JP2004353161A - Polyester conjugated fiber - Google Patents
Polyester conjugated fiber Download PDFInfo
- Publication number
- JP2004353161A JP2004353161A JP2004135772A JP2004135772A JP2004353161A JP 2004353161 A JP2004353161 A JP 2004353161A JP 2004135772 A JP2004135772 A JP 2004135772A JP 2004135772 A JP2004135772 A JP 2004135772A JP 2004353161 A JP2004353161 A JP 2004353161A
- Authority
- JP
- Japan
- Prior art keywords
- sheath
- polyester
- core
- composite fiber
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Multicomponent Fibers (AREA)
Abstract
Description
本発明は、植物由来のポリ乳酸を一成分とする複合繊維であって、耐湿熱分解性、強度、耐摩耗性に優れ、様々な用途に使用することができるポリエステル複合繊維に関するものである。 The present invention relates to a polyester composite fiber that is a composite fiber containing plant-derived polylactic acid as a component and has excellent resistance to wet thermal decomposition, strength, and wear resistance, and can be used in various applications.
合成繊維の中でも特にポリエステル繊維は、その優れた寸法安定性、耐候性、機械的特性、耐久性、さらにはリサイクル性等から、衣料、産業資材として不可欠のものとなっており、様々な分野、用途において広く使用されている。 Among synthetic fibers, especially polyester fibers are indispensable as clothing and industrial materials due to their excellent dimensional stability, weather resistance, mechanical properties, durability, and recyclability. Widely used in applications.
従来の合成繊維は、その大部分が石油などの限りある貴重な化石資源を原料としている。またこれらは自然環境下ではほとんど分解されず、廃棄処理が問題となっている。これに対し、ポリ乳酸はトウモロコシなどの植物資源を原料としており、ポリ乳酸を繊維化したポリ乳酸系繊維は、種々の製品に加工された後、コンポストまたは土壌中などの自然環境下では最終的に炭酸ガスと水に分解される完全生分解性を持つ。 Most of the conventional synthetic fibers are made from valuable fossil resources such as petroleum. Also, they are hardly decomposed in the natural environment, and disposal is a problem. Polylactic acid, on the other hand, is made from plant resources such as corn. Polylactic acid fibers made from polylactic acid are processed into various products, and are finally used in natural environments such as compost or soil. It is completely biodegradable and is decomposed into carbon dioxide and water.
しかしながら、ポリ乳酸繊維は、強度、耐摩耗性が従来の合成繊維よりも劣っている。また、染色等の湿熱処理による重合度の低下が大きく、これによっても強度の低下が生じるという問題点があった。 However, polylactic acid fibers are inferior in strength and wear resistance to conventional synthetic fibers. Further, there is a problem that the degree of polymerization is greatly reduced by wet heat treatment such as dyeing, and this also causes a reduction in strength.
このため、従来のポリ乳酸繊維は、ディスポーザブルの日用資材、農林園芸資材等の用途が主流であり、衣料用、土木建築用、水産資材用、自動車資材用等の強度が要求される分野での使用は限定されているのが現状である。 For this reason, conventional polylactic acid fibers are mainly used for disposable daily materials, agriculture, forestry and horticultural materials, and in fields where strength is required for clothing, civil engineering, marine materials, automotive materials, etc. The use of is currently limited.
このようなポリ乳酸繊維の問題点を解決する手段の一つとしては、強度が要求される用途に使用する場合、質量や厚みを増大させて強度や耐摩耗性をカバーしている。 As one of means for solving such problems of polylactic acid fibers, when used in applications requiring strength, the strength and wear resistance are covered by increasing the mass and thickness.
また、特許文献1では、ポリ乳酸の耐久性を上げるために、カルボジイミドなどの末端封鎖剤により、ポリマーの末端を封鎖し、耐加水分解性を向上させることが提案されている。しかしながら、この繊維では、加水分解を促進する末端基の数を減らすことはできたが、ポリ乳酸のみを使用する繊維であるため、耐湿熱分解性の向上効果は不十分であった。 Patent Document 1 proposes that the end of the polymer is blocked with a terminal blocking agent such as carbodiimide to improve the hydrolysis resistance in order to increase the durability of polylactic acid. However, with this fiber, the number of end groups that promote hydrolysis could be reduced, but since the fiber uses only polylactic acid, the effect of improving wet heat decomposition resistance was insufficient.
特許文献2には、ポリ乳酸と他の成分とからなる複合繊維として、ポリ乳酸が単繊維の表面の全部または一部を形成し、他の成分としてポリエチレンテレフタレート等のポリエステルを芯部に用いた複合繊維が提案されている。しかしながら、この繊維はポリ乳酸成分が繊維の外周部を占め、ポリ乳酸成分を接着成分するバインダー繊維であり、上記したような衣料用、土木建築用、水産資材用、自動車資材用等の強度が要求される分野で使用するものではなかった。
本発明は、上記の問題点を解決し、ポリ乳酸を構成成分としながらも、強度、耐湿熱分解性、耐摩耗性に優れ、様々な用途に使用することが可能なポリエステル複合繊維を提供しようとするものである。また、機械捲縮やスパイラル捲縮、潜在(スパイラル)捲縮性能を有しており、嵩高性が要求される用途として、詰め綿やクッション材にも好適に使用することができるポリエステル複合繊維を提供しようとするものである。 The present invention solves the above-mentioned problems and provides a polyester composite fiber that is excellent in strength, moist heat resistance, and abrasion resistance, and can be used in various applications, while using polylactic acid as a constituent component. It is what. In addition, polyester composite fibers that have mechanical crimping, spiral crimping, and latent (spiral) crimping performance, and can be suitably used for stuffed cotton and cushioning materials are also required for bulkiness. It is something to be offered.
本発明者らは、上記の課題を解決するために鋭意検討の結果、本発明に到達した。
すなわち、本発明は次の(1)〜(4)を要旨とするものである。
(1)芳香族ポリエステルとポリ乳酸よりなる複合繊維であって、横断面形状が芯鞘形状を呈しており、鞘部が芳香族ポリエステル、芯部がポリ乳酸で構成されていることを特徴とするポリエステル複合繊維。
(2)芯部と鞘部がほぼ同心円上に配置された同心芯鞘型の複合繊維であって、機械捲縮が付与されている(1)記載のポリエステル複合繊維。
(3)芯部と鞘部が偏心的に配置された偏心芯鞘型の複合繊維であって、捲縮数5個/25mm以上、捲縮率8%以上を同時に満足するスパイラル捲縮を有している(1)記載のポリエステル複合繊維。
(4)芯部と鞘部が偏心的に配置された偏心芯鞘型の複合繊維であって、150℃乾熱処理後に50個/25mm以上のスパイラル捲縮を発現する潜在捲縮性能を有している(1)記載のポリエステル複合繊維。
The inventors of the present invention have reached the present invention as a result of intensive studies in order to solve the above problems.
That is, the gist of the present invention is the following (1) to (4).
(1) A composite fiber composed of an aromatic polyester and polylactic acid, wherein the cross-sectional shape is a core-sheath shape, the sheath is composed of aromatic polyester, and the core is composed of polylactic acid. Polyester composite fiber.
(2) The polyester composite fiber according to (1), which is a concentric core-sheath type composite fiber in which a core part and a sheath part are arranged substantially concentrically, and mechanically crimped.
(3) Eccentric core-sheath type composite fiber in which the core part and the sheath part are arranged eccentrically, and has a spiral crimp that simultaneously satisfies the number of crimps of 5/25 mm or more and a crimp rate of 8% or more. The polyester conjugate fiber according to (1).
(4) An eccentric core-sheath type composite fiber in which a core part and a sheath part are arranged eccentrically, and has a latent crimping performance to express 50/25 mm or more spiral crimps after a dry heat treatment at 150 ° C. The polyester composite fiber according to (1).
本発明のポリエステル複合繊維は、ポリ乳酸成分を構成成分としながらも、強度、耐摩耗性、耐湿熱分解性に優れており、衣料、産業資材用途等に幅広く用いることが可能となる。
中でも、機械捲縮を有している本発明のポリエステル複合繊維は、紡績糸や不織布用等に好適に使用することができる。
スパイラル捲縮を有している本発明のポリエステル複合繊維は、嵩高性が要求される用途として、詰め綿やクッション材に好適に使用することができる。
潜在(スパイラル)捲縮性能を有している本発明のポリエステル複合繊維は、操業性よく伸縮性に優れた不織布や織編物等の布帛を得ることができる。
さらに、コンポストでの生分解性に優れた本発明のポリエステル複合繊維は、使用時は十分な強度、耐湿熱分解性を有していながら、使用後は速やかに分解するので特に地球環境に優しい繊維となる。
The polyester composite fiber of the present invention is excellent in strength, wear resistance, and moisture and heat decomposability while having a polylactic acid component as a constituent component, and can be widely used for clothing, industrial materials and the like.
Among these, the polyester composite fiber of the present invention having mechanical crimps can be suitably used for spun yarns and nonwoven fabrics.
The polyester composite fiber of the present invention having spiral crimps can be suitably used for stuffed cotton and cushion materials as an application requiring bulkiness.
The polyester composite fiber of the present invention having a latent (spiral) crimping performance can provide a fabric such as a nonwoven fabric or a woven or knitted fabric with excellent operability and excellent stretchability.
Furthermore, the polyester composite fiber of the present invention, which is excellent in biodegradability in compost, is a fiber that is particularly friendly to the global environment because it decomposes quickly after use, while having sufficient strength and resistance to moist heat decomposition during use. It becomes.
以下、本発明を詳細に説明する。
本発明のポリエステル複合繊維は、横断面形状が芯鞘形状を呈する芯鞘型複合繊維であって、鞘部が芳香族ポリエステル、芯部がポリ乳酸で構成されている。本発明のポリエステル複合繊維は単繊維形状を示すものであるので、本発明のポリエステル複合繊維(単繊維)を複数本集合させた繊維として、長繊維や短繊維として使用することができる。また、複数本集合させることなくモノフィラメントとして用いてもよい。
Hereinafter, the present invention will be described in detail.
The polyester composite fiber of the present invention is a core-sheath type composite fiber having a cross-sectional shape of a core-sheath shape, wherein the sheath part is composed of aromatic polyester and the core part is composed of polylactic acid. Since the polyester composite fiber of the present invention exhibits a single fiber shape, it can be used as a long fiber or a short fiber as a fiber in which a plurality of the polyester composite fibers (single fibers) of the present invention are assembled. Moreover, you may use as a monofilament, without making multiple sets gather.
本発明のポリエステル複合繊維の芯部を構成するポリ乳酸としては、ポリD−乳酸、ポリL−乳酸、ポリD−乳酸とポリL−乳酸との共重合体であるポリDL−乳酸、ポリD−乳酸とポリL−乳酸との混合物(ステレオコンプレックス)、ポリD−乳酸とヒドロキシカルボン酸との共重合体、ポリL−乳酸とヒドロキシカルボン酸との共重合体、ポリD−乳酸又はポリL−乳酸と脂肪族ジカルボン酸及び脂肪族ジオールとの共重合体、あるいはこれらのブレンド体とすることが好ましい。 Polylactic acid constituting the core of the polyester composite fiber of the present invention includes poly-D-lactic acid, poly-L-lactic acid, poly-DL-lactic acid that is a copolymer of poly-D-lactic acid and poly-L-lactic acid, and poly-D. -Lactic acid and poly L-lactic acid mixture (stereo complex), poly D-lactic acid and hydroxycarboxylic acid copolymer, poly L-lactic acid and hydroxycarboxylic acid copolymer, poly D-lactic acid or poly L -It is preferable to use a copolymer of lactic acid, aliphatic dicarboxylic acid and aliphatic diol, or a blend thereof.
そして、ポリ乳酸は、上記のようにL−乳酸とD−乳酸が単独で用いられているもの、もしくは併用されているものであるが、中でも融点が120℃以上、融解熱が10J/g以上であることが好ましい。 The polylactic acid is one in which L-lactic acid and D-lactic acid are used alone or in combination as described above. Among them, the melting point is 120 ° C. or more, and the heat of fusion is 10 J / g or more. It is preferable that
ポリ乳酸のホモポリマーであるL−乳酸やD−乳酸の融点は約180℃であるが、D−乳酸とL−乳酸との共重合体の場合、いずれかの成分の割合を10モル%程度とすると、融点はおよそ130℃程度となる。さらに、いずれかの成分の割合を18モル%以上とすると、融点は120℃未満、融解熱は10J/g未満となって、ほぼ完全に非晶性の性質となる。このような非晶性のポリマーとなると、製造工程において特に熱延伸し難くなり、高強度の繊維が得られ難くくなるという問題が生じたり、繊維が得られたとしても、耐熱性、耐摩耗性に劣ったものとなるため好ましくない。 The melting point of L-lactic acid and D-lactic acid, which are homopolymers of polylactic acid, is about 180 ° C., but in the case of a copolymer of D-lactic acid and L-lactic acid, the proportion of any component is about 10 mol%. Then, the melting point is about 130 ° C. Furthermore, when the proportion of any of the components is 18 mol% or more, the melting point is less than 120 ° C. and the heat of fusion is less than 10 J / g, which is almost completely amorphous. When such an amorphous polymer is used, it becomes difficult to heat-stretch particularly in the production process, and it becomes difficult to obtain high-strength fibers, and even if fibers are obtained, heat resistance, abrasion resistance Since it becomes inferior in property, it is not preferable.
そこで、ポリ乳酸としては、ラクチドを原料として重合する時のL−乳酸やD−乳酸の含有割合で示されるL−乳酸とD−乳酸の含有比(モル比)であるL/D又はD/Lが、82/18以上のものが好ましく、中でも90/10以上、さらには95/15以上とすることが好ましい。 Therefore, as polylactic acid, L / D or D / which is the content ratio (molar ratio) of L-lactic acid and D-lactic acid indicated by the content ratio of L-lactic acid or D-lactic acid when polymerizing using lactide as a raw material. L is preferably 82/18 or more, more preferably 90/10 or more, and even more preferably 95/15 or more.
また、ポリ乳酸の中でも、上記したようなポリD−乳酸とポリL−乳酸との混合物(ステレオコンプレックス)は、融点が200〜230℃と高く、布帛にした後の高温染色やアイロン加工も可能となり、特に好ましい。 Among polylactic acids, the mixture of poly D-lactic acid and poly L-lactic acid (stereo complex) as described above has a high melting point of 200-230 ° C, and can be dyed at high temperatures and ironed after being made into a fabric. It is particularly preferable.
ポリ乳酸とヒドロキシカルボン酸の共重合体である場合は、ヒドロキシカルボン酸の具体例としてはグリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。中でもヒドロキシカプロン酸またはグリコール酸を用いることがコスト面からも好ましい。 In the case of a copolymer of polylactic acid and hydroxycarboxylic acid, specific examples of hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, etc. Can be mentioned. Of these, the use of hydroxycaproic acid or glycolic acid is preferable from the viewpoint of cost.
ポリ乳酸と脂肪族ジカルボン酸及び脂肪族ジオールとの共重合体の場合は、脂肪族ジカルボン酸及び脂肪族ジオールとしては、セバシン酸、アジピン酸、ドデカン二酸、トリメチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等が挙げられる。 In the case of a copolymer of polylactic acid, aliphatic dicarboxylic acid and aliphatic diol, the aliphatic dicarboxylic acid and aliphatic diol include sebacic acid, adipic acid, dodecanedioic acid, trimethylene glycol, 1,4-butane. Diol, 1,6-hexanediol, etc. are mentioned.
このようにポリ乳酸に他の成分を共重合させる場合は、ポリ乳酸を80モル%以上とすることが好ましい。80モル%未満であると、共重合ポリ乳酸の結晶性が低くなり、融点120℃未満、融解熱10J/g未満となりやすい。 Thus, when making polylactic acid copolymerize another component, it is preferable that polylactic acid shall be 80 mol% or more. If it is less than 80 mol%, the crystallinity of the copolymerized polylactic acid tends to be low, and the melting point is less than 120 ° C. and the heat of fusion is less than 10 J / g.
また、ポリ乳酸の分子量としては、分子量の指標として用いられるASTM D−1238法に準じ、温度210℃、荷重2160gで測定したメルトフローレートが、1〜100(g/10分)であることが好ましく、より好ましくは5〜50(g/10分)である。メルトフローレートをこの範囲とすることにより、強度、湿熱分解性、耐摩耗性が向上する。 In addition, the molecular weight of polylactic acid is 1 to 100 (g / 10 min) as measured by a temperature of 210 ° C. and a load of 2160 g according to the ASTM D-1238 method used as an index of molecular weight. More preferably, it is 5-50 (g / 10min). By setting the melt flow rate within this range, strength, wet heat decomposability, and wear resistance are improved.
また、ポリ乳酸の耐久性を高める目的で、ポリ乳酸に脂肪族アルコール、カルボジイミド化合物、オキサゾリン化合物、オキサジン化合物、エポキシ化合物などの末端封鎖剤を添加してもよい。 For the purpose of enhancing the durability of polylactic acid, a terminal blocking agent such as an aliphatic alcohol, a carbodiimide compound, an oxazoline compound, an oxazine compound, or an epoxy compound may be added to polylactic acid.
さらに、本発明の目的を損なわない範囲であれば、必要に応じて、ポリ乳酸中に熱安定剤、結晶核剤、艶消剤、顔料、耐光剤、耐候剤、滑剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、難燃剤、表面改質剤、各種無機及び有機電解質、その他類似の添加剤を添加してもよい。 Furthermore, as long as it does not impair the purpose of the present invention, a heat stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light-proofing agent, a weathering agent, a lubricant, an antioxidant, an antibacterial agent are included in polylactic acid as necessary. Agents, fragrances, plasticizers, dyes, surfactants, flame retardants, surface modifiers, various inorganic and organic electrolytes, and other similar additives may be added.
次に、本発明のポリエステル複合繊維の鞘部を構成する芳香族ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのポリアルキレンテレフタレートを主体としたポリエステルであって、イソフタル酸、5−スルホイソフタル酸などの芳香族ジカルボン酸、アジピン酸、コハク酸、スベリン酸、セバシン酸、ドデカン二酸などの脂肪族ジカルボン酸、およびエチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノールなどの脂肪族ジオールや、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシペンタン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸などのヒドロキシカルボン酸、ε−カプロラクトンなどの脂肪族ラクトン等を共重合していてもよい。 Next, the aromatic polyester constituting the sheath of the polyester composite fiber of the present invention is a polyester mainly composed of polyalkylene terephthalate such as polyethylene terephthalate (PET), polybutylene terephthalate, polytrimethylene terephthalate, and the like. Acids, aromatic dicarboxylic acids such as 5-sulfoisophthalic acid, aliphatic dicarboxylic acids such as adipic acid, succinic acid, suberic acid, sebacic acid, dodecanedioic acid, and ethylene glycol, propylene glycol, 1,4-butanediol, Hydroxy diols such as 1,4-cyclohexanedimethanol, glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypentanoic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, etc. Carboxylic acid, may be copolymerized with aliphatic lactones such as such as ε- caprolactone.
本発明の芳香族ポリエステルとしては、中でも芳香族ジカルボン酸成分が全酸成分の70mol%以上である芳香族ポリエステルが好ましい。芳香族ジカルボン酸成分が全酸成分に対して70mol%未満であると、芳香族ポリエステルの耐湿熱分解性、耐候性などが低下しやすくなる。 As the aromatic polyester of the present invention, an aromatic polyester in which the aromatic dicarboxylic acid component is 70 mol% or more of the total acid component is particularly preferable. When the aromatic dicarboxylic acid component is less than 70 mol% with respect to the total acid component, the wet heat decomposition resistance, weather resistance, etc. of the aromatic polyester are likely to be lowered.
また、芳香族ポリエステルの融点は、芯部のポリ乳酸との融点差が大きすぎると、複合紡糸に際して紡糸操業性を阻害したり、ポリ乳酸の熱分解を引き起こすことがあるので、融点が200〜255℃程度のものを用いることが好ましく、芯部のポリ乳酸の融点との差は0〜60℃とすることが好ましい。 The melting point of the aromatic polyester is such that if the difference in melting point from the polylactic acid in the core is too large, the spinning operability may be hindered during composite spinning or the thermal decomposition of the polylactic acid may occur. It is preferable to use a thing of about 255 degreeC, and it is preferable that the difference with melting | fusing point of the polylactic acid of a core part shall be 0-60 degreeC.
このような融点を有し、芳香族ジカルボン酸成分が全酸成分の70mol%以上である芳香族ポリエステルとしては、イソフタル酸を共重合したPET、ポリトリメチレンテレフタレート(ホモポリエステル)、ポリブチレンレテフタレート(ホモポリエステル)を用いることが好ましい。 Examples of aromatic polyesters having such a melting point and whose aromatic dicarboxylic acid component is 70 mol% or more of the total acid component include PET copolymerized with isophthalic acid, polytrimethylene terephthalate (homopolyester), polybutylene terephthalate. (Homopolyester) is preferably used.
また、芳香族ポリエステル中にも、本発明の目的を損なわない範囲であれば、必要に応じて、熱安定剤、結晶核剤、艶消剤、顔料、耐光剤、耐候剤、滑剤、酸化防止剤、抗菌剤、香料、可塑剤、染料、界面活性剤、難燃剤、表面改質剤、各種無機及び有機電解質、その他類似の添加剤を添加することができる。 Also, in the aromatic polyester, as long as the purpose of the present invention is not impaired, a thermal stabilizer, a crystal nucleating agent, a matting agent, a pigment, a light-resistant agent, a weathering agent, a lubricant, an antioxidant, if necessary. Agents, antibacterial agents, fragrances, plasticizers, dyes, surfactants, flame retardants, surface modifiers, various inorganic and organic electrolytes, and other similar additives can be added.
次に、本発明のポリエステル複合繊維の形状について説明する。本発明のポリエステル複合繊維は、横断面形状、すなわち、繊維の長さ方向に対して垂直に切断した断面の形状が芯鞘形状を呈する芯鞘型複合繊維であって、上記のような芳香族ポリエステルが鞘部に配され、ポリ乳酸が芯部に配されている。芳香族ポリエステルが鞘部に配されるということは、繊維の表面全体を芳香族ポリエステルが覆うように配置されていることであるが、このとき、芯部は1つであっても複数であってもよい。つまり、芯鞘形状としては、芯部が1つである同心芯鞘型や偏心芯鞘型、芯部が複数個である海島型等の複合形態のものが挙げられる。 Next, the shape of the polyester composite fiber of the present invention will be described. The polyester conjugate fiber of the present invention is a core-sheath type conjugate fiber in which a cross-sectional shape, that is, a shape of a cross-section cut perpendicularly to the length direction of the fiber exhibits a core-sheath shape, and is aromatic as described above Polyester is disposed on the sheath and polylactic acid is disposed on the core. The fact that the aromatic polyester is arranged in the sheath means that the entire surface of the fiber is covered with the aromatic polyester, but at this time, even if there is one core, there are a plurality of cores. May be. In other words, examples of the core-sheath shape include composite forms such as a concentric core-sheath type having one core part, an eccentric core-sheath type, and a sea-island type having a plurality of core parts.
このような芯鞘型の複合形状とすることにより、芳香族ポリエステルがポリ乳酸の劣る性能である強度や耐湿熱分解性、耐摩耗性等をカバーできるので、繊維全体として強度や耐湿熱分解性、耐摩耗性に優れたものとなる。 By adopting such a core-sheath type composite shape, the aromatic polyester can cover the inferior performance of polylactic acid, such as strength, moisture pyrolysis resistance, wear resistance, etc., so the strength and moisture pyrolysis resistance of the whole fiber It is excellent in wear resistance.
上記のような芯鞘型の複合形状を呈していれば、本発明の複合繊維は丸断面に限定されるものではなく、扁平断面、多角形、多葉形、ひょうたん形、アルファベット形(T型、Y型等)、井型等の各種の異形のものであってもよい。また、これらの形状において中空部を有するものでもよい。 If the core-sheath type composite shape as described above is exhibited, the composite fiber of the present invention is not limited to a round cross section, but a flat cross section, a polygonal shape, a multileaf shape, a gourd shape, an alphabet shape (T type) , Y type, etc.), various types of irregular shapes such as a well type. Moreover, you may have a hollow part in these shapes.
そして、本発明のポリエステル複合繊維は、中でも以下の(A)〜(C)の形状のものとすることが好ましい。
(A)芯部と鞘部がほぼ同心円上に配置された同心芯鞘型の複合繊維であって、機械捲縮が付与されている。
(B)芯部と鞘部が偏心的に配置された偏心芯鞘型の複合繊維であって、捲縮数が5個/25mm以上、捲縮率が8%以上を同時に満足するスパイラル捲縮を有している。
(C)芯部と鞘部が偏心的に配置された偏心芯鞘型の複合繊維であって、150℃乾熱処理後に50個/25mm以上のスパイラル捲縮を発現する潜在捲縮性能を有している。
And it is preferable that especially the polyester composite fiber of this invention shall be a thing of the shape of the following (A)-(C).
(A) A concentric core-sheath type composite fiber in which a core part and a sheath part are arranged substantially concentrically, and mechanical crimps are imparted.
(B) Eccentric core-sheath type composite fiber in which the core part and the sheath part are eccentrically arranged, and the spiral crimp that satisfies the crimp number of 5/25 mm or more and the crimp rate of 8% or more simultaneously. have.
(C) An eccentric core-sheath type composite fiber in which a core part and a sheath part are arranged eccentrically, and has a latent crimping performance that exhibits 50/25 mm or more spiral crimps after dry heat treatment at 150 ° C. ing.
まず、(A)の形状を有するポリエステル複合繊維について説明する。図1は、(A)の形状を有するポリエステル複合繊維の一実施態様を示す横断面図である。(A)の形状において、ほぼ同心円上に配置されている同心芯鞘型とは、鞘部の形状と芯部の形状が異なる場合(例えば、鞘部が丸型形状、芯部が四角形状)であっても、それぞれの中心(重心)点がほぼ一致するように配置されているものをいう。 First, the polyester composite fiber having the shape (A) will be described. FIG. 1 is a cross-sectional view showing an embodiment of a polyester composite fiber having the shape of (A). In the shape of (A), when the shape of the sheath part and the shape of the core part are different from the concentric core-sheath type arranged substantially concentrically (for example, the sheath part is round and the core part is square) Even so, the center (center of gravity) points are arranged so as to substantially coincide with each other.
また、このような形状において、鞘部の最も厚い部分の厚みをaとし、最も薄い部分の厚みをbとして、偏心度=a/bとした場合に、偏心度が2.0以下となるようにすることが好ましく、中でも1.5以下となるようにすることが好ましい。 In such a shape, when the thickness of the thickest part of the sheath is a, the thickness of the thinnest part is b, and the degree of eccentricity is a / b, the degree of eccentricity is 2.0 or less. It is preferable to set it to 1.5 or less.
なお、鞘部の厚みは、光学顕微鏡にて繊維の横断面(繊維の長さ方向に対して垂直に切断した断面)を500倍で撮影し、顕微鏡写真より測定したものであり、n=20の平均値とする。 In addition, the thickness of the sheath part was measured by taking a cross section of the fiber (cross section cut perpendicularly to the length direction of the fiber) with an optical microscope at a magnification of 500, and measured from a micrograph, n = 20 The average value of
(A)の形状における芯鞘複合比率は、鞘部が繊維表面全体を覆うためには、質量比率(芯/鞘)で20/80〜80/20とすることが好ましい。 The core / sheath composite ratio in the shape of (A) is preferably 20/80 to 80/20 in mass ratio (core / sheath) so that the sheath part covers the entire fiber surface.
そして、(A)の形状を有するポリエステル複合繊維は、機械捲縮が付与されたものである。機械捲縮とは、押し込み式クリンパーやスタフィングボックス等の捲縮付与装置により捲縮を付与されたものをいい、通常、これらの捲縮付与装置によると山部と谷部が連続して存在するジグザグ状の捲縮が付与される。捲縮付与装置により付与する捲縮数は5個/25mm〜25個/25mmとすることが好ましく、捲縮率は5〜30%とすることが好ましい。 And the polyester composite fiber which has a shape of (A) is a thing to which the mechanical crimp was provided. Mechanical crimps are those that have been crimped by a crimping device such as a push-in crimper or a stuffing box. Normally, these crimping devices have continuous peaks and valleys. Zigzag crimps are applied. The number of crimps applied by the crimp application device is preferably 5/25 mm to 25/25 mm, and the crimp rate is preferably 5 to 30%.
このような(A)の形状を有するポリエステル複合繊維は、紡績糸や不織布用途に適しており、本発明のポリエステル複合繊維を数千〜数百万本を集合させた繊維束とし、繊維長5〜150mm程度の短繊維として用いることが好ましい。また、本発明の複合繊維は単独で用いてもよいが、他の繊維と混用する用途にも適しており、混紡、交撚、精紡交撚を行ったり、交織、交編して用いてもよい。混用する他の繊維としては、ポリエステル、ナイロン、アクリル、アラミド等の合成繊維、ビスコース、キュプラ、ポリノジック等のレーヨン系繊維、リヨセル等の溶剤紡糸セルロース繊維、絹、綿、麻、羊毛その他の獣毛繊維が挙げられる。 The polyester composite fiber having such a shape (A) is suitable for use in spun yarns and nonwoven fabrics. The polyester composite fiber of the present invention is made into a fiber bundle in which several thousand to several millions are assembled, and the fiber length is 5 It is preferably used as a short fiber of about ~ 150 mm. In addition, the composite fiber of the present invention may be used alone, but is also suitable for use with other fibers, and is used by mixing, knitting, fine spinning, knitting, knitting, knitting. Also good. Other fibers to be mixed include synthetic fibers such as polyester, nylon, acrylic and aramid, rayon fibers such as viscose, cupra and polynosic, solvent-spun cellulose fibers such as lyocell, silk, cotton, hemp, wool and other beasts. A hair fiber is mentioned.
このような用途に適するものとしては、本発明の複合繊維の繊度(単繊維繊度)は1〜100dtexとすることが好ましい。 As suitable for such applications, the fineness (single fiber fineness) of the composite fiber of the present invention is preferably 1 to 100 dtex.
(A)の形状を有する本発明のポリエステル複合繊維の製造方法について、上記したような数千〜数百万本を集合させた繊維束とし、短繊維とする場合の製造例を用いて説明する。ポリ乳酸と芳香族ポリエステルを通常の複合紡糸装置(同心芯鞘型の複合紡糸装置)を用いて溶融紡糸し、冷却、油剤を付与した後、延伸することなく一旦巻取る。この未延伸糸を数十万〜二百万dtexのトウに集束して、延伸倍率2〜5倍、延伸温度40〜80℃で延伸を行い、80〜160℃で熱処理を施す。続いて、押し込み式クリンパーにより機械捲縮を施した後、ECカッター等のカッターで目的とする長さに切断して短繊維とする。 The manufacturing method of the polyester composite fiber of the present invention having the shape of (A) will be described with reference to a manufacturing example in the case where the above-described fiber bundle is assembled from several thousand to several millions, and short fibers are used. . Polylactic acid and aromatic polyester are melt-spun using a normal composite spinning device (concentric core-sheath type composite spinning device), cooled, provided with an oil agent, and then wound up without stretching. The undrawn yarn is focused on a tow of several hundred thousand to two million dtex, drawn at a draw ratio of 2 to 5 times, a draw temperature of 40 to 80 ° C., and subjected to heat treatment at 80 to 160 ° C. Subsequently, after mechanical crimping by a push-in type crimper, it is cut into a target length with a cutter such as an EC cutter to obtain short fibers.
なお、長繊維とする際には、未延伸糸(マルチフィラメント状)を巻き取った後、トウとして集束することなく延伸を施すか、もしくは未延伸糸のまま、撚糸や仮撚加工等を行って加工糸を得る方法がある。 In addition, when making a long fiber, after winding an unstretched yarn (multifilament shape), it is stretched without converging as a tow, or the unstretched yarn is subjected to twisting or false twisting. There is a method to obtain processed yarn.
次に、(B)の形状を有するポリエステル複合繊維について説明する。図2は、(B)の形状を有するポリエステル複合繊維の一実施態様を示す横断面図である。(B)の形状において、芯部と鞘部が偏心的に配置されているとは、鞘部の形状と芯部の形状が同じ場合や異なる場合(例えば、鞘部が丸型形状、芯部が四角形状)において、それぞれの中心(重心)点が一致していない状態で配置されているものをいう。そして、(A)の形状において前記したように、鞘部の最も厚い部分の厚みをaとし、最も薄い部分の厚みをbとしたときの偏心度=a/bにおいて、偏心度が2.0以上となるようにすることが好ましく、中でも3.0以上、さらには4.0以上であることが好ましい。 Next, the polyester composite fiber having the shape (B) will be described. FIG. 2 is a cross-sectional view showing one embodiment of a polyester composite fiber having the shape (B). In the shape of (B), when the core part and the sheath part are arranged eccentrically, the shape of the sheath part and the shape of the core part are the same or different (for example, the sheath part has a round shape, the core part) In the shape of a quadrangle), the center (center of gravity) points are not aligned. As described above in the shape of (A), when the thickness of the thickest portion of the sheath is a and the thickness of the thinnest portion is b, the eccentricity is 2.0 when the eccentricity is a / b. It is preferable to make it above, and among them, it is preferably 3.0 or more, more preferably 4.0 or more.
なお、偏心度が大きくなりすぎると、紡糸操業性が悪化したり、強度等の物性が低下しやすいため、偏心度は10.0以下とすることが好ましい。 If the degree of eccentricity becomes too large, the spinning operability is deteriorated and physical properties such as strength are easily lowered. Therefore, the degree of eccentricity is preferably 10.0 or less.
このように、芳香族ポリエステルとポリ乳酸を偏心的に複合させることで、両ポリマーの粘度差や熱収縮差によってスパイラル捲縮を発現させることができる。つまり、スパイラル捲縮とは、コイル(螺旋)状の微細な捲縮であって、三次元的な立体捲縮のことであり、上記(A)の形状のように捲縮付与装置により機械捲縮を付与したものとは形状が異なるものである。
偏心度が2.0より小さいと、スパイラル捲縮の発現性が悪くなるため好ましくない。
Thus, by crimping the aromatic polyester and polylactic acid in an eccentric manner, spiral crimps can be expressed by the difference in viscosity or thermal contraction between the two polymers. That is, the spiral crimp is a coil (spiral) -like fine crimp, which is a three-dimensional solid crimp, and is mechanically crimped by a crimp imparting device as in the shape of (A) above. The shape is different from that of the contracted one.
If the degree of eccentricity is less than 2.0, the expression of spiral crimps is deteriorated, which is not preferable.
(B)の形状を有するポリエステル複合繊維は、このような立体的なスパイラル捲縮を有することから、嵩高性に優れており、クッション材や詰め綿用途に適している。また、このような用途に用いる際には、本発明のポリエステル複合繊維を数千〜数百万本を集合させた繊維束とし、繊維長5〜150mm程度の短繊維として用いることが好ましい。 Since the polyester composite fiber having the shape (B) has such a three-dimensional spiral crimp, it is excellent in bulkiness and is suitable for cushioning materials and stuffed cotton applications. Moreover, when using for such a use, it is preferable to use the polyester composite fiber of this invention as a fiber bundle which aggregated several thousand to several million, and to use as a short fiber about 5-150 mm in fiber length.
本発明のポリエステル複合繊維のスパイラル捲縮は、捲縮数が5個/25mm以上であることが好ましく、中でも6個/25mm〜30個/25mm、さらには7個/25mm〜20個/25mmであることが好ましい。また、捲縮率は8%以上であることが好ましく、中でも10〜40%、さらには15〜30%であることが好ましい。 The spiral crimp of the polyester composite fiber of the present invention preferably has a number of crimps of 5 pieces / 25 mm or more, particularly 6 pieces / 25 mm to 30 pieces / 25 mm, and more preferably 7 pieces / 25 mm to 20 pieces / 25 mm. Preferably there is. The crimp rate is preferably 8% or more, more preferably 10 to 40%, and further preferably 15 to 30%.
スパイラル捲縮の数が5個/25mmより少なかったり、捲縮率が8%未満であると、嵩高性が乏しくなり、クッション性が低下したり、カード通過性が悪くなりやすい。 When the number of spiral crimps is less than 5 pieces / 25 mm or the crimp rate is less than 8%, the bulkiness is poor, the cushioning property is lowered, and the card passing property is liable to be deteriorated.
(B)の形状を有するポリエステル複合繊維は、芳香族ポリエステルとポリ乳酸の粘度や共重合量及び複合繊維の偏心度を適宜調整することによって、上記範囲の捲縮数や捲縮率のものとすることができる。つまり、これらの性能差により複合繊維内でポリマーの収縮差が生じ、延伸や熱処理時にスパイラル捲縮が発現するものである。芳香族ポリエステル、ポリ乳酸のいずれが高収縮側、低収縮側であってもよい。なお、ポリ乳酸は芳香族ポリエステルに比較して、熱収縮が高い傾向にあるため、ポリ乳酸を高収縮側にする方が、製糸面、性能面で適している。 The polyester composite fiber having the shape of (B) has a number of crimps and a crimp rate in the above range by appropriately adjusting the viscosity and copolymerization amount of the aromatic polyester and polylactic acid and the eccentricity of the composite fiber. can do. That is, the difference in performance causes a difference in the shrinkage of the polymer in the composite fiber, and a spiral crimp is developed during stretching and heat treatment. Either aromatic polyester or polylactic acid may be on the high shrinkage side or the low shrinkage side. Since polylactic acid tends to have higher thermal shrinkage than aromatic polyester, it is more suitable in terms of yarn production and performance to make polylactic acid highly shrinkable.
ポリ乳酸を高収縮側とする場合、低収縮側となる芳香族ポリエステルの好ましい例としては、PETを主体とし、かつ、他の共重合成分の共重合量が低い(共重合量が30モル%以下)ものが好ましい。 When polylactic acid is used on the high shrink side, preferred examples of the aromatic polyester on the low shrink side include PET as a main component and a low copolymerization amount of other copolymer components (the copolymerization amount is 30 mol%). The following are preferred.
また、スパイラル捲縮を発現しやすくするために、芳香族ポリエステルの溶融粘度をポリ乳酸の溶融粘度よりも低くなるようにすることが好ましい。 Moreover, in order to make it easy to express spiral crimp, it is preferable to make the melt viscosity of the aromatic polyester lower than the melt viscosity of polylactic acid.
逆に、ポリ乳酸を低収縮側とする場合、芳香族ポリエステルを熱収縮性の高いポリマーとする必要がある。このような芳香族ポリエステルとしては、PETにイソフタル酸や5−スルホイソフタル酸などを30〜50mol%共重合したものや、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリマーが挙げられる。 Conversely, when polylactic acid is used on the low shrinkage side, the aromatic polyester needs to be a polymer having high heat shrinkability. Examples of such aromatic polyesters include those obtained by copolymerizing 30 to 50 mol% of isophthalic acid or 5-sulfoisophthalic acid with PET, and polymers such as polybutylene terephthalate and polytrimethylene terephthalate.
ポリ乳酸を収縮性の低いものとするためには、L−乳酸もしくはD−乳酸の割合が98モル%以上のポリ乳酸を用いることが好ましい。 In order to make polylactic acid low in contractility, it is preferable to use polylactic acid having a ratio of L-lactic acid or D-lactic acid of 98 mol% or more.
また、スパイラル捲縮を発現しやすくするために、芳香族ポリエステルの溶融粘度をポリ乳酸の溶融粘度よりも高くなるようにすることが好ましい。 Moreover, in order to make it easy to express spiral crimp, it is preferable to make the melt viscosity of the aromatic polyester higher than the melt viscosity of polylactic acid.
(B)の形状を有するポリエステル複合繊維においては、芯鞘複合比率は、捲縮発現性、コスト、操業性の面から、質量比率(芯/鞘)で30/70〜70/30とすることが好ましい。 In the polyester composite fiber having the shape of (B), the core / sheath composite ratio is 30/70 to 70/30 in terms of mass ratio (core / sheath) in terms of crimp development, cost, and operability. Is preferred.
ポリエステル複合繊維の繊度(単繊維繊度)としては、クッション性能、生産性、操業安定性等を考慮して、1.0〜80dtex程度が好ましく、5.0〜40dtexがより好ましい。 The fineness (single fiber fineness) of the polyester composite fiber is preferably about 1.0 to 80 dtex, more preferably 5.0 to 40 dtex in consideration of cushion performance, productivity, operational stability, and the like.
(B)の形状を有するポリエステル複合繊維においては、上記のような芯鞘形状やポリマー組成とすることにより、スパイラル捲縮を発現、調整できるものであるが、このようなスパイラル捲縮は製造工程において発現させるものであるので、特に延伸温度や延伸倍率の影響を受ける。このため、スパイラル捲縮を十分に発現させるためにはこれらの条件を適切に選定することも重要である。 In the polyester composite fiber having the shape of (B), the spiral crimp can be expressed and adjusted by using the core-sheath shape and the polymer composition as described above, but such a spiral crimp is a manufacturing process. In particular, it is influenced by the stretching temperature and the stretching ratio. For this reason, it is also important to select these conditions appropriately in order to fully manifest the spiral crimp.
次に、(B)の形状を有する本発明のポリエステル複合繊維の製造方法について、上記したような数千〜数百万本を集合させた繊維束とし、短繊維とする場合の製造例を用いて説明する。まず、ポリ乳酸と芳香族ポリエステルを通常の複合紡糸装置を用いて溶融紡糸し、冷却、油剤を付与した後、延伸することなく一旦巻取る。この未延伸糸を数十万〜二百万dtexのトウに集束して、延伸倍率2〜5倍、延伸温度40〜80℃で延伸を行うことによってスパイラル捲縮を発現させ、仕上げ油剤を付与後、70℃〜180℃で乾燥熱処理を施す。そして、ECカッター等のカッターで目的とする長さに切断して短繊維とする。 Next, about the manufacturing method of the polyester composite fiber of this invention which has the shape of (B), it is set as the fiber bundle which gathered thousands-millions as mentioned above, and the manufacture example in the case of setting it as a short fiber is used. I will explain. First, polylactic acid and aromatic polyester are melt-spun using an ordinary composite spinning device, cooled, provided with an oil agent, and then wound up without stretching. This undrawn yarn is focused on a tow of several hundred thousand to two million dtex, and is drawn at a draw ratio of 2 to 5 times and a draw temperature of 40 to 80 ° C. to express a spiral crimp and give a finishing oil. Thereafter, a drying heat treatment is performed at 70 to 180 ° C. And it cut | disconnects to the target length with cutters, such as EC cutter, and is set as a short fiber.
上記のように、本発明のポリエステル複合繊維は、製造工程時(延伸を施すことによって延伸直後)にスパイラル捲縮を発現させる、いわゆる顕在捲縮タイプである。そして、本発明のポリエステル複合繊維から得られる製品の寸法安定性を良好とするために、製品とした後に顕在化されずに残った捲縮が発現することを抑えることが好ましい。製品とした後の捲縮の発現を抑制する方法としては、製造時にスパイラル捲縮を発現させた後に、乾燥機などで熱処理を行うことが好ましい。熱処理温度としては70℃〜180℃が好ましく、中でも100℃から150℃が好ましい。 As described above, the polyester conjugate fiber of the present invention is a so-called manifested crimp type in which spiral crimps are developed during the manufacturing process (immediately after stretching by stretching). And in order to make the dimensional stability of the product obtained from the polyester composite fiber of the present invention good, it is preferable to suppress the occurrence of crimps that are not manifested after the product is produced. As a method for suppressing the occurrence of crimp after the product is produced, it is preferable to cause a heat treatment with a dryer or the like after the spiral crimp is developed at the time of production. As heat processing temperature, 70 to 180 degreeC is preferable, and 100 to 150 degreeC is especially preferable.
次に、(C)の形状を有するポリエステル複合繊維について説明する。(C)の形状を有するポリエステル複合繊維の一実施態様を示す横断面図は、図2と同様のものである。 Next, the polyester composite fiber having the shape (C) will be described. The cross-sectional view showing one embodiment of the polyester composite fiber having the shape of (C) is the same as FIG.
(C)の形状において、芯部と鞘部が偏心的に配置されているとは、(B)の形状において前記したように、鞘部の形状と芯部の形状が同じ場合や異なる場合(例えば、鞘部が丸型形状、芯部が四角形状)において、それぞれの中心(重心)点が一致していない状態で配置されているものをいう。そして、鞘部の最も厚い部分の厚みをaとし、最も薄い部分の厚みをbとしたときの偏心度=a/bにおいて、偏心度が2.0以上となるようにすることが好ましく、中でも3.0以上、さらには4.0以上であることが好ましい。 In the shape of (C), the core and the sheath are arranged eccentrically, as described above in the shape of (B), when the shape of the sheath and the shape of the core are the same or different ( For example, in the case where the sheath part is round and the core part is quadrilateral, the center (center of gravity) points are not aligned. And, when the thickness of the thickest part of the sheath part is a and the thickness of the thinnest part is b, it is preferable that the eccentricity is 2.0 or more at the eccentricity = a / b, It is preferably 3.0 or more, more preferably 4.0 or more.
なお、偏心度が大きくなりすぎると、紡糸操業性が悪化したり、強度等の物性が低下しやすいため、偏心度は10.0以下とすることが好ましい。 If the degree of eccentricity becomes too large, the spinning operability is deteriorated and physical properties such as strength are easily lowered. Therefore, the degree of eccentricity is preferably 10.0 or less.
このように、芳香族ポリエステルとポリ乳酸を偏心的に複合することで、両ポリマーの粘度差や熱収縮差によって、150℃の乾熱処理後にスパイラル捲縮を発現する潜在捲縮性能を有するものとすることができる。ここで、スパイラル捲縮とは、上記(B)の形状のように、コイル(螺旋)状の微細な捲縮であって、三次元的な立体捲縮のことであり、上記(A)の形状のように捲縮付与装置により機械捲縮を付与したものとは形状が異なるものである。 Thus, by having an eccentric composite of aromatic polyester and polylactic acid, it has a latent crimping performance that develops spiral crimping after dry heat treatment at 150 ° C. due to the difference in viscosity and thermal shrinkage of both polymers. can do. Here, the spiral crimp is a fine crimp of a coil (spiral) like the shape of (B) above, which is a three-dimensional solid crimp, Like the shape, the shape is different from that obtained by applying the mechanical crimp by the crimp applying device.
偏心度が2.0より小さいと、乾熱処理後のスパイラル捲縮の発現性が悪くなるため好ましくない。 If the degree of eccentricity is less than 2.0, the expression of spiral crimp after the dry heat treatment is deteriorated, which is not preferable.
本発明のポリエステル複合繊維は、150℃の乾熱処理によりスパイラル捲縮を発現するものであるが、150℃の乾熱処理とは、2mg/1dtexの荷重下で15分間、150℃で熱処理を行うことである。 The polyester conjugate fiber of the present invention exhibits spiral crimping by a dry heat treatment at 150 ° C. The 150 ° C. dry heat treatment is a heat treatment at 150 ° C. for 15 minutes under a load of 2 mg / 1 dtex. It is.
150℃の乾熱処理で発現する捲縮数は、50個/25mm以上であることが好ましく、中でも60個/25mm〜130個/25mm、さらには70個/25mm〜110個/25mmであることが好ましい。発現するスパイラル捲縮の数が50個/25mmより少ないと、得られる織編物、不織布等の製品の伸縮性が乏しいものとなりやすい。 The number of crimps developed by dry heat treatment at 150 ° C. is preferably 50 pieces / 25 mm or more, more preferably 60 pieces / 25 mm to 130 pieces / 25 mm, and more preferably 70 pieces / 25 mm to 110 pieces / 25 mm. preferable. If the number of spiral crimps that develop is less than 50/25 mm, the resulting woven or knitted fabric, nonwoven fabric or other product tends to have poor stretchability.
このような(C)の形状を有するポリエステル複合繊維は、紡績糸や不織布用途に適しており、伸縮性に優れた織編物や不織布等の布帛を得ることができるものである。このような用途に用いる際には、本発明のポリエステル複合繊維を数千〜数百万本を集合させた繊維束とし、繊維長5〜150mm程度の短繊維として用いることが好ましい。また、本発明の複合繊維は、潜在捲縮性能が発現後、十分な伸縮性を有するため、紡績糸や不織布中の一部にのみ本発明の複合繊維を用い、他の繊維と混用しても、伸縮性に優れた製品とすることができる。 The polyester composite fiber having such a shape (C) is suitable for spun yarns and nonwoven fabrics, and can be used to obtain a fabric such as a woven or knitted fabric or a nonwoven fabric having excellent stretchability. When used in such applications, the polyester composite fiber of the present invention is preferably used as a short fiber having a fiber length of about 5 to 150 mm by collecting a bundle of thousands to millions of fibers. In addition, since the conjugate fiber of the present invention has sufficient stretchability after the latent crimping performance is expressed, the conjugate fiber of the present invention is used only in a part of the spun yarn and the nonwoven fabric and mixed with other fibers. Can also be made into a product with excellent elasticity.
混用する他の繊維としては、ポリエステル、ナイロン、アクリル、アラミド等の合成繊維、ビスコース、キュプラ、ポリノジック等のレーヨン系繊維、リヨセル等の溶剤紡糸セルロース繊維、絹、綿、麻、羊毛その他の獣毛繊維が挙げられる。 Other fibers to be mixed include synthetic fibers such as polyester, nylon, acrylic and aramid, rayon fibers such as viscose, cupra and polynosic, solvent-spun cellulose fibers such as lyocell, silk, cotton, hemp, wool and other beasts. A hair fiber is mentioned.
(C)の形状を有するポリエステル複合繊維は、潜在捲縮性能が発現することによりスパイラル捲縮を有するものとなるが、潜在捲縮性能が発現する前の形状としては、短繊維とする場合には、梳綿工程でネップや未開繊部の発生がないものとすることが好ましいため、捲縮付与装置による機械捲縮が付与されていることが好ましい。 The polyester composite fiber having the shape of (C) has a spiral crimp when the latent crimping performance is exhibited, but the shape before the latent crimping performance is exhibited is a short fiber. Since it is preferable that there is no generation of a nep or an unopened part in the crimping step, it is preferable that mechanical crimping by a crimping device is applied.
ここでいう機械捲縮とは、上記の(A)の形状を有する複合繊維で説明したものと同じであり、捲縮数が8個/25mm〜18個/25mmであることが好ましい。機械捲縮の捲縮数が8個/25mm未満であると、未開繊部が発生しやすく、18個/25mmを超えるとネップが発生しやすい。 The mechanical crimp here is the same as that described for the composite fiber having the shape (A), and the number of crimps is preferably 8 pieces / 25 mm to 18 pieces / 25 mm. When the number of crimps of mechanical crimp is less than 8 pieces / 25 mm, an unopened portion is likely to occur, and when it exceeds 18 pieces / 25 mm, nep is likely to occur.
(C)の形状を有するポリエステル複合繊維は、芳香族ポリエステルとポリ乳酸の粘度や共重合量及び複合繊維の偏心度を適宜調整することによって、熱処理により発現する捲縮数(潜在捲縮数)を上記範囲のものとすることができる。本発明のポリエステル複合繊維は、ポリマーの収縮差によって、熱処理後にスパイラル捲縮が発現するものであり、芳香族ポリエステル、ポリ乳酸のいずれが高収縮側、低収縮側であってもよい。なお、ポリ乳酸は芳香族ポリエステルに比較して、熱収縮が高い傾向にあるため、ポリ乳酸を高収縮側にする方が、製糸面、性能面で適している。 The polyester composite fiber having the shape of (C) has a number of crimps (latent number of crimps) expressed by heat treatment by appropriately adjusting the viscosity and copolymerization amount of the aromatic polyester and polylactic acid and the eccentricity of the composite fiber. Can be in the above range. The polyester conjugate fiber of the present invention exhibits spiral crimp after heat treatment due to a difference in shrinkage of the polymer, and either aromatic polyester or polylactic acid may be on the high shrinkage side or the low shrinkage side. Since polylactic acid tends to have higher thermal shrinkage than aromatic polyester, it is more suitable in terms of yarn production and performance to make polylactic acid highly shrinkable.
ポリ乳酸を高収縮側とする場合、低収縮側となる芳香族ポリエステルの好ましい例としては、PETを主体とし、かつ、共重合量が低い(共重合量が30モル%以下)ものが好ましい。 When polylactic acid is used on the high shrinkage side, a preferred example of the aromatic polyester on the low shrinkage side is preferably one having PET as a main component and a low copolymerization amount (copolymerization amount of 30 mol% or less).
また、スパイラル捲縮を発現しやすくするために、芳香族ポリエステルの溶融粘度をポリ乳酸の溶融粘度よりも低くなるようにすることが好ましい。 Moreover, in order to make it easy to express spiral crimp, it is preferable to make the melt viscosity of the aromatic polyester lower than the melt viscosity of polylactic acid.
逆に、ポリ乳酸を低収縮側とする場合、芳香族ポリエステルを熱収縮性の高いポリマーとする必要がある。このような芳香族ポリエステルとしては、PETに、イソフタル酸や5−スルホイソフタル酸などを20〜50mol%共重合したものや、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリマーが挙げられる。 Conversely, when polylactic acid is used on the low shrinkage side, the aromatic polyester needs to be a polymer having high heat shrinkability. Examples of such aromatic polyesters include those obtained by copolymerizing PET with 20 to 50 mol% of isophthalic acid or 5-sulfoisophthalic acid, and polymers such as polybutylene terephthalate and polytrimethylene terephthalate.
ポリ乳酸を収縮性の低いものとするためには、L−乳酸もしくはD−乳酸の割合が98モル%以上のポリ乳酸を用いることが好ましい。 In order to make polylactic acid low in contractility, it is preferable to use polylactic acid having a ratio of L-lactic acid or D-lactic acid of 98 mol% or more.
また、スパイラル捲縮を発現しやすくするために、芳香族ポリエステルの溶融粘度をポリ乳酸の溶融粘度よりも高くなるようにすることが好ましい。 Moreover, in order to make it easy to express spiral crimp, it is preferable to make the melt viscosity of the aromatic polyester higher than the melt viscosity of polylactic acid.
(C)の形状を有するポリエステル複合繊維においては、芯鞘複合比率は、捲縮発現性、コスト、操業性の面から、質量比率(芯/鞘)で30/70〜70/30とすることが好ましい。 In the polyester composite fiber having the shape of (C), the core / sheath composite ratio is 30/70 to 70/30 in terms of mass ratio (core / sheath) in terms of crimp development, cost, and operability. Is preferred.
本発明のポリエステル複合繊維の繊度(単繊維繊度)としては、得られる製品の伸縮性、生産性、操業安定性等を考慮して、1.0〜80dtex程度が好ましく、5.0〜40dtexがより好ましい。 The fineness (single fiber fineness) of the polyester composite fiber of the present invention is preferably about 1.0 to 80 dtex, preferably 5.0 to 40 dtex in consideration of the stretchability, productivity, operational stability, and the like of the resulting product. More preferred.
(C)の形状を有する本発明のポリエステル複合繊維の製造方法について、上記したような数千〜数百万本を集合させた繊維束とし、短繊維とする場合の製造例を用いて説明する。まず、ポリ乳酸と芳香族ポリエステルを通常の複合紡糸装置を用いて溶融紡糸し、冷却、油剤を付与した後、延伸することなく一旦巻取る。この未延伸糸を数十万〜二百万dtexのトウに集束して、延伸倍率2〜5倍、延伸温度40〜80℃で延伸を行い、次に80〜160℃で熱処理を施す。続いて、押し込み式クリンパーにより機械捲縮を施した後、ECカッター等のカッターで目的とする長さに切断して短繊維とする。 About the manufacturing method of the polyester composite fiber of this invention which has the shape of (C), it is set as the fiber bundle which gathered several thousands-millions as mentioned above, and it demonstrates using the manufacture example in the case of setting it as a short fiber. . First, polylactic acid and aromatic polyester are melt-spun using an ordinary composite spinning device, cooled, provided with an oil agent, and then wound up without stretching. The undrawn yarn is focused on a tow of several hundred thousand to two million dtex, drawn at a draw ratio of 2 to 5 times, a draw temperature of 40 to 80 ° C., and then heat treated at 80 to 160 ° C. Subsequently, after mechanical crimping by a push-in type crimper, it is cut into a target length with a cutter such as an EC cutter to obtain short fibers.
なお、長繊維とする際には、未延伸糸(マルチフィラメント状)を巻き取った後、トウとして集束することなく延伸を施すか、もしくは未延伸糸のまま、撚糸や仮撚加工等を行って加工糸を得る方法がある。 In addition, when making a long fiber, after winding an unstretched yarn (multifilament shape), it is stretched without converging as a tow, or the unstretched yarn is subjected to twisting or false twisting. There is a method to obtain processed yarn.
なお、本発明のポリエステル複合繊維は、上記のように、繊維の製造工程時にスパイラル捲縮を発現させることなく、例えば、製品を得る工程において熱処理を施すことにより捲縮を発現させるものである、いわゆる潜在捲縮タイプである。製品によっては、製造する途中の工程でスパイラル捲縮を発現させると、ネップが発生しやすくなり、得られる製品の均斉度が悪くなったり、工程通過性が悪くなるものがある。このような場合には、製品にした最終の段階で熱処理を施すことにより潜在捲縮性能を発現させることが好ましい。 In addition, as described above, the polyester conjugate fiber of the present invention expresses crimps by, for example, applying heat treatment in a process of obtaining a product without expressing spiral crimps during the fiber manufacturing process. This is a so-called latent crimp type. Depending on the product, if spiral crimps are developed in the course of manufacturing, neps are likely to occur, resulting in poor uniformity of the product or poor processability. In such a case, it is preferable to develop latent crimping performance by performing a heat treatment in the final stage of the product.
本発明のポリエステル複合繊維は、100〜180℃の熱処理により捲縮が発現する。そこで、織編物とする際には染色や精練工程での熱処理において捲縮を発現させ、不織布とする際にはニードルパンチ処理やウオータージェット処理をした後の熱処理により発現させることが好ましい。 The polyester composite fiber of the present invention exhibits crimps by heat treatment at 100 to 180 ° C. Therefore, it is preferable that crimping is expressed in the heat treatment in the dyeing or scouring process when the knitted or knitted fabric is formed, and the heat treatment after the needle punching process or the water jet process is performed when forming the nonwoven fabric.
さらに、本発明のポリエステル複合繊維は、JIS K 6953に準じるコンポスト試験において、処理期間45日間で60%以上の生分解度を示すことが好ましい。本発明のポリエステル複合繊維は、植物由来のポリ乳酸を一成分とする複合繊維でありながら、耐湿熱分解性、強度、耐摩耗性等に優れるものであるが、この生分解度を満足することによって、コンポスト処理による速やかな生分解性をも示すものとなる。 Furthermore, the polyester composite fiber of the present invention preferably exhibits a biodegradability of 60% or more in a treatment period of 45 days in a compost test according to JIS K 6953. Although the polyester composite fiber of the present invention is a composite fiber containing plant-derived polylactic acid as a component, it is excellent in moist heat resistance, strength, wear resistance, etc., but satisfies this biodegradability. By this, rapid biodegradability by composting is also shown.
JIS K 6953とは、プラスチックの制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方についての基準である。JIS K 6953における生分解度が処理期間45日間で60%未満であると、コンポストの処理効率が悪くなるため好ましくない。 JIS K 6953 is a standard for determining the degree of aerobic ultimate biodegradation and disintegration under controlled composting conditions of plastics. If the biodegradation degree in JIS K 6953 is less than 60% in a treatment period of 45 days, the processing efficiency of compost deteriorates, which is not preferable.
コンポスト下での複合繊維の生分解度は、芳香族ポリエステル(鞘成分)の厚み(芯鞘比)、芳香族ポリエステルのポリマー組成、繊度等に影響されるので、上記したような(A)〜(C)の形状を呈する複合繊維においても、後述するような好適な条件を適宜選択することが好ましい。 The degree of biodegradation of the composite fiber under compost is affected by the thickness (core-sheath ratio) of the aromatic polyester (sheath component), the polymer composition of the aromatic polyester, the fineness, and the like (A) to Also in the composite fiber exhibiting the shape of (C), it is preferable to appropriately select suitable conditions as described below.
まず、処理期間45日間で60%以上の生分解度を示すためには、鞘部を構成する芳香族ポリエステルの厚みを薄くする、すなわち鞘部の比率を低くすることが好ましく、質量比率(芯/鞘)を60/40〜90/10、中でも60/40〜80/20とすることが好ましい。 First, in order to show a biodegradability of 60% or more in a treatment period of 45 days, it is preferable to reduce the thickness of the aromatic polyester constituting the sheath, that is, to reduce the ratio of the sheath, and to reduce the mass ratio (core / Sheath) is preferably 60/40 to 90/10, and more preferably 60/40 to 80/20.
また、芯部と鞘部は、上記で定義する偏心度が6.0以下であることが好ましく、中でも3.0以下とすることが好ましい。偏心度が6.0より大きいと、鞘部の芳香族ポリエステルの厚みが厚い部分と、薄い部分の差が大きく、本発明の効果である、使用中の耐久性とコンポスト下での速やかな分解性を両立することが困難となる。すなわち、複合繊維の保管中、あるいは使用中において、鞘部の厚みが薄い部分が摩耗などによって浸食された場合、芯部のポリ乳酸成分が繊維表面に露出してしまうため、複合繊維の耐久性が劣るものになる。そして、鞘部の厚みが厚い箇所は、コンポスト時の分解に長期を要するため好ましくない。 Moreover, it is preferable that the eccentricity degree defined above is 6.0 or less, and it is preferable to set it as 3.0 or less especially in a core part and a sheath part. If the degree of eccentricity is greater than 6.0, the difference between the thick part and the thin part of the aromatic polyester in the sheath part is large, which is the effect of the present invention, durability during use and rapid decomposition under compost. It becomes difficult to achieve both properties. That is, when the composite fiber is being stored or used, when the thin sheath portion is eroded due to wear or the like, the polylactic acid component in the core is exposed to the fiber surface. Is inferior. And the location where the thickness of a sheath part is thick is unpreferable since decomposition | disassembly at the time of composting requires a long time.
コンポスト下での分解性に優れるものとするために、芳香族ポリエステルとして、PETに全ジオール成分に対してブタンジオールを40〜60mol%共重合したもの、PETに全酸成分に対して、イソフタル酸を20〜50mol%共重合したもの、PETやポリブチレンテレフタレートに全酸成分に対して、アジピン酸を10〜30mol%共重合したものなど、ポリアルキレンテレフタレートに、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂肪族ジオールなどを共重合したものが好ましい。 In order to be excellent in decomposability under compost, aromatic polyester is obtained by copolymerizing PET with 40 to 60 mol% of butanediol with respect to the total diol component, and isophthalic acid with respect to the total acid component of PET. 20 to 50 mol% of a copolymer, PET or polybutylene terephthalate with a total acid component of 10 to 30 mol% of adipic acid, polyalkylene terephthalate, aromatic dicarboxylic acid, aliphatic dicarboxylic acid Those obtained by copolymerizing aliphatic diols are preferred.
なお、これらの芳香族ポリエステルは、通常の環境下では、ほとんど分解しないにもかかわらず、コンポスト下でこれらの芳香族ポリエステルが分解されるというメカニズムは未だ明確になっていないが、本発明者等は以下のように考える。つまり、芳香族ポリエステルが加水分解しやすいポリ乳酸と複合されているので、ポリ乳酸がコンポスト下の湿熱作用によって加水分解されて生じる酸とアルコールが芳香族ポリエステルにも接触するため、これらの酸やアルコールの作用により芳香族ポリエステルの加水分解が促進され、低分子化合物となり、その後、微生物によって分解されると考えられる。 Although these aromatic polyesters are hardly decomposed under a normal environment, the mechanism that these aromatic polyesters are decomposed under compost has not yet been clarified. Thinks as follows. In other words, since the aromatic polyester is complexed with polylactic acid that is easily hydrolyzed, the acid and alcohol produced by hydrolysis of the polylactic acid by the wet heat action under compost also contact the aromatic polyester. It is considered that the hydrolysis of the aromatic polyester is promoted by the action of alcohol, resulting in a low molecular weight compound, which is then decomposed by microorganisms.
また、複合繊維の繊度が太いほど、鞘部の芳香族ポリエステルの厚みが厚くなり、コンポスト下での分解性が遅くなるため、太繊度の場合には、鞘部の比率を低くしたり、比較的分解速度の速い芳香族ポリエステルを使用することが好ましい。繊度(単繊維繊度)としては、生産性、操業安定性や、コンポスト下での分解性を考慮して1.0〜40dtex程度が好ましく、中でも2.0〜20dtexが好ましい。 In addition, the thicker the fineness of the composite fiber, the thicker the aromatic polyester in the sheath, and the slower the decomposability under composting. It is preferable to use an aromatic polyester having a high chemical degradation rate. The fineness (single fiber fineness) is preferably about 1.0 to 40 dtex, more preferably 2.0 to 20 dtex in consideration of productivity, operational stability, and decomposability under compost.
以下、実施例により本発明を具体的に説明する。なお、実施例中の各物性値の測定法及び評価法は次のとおりである。
(1)ポリ乳酸のメルトフローレート値(g/10分):前記の方法で測定した。
(2)芳香族ポリエステルの相対粘度:フェノールと四塩化エタンの等質量混合物を溶媒とし、ウベローデ粘度計を使用して、試料濃度0.5g/100cc、温度20℃の条件で測定した。
(3)ポリ乳酸の融点(℃)、融解熱(J/g):パーキンエルマー社製の示差走査熱量計DSC−2型を使用し、昇温速度20℃/分の条件で測定した。
(4)ポリ乳酸のL−乳酸とD−乳酸の含有比(モル比):超純水と1Nの水酸化ナトリウムのメタノール溶液の等質量混合溶液を溶媒とし、高速液体クロマトグラフィー(HPLC)法により測定した。カラムにはsumichiral OA6100を使用し、UV吸収測定装置により検出した。
(5)偏心度:前記の方法で測定、算出した。
(6)単繊維繊度(dtex):JIS L−1015 正量繊度A法に準じて測定した。
(7)強度(cN/dtex):JIS L−1015 引張強さ及び伸び率の標準時試験に準じて測定した。
(8)捲縮数(個/25mm)、捲縮率(%):JIS L−1015 けん縮のけん縮数及びけん縮率に準じて測定した。
なお、150℃乾熱処理後の捲縮数は、複合繊維を2mg/1dtexの荷重下で、150℃、15分間熱処理した後に測定した。
(9)耐湿熱分解性:複合繊維を50℃、95%相対湿度の条件下で1000時間保持し、処理前の強度に対する処理後の強度の比を次式にて算出した。なお、これらの強度は前記の(7)にしたがって測定した。
耐湿熱分解性(%)=(処理後強度/処理前強度)×100
(10)耐摩耗性:得られた複合繊維をリング精紡機にかけて、綿番手10番の単糸(10/1)の紡績糸を得、この紡績糸を筒編みにしたものを用いて、耐摩耗性をJIS L1018 摩耗強さのA法(ユニホーム形法)に準じて測定した。
(11)嵩高性:複合繊維をカード開繊機にかけてシート状ウェブにした後、20×20cmの大きさに切り、質量が80gになるように積み重ね、初荷重(測定板20×20cm、質量170g)時の比容積を測定したものを初荷重時比容積(cm3/g)とし、荷重(測定板20×20cm、質量170g+5.23kg)時の比容積を測定したものを荷重時比容積(cm3/g)とする。
初荷重時比容積80cm3/g以上、荷重時比容積20cm3/g以上を嵩高性があると判断した。
(12)不織布の伸縮性:得られた不織布を長さ15cm、幅5cmに切断し、30g荷重時の長さL0と240g荷重時の長さL1を測定し、次式より伸長率を算出した。
伸長率(%)=〔(L1−L0)/L0〕×100
伸長率100%以上を伸縮性があると判断した。
(13)生分解度:JIS K 6953(プラスチックの制御されたコンポスト条件下の好気的究極生分解度および崩壊度の求め方)に準じて、得られた不織布を試験材料とし、処理期間45日間後の生分解度を測定した。
(14)不織布の崩壊度:(13)での測定において、処理期間45日間後の不織布の形状を目視で観察し、以下の基準で崩壊度を評価した。
○:不織布の形状を維持しておらず、繊維状のものも確認できない。
△:不織布の形状を維持していないが、繊維状のものが確認できる。
×:不織布の形状を維持している。
Hereinafter, the present invention will be described specifically by way of examples. In addition, the measuring method and evaluation method of each physical property value in an Example are as follows.
(1) Melt flow rate value of polylactic acid (g / 10 min): Measured by the method described above.
(2) Relative viscosity of aromatic polyester: Measured under the conditions of a sample concentration of 0.5 g / 100 cc and a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent and an Ubbelohde viscometer.
(3) Melting point (° C.) and heat of fusion (J / g) of polylactic acid: A differential scanning calorimeter DSC-2 manufactured by Perkin Elmer was used and measured under conditions of a temperature rising rate of 20 ° C./min.
(4) Content ratio (molar ratio) of L-lactic acid and D-lactic acid in polylactic acid: High-performance liquid chromatography (HPLC) method using an equimolar mixed solution of ultrapure water and 1N sodium hydroxide in methanol as a solvent. It was measured by. The column used was sumichiral OA6100, and was detected by a UV absorption measuring device.
(5) Eccentricity: measured and calculated by the method described above.
(6) Single fiber fineness (dtex): measured according to JIS L-1015 positive fineness A method.
(7) Strength (cN / dtex): Measured according to JIS L-1015 standard time test of tensile strength and elongation.
(8) Crimp number (pieces / 25 mm), crimp rate (%): Measured according to the crimp number and crimp rate of JIS L-1015.
The number of crimps after 150 ° C. dry heat treatment was measured after heat treating the composite fiber at 150 ° C. for 15 minutes under a load of 2 mg / 1 dtex.
(9) Humidity and thermal decomposition resistance: The composite fiber was held at 50 ° C. and 95% relative humidity for 1000 hours, and the ratio of the strength after treatment to the strength before treatment was calculated by the following formula. These strengths were measured according to the above (7).
Moisture and heat resistance (%) = (strength after treatment / strength before treatment) × 100
(10) Abrasion resistance: The obtained composite fiber is put on a ring spinning machine to obtain a single yarn (10/1) yarn of cotton count No. 10, and this spun yarn is made into a cylindrical knitting, Abrasion was measured according to JIS L1018 Abrasion Strength Method A (Uniform Type Method).
(11) Bulkiness: After a composite fiber is passed through a card opening machine to form a sheet-like web, it is cut into a size of 20 × 20 cm, stacked so as to have a mass of 80 g, and an initial load (measuring plate 20 × 20 cm, mass 170 g) The specific volume at the time of initial load was measured (cm 3 / g), and the specific volume at the time of load (measuring plate 20 × 20 cm, mass 170 g + 5.23 kg) was measured. 3 / g).
The specific volume at the initial load of 80 cm 3 / g or more and the specific volume at the load of 20 cm 3 / g or more were judged to be bulky.
(12) Elasticity of nonwoven fabric: The obtained nonwoven fabric was cut into a length of 15 cm and a width of 5 cm, the length L0 at 30 g load and the length L1 at 240 g load were measured, and the elongation rate was calculated from the following formula: .
Elongation rate (%) = [(L1-L0) / L0] × 100
An elongation rate of 100% or more was judged to be stretchable.
(13) Degree of biodegradation: According to JIS K 6953 (determination of aerobic ultimate biodegradation and disintegration under controlled composting conditions of plastics), the obtained non-woven fabric is used as a test material, and the treatment period is 45. The degree of biodegradation after the day was measured.
(14) Disintegration degree of nonwoven fabric: In the measurement in (13), the shape of the nonwoven fabric after 45 days of the treatment period was visually observed, and the disintegration degree was evaluated according to the following criteria.
○: The shape of the nonwoven fabric is not maintained, and the fibrous shape cannot be confirmed.
(Triangle | delta): Although the shape of a nonwoven fabric is not maintained, a fibrous thing can be confirmed.
X: The shape of the nonwoven fabric is maintained.
実施例1
ポリ乳酸として、融点170℃、融解熱38J/g、L−乳酸とD−乳酸の含有比であるL/Dが98.5/1.5、メルトフローレート値(以降、MFRとする。)が23g/10分、相対粘度1.85のものを用い、芳香族ポリエステルとして、相対粘度1.37、融点217℃のイソフタル酸15モル%共重合したPETを用い、それぞれのチップを減圧乾燥した後、同心芯鞘型複合溶融紡糸装置に供給して溶融紡糸を行った。このとき、共重合PETが鞘部、ポリ乳酸が芯部となるように配し、複合比(質量比)を50/50とし、紡糸温度240℃で溶融紡糸を行った。紡出糸条を冷却した後、引取速度1000m/分で引き取って未延伸糸条を得た。得られた糸条を集束して33万dtexのトウにし、延伸倍率3.2倍、温度60℃で延伸し、温度140℃のヒートドラムで熱処理してから、押し込み式クリンパーを使用して機械捲縮を付与した後、繊維長51mmに切断し、短繊維を得た。
得られた複合繊維は、繊度(単繊維繊度)が3.3dtexの丸断面形状のものであり、偏心度が1.5、捲縮数11.2個/25mm、捲縮率11.1%、強度4.31cN/dtex、耐湿熱分解性が89%、耐摩耗性が3650回のものであった。
Example 1
Polylactic acid has a melting point of 170 ° C., a heat of fusion of 38 J / g, an L / D content ratio of L-lactic acid and D-lactic acid of 98.5 / 1.5, a melt flow rate value (hereinafter referred to as MFR). Was 23 g / 10 min and a relative viscosity of 1.85 was used, and as aromatic polyester, 15 mol% isophthalic acid copolymerized with a relative viscosity of 1.37 and a melting point of 217 ° C. was used, and each chip was dried under reduced pressure. The melt was spun by supplying it to a concentric core-sheath type composite melt spinning apparatus. At this time, the copolymer PET was arranged so as to be a sheath part and polylactic acid was a core part, the composite ratio (mass ratio) was 50/50, and melt spinning was performed at a spinning temperature of 240 ° C. After cooling the spun yarn, it was drawn at a take-up speed of 1000 m / min to obtain an undrawn yarn. The resulting yarn is converged into a 330,000 dtex tow, drawn at a draw ratio of 3.2 times, at a temperature of 60 ° C., heat-treated with a heat drum at a temperature of 140 ° C., and then machined using a push-in crimper. After crimping, the fiber length was cut to 51 mm to obtain short fibers.
The obtained composite fiber has a round cross-sectional shape with a fineness (single fiber fineness) of 3.3 dtex, an eccentricity of 1.5, a number of crimps of 11.2 pieces / 25 mm, a crimp rate of 11.1%, and a strength of 4.31 cN. / dtex, 89% wet thermal decomposition, and 3650 wear resistance.
実施例2〜3
芯部と鞘部の複合比率を表1に示すように変更した以外は、実施例1と同様にして行った。
Examples 2-3
The same procedure as in Example 1 was performed except that the composite ratio of the core part and the sheath part was changed as shown in Table 1.
実施例4
芳香族ポリエステルとして、ポリトリメチレンテレフタレート(相対粘度1.44、融点215℃)を用いた以外は、実施例1と同様に行った。
Example 4
The same procedure as in Example 1 was performed except that polytrimethylene terephthalate (relative viscosity 1.44, melting point 215 ° C.) was used as the aromatic polyester.
実施例5
芳香族ポリエステルとして、ポリブチレンテレフタレート(相対粘度1.46、融点218℃)を用いた以外は、実施例1と同様に行った。
Example 5
The same procedure as in Example 1 was performed except that polybutylene terephthalate (relative viscosity 1.46, melting point 218 ° C.) was used as the aromatic polyester.
比較例1
複合繊維ではなく、ポリ乳酸のみの単一型の繊維とし、通常の紡糸装置を用いて紡糸温度230℃で溶融紡糸した以外は、実施例1と同様に行った。
Comparative Example 1
It was carried out in the same manner as in Example 1 except that it was not a composite fiber but a single type fiber of only polylactic acid and was melt-spun at a spinning temperature of 230 ° C. using a normal spinning device.
参考例1
複合繊維ではなく、芳香族ポリエステルのみの単一型の繊維とし、通常の紡糸装置を用いて紡糸温度250℃で溶融紡糸した以外は、実施例1と同様に行った。
Reference example 1
It was carried out in the same manner as in Example 1 except that it was not a composite fiber but a single type fiber of only aromatic polyester, and melt spinning at a spinning temperature of 250 ° C. using a normal spinning device.
実施例1〜5で得られた複合繊維、比較例1、参考例1で得られた繊維の物性値及び評価結果を表1に示す。 Table 1 shows the physical property values and evaluation results of the composite fibers obtained in Examples 1 to 5, Comparative Example 1, and the fibers obtained in Reference Example 1.
表1から明らかなように、実施例1〜5の複合繊維は、強度、耐湿熱分解性、耐摩耗性が高く、様々な用途に使用するのに十分な特性を有していた。一方、比較例1の繊維は、ポリ乳酸のみからなる繊維であったため、強度、耐摩耗性が低く、耐湿熱分解性を測定する際、湿熱処理後の強度が低下しすぎて繊維はボロボロとなり、処理後の強度の測定ができず、耐湿熱分解性を算出することが不可能であった。 As is clear from Table 1, the composite fibers of Examples 1 to 5 had high strength, wet heat decomposition resistance, and wear resistance, and had sufficient characteristics for use in various applications. On the other hand, since the fiber of Comparative Example 1 was a fiber composed only of polylactic acid, the strength and abrasion resistance were low, and when measuring the resistance to wet thermal decomposition, the strength after wet heat treatment was too low, and the fiber became tattered. The strength after the treatment could not be measured, and it was impossible to calculate the wet heat decomposition resistance.
実施例6
実施例1と同様のポリ乳酸で相対粘度1.85のものを用い、芳香族ポリエステルとして、相対粘度1.30、融点253℃のPETを鞘部とし、偏心芯鞘型複合溶融紡糸装置に供給して溶融紡糸を行った。
このとき、PETが鞘部、ポリ乳酸が芯部となるように配し、複合比(質量比)を50/50とし、孔数225孔の紡糸口金より紡糸温度280℃で溶融紡糸を行った、紡出糸条を冷却した後、引取速度800m/分で引き取って未延伸糸条を得た。得られた糸条を集束して33万dtexのトウにし、延伸倍率3.5倍、温度60℃で延伸することによって、延伸直後にスパイラル捲縮を発現させた。続いて、仕上げ油剤を付与し、100℃で乾燥させた後、繊維長64mmに切断し、短繊維を得た。
得られた複合繊維は、繊度(単繊維繊度)が6.6dtexの丸断面形状のものであり、偏心度が4.1、スパイラル捲縮が発現したものであり、その捲縮数7.2個/25mm、捲縮率23.2%、強度3.51cN/dtexであった。また、嵩高性評価の初荷重時比容積、荷重時比容積ともに高く嵩高性に優れており、耐湿熱分解性が89%のものであった。
Example 6
The same polylactic acid as in Example 1 and having a relative viscosity of 1.85 is used. As an aromatic polyester, PET having a relative viscosity of 1.30 and a melting point of 253 ° C. is used as a sheath, and is supplied to an eccentric core-sheath type composite melt spinning apparatus. Went.
At this time, melt spinning was performed at a spinning temperature of 280 ° C. from a spinneret having 225 holes with a composite ratio (mass ratio) of 50/50, with PET being a sheath part and polylactic acid being a core part. After cooling the spun yarn, it was taken up at a take-up speed of 800 m / min to obtain an undrawn yarn. The obtained yarn was converged into a tow of 330,000 dtex and drawn at a draw ratio of 3.5 times and at a temperature of 60 ° C. to develop spiral crimps immediately after drawing. Subsequently, a finishing oil was applied and dried at 100 ° C., and then cut to a fiber length of 64 mm to obtain short fibers.
The obtained composite fiber has a round cross-sectional shape with a fineness (single fiber fineness) of 6.6 dtex, an eccentricity of 4.1, and spiral crimps. The number of crimps is 7.2. / 25 mm, crimp rate 23.2%, strength 3.51 cN / dtex. Further, the specific volume at the initial load and the specific volume at the time of load were both high and excellent in bulkiness, and the wet heat decomposition resistance was 89%.
実施例7〜8
複合溶融紡糸装置のノズルの形状を変更し、偏心度を表2に示す値に変更した以外は、実施例6と同様に行った。
Examples 7-8
The same procedure as in Example 6 was performed except that the shape of the nozzle of the composite melt spinning apparatus was changed and the eccentricity was changed to the values shown in Table 2.
実施例9〜11
延伸温度、延伸倍率を表2に示す値に変更した以外は、実施例6と同様に行った。
Examples 9-11
The same procedure as in Example 6 was performed except that the stretching temperature and the stretching ratio were changed to the values shown in Table 2.
実施例12
芳香族ポリエステルとして、イソフタル酸20モル%共重合したPET(相対粘度1.38、融点206℃)を用い、紡糸温度を240℃とした以外は、実施例6と同様に行った。
Example 12
The same procedure as in Example 6 was carried out except that PET (relative viscosity 1.38, melting point 206 ° C.) copolymerized with 20 mol% of isophthalic acid was used as the aromatic polyester, and the spinning temperature was 240 ° C.
実施例13
芳香族ポリエステルとして、エチレングリコール(EG)を45モル%共重合したPBT(相対粘度1.40、融点180℃)を用い、紡糸温度を230℃とした以外は、実施例6と同様に行った。
Example 13
The same procedure as in Example 6 was performed except that PBT (relative viscosity 1.40, melting point 180 ° C.) copolymerized with 45 mol% of ethylene glycol (EG) was used as the aromatic polyester and the spinning temperature was 230 ° C.
実施例14
芳香族ポリエステルとして、ポリブチレンテレフタレート(PBT)にアジピン酸(AD)を20モル%共重合したPBT(相対粘度1.52、融点208℃)を用い、紡糸温度を250℃とした以外は、実施例6と同様に行った。
Example 14
Example 6 except that PBT (relative viscosity 1.52, melting point 208 ° C.) obtained by copolymerizing 20 mol% of adipic acid (AD) with polybutylene terephthalate (PBT) was used as the aromatic polyester, and the spinning temperature was 250 ° C. As well.
実施例15
芳香族ポリエステルとして、ポリブチレンテレフタレート(PBT)にアジピン酸(AD)を40モル%共重合したPBT(相対粘度1.72、融点125℃)を用い、紡糸温度を230℃とした以外は、実施例6と同様に行った。
Example 15
Example 6 except that PBT (relative viscosity 1.72, melting point 125 ° C.) obtained by copolymerizing 40 mol% of adipic acid (AD) with polybutylene terephthalate (PBT) was used as the aromatic polyester, and the spinning temperature was 230 ° C. As well.
比較例2
鞘部ポリマーとして、実施例1と同様のポリ乳酸で相対粘度1.61のものを用い、紡糸温度を230℃とした以外は、実施例6と同様に行った。
Comparative Example 2
The sheath polymer was the same as in Example 6 except that the same polylactic acid as in Example 1 with a relative viscosity of 1.61 was used and the spinning temperature was 230 ° C.
実施例6〜15、比較例2で得られた複合繊維の物性値及び評価結果を表2に示す。 Table 2 shows the physical property values and evaluation results of the composite fibers obtained in Examples 6 to 15 and Comparative Example 2.
表2から明らかなように、実施例6〜15の複合繊維は、スパイラル捲縮が発現されており、嵩高性に優れ、耐湿熱分解性にも優れており、様々な用途に使用するのに十分な特性を有していた。中でも、実施例6〜9、12〜14は十分なスパイラル捲縮と耐湿熱分解性を有しており、特に好ましいものであった。
一方、比較例2の複合繊維は、ポリ乳酸のみからなる繊維であったため、耐湿熱分解性を測定する際、湿熱処理後の強度が低下しすぎて繊維はボロボロとなり、処理後の強度の測定ができず、耐湿熱分解性を算出することができなかった。
As is apparent from Table 2, the composite fibers of Examples 6 to 15 exhibit spiral crimping, are excellent in bulkiness, and are excellent in resistance to moist heat decomposition, and are used for various applications. It had sufficient characteristics. Among them, Examples 6 to 9 and 12 to 14 were particularly preferable because they had sufficient spiral crimping and moisture and heat decomposition resistance.
On the other hand, since the composite fiber of Comparative Example 2 was a fiber composed only of polylactic acid, when measuring the resistance to moist heat degradation, the strength after the wet heat treatment was too low, and the fiber became tattered, and the strength after the treatment was measured. It was not possible to calculate the resistance to wet thermal decomposition.
実施例16
実施例1と同様のポリ乳酸で相対粘度1.85のものを用い、芳香族ポリエステルとして、相対粘度1.30、融点253℃のPETを鞘部とし、偏心芯鞘型複合溶融紡糸装置に供給して溶融紡糸を行った。
このとき、PETが鞘部、ポリ乳酸が芯部となるように配し、複合比(質量比)を50/50とし、孔数639孔の紡糸口金より紡糸温度280℃で溶融紡糸を行った、紡出糸条を冷却した後、引取速度900m/分で引き取って未延伸糸条を得た。得られた糸条を集束して33万dtexのトウにし、延伸倍率3.5倍、温度60℃で延伸し、110℃で緊張熱処理をしてから、押し込み型クリンパーにて機械捲縮を付与し、仕上げ油剤を付与後に、65℃で乾燥させ、繊維長44mmに切断し、短繊維を得た。
得られた複合繊維は、繊度(単繊維繊度)が3.3dtexの丸断面形状のものであり、偏心度が4.1、機械捲縮の捲縮数11.4個/25mm、強度3.7cN/dtexであった。また、150℃乾熱処理後のスパイラル捲縮の捲縮数は112個/25mm、耐湿熱分解性が89%であった。
次に、得られた短繊維をカード機で開繊し、目付50g/m2のウエブを作成した。次いで、このウエブを100メッシュスクリーンからなるネットコンベアーに載置し、孔径0.12mm、孔間隔1.0mmの噴射孔を複数個有する噴射ノズルを3段階に設け、前段4000kPa、中段9000kPa、後段9000kPaの水圧でウエブの表裏に水流交絡処理を施して、不織布を得た。得られた不織布の伸長率は165%であった。
Example 16
The same polylactic acid as in Example 1 and having a relative viscosity of 1.85 is used. As an aromatic polyester, PET having a relative viscosity of 1.30 and a melting point of 253 ° C. is used as a sheath, and is supplied to an eccentric core-sheath type composite melt spinning apparatus. Went.
At this time, melt spinning was performed at a spinning temperature of 280 ° C. from a spinneret having 639 holes with a composite ratio (mass ratio) of 50/50, with PET arranged as a sheath and polylactic acid as a core. After cooling the spun yarn, it was taken up at a take-up speed of 900 m / min to obtain an undrawn yarn. The resulting yarn is converged to a toe of 330,000 dtex, stretched at a draw ratio of 3.5 times, at a temperature of 60 ° C., subjected to tension heat treatment at 110 ° C., and then subjected to mechanical crimping by an indentation type crimper. After applying the finishing oil, it was dried at 65 ° C. and cut into a fiber length of 44 mm to obtain short fibers.
The obtained composite fiber has a round cross-sectional shape with a fineness (single fiber fineness) of 3.3 dtex, an eccentricity of 4.1, a number of mechanical crimps of 11.4 pieces / 25 mm, and a strength of 3.7 cN / dtex. Met. In addition, the number of spiral crimps after drying at 150 ° C. was 112 pieces / 25 mm, and the resistance to moist heat decomposition was 89%.
Next, the obtained short fiber was opened with a card machine to prepare a web having a basis weight of 50 g / m 2 . Next, this web was placed on a net conveyor consisting of a 100 mesh screen, and provided with three stages of injection nozzles having a plurality of injection holes with a hole diameter of 0.12 mm and a hole interval of 1.0 mm, the front stage 4000 kPa, the middle stage 9000 kPa, and the rear stage 9000 kPa. The nonwoven fabric was obtained by subjecting the front and back of the web to hydroentanglement with a water pressure of. The elongation percentage of the obtained nonwoven fabric was 165%.
実施例17〜18
複合溶融紡糸装置のノズルの形状を変更し、偏心度を表3に示す値に変更した以外は、実施例16と同様に行った。
Examples 17-18
The same procedure as in Example 16 was performed except that the shape of the nozzle of the composite melt spinning apparatus was changed and the eccentricity was changed to the values shown in Table 3.
実施例19
芳香族ポリエステルとして、イソフタル酸20モル%共重合したPET(相対粘度1.38、融点206℃)を用い、紡糸温度を240℃とし、偏心度4.0となるようにした以外は、実施例16と同様に行った。
Example 19
As an aromatic polyester, as in Example 16, except that PET (relative viscosity 1.38, melting point 206 ° C.) copolymerized with 20 mol% of isophthalic acid was used, the spinning temperature was 240 ° C., and the eccentricity was 4.0. went.
実施例20
芳香族ポリエステルとして、エチレングリコール(EG)を45モル%共重合したPBT(相対粘度1.40、融点180℃)を用い、紡糸温度を230℃とし、偏心度4.3となるようにした以外は、実施例16と同様に行った。
Example 20
Except that PBT (relative viscosity 1.40, melting point 180 ° C.) copolymerized with 45 mol% of ethylene glycol (EG) was used as the aromatic polyester, the spinning temperature was 230 ° C., and the eccentricity was 4.3. This was carried out in the same manner as in 16.
実施例21
芳香族ポリエステルとして、ポリブチレンテレフタレート(PBT)にアジピン酸(AD)を20モル%共重合したPBT(相対粘度1.52、融点208℃)を用い、紡糸温度を250℃とし、偏心度4.0となるようにした以外は、実施例16と同様に行った。
Example 21
As an aromatic polyester, PBT (relative viscosity 1.52, melting point 208 ° C.) obtained by copolymerizing 20 mol% of adipic acid (AD) with polybutylene terephthalate (PBT) is used. The spinning temperature is 250 ° C., and the eccentricity is 4.0. The same procedure as in Example 16 was performed, except for the above.
実施例22
芳香族ポリエステルとして、ポリブチレンテレフタレート(PBT)にアジピン酸(AD)を40モル%共重合したPBT(相対粘度1.72、融点125℃)を用い、紡糸温度を230℃とし、偏心度4.3となるようにした以外は、実施例16と同様に行った。
Example 22
As an aromatic polyester, PBT (relative viscosity 1.72, melting point 125 ° C.) obtained by copolymerizing 40% by mole of adipic acid (AD) with polybutylene terephthalate (PBT) is used. The spinning temperature is 230 ° C., and the eccentricity is 4.3. The procedure was the same as in Example 16 except that
比較例3
鞘部ポリマーとして、融点153℃、融解熱21J/g、L−乳酸とD−乳酸の含有比であるL/Dが94.2/5.8、メルトフローレート値(以降、MFRとする。)が21g/10分、相対粘度1.81のポリ乳酸を用い、紡糸温度を230℃とし、偏心度4.4となるようにした以外は、実施例16と同様に行った。
Comparative Example 3
The sheath polymer has a melting point of 153 ° C., a heat of fusion of 21 J / g, an L / D content ratio of L-lactic acid and D-lactic acid of 94.2 / 5.8, a melt flow rate value (hereinafter referred to as MFR). ) Was 21 g / 10 min, polylactic acid having a relative viscosity of 1.81 was used, the spinning temperature was 230 ° C., and the eccentricity was 4.4.
実施例16〜22、比較例3で得られた複合繊維、不織布の物性値及び評価結果を表3に示す。 Table 3 shows the physical properties and evaluation results of the composite fibers and nonwoven fabrics obtained in Examples 16 to 22 and Comparative Example 3.
表3から明らかなように、実施例16〜22の複合繊維は、熱処理によりスパイラル捲縮が発現するものであり、耐湿熱分解性にも優れており、得られた不織布は伸縮性に優れるものであった。中でも、実施例16、18〜21は十分なスパイラル捲縮が発現し、耐湿熱分解性にも優れており、得られた不織布の伸縮性も優れたものであって、特に好ましいものであった。
一方、比較例3の複合繊維は、ポリ乳酸のみからなる繊維であったため、耐湿熱分解性を測定する際、湿熱処理後の強度が低下しすぎて繊維はボロボロとなり、処理後の強度の測定ができず、耐湿熱分解性を算出することができなかった。
As is apparent from Table 3, the composite fibers of Examples 16 to 22 exhibit spiral crimps by heat treatment and are excellent in resistance to moist and thermal decomposition, and the obtained nonwoven fabric is excellent in stretchability. Met. Among them, Examples 16 and 18 to 21 were particularly preferable because sufficient spiral crimp was developed, the heat and heat resistance was excellent, and the stretchability of the obtained nonwoven fabric was also excellent. .
On the other hand, since the composite fiber of Comparative Example 3 was a fiber made only of polylactic acid, when measuring the resistance to moist heat decomposition, the strength after the wet heat treatment was too low, and the fiber was tattered, and the strength after the treatment was measured. It was not possible to calculate the resistance to wet thermal decomposition.
実施例23
実施例1と同様のポリ乳酸で相対粘度1.85のものを用い、芳香族ポリエステルとしてエチレングリコール(EG)を45モル%共重合したPBT(相対粘度1.40、融点180℃)を用い、それぞれのチップを減圧乾燥した後、同心芯鞘型複合溶融紡糸装置に供給して溶融紡糸を行った。このとき、共重合PETが鞘部、ポリ乳酸が芯部となるように配し、複合比(質量比:芯/鞘)を75/25とし、紡糸温度230℃で溶融紡糸を行った。紡出糸条を冷却した後、引取速度1100m/分で引き取って未延伸糸条を得た。得られた糸条を集束して33万dtexのトウにし、延伸倍率3.5倍、温度60℃で延伸し、温度140℃のヒートドラムで熱処理してから、押し込み式クリンパーを使用して機械捲縮を付与した後、繊維長51mmに切断し、短繊維を得た。
得られた複合繊維は、単繊維繊度が33dtexの丸断面形状のものであり、偏心度が1.5、捲縮数12.3個/25mm、捲縮率11.2%、強度3.95cN/dtex、耐湿熱分解性87%であった。
次に、得られた短繊維をカード機で開繊し、目付50g/m2のウエブを作成した。次いで、このウエブを100メッシュスクリーンからなるネットコンベアーに載置し、孔径0.12mm、孔間隔1.0mmの噴射孔を複数個有する噴射ノズルを3段階に設け、前段4000kPa、中段9000kPa、後段9000kPaの水圧でウエブの表裏に水流交絡処理を施して、不織布を得た。得られた不織布の生分解度は86%であった。
Example 23
The same polylactic acid as in Example 1 and having a relative viscosity of 1.85 was used, and PBT (relative viscosity 1.40, melting point 180 ° C.) copolymerized with 45 mol% of ethylene glycol (EG) as an aromatic polyester was used. After drying under reduced pressure, the mixture was supplied to a concentric core-sheath type composite melt spinning apparatus to perform melt spinning. At this time, melt-spinning was performed at a spinning temperature of 230 ° C. with a copolymer ratio of 75/25 and a composite ratio (mass ratio: core / sheath) of copolymerized PET as a sheath and polylactic acid as a core. After cooling the spun yarn, it was drawn at a take-up speed of 1100 m / min to obtain an undrawn yarn. The resulting yarn is converged into a tow of 330,000 dtex, drawn at a draw ratio of 3.5 times, at a temperature of 60 ° C., heat-treated with a heat drum at a temperature of 140 ° C., and then machined using a push-in crimper. After crimping, the fiber length was cut to 51 mm to obtain short fibers.
The obtained composite fiber has a round cross-sectional shape with a single fiber fineness of 33 dtex, an eccentricity of 1.5, a number of crimps of 12.3 pieces / 25 mm, a crimp rate of 11.2%, and a strength of 3.95 cN / dtex, 87% wet and heat decomposable.
Next, the obtained short fiber was opened with a card machine to prepare a web having a basis weight of 50 g / m 2 . Next, this web was placed on a net conveyor consisting of a 100 mesh screen, and provided with three stages of injection nozzles having a plurality of injection holes with a hole diameter of 0.12 mm and a hole interval of 1.0 mm, the front stage 4000 kPa, the middle stage 9000 kPa, and the rear stage 9000 kPa. The nonwoven fabric was obtained by subjecting the front and back of the web to hydroentanglement with a water pressure of. The biodegradability of the obtained nonwoven fabric was 86%.
実施例24〜26
複合溶融紡糸装置のノズルの形状を変更し、偏心度を表4に示す値に変更した以外は、実施例23と同様に行った。
Examples 24-26
The same procedure as in Example 23 was performed except that the shape of the nozzle of the composite melt spinning apparatus was changed and the eccentricity was changed to the values shown in Table 4.
実施例27
芳香族ポリエステルとして、イソフタル酸40モル%共重合したPET(相対粘度1.38)を用い、紡糸温度を230℃とした以外は、実施例23と同様に行った。
Example 27
The same procedure as in Example 23 was performed except that PET (relative viscosity 1.38) copolymerized with 40 mol% of isophthalic acid was used as the aromatic polyester and the spinning temperature was 230 ° C.
実施例28
芳香族ポリエステルとして、ε−カプロラクタム(ε−CL)を20モル%、ブタンジオール(BD)を50モル%共重合したPET(相対粘度1.38、融点160℃)を用い、紡糸温度を230℃とし、偏平度を1.6となるように変更した以外は、実施例23と同様に行った。
Example 28
As aromatic polyester, PET (relative viscosity 1.38, melting point 160 ° C.) copolymerized with 20 mol% of ε-caprolactam (ε-CL) and 50 mol% of butanediol (BD) was used, and the spinning temperature was 230 ° C. The same operation as in Example 23 was performed except that the flatness was changed to 1.6.
実施例29
芳香族ポリエステルとして、イソフタル酸15モル%共重合したPET(相対粘度1.37、融点217℃)を用い、紡糸温度を240℃とし、偏平度を1.6となるように変更した以外は、実施例23と同様に行った。
Example 29
As the aromatic polyester, Example 23 was used except that PET (relative viscosity: 1.37, melting point: 217 ° C.) copolymerized with 15 mol% of isophthalic acid was used, the spinning temperature was 240 ° C., and the flatness was changed to 1.6. The same was done.
実施例30
芳香族ポリエステルとして、ポリブチレンテレフタレート(PBT)にアジピン酸(AD)を40モル%共重合したPBT(相対粘度1.72、融点125℃)を用い、紡糸温度を230℃とした以外は、実施例23と同様に行った。
Example 30
Example 23 except that PBT (relative viscosity 1.72, melting point 125 ° C.) obtained by copolymerizing 40 mol% of adipic acid (AD) with polybutylene terephthalate (PBT) was used as the aromatic polyester, and the spinning temperature was 230 ° C. As well as.
比較例4
複合繊維ではなく、ポリ乳酸のみの単一型の繊維とし、通常の紡糸装置を用いて紡糸温度230℃で溶融紡糸した以外は、実施例23と同様に行った。
Comparative Example 4
It was carried out in the same manner as in Example 23, except that it was not a composite fiber but a single type fiber of only polylactic acid and was melt-spun at a spinning temperature of 230 ° C. using a normal spinning device.
実施例23〜30で得られた複合繊維、比較例4で繊維の物性値及び評価結果を表4に示す。 Table 4 shows the physical properties and evaluation results of the composite fibers obtained in Examples 23 to 30 and Comparative Example 4.
表4から明らかなように、実施例23〜30の複合繊維は、強度と耐湿熱分解性に優れ、かつコンポスト分解性にも優れていた。中でも、実施例23〜25、27〜28の複合繊維は耐湿熱分解性とコンポスト分解性の両性能ともに十分に優れており、特に好ましいものであった。 As is clear from Table 4, the composite fibers of Examples 23 to 30 were excellent in strength and moist heat decomposition resistance, and also excellent in compost decomposability. Among them, the composite fibers of Examples 23 to 25 and 27 to 28 were particularly preferable because both the wet heat decomposition resistance and the compost decomposition performance were sufficiently excellent.
一方、比較例4の繊維は、ポリ乳酸のみからなる繊維であったため、耐湿熱分解性を測定する際、湿熱処理後の強度が低下しすぎて繊維はボロボロとなり、処理後の強度の測定ができず、耐湿熱分解性を算出することができなかった。 On the other hand, since the fiber of Comparative Example 4 was a fiber composed only of polylactic acid, when measuring the resistance to moist heat degradation, the strength after the wet heat treatment was too low, and the fiber became tattered. It was not possible to calculate the wet heat decomposition resistance.
A ポリ乳酸
B 芳香族ポリエステル
C 中心点
A Polylactic acid B Aromatic polyester
C center point
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004135772A JP4498001B2 (en) | 2003-05-07 | 2004-04-30 | Polyester composite fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003129111 | 2003-05-07 | ||
JP2004135772A JP4498001B2 (en) | 2003-05-07 | 2004-04-30 | Polyester composite fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004353161A true JP2004353161A (en) | 2004-12-16 |
JP4498001B2 JP4498001B2 (en) | 2010-07-07 |
Family
ID=34067004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004135772A Expired - Lifetime JP4498001B2 (en) | 2003-05-07 | 2004-04-30 | Polyester composite fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4498001B2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183212A (en) * | 2004-12-28 | 2006-07-13 | Nippon Ester Co Ltd | Biodegradable conjugate fiber |
JP2006348411A (en) * | 2005-06-15 | 2006-12-28 | Toray Ind Inc | Crimped yarn consisting of sheath core conjugate fiber, and woven fabric using the same |
JP2007009358A (en) * | 2005-06-30 | 2007-01-18 | Unitika Ltd | Heat-resistant polylactic acid-based filament nonwoven fabric and heat-resistant polylactic acid-based conjugate fiber |
JP2007143945A (en) * | 2005-11-29 | 2007-06-14 | Unitika Ltd | Primary ground fabric for tufted carpet |
JP2007230284A (en) * | 2006-02-28 | 2007-09-13 | Unitica Fibers Ltd | Surface member for interior material of automobile |
JP2007284846A (en) * | 2006-04-20 | 2007-11-01 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008019524A (en) * | 2006-07-12 | 2008-01-31 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008031570A (en) * | 2006-07-27 | 2008-02-14 | Unitica Fibers Ltd | Sheath-core conjugate false-twisted polyester yarn, method for producing the same, and woven or knit fabric produced by using the yarn |
JP2008075398A (en) * | 2006-09-25 | 2008-04-03 | Unitica Fibers Ltd | Bag body for civil engineering work |
JP2008081904A (en) * | 2006-09-29 | 2008-04-10 | Unitika Ltd | Primary base cloth for heat resistant polylactic acid-based tufted carpet |
JP2008133565A (en) * | 2006-11-29 | 2008-06-12 | Toray Ind Inc | Crimped yarn, and fiber structural product and plaster using the same |
JP2008144299A (en) * | 2006-12-08 | 2008-06-26 | Unitica Fibers Ltd | Short cut polyester conjugate fiber |
JP2008150759A (en) * | 2006-12-20 | 2008-07-03 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008169516A (en) * | 2007-01-12 | 2008-07-24 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008174889A (en) * | 2006-12-22 | 2008-07-31 | Nippon Ester Co Ltd | Polylactic acid conjugate fiber |
JP2008184695A (en) * | 2007-01-26 | 2008-08-14 | Unitica Fibers Ltd | Fiber aggregate |
JP2008184694A (en) * | 2007-01-26 | 2008-08-14 | Unitica Fibers Ltd | Fiber aggregate for civil engineering works and construction |
JP2008190057A (en) * | 2007-02-01 | 2008-08-21 | Unitica Fibers Ltd | Clothes |
JP2008196069A (en) * | 2007-02-09 | 2008-08-28 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008196058A (en) * | 2007-02-08 | 2008-08-28 | Nippon Ester Co Ltd | Polylactic acid conjugated fiber |
JP2008231588A (en) * | 2007-03-16 | 2008-10-02 | Nippon Ester Co Ltd | Electroconductive conjugate fiber |
JP2008297680A (en) * | 2007-06-01 | 2008-12-11 | Unitica Fibers Ltd | Crimped yarn and interior product |
JP2009024301A (en) * | 2007-07-23 | 2009-02-05 | Unitika Ltd | Primary backing fabric for tufted carpet |
JP2009192209A (en) * | 2008-01-17 | 2009-08-27 | Unitika Ltd | Biodegradable cleaning ball |
JP2010077558A (en) * | 2008-09-25 | 2010-04-08 | Toray Ind Inc | Polyester conjugated fiber |
JP2013011051A (en) * | 2012-08-07 | 2013-01-17 | Daiwabo Holdings Co Ltd | Polylactic acid-based composite fiber, nonwoven fabric and cushioning material using the same and method for manufacturing the same |
JP2020158946A (en) * | 2019-03-20 | 2020-10-01 | 東レ株式会社 | Eccentric core-sheath composite short-fiber |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105200543A (en) * | 2015-10-29 | 2015-12-30 | 江南大学 | Preparation method of polylactic acid composite fiber with hydrolysis resistance |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04308223A (en) * | 1991-04-08 | 1992-10-30 | Toray Ind Inc | Polyester-based conjugate fiber |
JPH07305234A (en) * | 1994-05-06 | 1995-11-21 | Kanebo Ltd | Improved biodegradable polyester fiber |
JPH0881830A (en) * | 1994-09-13 | 1996-03-26 | Unitika Ltd | Biodegradable crimped conjugate filament |
JPH10325017A (en) * | 1997-05-20 | 1998-12-08 | Kuraray Co Ltd | Latent-crimped composite fiber |
JP2000226737A (en) * | 1999-02-08 | 2000-08-15 | Toray Ind Inc | Conjugate fiber and its production |
JP2001248021A (en) * | 2001-02-05 | 2001-09-14 | Unitika Ltd | Biodegradable conjugate staple fiber |
-
2004
- 2004-04-30 JP JP2004135772A patent/JP4498001B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04308223A (en) * | 1991-04-08 | 1992-10-30 | Toray Ind Inc | Polyester-based conjugate fiber |
JPH07305234A (en) * | 1994-05-06 | 1995-11-21 | Kanebo Ltd | Improved biodegradable polyester fiber |
JPH0881830A (en) * | 1994-09-13 | 1996-03-26 | Unitika Ltd | Biodegradable crimped conjugate filament |
JPH10325017A (en) * | 1997-05-20 | 1998-12-08 | Kuraray Co Ltd | Latent-crimped composite fiber |
JP2000226737A (en) * | 1999-02-08 | 2000-08-15 | Toray Ind Inc | Conjugate fiber and its production |
JP2001248021A (en) * | 2001-02-05 | 2001-09-14 | Unitika Ltd | Biodegradable conjugate staple fiber |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183212A (en) * | 2004-12-28 | 2006-07-13 | Nippon Ester Co Ltd | Biodegradable conjugate fiber |
JP2006348411A (en) * | 2005-06-15 | 2006-12-28 | Toray Ind Inc | Crimped yarn consisting of sheath core conjugate fiber, and woven fabric using the same |
JP2007009358A (en) * | 2005-06-30 | 2007-01-18 | Unitika Ltd | Heat-resistant polylactic acid-based filament nonwoven fabric and heat-resistant polylactic acid-based conjugate fiber |
JP2007143945A (en) * | 2005-11-29 | 2007-06-14 | Unitika Ltd | Primary ground fabric for tufted carpet |
JP2007230284A (en) * | 2006-02-28 | 2007-09-13 | Unitica Fibers Ltd | Surface member for interior material of automobile |
JP2007284846A (en) * | 2006-04-20 | 2007-11-01 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008019524A (en) * | 2006-07-12 | 2008-01-31 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008031570A (en) * | 2006-07-27 | 2008-02-14 | Unitica Fibers Ltd | Sheath-core conjugate false-twisted polyester yarn, method for producing the same, and woven or knit fabric produced by using the yarn |
JP2008075398A (en) * | 2006-09-25 | 2008-04-03 | Unitica Fibers Ltd | Bag body for civil engineering work |
JP2008081904A (en) * | 2006-09-29 | 2008-04-10 | Unitika Ltd | Primary base cloth for heat resistant polylactic acid-based tufted carpet |
JP2008133565A (en) * | 2006-11-29 | 2008-06-12 | Toray Ind Inc | Crimped yarn, and fiber structural product and plaster using the same |
JP2008144299A (en) * | 2006-12-08 | 2008-06-26 | Unitica Fibers Ltd | Short cut polyester conjugate fiber |
JP2008150759A (en) * | 2006-12-20 | 2008-07-03 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008174889A (en) * | 2006-12-22 | 2008-07-31 | Nippon Ester Co Ltd | Polylactic acid conjugate fiber |
JP2008169516A (en) * | 2007-01-12 | 2008-07-24 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008184695A (en) * | 2007-01-26 | 2008-08-14 | Unitica Fibers Ltd | Fiber aggregate |
JP2008184694A (en) * | 2007-01-26 | 2008-08-14 | Unitica Fibers Ltd | Fiber aggregate for civil engineering works and construction |
JP2008190057A (en) * | 2007-02-01 | 2008-08-21 | Unitica Fibers Ltd | Clothes |
JP2008196058A (en) * | 2007-02-08 | 2008-08-28 | Nippon Ester Co Ltd | Polylactic acid conjugated fiber |
JP2008196069A (en) * | 2007-02-09 | 2008-08-28 | Nippon Ester Co Ltd | Polyester conjugate fiber |
JP2008231588A (en) * | 2007-03-16 | 2008-10-02 | Nippon Ester Co Ltd | Electroconductive conjugate fiber |
JP2008297680A (en) * | 2007-06-01 | 2008-12-11 | Unitica Fibers Ltd | Crimped yarn and interior product |
JP2009024301A (en) * | 2007-07-23 | 2009-02-05 | Unitika Ltd | Primary backing fabric for tufted carpet |
JP2009192209A (en) * | 2008-01-17 | 2009-08-27 | Unitika Ltd | Biodegradable cleaning ball |
JP2010077558A (en) * | 2008-09-25 | 2010-04-08 | Toray Ind Inc | Polyester conjugated fiber |
JP2013011051A (en) * | 2012-08-07 | 2013-01-17 | Daiwabo Holdings Co Ltd | Polylactic acid-based composite fiber, nonwoven fabric and cushioning material using the same and method for manufacturing the same |
JP2020158946A (en) * | 2019-03-20 | 2020-10-01 | 東レ株式会社 | Eccentric core-sheath composite short-fiber |
JP7322730B2 (en) | 2019-03-20 | 2023-08-08 | 東レ株式会社 | Eccentric core-sheath composite staple fiber |
Also Published As
Publication number | Publication date |
---|---|
JP4498001B2 (en) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4498001B2 (en) | Polyester composite fiber | |
JP2001049533A (en) | Polylactic acid-based conjugate short fiber, nonwoven fabric comprising the same short fiber and production thereof | |
JP2007284846A (en) | Polyester conjugate fiber | |
JP2008106410A (en) | Crimped yarn and fiber structure using the same | |
JP4447950B2 (en) | Moquette pile fabric | |
JP4661266B2 (en) | Synthetic fiber and fiber structure comprising the same | |
JP2008237257A (en) | Polyester conjugated fiber aggregate for hygienic material | |
JP2000054228A (en) | Polyamide-based conjugate fiber | |
JP2007230284A (en) | Surface member for interior material of automobile | |
JP4832347B2 (en) | Molding surface member for automotive interior materials | |
JP2008297680A (en) | Crimped yarn and interior product | |
JP2010065325A (en) | Polylactic acid nanofiber | |
JP4809015B2 (en) | Polylactic acid stretchable nonwoven fabric and method for producing the same | |
JP2008057057A (en) | Polylactic acid-based fiber and polylactic acid-based non-woven fabric | |
JPH09157954A (en) | Antistatic fiber | |
JP3557027B2 (en) | Naturally degradable composite yarn and its product | |
JP5356960B2 (en) | Polymer alloy fiber and sanitary article surface sheet containing the fiber | |
JP7325088B2 (en) | split type composite fiber | |
JPH09209216A (en) | Self-crimping conjugate fiber | |
JP2008231583A (en) | Doubled yarn, carpet, interior automotive trim and method for producing doubled yarn | |
JP2008019524A (en) | Polyester conjugate fiber | |
JP5654194B2 (en) | Circular knitted fabric and textile products using the same | |
JP2000054227A (en) | Polyolefin-based conjugate fiber | |
JPH11302926A (en) | Polyester-based conjugate fiber | |
JP4624075B2 (en) | Split type composite fiber and non-woven fabric using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A681 Effective date: 20040824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041019 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091005 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100112 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100316 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100413 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4498001 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |