and the polylactic acid fiber having a total fineness of 1100 dtex is subjected to heat drawing with a heat roller heated to 145.degree. (Multifilament) was obtained.
実施例2〜6、比較例1〜4
繊維中のPTFE樹脂粉末の含有量が表1に示す値となるように、PTFE樹脂粉末の添加量を変更し、延伸時の加熱ローラ温度(延伸温度)、延伸倍率を表1に示す値に変更した以外は実施例1と同様に行い、ポリ乳酸繊維を得た。
Examples 2-6, Comparative Examples 1-4
The amount of PTFE resin powder added was changed so that the content of PTFE resin powder in the fiber would be the value shown in Table 1, and the heating roller temperature (drawing temperature) and draw ratio during drawing were changed to the values shown in Table 1. A polylactic acid fiber was obtained in the same manner as in Example 1 except for the change.
実施例1〜6、比較例1〜4で得られたポリ乳酸繊維の引張強度、耐屈曲摩耗性を測定した結果を表1に示す。 Table 1 shows the results of measuring the tensile strength and the bending wear resistance of the polylactic acid fibers obtained in Examples 1 to 6 and Comparative Examples 1 to 4.
表1から明らかなように、実施例1〜6のポリ乳酸繊維は、紡糸、延伸工程とも工程通過性がよく、引張強度、耐屈曲摩耗性ともに優れたものであった。 As is apparent from Table 1, the polylactic acid fibers of Examples 1 to 6 had good process passability in both the spinning and drawing processes, and were excellent in both tensile strength and bending wear resistance.
一方、比較例1、2のポリ乳酸繊維は、PTFE樹脂粉末を含有していなかったため、耐屈曲摩耗性に劣るものであった。比較例3のポリ乳酸繊維は、PTFE樹脂粉末の含有量が多すぎたため、フィラメント内部にミクロボイドが多数生じ、引張強度の低いものとなった。比較例4では、PTFE樹脂粉末の含有量が多すぎたため、紡糸、延伸工程での工程通過性に劣り、巻き取り時に糸切れが多発し、繊維を得ることができなかった。 On the other hand, since the polylactic acid fibers of Comparative Examples 1 and 2 did not contain PTFE resin powder, they were inferior in bending wear resistance. Since the polylactic acid fiber of Comparative Example 3 contained too much PTFE resin powder, many microvoids were generated inside the filament, and the tensile strength was low. In Comparative Example 4, since the content of PTFE resin powder was too large, the process passability in the spinning and drawing processes was inferior, yarn breakage occurred frequently during winding, and fibers could not be obtained.
Claims (1)
A polylactic acid fiber comprising polylactic acid as a main component and containing 0.01 to 15% by mass of polytetrafluoroethylene resin powder based on the mass of the fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005297651A JP2007107122A (en) | 2005-10-12 | 2005-10-12 | Polylactic acid fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005297651A JP2007107122A (en) | 2005-10-12 | 2005-10-12 | Polylactic acid fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007107122A true JP2007107122A (en) | 2007-04-26 |
Family
ID=38033207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005297651A Pending JP2007107122A (en) | 2005-10-12 | 2005-10-12 | Polylactic acid fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007107122A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007154331A (en) * | 2005-12-01 | 2007-06-21 | Unitica Fibers Ltd | Aliphatic polyester fiber structural product |
JP2010106423A (en) * | 2008-09-30 | 2010-05-13 | Unitika Ltd | Flexing abrasion-resistant fiber |
JP2011058121A (en) * | 2009-09-10 | 2011-03-24 | Teijin Fibers Ltd | Polylactic acid fiber |
CN114605799A (en) * | 2022-03-24 | 2022-06-10 | 横店集团得邦工程塑料有限公司 | Transparent heat-resistant self-reinforced polylactic acid material and preparation method thereof |
-
2005
- 2005-10-12 JP JP2005297651A patent/JP2007107122A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007154331A (en) * | 2005-12-01 | 2007-06-21 | Unitica Fibers Ltd | Aliphatic polyester fiber structural product |
JP2010106423A (en) * | 2008-09-30 | 2010-05-13 | Unitika Ltd | Flexing abrasion-resistant fiber |
JP2011058121A (en) * | 2009-09-10 | 2011-03-24 | Teijin Fibers Ltd | Polylactic acid fiber |
CN114605799A (en) * | 2022-03-24 | 2022-06-10 | 横店集团得邦工程塑料有限公司 | Transparent heat-resistant self-reinforced polylactic acid material and preparation method thereof |
CN114605799B (en) * | 2022-03-24 | 2024-01-30 | 横店集团得邦工程塑料有限公司 | Transparent heat-resistant self-reinforced polylactic acid material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011514450A (en) | Heteromorphic structural fibers, textile sheets and their use | |
JP2004353161A (en) | Polyester conjugated fiber | |
JP4773290B2 (en) | Polylactic acid composite fiber | |
JP2011195964A (en) | High-strength nylon 56 staple fiber and method for producing the same | |
JP4617872B2 (en) | Polylactic acid fiber | |
JP2007107122A (en) | Polylactic acid fiber | |
JP2007303012A (en) | Ground fabric for tufted carpet and tufted carpet using the ground fabric | |
JP2008025059A (en) | Polylactic acid fiber | |
JP2010126816A (en) | Polylactic acid fiber, fiber-based board, fiber-based board with film, and method for producing fiber-based board | |
JP5137768B2 (en) | Cross-sectional shape control fiber and manufacturing method thereof | |
JP2009084759A (en) | Polylactic acid staple fiber and method for making the same | |
JP5076375B2 (en) | Agricultural nonwoven fabric | |
JP4546450B2 (en) | Polylactic acid fiber | |
JP2010065325A (en) | Polylactic acid nanofiber | |
JP5012141B2 (en) | Polylactic acid raw cotton | |
JP2006336125A (en) | Bulky sheath-core conjugated filaments and method for producing the same | |
JP3462977B2 (en) | Method for producing polylactic acid fiber | |
KR102585195B1 (en) | Biodegradable fiber having with excellent softness and Method for manufacturing the same | |
JP2007314899A (en) | Polylactic acid monofilament, method for producing the same, and application of the same | |
JP4745091B2 (en) | Biodegradable polyester fiber for splitting | |
JP2008248418A5 (en) | ||
JP3462983B2 (en) | Method for producing polylactic acid fiber | |
JP2022553170A (en) | Textile fiber or textile web, methods and uses associated therewith | |
JP2008274468A (en) | Spun yarn | |
JPH10110332A (en) | Biodegradable monofilament and use thereof |