JP2005102271A - Communication control method, radio communication system, and radio communication device - Google Patents
Communication control method, radio communication system, and radio communication device Download PDFInfo
- Publication number
- JP2005102271A JP2005102271A JP2004318672A JP2004318672A JP2005102271A JP 2005102271 A JP2005102271 A JP 2005102271A JP 2004318672 A JP2004318672 A JP 2004318672A JP 2004318672 A JP2004318672 A JP 2004318672A JP 2005102271 A JP2005102271 A JP 2005102271A
- Authority
- JP
- Japan
- Prior art keywords
- wireless communication
- transmission power
- reception quality
- communication device
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y02B60/50—
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本発明は、無線通信システムの無線送信電力並びに通信路データレートの制御方法に関するもので、特に移動通信システムに適用して好適である。 The present invention relates to a method for controlling radio transmission power and channel data rate of a radio communication system, and is particularly suitable for application to a mobile communication system.
無線通信システムにおいて、所望の受信品質を得るために、無線通信機の送信電力の制御を行う技術が知られている。例えば、USP5,267,262, Qualcomm Inc., ”Transmitter Power Control System” に、CDMA移動通信システムにおいて、基地局で端末からの信号受信電力を測定し、所望の値より小さい場合に送信電力を増加指示、大きい場合に送信電力減少指示を移動局に対して送信し、移動局はこの送信電力制御指示に従い送信電力を制御することにより、基地局における受信電力をほぼ一定に保つ技術が示されている。
また、USP5,559,790, Hitachi Ltd., ”Spread Spectrum Communication System and Transmission Power Control Method therefor”に、基地局が既知の電力で送信するパイロット信号の受信品質を移動局が測定し、その測定結果に基づき受信品質が悪い場合には受信品質が良い場合に比べて大きな送信電力を要求する送信電力制御信号を基地局に送信し、基地局は該送信電力制御信号に基づき前記移動局に向けた信号の送信電力を制御することにより、移動局における基地局からの信号受信品質をほぼ一定に保つ技術が示されている。
これらの技術は何れも、受信側における受信電力や品質を一定となるように制御することを目的としている。すなわち、以上の従来の技術による送信電力制御方法によれば、受信品質を一定化し、伝搬路の利得変動に起因する受信品質の劣化や不必要に過大な送信電力によるシステム内の干渉を防止することができる。
In a wireless communication system, a technique for controlling transmission power of a wireless communication device in order to obtain desired reception quality is known. For example, in USP5,267,262, Qualcomm Inc., "Transmitter Power Control System", in the CDMA mobile communication system, the signal reception power from the terminal is measured at the base station, and if it is smaller than the desired value, the transmission power is instructed to increase. In the case where the transmission power is large, a transmission power reduction instruction is transmitted to the mobile station, and the mobile station controls the transmission power in accordance with the transmission power control instruction, so that the reception power at the base station is kept substantially constant.
Also, according to USP 5,559,790, Hitachi Ltd., “Spread Spectrum Communication System and Transmission Power Control Method therefor”, the mobile station measures the reception quality of the pilot signal transmitted by the base station with known power, and based on the measurement result When the reception quality is poor, a transmission power control signal that requires a larger transmission power than when the reception quality is good is transmitted to the base station, and the base station transmits a signal to the mobile station based on the transmission power control signal. A technique is shown in which the transmission power is controlled to keep the signal reception quality from the base station in the mobile station substantially constant.
Each of these techniques aims to control the reception power and quality at the reception side to be constant. That is, according to the above-described conventional transmission power control method, reception quality is made constant, and degradation of reception quality due to propagation path gain fluctuations and unnecessary interference in the system due to excessive transmission power are prevented. be able to.
しかるに、移動局の移動に伴い発生する比較的短周期の伝搬路利得変動であるフェージングが存在する場合、従来の技術を用いると、瞬時的に伝搬路利得が小さくなったときに非常に大きな送信電力となってしまい、平均送信電力が増加してしまう。平均送信電力の増加は、システム全体に与える相互干渉を増加させ、システム全体の通信スループットの低下を招くという問題がある。また、端末においては平均送信電力の増加は消費電力を増加させ、通話可能時間が短くなってしまうという問題がある。
従って、本発明の第一の目的は、比較的短周期の伝搬路利得変動が発生した場合においても、平均送信電力の増加を防止しながら所望の受信品質を達成する送信電力制御方法を提供することである。
また、平均送信電力を増加させなかった場合には、平均受信電力が減少し、それに伴う受信品質(SN比, SNR)の劣化により通信路の容量が低下してしまう。すなわち、通信可能な最大データレートが低下することになる。従って、本発明の第二の目的は、比較的短周期の伝搬路利得変動が発生した場合においても、通信路容量をなるべく大きく保つことにある。
また、伝搬路利得の変動により時間当りの通信路容量が変動すると、所望の情報を通信する為に要する時間が変動し、安定した通信品質が得られないという問題がある。従って、本発明の第三の目的は、時間当りの通信路容量が変動した場合においても、安定した通信品質を提供することにある。
However, when there is fading that is a relatively short period propagation path gain fluctuation that occurs with the movement of a mobile station, using the conventional technique, when the propagation path gain decreases instantaneously, a very large transmission As a result, the average transmission power increases. An increase in average transmission power increases the mutual interference given to the entire system, which causes a problem of reducing the communication throughput of the entire system. Further, in the terminal, there is a problem that an increase in average transmission power increases power consumption and shortens a callable time.
Accordingly, a first object of the present invention is to provide a transmission power control method that achieves desired reception quality while preventing an increase in average transmission power even when a propagation gain variation of a relatively short period occurs. That is.
Further, when the average transmission power is not increased, the average reception power is decreased, and the capacity of the communication path is reduced due to the deterioration of the reception quality (SN ratio, SNR). That is, the maximum data rate that can be communicated is reduced. Therefore, the second object of the present invention is to keep the communication channel capacity as large as possible even when a propagation gain variation with a relatively short period occurs.
In addition, when the channel capacity per hour varies due to variations in propagation channel gain, there is a problem that the time required to communicate desired information varies and stable communication quality cannot be obtained. Accordingly, a third object of the present invention is to provide stable communication quality even when the communication path capacity per hour varies.
上記課題を解決するための手段は、第一の無線通信機に伝搬路利得並びに受信品質を測定する手段と送信電力制御情報並びに受信品質情報を送信する手段を持ち、第二の無線通信機に前記送信電力制御情報並びに前期受信品質情報を受信する手段と送信電力並びにデータレートを制御する手段を持ち、第二の無線通信機は受信品質が良好であればデータレートを増加させ、受信品質が良好でなければデータレートを減少させるように制御し、第二の無線通信機の送信電力を伝搬路利得が大きくなったときに増加させ、伝搬路利得が小さくなったときに減少させるように制御する制御手段を設けることを特徴とする。 Means for solving the above-mentioned problems include means for measuring propagation path gain and reception quality and means for transmitting transmission power control information and reception quality information to the first wireless communication apparatus. Means for receiving the transmission power control information and the previous period reception quality information and means for controlling the transmission power and data rate, the second wireless communication device increases the data rate if the reception quality is good, and the reception quality is If it is not good, the data rate is controlled to decrease, and the transmission power of the second wireless communication device is increased when the channel gain increases, and is decreased when the channel gain decreases. It is characterized by providing a control means.
本発明によれば、所要の送信電力を低下させ相互干渉が低減する。また、本発明によれば通信路容量が増大し、増大した通信路容量を適応的に利用して通信可能ビットレートの向上が可能となる。 According to the present invention, required transmission power is reduced and mutual interference is reduced. Further, according to the present invention, the channel capacity is increased, and the bit rate capable of communication can be improved by adaptively using the increased channel capacity.
まず、本発明の電力制御アルゴリズムについて説明する。 First, the power control algorithm of the present invention will be described.
図1は伝搬路利得の時間変動の例を示すグラフ図である。いま、図1のように伝搬路利得が変動した場合を考える。すなわち、時刻t1, t2, t3, t4における利得をそれぞれ2, 1, 1/3, 2/3で平均利得が1となるような伝搬路を考える。
図2は雑音電力の時間変化例を示すグラフ図である。
図3は送信端での等価雑音電力の時間変化例を示すグラフ図である。受信側で図2のように電力1で一定の雑音が加わるとすると、これは送信側で図3に示すように時刻t1, t2, t3, t4においてそれぞれ電力1/2, 1, 3, 3/2の雑音が加わったことと等価である。すなわち、伝搬路利得の変動は等価的に雑音電力の変動とみなすことが可能である。
FIG. 1 is a graph showing an example of time variation of propagation path gain. Consider the case where the channel gain fluctuates as shown in FIG. That is, consider a propagation path in which the average gain becomes 1 at times t1, t2, t3, and t4 and gains of 2, 1, 1/3, and 2/3, respectively.
FIG. 2 is a graph showing an example of a time change in noise power.
FIG. 3 is a graph showing an example of time variation of equivalent noise power at the transmission end. Assuming that constant noise is added at
一方、通信路の容量Cは、理論的にはC=W log2(1+S/N)となることが知られている。ここで、Cは1秒あたりに伝送可能なビット数、Wは周波数帯域幅、Sは信号電力、Nは雑音電力、log2(x)は2を底とするxの対数とする。従って、上記のように時間変動する伝搬路における通信路容量は、時刻tにおける信号電力S(t), 雑音電力をN(t)とすると、C=Ave(W log2(1+S(t)/N(t)))となる。ここでAve(x)はxの時間平均を表すものとする。従って、電力制御によってS(t)を時間的に変化させると通信路容量が変化することになる。本発明では通信路容量をなるべく大きくするように送信電力を制御する。具体的には、以下のようにする。
いま、平均送信電力、すなわちS(t)の時間平均Ave(S(t))を一定とした場合に通信路容量Cを最大化するS(t)について考える。Ave(S(t))が一定であるから、ある時刻の送信電力を増加させると他の時刻の送信電力は減少させなくてはならない。ここで、前記通信路容量の定義式よりSの微小増加に対するCの増加率はdC/dS=W/log(2)/(N+S)であるから、一定の電力を時間方向に分配するときにN+Sが最も小さいところに送信電力を分配することが通信路容量を最も増加させることになる。このようにN+Sが最も小さなところに順次送信電力を分配していくと、最終的に全ての電力を分配し終わった時にはN+Sは一定、かつ、達成されたS+NよりもNが大きい時間帯にはSは全く分配されないようになり、この状態が最も通信路容量が大きいことになる。
ここで、受信機が受ける雑音電力を時間の関数Nr(t), 伝搬路利得を時間の関数g(t)とおくと、送信側で見た等価雑音電力N(t)は、
N(t) = Nr(t)/g(t)
となる。従って、前記通信路容量を最大とする送信電力S(t)は、
N(t) + S(t) = Nr(t)/g(t) + S(t) = P_const. (一定)
という条件を満たす。すなわち、
S(t) = P_const Nr(t)/g(t)
となるように制御すれば良い。但し、S(t)<0となる場合は実際の送信電力は0とする(つまり送信を停止する)。なお、P_constを大きくすれば平均送信電力および通信路容量が増加する。逆に、P_constを小さくすれば平均送信電力および通信路容量が減少する。従って、所望の通信路容量が得られる値にP_constを決定すれば良い。
On the other hand, it is known that the capacity C of the communication path is theoretically C = W log2 (1 + S / N). Here, C is the number of bits that can be transmitted per second, W is the frequency bandwidth, S is the signal power, N is the noise power, and log2 (x) is the logarithm of x with 2 as the base. Therefore, the channel capacity in the time-varying propagation path as described above is C = Ave (W log2 (1 + S (t)), where signal power S (t) at time t and noise power N (t) / N (t))). Here, Ave (x) represents the time average of x. Therefore, when S (t) is changed with time by power control, the channel capacity changes. In the present invention, transmission power is controlled so as to increase the channel capacity as much as possible. Specifically, it is as follows.
Consider S (t) that maximizes the channel capacity C when the average transmission power, that is, the time average Ave (S (t)) of S (t) is constant. Since Ave (S (t)) is constant, if the transmission power at a certain time is increased, the transmission power at another time must be decreased. Here, since the rate of increase of C with respect to the slight increase of S is dC / dS = W / log (2) / (N + S) from the definition equation of the channel capacity, constant power is distributed in the time direction. Sometimes distributing transmission power where N + S is the smallest will increase the channel capacity. In this way, when the transmission power is sequentially distributed to the place where N + S is the smallest, when all the power is finally distributed, N + S is constant and N is higher than S + N achieved. S is not distributed at all in the time zone when is large, and this state has the largest channel capacity.
Here, if the noise power received by the receiver is a function of time Nr (t) and the propagation path gain is a function of time g (t), the equivalent noise power N (t) seen on the transmission side is
N (t) = Nr (t) / g (t)
It becomes. Therefore, the transmission power S (t) that maximizes the channel capacity is
N (t) + S (t) = Nr (t) / g (t) + S (t) = P_const.
This condition is satisfied. That is,
S (t) = P_const Nr (t) / g (t)
Control may be performed so that However, when S (t) <0, the actual transmission power is 0 (that is, transmission is stopped). If P_const is increased, average transmission power and channel capacity increase. Conversely, if P_const is reduced, the average transmission power and the channel capacity are reduced. Therefore, it is only necessary to determine P_const to a value that provides a desired communication path capacity.
図4で送信電力制御の概念を示す。例えば、図1に示す伝搬路利得変動の下で平均送信電力を1とした場合、送信電力制御結果は図4に示すようになる。図中、太線で囲まれた部分が信号電力、細線で囲まれた部分が雑音電力である。すなわち、時刻t1, t2, t3, t4における送信電力は、それぞれ11/6, 4/3, 0, 5/6とする。平均送信電力は
(11/6 + 4/3 + 0 + 5/6)/4 = 1
となっている。
FIG. 4 shows the concept of transmission power control. For example, when the average transmission power is 1 under the propagation path gain fluctuation shown in FIG. 1, the transmission power control result is as shown in FIG. In the figure, a portion surrounded by a thick line is signal power, and a portion surrounded by a thin line is noise power. That is, the transmission powers at times t1, t2, t3, and t4 are 11/6, 4/3, 0, and 5/6, respectively. Average transmission power is
(11/6 + 4/3 + 0 + 5/6) / 4 = 1
It has become.
図5は図4の送信電力制御の結果を受信側で見たときの受信電力を示す。時刻t1, t2, t3, t4においてそれぞれ11/3, 4/3, 0, 5/9となる。
図6は受信電力もしくは受信品質を一定に保つため、雑音電力に比例した送信電力となるよう制御する比較例である。すなわち時刻t1, t2, t3, t4における送信電力は、それぞれ1/3, 2/3, 2, 1となる。平均送信電力は、
(1/3 + 2/3 + 2 + 1)/4 = 1
となっている。
FIG. 5 shows received power when the result of the transmission power control in FIG. 4 is viewed on the receiving side. At times t1, t2, t3, and t4, they become 11/3, 4/3, 0, and 5/9, respectively.
FIG. 6 is a comparative example in which control is performed so that the transmission power is proportional to the noise power in order to keep the reception power or reception quality constant. That is, the transmission powers at times t1, t2, t3, and t4 are 1/3, 2/3, 2, and 1, respectively. Average transmission power is
(1/3 + 2/3 + 2 + 1) / 4 = 1
It has become.
図7は図6の比較例による受信電力の時間変化例を示すグラフ図である。図6の電力分配(送信電力制御)の結果を受信側で見たときの受信電力は図7に示すとおり、時刻t1, t2, t3, t4においてそれぞれ2/3, 2/3, 2/3, 2/3となる。
図8に伝搬路利得の変動に対する送信電力の制御を比較する。横軸が伝搬路利得、縦軸が送信電力制御結果としての送信電力を示す。図中、丸印が本発明、菱形が従来の技術である。すなわち、従来の送信電力制御では通信路利得と送信電力は反比例の関係にあり、通信路利得が低下すると送信電力を増大させ、通信路利得が増加すると送信電力を低減しているのに対し、本発明では逆に、通信路利得が低下すると送信電力を低下させ、通信路利得が増加すると送信電力を増加させている。
また、本発明による送信電力制御にて達成される通信路容量は
C=W(log2(1+11/3)+log2(1+4/3)+log2(1+0)+log2(1+5/9))/4
=0.90W
となる。一方、従来の技術による送信電力制御にて達成される通信路容量は
C=W log2(1+2/3) = 0.707W
となる。
これらよりここに示した例では、本発明の電力制御によれば従来の電力制御方法に比して通信路容量が1.27 (=0.90/0.707)倍に増加する。一方、従来の送信電力制御方式を用いて、前記、本発明を適用した場合の通信路容量と同一の通信路容量を達成するためには、0.90 = log2(1+0.8661)であるからS/N=0.8661が必要であり、前記従来の送信電力制御で達成されたS/N=2/3の1.30(=0.8661/(2/3))倍の平均送信電力が必要となる。従って、本発明により、同一の通信路容量を達成するための送信電力は、従来の技術を用いる場合の0.770倍に低減される。
以上、理論的に通信路容量を最大化する送信電力制御アルゴリズムについて述べたが、厳密に上記アルゴリズムに従わなくてもほぼ同等の効果を得ることができる。すなわち、図8に示す伝搬路利得と送信電力の関係を近似する関数を用いて送信電力を行うことも可能である。該関数は全体として正の傾きを持っているものが望ましく、例えば、送信電力を伝搬路利得に比例させるような単純なものでもほぼ同様の効果を得ることができる。
図9は伝搬路利得変動の第2の例を示すグラフ図である。
図10は本発明による送信電力制御の第2の例を示すグラフ図である。
前記送信電力を決定するアルゴリズム
S(t) = P_const Nr(t)/g(t)
によれば、伝搬路利得が図9に示すように時刻t0でステップ状に増加した場合、送信電力は図10(a)のようにやはりステップ状に変化する。また、制御遅延が発生した場合などには図10(b)のようにある立上り時間をもって変化する。
図10(a), (b)の制御では、伝搬路利得が大きい基地局に近い場所に移動局が位置するときに通信路容量が大きく、逆に基地局から遠い場所に移動局が位置するときに通信路容量が小さくなる。この差がシステム設計上好ましくない場合は、例えば
P_const = C0 Ave(Nr(t))/Ave(g(t))
のように現在の通信路状況の平均的な利得と雑音電力を用いてP_constを比較的ゆっくり制御することが実際的である。ここで、C0は定数とする。これにより、基地局からの距離によらずにほぼ一定の通信路容量を得ながら通信路の短時間的な変動に対して前記電力制御が適用される。
FIG. 7 is a graph showing an example of temporal change in received power according to the comparative example of FIG. The received power when the result of power distribution (transmission power control) in FIG. 6 is viewed on the receiving side is 2/3, 2/3, 2/3 at time t1, t2, t3, t4, respectively, as shown in FIG. , 2/3.
FIG. 8 compares transmission power control with respect to fluctuations in propagation path gain. The horizontal axis represents propagation path gain, and the vertical axis represents transmission power as a transmission power control result. In the figure, circles indicate the present invention, and diamonds indicate the prior art. In other words, in the conventional transmission power control, the channel gain and the transmission power are in an inversely proportional relationship, and when the channel gain decreases, the transmission power increases, whereas when the channel gain increases, the transmission power decreases. In the present invention, conversely, when the channel gain decreases, the transmission power is reduced, and when the channel gain increases, the transmission power is increased.
The channel capacity achieved by the transmission power control according to the present invention is
C = W (log2 (1 + 11/3) + log2 (1 + 4/3) + log2 (1 + 0) + log2 (1 + 5/9)) / 4
= 0.90W
It becomes. On the other hand, the channel capacity achieved by the conventional transmission power control is
C = W log2 (1 + 2/3) = 0.707W
It becomes.
Accordingly, in the example shown here, the channel capacity increases by 1.27 (= 0.90 / 0.707) times as compared with the conventional power control method according to the power control of the present invention. On the other hand, using the conventional transmission power control method, in order to achieve the same channel capacity as that when the present invention is applied, 0.90 = log2 (1 + 0.8661). N = 0.8661 is required, and an average transmission power of 1.30 (= 0.8661 / (2/3)) times S / N = 2/3 achieved by the conventional transmission power control is required. Therefore, according to the present invention, the transmission power for achieving the same channel capacity is reduced to 0.770 times that when the conventional technique is used.
The transmission power control algorithm that theoretically maximizes the channel capacity has been described above, but substantially the same effect can be obtained without strictly following the above algorithm. That is, it is possible to perform transmission power using a function that approximates the relationship between the propagation path gain and transmission power shown in FIG. It is desirable that the function has a positive slope as a whole. For example, even a simple function that makes the transmission power proportional to the channel gain can obtain substantially the same effect.
FIG. 9 is a graph showing a second example of propagation path gain fluctuation.
FIG. 10 is a graph showing a second example of transmission power control according to the present invention.
Algorithm for determining the transmission power
S (t) = P_const Nr (t) / g (t)
According to FIG. 9, when the propagation path gain increases stepwise at time t0 as shown in FIG. 9, the transmission power also changes stepwise as shown in FIG. 10 (a). Further, when a control delay occurs, it changes with a certain rise time as shown in FIG. 10 (b).
In the control of FIGS. 10 (a) and 10 (b), the channel capacity is large when the mobile station is located near the base station where the channel gain is large, and conversely the mobile station is located far from the base station. Sometimes the channel capacity becomes smaller. If this difference is undesirable in system design, for example
P_const = C0 Ave (Nr (t)) / Ave (g (t))
Thus, it is practical to control P_const relatively slowly using the average gain and noise power of the current channel condition. Here, C0 is a constant. As a result, the power control is applied to short-term fluctuations in the communication path while obtaining a substantially constant communication path capacity regardless of the distance from the base station.
この場合、前記図9に示す伝搬路利得変動に対して、図10(c), (d)に示すように、短時間的には前記図10(a), (b)と同様な送信電力となり、その後、従来の電力制御と同様に伝搬路利得変動を打消す送信電力に徐々に近づくような応答を示す。 In this case, with respect to the propagation path gain fluctuation shown in FIG. 9, as shown in FIGS. 10 (c) and 10 (d), transmission power similar to that shown in FIGS. 10 (a) and 10 (b) is obtained in a short time. After that, the response gradually approaches the transmission power that cancels the propagation path gain variation as in the conventional power control.
以上の電力制御によれば、通信路容量が時間的に変動することになる。このため、ある程度の時間にわたって通信路容量が平均以上のときは、ビットレートを制御して高ビットレートにて通信を行い、逆に通信路容量が平均以下の時は低ビットレートにて通信を行うことが好ましい。
また、P_constの算出に用いるAve(Nr(t)), Ave(g(t))の平均時間を通信路符号化を行う単位に一致させることにより明示的なビットレートの制御を行わなくても平均的なビットレートを向上させることが可能となり、一定のビットレートが要求されるシステムに適する。
According to the power control described above, the channel capacity varies with time. For this reason, when the channel capacity is above the average over a certain period of time, the bit rate is controlled to perform communication at a high bit rate. Conversely, when the channel capacity is below the average, communication is performed at a low bit rate. Preferably it is done.
In addition, it is not necessary to explicitly control the bit rate by matching the average time of Ave (Nr (t)) and Ave (g (t)) used for calculating P_const with the unit for channel coding. The average bit rate can be improved, which is suitable for a system that requires a constant bit rate.
以降、上記アルゴリズムを実施するためのシステム及び装置構成について説明する。 Hereinafter, a system and apparatus configuration for executing the above algorithm will be described.
図30に本発明のシステム構成を示す。複数の移動局3,4,5が無線を介して基地局1,2と通信を行い、基地局1,2は基地局制御局6の制御の下、前記移動局どうし、もしくは、固定網に属する通信機器と通信を確立する。
FIG. 30 shows the system configuration of the present invention. A plurality of
図11に本発明の受信側無線通信機の構成を示す。 FIG. 11 shows the configuration of the receiving side wireless communication device of the present invention.
図12に本発明による送信側無線通信機の送信信号多重形式の第1の例のフォーマット図を示す。
図13に本発明の送信側無線通信機の構成を示す。
図14に本発明による受信側無線通信機の送信信号多重形式の例のフォーマット図を示す。
ここで、本発明によりその送信電力並びにデータレートが制御される無線通信機を送信側無線通信機、他方を受信側無線通信機としている。図30に示すシステム構成上、移動局、基地局のどちらの局がどちらの無線通信機であってもよく、基地局を送信側無線通信機とするなら下り信号の送信電力並びにデータレートの制御を行うことになり、逆に移動局を送信側無線通信機とするなら上り信号の送信電力並びにデータレートの制御を行うことになる。
図11でアンテナより受信された信号は無線周波数回路101にてベースバンド帯域の信号に変換される。該、ベースバンド帯域の信号は、復調器102にて検波等の復調処理が施され、符号化単位毎に通信路復号化器121にて誤り訂正される。
なお、通信路復号化器121にて復号する際には、不足データについては電力零の信号を受信したものと仮定して復号することで符号化単位分の全データの蓄積を待つことなく復号を行うことが可能であり、符号化単位分のデータを蓄積する過程で随時復号を行う。通信路復号化器121にて誤り訂正された結果は受信品質判定部140に入力され、誤り検出部115において誤りを検出し、誤りの有無を受信品質情報として作成する。一方、前記ベースバンド帯域の信号は電力信号生成部105に入力され、前記電力制御アルゴリズムに従った送信電力制御信号を生成する。該、受信寝室情報並びに送信電力制御信号は、第3パイロット信号生成部130で生成される第3パイロット信号、並びに誤り訂正符号化器106、インタリーバ107にて通信路符号化を受けたデータ信号と多重化器109にて多重化される。該多重化された信号は、例えば図14のような形式になる。303がデータ信号、304が電力制御信号、305が第3のパイロット信号、306が受信品質情報信号であり、図中、横方向が時間、縦方向が符号分割に用いられる符号を表し、時間多重、符号分割多重等の多重方法で多重されている。前記、多重された信号は変調器110にて変調され、無線周波数回路101を介して無線伝搬路に送出される。
該、受信側無線通信機から送出された信号は、図13に示す送信側無線通信機にて受信される。101,102,103,104の動作は受信側無線通信機と同様である。送信電力制御部111は前記電力制御信号304を抽出し、該抽出された送信電力制御信号304に従った送信電力を算出する。受信品質信号抽出部141は前期受信品質情報信号306を抽出し、誤り検出部115において検出された誤りの有無をデータレート制御手段142に通知する。該データレート制御手段142では、通信路符号化部122で符号化された送信データを符号化単位毎に蓄積して、前記受信品質信号抽出部141から通知された誤りの有無の情報を元にデータレートを変更して符号化単位を識別するデータを加えて多重化部112に出力する。
図31はデータレート制御手段142で行う処理フローの例を示す。図31の処理の流れでは、データレート制御手段142は符号化された送信データを符号化単位毎に複数のブロックに分割してブロック毎に送信し、誤り無しが通知されれば送信を終了する。誤り無しが通知されなけば前に送信したブロックの次のブロックを送信し、全ブロックの送信終了後にも誤り無しが通知されなければ再び先頭のブロックから送信を繰り返す。これにより、データレート制御手段から出力される送信データは変動する通信路容量に合わせた必要十分なデータレートとなる。データレート制御手段142から出力された送信データは第2パイロット信号生成手段108にて生成される第2パイロット信号と多重化器112で多重され、送信電力可変手段113に入力される。送信電力可変手段113は前記送信電力制御部111から指定された送信電力になるよう信号振幅を可変する。該、送信電力可変手段113の出力は第1のパイロット信号生成手段114にて所定の電力に設定された第1のパイロット信号と多重化器115にて多重化され、図12に示すような形式の信号となる。
図12において301は第1のパイロット信号、302は第2のパイロット信号、303はデータ信号である。
図12に示すように、様々な多重形式が可能である。また、第1のパイロット信号301(P0)は前記送信電力制御部111による電力制御を受けず、所定の電力で送信される。一方、第2のパイロット信号302はデータ信号303とともに前記電力制御を受けて送信される。図12の形式に多重された信号は、変調器110で変調され、無線周波数回路101を介して無線伝搬路に送出される。
図15は本発明による送信電力制御信号生成部の第1の構成例のブロック図を示す。
図16は本発明による送信電力制御部の第1の構成例のブロック図を示す。
FIG. 12 shows a format diagram of a first example of a transmission signal multiplexing format of the transmitting side radio communication apparatus according to the present invention.
FIG. 13 shows the configuration of the transmission side wireless communication device of the present invention.
FIG. 14 shows a format diagram of an example of a transmission signal multiplexing format of the receiving side wireless communication device according to the present invention.
Here, the wireless communication device whose transmission power and data rate are controlled by the present invention is a transmission-side wireless communication device, and the other is a reception-side wireless communication device. In the system configuration shown in FIG. 30, either the mobile station or the base station may be any wireless communication device, and if the base station is a transmission-side wireless communication device, the transmission power and data rate of the downlink signal are controlled. Conversely, if the mobile station is a transmitting side wireless communication device, the transmission power and data rate of the uplink signal are controlled.
The signal received from the antenna in FIG. 11 is converted into a baseband signal by the
When decoding by the
The signal transmitted from the receiving wireless communication device is received by the transmitting wireless communication device shown in FIG. Operations of 101, 102, 103, and 104 are the same as those of the reception-side wireless communication device. The transmission
FIG. 31 shows an example of a processing flow performed by the data rate control means 142. In the processing flow of FIG. 31, the data rate control means 142 divides the encoded transmission data into a plurality of blocks for each coding unit and transmits each block, and terminates the transmission when no error is notified. . If no error is notified, the block next to the previously transmitted block is transmitted, and if no error is notified even after the transmission of all blocks is completed, transmission is repeated from the first block again. As a result, the transmission data output from the data rate control means has a necessary and sufficient data rate in accordance with the changing channel capacity. The transmission data output from the data rate control means 142 is multiplexed by the
In FIG. 12, 301 is a first pilot signal, 302 is a second pilot signal, and 303 is a data signal.
As shown in FIG. 12, various multiplexing formats are possible. The first pilot signal 301 (P0) is transmitted with a predetermined power without being subjected to power control by the transmission
FIG. 15 is a block diagram showing a first configuration example of the transmission power control signal generation unit according to the present invention.
FIG. 16 is a block diagram showing a first configuration example of the transmission power control unit according to the present invention.
前記受信側無線通信機における送信電力信号生成部105、および前記送信側無線通信機における送信電力生成部111は、例えばそれぞれ図15、図16のように構成される。図15の送信電力信号生成部は、第1のパイロット信号分離手段201、第2のパイロット信号分離手段205にてそれぞれ第1のパイロット信号、第2のパイロット信号を分離し、前記S(t) = P_const Nr(t)/g(t)
において、
P_const = C0 Ave(Nr(t))/Ave(g(t))
となる送信電力に対して、現在の送信電力が大きいか小さいかを比較器211にて判定し、大きい場合に送信電力の減少、小さい場合に送信電力の増加を指示する送信電力制御信号304を生成する。従って、図16の送信電力制御部は前期送信電力制御信号304を抽出し、該送信電力制御信号に従って現在の送信電力を増減する。なお、図15において雑音電力は第2のパイロット信号から求めているが、第1のパイロット信号から求めることも可能である(点線)。
図17は本発明によるデータレート制御機能つき符号化器の第2の構成例のブロック図を示す。
図18は本発明によるデータレート制御機能つき復号器の第2の構成例のブロック図を示す。
The transmission power
In
P_const = C0 Ave (Nr (t)) / Ave (g (t))
The
FIG. 17 shows a block diagram of a second configuration example of the encoder with a data rate control function according to the present invention.
FIG. 18 shows a block diagram of a second configuration example of the decoder with a data rate control function according to the present invention.
以上の実施形態において、前述のようにある程度の時間にわたって通信路容量が平均以上のときは、ビットレートを制御して平均的に高ビットレートにて通信を行い、逆に通信路容量が平均以下の時は平均的に低ビットレートにて通信を行うことが好ましい。このためには図13の通信路符号化器122と図11の通信路復号化器121にかえてそれぞれ図17、図18に示すようにデータレートの指示を受けてデータレートを可変し、用いたデータレートを特定するレート情報をデータ信号に多重して伝送し、通信路復号化器121において該レート情報に従った通信路復号化処理を行うようにすれば良い。
In the above embodiment, when the channel capacity is above the average over a certain period of time as described above, the bit rate is controlled to perform communication at an average high bit rate, and conversely, the channel capacity is below the average. In this case, it is preferable to perform communication at a low bit rate on average. For this purpose, instead of the
図19は前記、送信電力制御部105の構成の一例である。図中、関数演算部214は、入力信号の増加に対して出力が増加する関数f(x)の演算を行う。これにより、伝搬路利得が平均値より増加すると、送信電力の増加を指示する送信電力制御信号を生成する。
図20は、雑音電力が時間によらず一定であると仮定できる場合に簡単化した構成例である。
図21〜図29は本発明の他の変形例を示す図である。
FIG. 19 shows an example of the configuration of the transmission
FIG. 20 is a simplified configuration example when it can be assumed that the noise power is constant regardless of time.
21 to 29 are diagrams showing another modification of the present invention.
図21に示すように、送信側無線通信機が送出する信号に第2のパイロット信号302が含まれない場合にも、例えば図22に示す構成にて規格化送信電力S(t)/P0を求め、これを送信電力制御信号とし、図23に示す送信電力制御部にてS(t)を求めることが可能である。より単純には、図22に代えて図24の構成、図23に代えて図25の構成を用いることも可能である。
As shown in FIG. 21, even when the
また、図26に示すように、送信側無線通信機が送出する信号に第1のパイロット信号301が含まれない場合にも、例えば図27に示す送信電力制御信号生成部と、図16に示す送信電力制御部にてS(t)を求めることが可能である。より単純には、図27に代えて図28の構成、図16に代えて図29の構成を用いることも可能である。
Also, as shown in FIG. 26, even when the
1,2 基地局
3,4,5 移動局
6 基地局制御局
7 固定網
101 無線周波数回路
102 復調器
103 デインタリーバ
104 誤り訂正復号器
121 通信路復号化器
105 送信電力制御信号生成部
106 誤り訂正符号化器
107 インタリーバ
109, 112, 115, 124 信号多重器
110 変調器
111 送信電力制御部
122 通信路符号化器
108 第2パイロット信号生成部
113 送信電力可変手段
114 第1パイロット信号生成部
130 第3パイロット信号生成部
140 受信品質判定部
141 受信品質信号抽出部
142 データレート制御部
115 誤り検出部
301 第1パイロット信号
302 第2パイロット信号
303 データ信号
304 電力制御信号
305 第3パイロット信号
306 受信品質情報信号
201 第1パイロット信号分離手段
202, 210 信号電力測定手段
203, 207, 223 信号平均手段
204, 212, 216, 217, 228 除算器
205 第2パイロット信号分離手段
206 雑音電力測定手段
208, 213, 215, 218, 222, 224, 226 乗算器
209, 219, 225 加算器
211 比較手段
220 電力制御信号分離手段
221 送信電力算出手段
123 データレート情報生成手段
125 データレート情報分離手段
214 関数演算手段
227 信号遅延手段。
1,2 Base station
3,4,5 mobile station
6 Base station control station
7 Fixed net
101 radio frequency circuit
102 Demodulator
103 Deinterleaver
104 Error correction decoder
121 Channel decoder
105 Transmission power control signal generator
106 Error correction encoder
107 Interleaver
109, 112, 115, 124 Signal multiplexer
110 modulator
111 Transmit power controller
122 channel encoder
108 Second pilot signal generator
113 Transmission power variable means
114 First pilot signal generator
130 Third pilot signal generator
140 Reception quality judgment section
141 Reception quality signal extractor
142 Data rate controller
115 Error detector
301 1st pilot signal
302 2nd pilot signal
303 Data signal
304 Power control signal
305 3rd pilot signal
306 Reception quality information signal
201 First pilot signal separation means
202, 210 Signal power measurement means
203, 207, 223 Signal averaging means
204, 212, 216, 217, 228 Divider
205 Second pilot signal separation means
206 Noise power measurement means
208, 213, 215, 218, 222, 224, 226 multiplier
209, 219, 225 Adder
211 Comparison means
220 Power control signal separation means
221 Transmission power calculation means
123 Data rate information generation means
125 Data rate information separation means
214 Function calculation means
227 Signal delay means.
Claims (11)
第一の無線通信機において、伝搬路利得並びに受信品質を測定し、
上記第一の無線通信機において、上記測定した伝搬路利得情報並びに受信品質情
報を送信し、
第二の無線通信機において、上記送信された伝搬路利得情報並びに受信品質情報
を受信し、
上記第二の無線通信機において、上記伝搬路利得が大きくなったときに送信電力
を増加させ、伝搬路利得が小さくなったときに送信電力を減少させるように送信
電力制御を行い、かつ、
受信品質が良好であればデータレートを増加させ、受信品質が良好でなければデ
ータレートを減少させるようにデータレート制御を行う通信制御方法。 A communication control method for a wireless communication system including a plurality of wireless communication devices,
In the first wireless communication device, measure the channel gain and reception quality,
In the first wireless communication device, the measured channel gain information and reception quality information are transmitted,
In the second wireless communication device, the transmitted channel gain information and reception quality information are received,
In the second wireless communication device, performing transmission power control so as to increase transmission power when the propagation path gain increases, and decrease transmission power when the propagation path gain decreases, and
A communication control method for performing data rate control so that the data rate is increased if the reception quality is good and the data rate is decreased if the reception quality is not good.
上記第一の無線通信機は、
伝搬路利得並びに受信品質を測定する測定部と、
上記測定された伝搬路利得並びに受信品質に基づいて送信制御信号を生成する制
御信号生成部と、
上記送信制御信号を送信する送信部を有し、
上記第二の無線通信機は、
上記送信制御信号を受信する受信部と、
上記送信制御信号に基づいて送信電力並びにデータレートを制御する制御部を有
する無線通信システム。 A wireless communication system composed of first and second wireless communication devices,
The first wireless communication device is
A measurement unit for measuring propagation path gain and reception quality;
A control signal generator for generating a transmission control signal based on the measured propagation path gain and reception quality;
A transmission unit for transmitting the transmission control signal;
The second wireless communication device is
A receiver for receiving the transmission control signal;
A wireless communication system having a control unit for controlling transmission power and data rate based on the transmission control signal.
上記伝搬路利得に基づいて電力制御信号を生成する電力制御信号生成部と、
受信信号のエラーに基づいて受信品質を示す信号を生成する受信品質情報生成
部と、
上記電力制御信号生成部と受信品質情報生成部からの信号を多重化する多重化部
を有する請求項2記載の無線通信システム。 The control signal generator is
A power control signal generation unit that generates a power control signal based on the propagation path gain;
A reception quality information generation unit that generates a signal indicating reception quality based on an error of the reception signal;
The radio communication system according to claim 2, further comprising a multiplexing unit that multiplexes signals from the power control signal generation unit and the reception quality information generation unit.
の無線通信システム。 4. The power control signal is a signal for instructing an increase or decrease in transmission power.
Wireless communication system.
線通信システム。 4. The wireless communication system according to claim 3, wherein the reception quality information is the presence or absence of a decoding error or the number of decoding errors.
良好でなければデータレートを減少させるように制御し、かつ、第二の無線通信
機の送信電力を伝搬路利得が大きくなったときに増加させ、伝搬路利得が小さく
なったときに減少させるように制御する請求項2記載の無線通信システム。 The control unit controls the data rate to be increased if the reception quality is good, and to decrease the data rate if the reception quality is not good, and the transmission power of the second wireless communication device is set to the propagation path gain. 3. The radio communication system according to claim 2, wherein control is performed so that the frequency is increased when the channel gain is increased and is decreased when the channel gain is decreased.
、伝搬路利得が小さくなったときに、平均データレートを低く設定する請求項6
に記載の無線通信システム。 The control unit sets the average data rate high when the channel gain increases, and sets the average data rate low when the channel gain decreases.
The wireless communication system according to 1.
りデータレートを増加させることを特徴とした請求項2に記載の無線通信システ
ム。 The wireless communication system according to claim 2, wherein the second wireless communication device increases the data rate by stopping the transmission of the code if the reception quality is good.
元に符号化した符号を送信することでデータレートを減少させる請求項2に記載
の無線通信システム。 The wireless communication system according to claim 2, wherein if the reception quality is not good, the second wireless communication device decreases a data rate by transmitting a code encoded based on the same information as the transmitted information.
に前記第二の無線通信機の送信電力を減少させ、雑音電力が小さくなったときに
前記第二の無線通信機の送信電力を増加させることを特徴とした請求項2に記載
の無線通信システム。 The first wireless communication device includes noise power measuring means, and when the noise power increases, the transmission power of the second wireless communication device is decreased, and when the noise power decreases, the second wireless communication device The wireless communication system according to claim 2, wherein transmission power of the communication device is increased.
線通信機であって、
上記第一の無線通信機から送信される、伝搬路利得並びに受信品質を反映した送
信制御信号を受信する受信部と、
上記送信制御信号に基づいて送信電力並びにデータレートを制御する制御部を有
する無線通信機。 A second wireless communication device in a wireless communication system including the first and second wireless communication devices,
A receiver that receives the transmission control signal reflecting the propagation path gain and reception quality, transmitted from the first wireless communication device;
A wireless communication device having a control unit that controls transmission power and data rate based on the transmission control signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004318672A JP2005102271A (en) | 2004-11-02 | 2004-11-02 | Communication control method, radio communication system, and radio communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004318672A JP2005102271A (en) | 2004-11-02 | 2004-11-02 | Communication control method, radio communication system, and radio communication device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002009380A Division JP3941518B2 (en) | 2001-11-05 | 2002-01-18 | COMMUNICATION CONTROL METHOD, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION DEVICE |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007100036A Division JP4591469B2 (en) | 2007-04-06 | 2007-04-06 | COMMUNICATION CONTROL METHOD, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION DEVICE |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005102271A true JP2005102271A (en) | 2005-04-14 |
Family
ID=34464262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004318672A Withdrawn JP2005102271A (en) | 2004-11-02 | 2004-11-02 | Communication control method, radio communication system, and radio communication device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005102271A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7949040B2 (en) | 2007-05-23 | 2011-05-24 | Nec Corporation | Reception quality measuring apparatus and reception quality measuring method |
-
2004
- 2004-11-02 JP JP2004318672A patent/JP2005102271A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7949040B2 (en) | 2007-05-23 | 2011-05-24 | Nec Corporation | Reception quality measuring apparatus and reception quality measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100955160B1 (en) | Transmission power control method, wireless communication system, transmission device and receiving device | |
KR100831136B1 (en) | Method and apparatus for controlling transmission power in a cdma communication system | |
JP2002501689A (en) | Power control subsystem | |
KR20060054708A (en) | Method and apparatus of data transmission rate | |
KR100794978B1 (en) | Equalizing signal-to-interference ratios of different physical channels supporting a coded composite transport channel | |
JP4591469B2 (en) | COMMUNICATION CONTROL METHOD, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION DEVICE | |
JP3941518B2 (en) | COMMUNICATION CONTROL METHOD, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION DEVICE | |
JP4274106B2 (en) | Transmission power control method for wireless communication system | |
JP2005102271A (en) | Communication control method, radio communication system, and radio communication device | |
JP5626437B2 (en) | Transmission power control method for wireless communication system | |
JP4922887B2 (en) | Transmission power control method for wireless communication system, wireless communication system, transmission device, and reception device | |
JP4978656B2 (en) | Transmission power control method for wireless communication system | |
JP4003436B2 (en) | Transmission power control method for wireless communication system, wireless communication system, transmission device, and reception device | |
JP5445541B2 (en) | Transmission power control method for wireless communication system | |
JP3948367B2 (en) | Wireless communication method for wireless communication device, wireless communication method for wireless communication system, wireless communication system, and wireless communication device | |
JP2005039511A (en) | Method and device for variable rate communication at high-speed transmission rate | |
KR20080075957A (en) | Apparatus and method for selecting tranmission mode in multi-antenna system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070406 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070420 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070518 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100212 |