Nothing Special   »   [go: up one dir, main page]

JP4978656B2 - Transmission power control method for wireless communication system - Google Patents

Transmission power control method for wireless communication system Download PDF

Info

Publication number
JP4978656B2
JP4978656B2 JP2009112429A JP2009112429A JP4978656B2 JP 4978656 B2 JP4978656 B2 JP 4978656B2 JP 2009112429 A JP2009112429 A JP 2009112429A JP 2009112429 A JP2009112429 A JP 2009112429A JP 4978656 B2 JP4978656 B2 JP 4978656B2
Authority
JP
Japan
Prior art keywords
transmission power
signal
station
pilot signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009112429A
Other languages
Japanese (ja)
Other versions
JP2009171625A (en
Inventor
隆 矢野
諭 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009112429A priority Critical patent/JP4978656B2/en
Publication of JP2009171625A publication Critical patent/JP2009171625A/en
Application granted granted Critical
Publication of JP4978656B2 publication Critical patent/JP4978656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission power control method, which achieves a desired reception quality while preventing increase of average transmission power, even when propagation channel gain fluctuation of a comparatively short cycle occurs. <P>SOLUTION: The transmission power through a channel where the propagation channel gain fluctuates is so controlled that communication channel capacity is increased. Specifically, as shown in fig. 4, the transmission power is so determined that a sum of a noise power equivalent at the transmitting side (=received noise power/propagation channel gain) and the transmission power becomes constant. Consequently, in contrast to the conventional control methods, the transmission power is controlled so that it is reduced when the propagation channel gain is reduced and it is increased when the propagation channel gain is increased. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、無線通信システムの無線送信電力の制御方法に関するもので、特に移動通信システムに適用して好適である。 The present invention relates to a method for controlling radio transmission power of a radio communication system, and is particularly suitable for application to a mobile communication system.

無線通信システムにおいて、所望の受信品質を得るために、無線通信機の送信電力の制御を行う技術が知られている。例えば、USP5,267,262, Qualcomm Inc., ”Transmitter Power Control System” に、CDMA移動通信システムにおいて、基地局で端末からの信号受信電力を測定し、所望の値より小さい場合に送信電力を増加指示、大きい場合に送信電力減少指示を移動局に対して送信し、移動局は前記、送信電力制御指示に従い送信電力を制御することにより、基地局における受信電力をほぼ一定に保つ技術が示されている。また、USP5,559,790, Hitachi Ltd., ”Spread Spectrum Communication System and Transmission Power Control Method therefor”に、基地局が既知の電力で送信するパイロット信号の受信品質を移動局が測定し、その測定結果に基づき受信品質が悪い場合には受信品質が良い場合に比べて大きな送信電力を要求する送信電力制御信号を基地局に送信し、基地局は該送信電力制御信号に基づき前記移動局に向けた信号の送信電力を制御することにより、移動局における基地局からの信号受信品質をほぼ一定に保つ技術が示されている。
これらの技術は何れも、受信側における受信電力や品質を一定となるように制御することを目的としている。すなわち、以上の従来の技術による送信電力制御方法によれば、受信品質を一定化し、伝搬路の利得変動に起因する受信品質の劣化や不必要に過大な送信電力によるシステム内の干渉を防止することができる。
In a wireless communication system, a technique for controlling transmission power of a wireless communication device in order to obtain desired reception quality is known. For example, in USP5,267,262, Qualcomm Inc., "Transmitter Power Control System", in the CDMA mobile communication system, the signal reception power from the terminal is measured at the base station, and if it is smaller than the desired value, the transmission power is instructed to increase. When the transmission power is large, a transmission power reduction instruction is transmitted to the mobile station, and the mobile station controls the transmission power according to the transmission power control instruction, thereby indicating a technique for keeping the reception power at the base station substantially constant. . Also, according to USP5,559,790, Hitachi Ltd., “Spread Spectrum Communication System and Transmission Power Control Method therefor”, the mobile station measures the reception quality of the pilot signal transmitted by the base station with known power, and based on the measurement result When the reception quality is poor, a transmission power control signal that requires a larger transmission power than when the reception quality is good is transmitted to the base station, and the base station transmits a signal to the mobile station based on the transmission power control signal. A technique is shown in which the transmission power is controlled to keep the signal reception quality from the base station in the mobile station substantially constant.
Each of these techniques aims to control the reception power and quality at the reception side to be constant. That is, according to the above-described conventional transmission power control method, reception quality is made constant, and degradation of reception quality due to propagation path gain fluctuations and unnecessary interference in the system due to excessive transmission power are prevented. be able to.

USP5,267,262USP5,267,262 USP5,559,790USP5,559,790

しかるに、移動局の移動に伴い発生する比較的短周期の伝搬路利得変動であるフェージングが存在する場合、従来の技術を用いると、瞬時的に伝搬路利得が小さくなったときに非常に大きな送信電力となってしまい、平均送信電力が増加してしまう。平均送信電力の増加は、システム全体に与える相互干渉を増加させ、システム全体の通信スループットの低下を招くという問題がある。また、端末においては平均送信電力の増加は消費電力を増加させ、通話可能時間が短くなってしまうという問題がある。従って、本発明の第一の目的は、比較的短周期の伝搬路利得変動が発生した場合においても、平均送信電力の増加を防止しながら所望の受信品質を達成する送信電力制御方法を提供することである。
また、平均送信電力を増加させなかった場合には、平均受信電力が減少し、それに伴う受信品質(SN比, SNR)の劣化により通信路の容量が低下してしまう。すなわち、通信可能な最大データレートが低下することになる。従って、本発明の第二の目的は、比較的短周期の伝搬路利得変動が発生した場合においても、通信路容量をなるべく大きく保つことにある。
However, when there is fading that is a relatively short period propagation path gain fluctuation that occurs with the movement of a mobile station, using the conventional technique, when the propagation path gain decreases instantaneously, a very large transmission As a result, the average transmission power increases. An increase in average transmission power increases the mutual interference given to the entire system, which causes a problem of reducing the communication throughput of the entire system. Further, in the terminal, there is a problem that an increase in average transmission power increases power consumption and shortens a callable time. Accordingly, a first object of the present invention is to provide a transmission power control method that achieves desired reception quality while preventing an increase in average transmission power even when a propagation gain variation of a relatively short period occurs. That is.
Further, when the average transmission power is not increased, the average reception power is decreased, and the capacity of the communication path is reduced due to the deterioration of the reception quality (SN ratio, SNR). That is, the maximum data rate that can be communicated is reduced. Therefore, the second object of the present invention is to keep the communication channel capacity as large as possible even when a propagation gain variation with a relatively short period occurs.

上記課題を解決するための手段は、第一の無線通信機に伝搬路利得を測定する手段と送信電力制御情報を送信する手段を持ち、第二の無線通信機に前記送信電力情報を受信する手段と送信電力を制御する手段を持ち、第二の無線通信機の送信電力を伝搬路利得が大きくなったときに増加させ、伝搬路利得が小さくなったときに減少させるように制御する制御手段を設けることを特徴とする。 Means for solving the above-mentioned problem has means for measuring propagation path gain and means for transmitting transmission power control information to the first wireless communication device, and receives the transmission power information to the second wireless communication device. Control means for controlling the transmission power of the second wireless communication device to increase when the channel gain increases and to decrease when the channel gain decreases. It is characterized by providing.

本発明によれば、所要の送信電力を低下させ相互干渉が低減する。また、本発明によれば通信路容量が増大し、通信可能ビットレートの向上が可能となる。 According to the present invention, required transmission power is reduced and mutual interference is reduced. Further, according to the present invention, the channel capacity is increased, and the bit rate capable of communication can be improved.

伝搬路利得の時間変動の例。The example of the time fluctuation of propagation path gain. 雑音電力の時間変化例。An example of time variation of noise power. 送信端での等価雑音電力の時間変化例。An example of time variation of equivalent noise power at the transmitting end. 本発明による送信電力制御例。The transmission power control example by this invention. 本発明による受信電力の時間変化例。The example of a time change of the reception power by this invention. 従来技術による送信電力制御例。The example of transmission power control by a prior art. 従来技術による受信電力の時間変化例。The example of a time change of the reception power by a prior art. 本発明並びに従来技術による送信電力制御による送信電力比較。Comparison of transmission power by transmission power control according to the present invention and the prior art. 伝搬路利得変動の第2の例。2nd example of propagation path gain fluctuation. 本発明による送信電力制御の第2の例。6 shows a second example of transmission power control according to the present invention. 本発明による受信側無線通信機の構成例。1 is a configuration example of a receiving side wireless communication device according to the present invention. 本発明による送信側無線通信機の送信信号多重形式の第1の例。1 is a first example of a transmission signal multiplexing format of a transmitting side wireless communication device according to the present invention. 本発明による送信側無線通信機の構成。The structure of the transmission side radio | wireless communication apparatus by this invention. 本発明による受信側無線通信機の送信信号多重形式の例。The example of the transmission signal multiplexing format of the receiving side radio | wireless communication apparatus by this invention. 本発明による送信電力制御信号生成部の第1の構成例。1 is a first configuration example of a transmission power control signal generation unit according to the present invention. 本発明による送信電力制御部の第1の構成例。1 is a first configuration example of a transmission power control unit according to the present invention. 本発明によるデータレート制御機能つき符号化器の第2の構成例。2 shows a second configuration example of an encoder with a data rate control function according to the present invention. 本発明によるデータレート制御機能つき復号器の第2の構成例。2 shows a second configuration example of a decoder with a data rate control function according to the present invention. 本発明による送信電力制御信号生成部の第2の構成例。6 shows a second configuration example of a transmission power control signal generation unit according to the present invention. 本発明による送信電力制御信号生成部の第3の構成例。FIG. 9 is a third configuration example of a transmission power control signal generation unit according to the present invention. FIG. 本発明による送信側無線通信機の送信信号多重形式の第2の例。The 2nd example of the transmission signal multiplexing format of the transmission side radio | wireless communication apparatus by this invention. 本発明による送信電力制御信号生成部の第4の構成例。4 shows a fourth configuration example of a transmission power control signal generation unit according to the present invention. 本発明による送信電力制御部の第2の構成例。2 shows a second configuration example of a transmission power control unit according to the present invention. 本発明による送信電力制御信号生成部の第5の構成例。7 shows a fifth configuration example of a transmission power control signal generation unit according to the present invention. 本発明による送信電力制御部の第3の構成例。3 shows a third configuration example of a transmission power control unit according to the present invention. 本発明による送信側無線通信機の送信信号多重形式の第3の例。The 3rd example of the transmission signal multiplexing format of the transmitting side radio | wireless communication apparatus by this invention. 本発明による送信電力制御信号生成部の第6の構成例。6 shows a sixth configuration example of a transmission power control signal generation unit according to the present invention. 本発明による送信電力制御信号生成部の第7の構成例。7 shows a seventh configuration example of a transmission power control signal generation unit according to the present invention. 本発明による送信電力制御部の第4の構成例。4 shows a fourth configuration example of a transmission power control unit according to the present invention. 本発明のシステム構成図。The system block diagram of this invention.

まず、本発明の電力制御アルゴリズムについて説明する。
いま、図1のように伝搬路利得が変動した場合を考える。すなわち、時刻t1, t2, t3, t4における利得をそれぞれ2, 1, 1/3, 2/3で平均利得が1となるような伝搬路を考える。受信側で図2のように電力1で一定の雑音が加わるとすると、これは等価的に送信側で図3に示すように時刻t1, t2, t3, t4においてそれぞれ電力1/2, 1, 3, 3/2の雑音が加わったことと等価である。すなわち、伝搬路利得の変動は等価的に雑音電力の変動とみなすことが可能である。
一方、通信路の容量Cは、理論的にはC=W log2(1+S/N)となることが知られている。ここで、Cは1秒あたりに伝送可能なビット数、Wは周波数帯域幅、Sは信号電力、Nは雑音電力、log2(x)は2を底とするxの対数とする。従って、上記のように時間変動する伝搬路における通信路容量は、時刻tにおける信号電力S(t), 雑音電力をN(t)とすると、C=Ave(W log2(1+S(t)/N(t)))となる。ここでAve(x)はxの時間平均を表すものとする。従って、電力制御によってS(t)を時間的に変化させると通信路容量が変化することになる。本発明では通信路容量をなるべく大きくするように送信電力を制御する。具体的には、以下のようにする。いま、平均送信電力、すなわちS(t)の時間平均Ave(S(t))を一定とした場合に通信路容量Cを最大化するS(t)について考える。Ave(S(t))が一定であるから、ある時刻の送信電力を増加させると他の時刻の送信電力は減少させなくてはならない。ここで、前記通信路容量の定義式よりSの微小増加に対するCの増加率はdC/dS=W/log(2)/(N+S)であるから、一定の電力を時間方向に分配するときにN+Sが最も小さいところに送信電力を分配することが通信路容量を最も増加させることになる。このようにN+Sが最も小さなところに順次送信電力を分配していくと、最終的に全ての電力を分配し終わった時にはN+Sは一定、かつ、達成されたS+NよりもNが大きい時間帯にはSは全く分配されないようになり、この状態が最も通信路容量が大きいことになる。
ここで、受信機が受ける雑音電力を時間の関数Nr(t), 伝搬路利得を時間の関数g(t)とおくと、送信側で見た等価雑音電力N(t)は、
N(t) = Nr(t)/g(t)
となる。従って、前記通信路容量を最大とする送信電力S(t)は、
N(t) + S(t) = Nr(t)/g(t) + S(t) = P_const. (一定)
という条件を満たす。すなわち、
S(t) = P_const Nr(t)/g(t)
となるように制御すれば良い。但し、S(t)<0となる場合は実際の送信電力は0とする(つまり送信を停止する)。なお、P_constを大きくすれば平均送信電力および通信路容量が増加する。逆に、P_constを小さくすれば平均送信電力および通信路容量が減少する。従って、所望の通信路容量が得られる値にP_constを決定すれば良い。
例えば、図1に示す伝搬路利得変動の下で平均送信電力を1とした場合、送信電力制御結果は図4に示すようになる。図中、太線で囲まれた部分が信号電力、細線で囲まれた部分が雑音電力である。すなわち、時刻t1, t2, t3, t4における送信電力は、それぞれ11/6, 4/3, 0, 5/6とする。平均送信電力は(11/6 + 4/3 + 0 + 5/6)/4 = 1
となっており、また、図4の送信電力制御の結果を受信側で見たときの受信電力は図5に示すとおり、時刻t1, t2, t3, t4においてそれぞれ11/3, 4/3, 0, 5/9となる。
一方、従来技術による電力制御では、受信電力もしくは受信品質を一定に保つため、図6に示すように雑音電力に比例した送信電力となるよう制御することとなる。すなわち時刻t1, t2, t3, t4における送信電力は、それぞれ1/3, 2/3, 2, 1となる。平均送信電力は、(1/3 + 2/3 + 2 + 1)/4 = 1となっており、また、図6の電力分配(送信電力制御)の結果を受信側で見たときの受信電力は図7に示すとおり、時刻t1, t2, t3, t4においてそれぞれ2/3, 2/3, 2/3, 2/3となる。
図8に伝搬路利得の変動に対する送信電力の制御を比較する。横軸が伝搬路利得、縦軸が送信電力制御結果としての送信電力を示す。図中、丸印が本発明、菱形が従来の技術である。すなわち、従来の送信電力制御では通信路利得と送信電力は反比例の関係にあり、通信路利得が低下すると送信電力を増大させ、通信路利得が増加すると送信電力を低減しているのに対し、本発明では逆に、通信路利得が低下すると送信電力を低下させ、通信路利得が増加すると送信電力を増加させている。
また、本発明による送信電力制御にて達成される通信路容量は
C=W(log2(1+11/3)+log2(1+4/3)+log2(1+0)+log2(1+5/9))/4
=0.90W
となる。一方、従来の技術による送信電力制御にて達成される通信路容量は
C=W log2(1+2/3) = 0.707W
となる。
これらよりここに示した例では、本発明の電力制御によれば従来の電力制御方法に比して通信路容量が1.27 (=0.90/0.707)倍に増加する。一方、従来の送信電力制御方式を用いて、前記、本発明を適用した場合の通信路容量と同一の通信路容量を達成するためには、0.90 = log2(1+0.8661)であるからS/N=0.8661が必要であり、前記従来の送信電力制御で達成されたS/N=2/3の1.30(=0.8661/(2/3))倍の平均送信電力が必要となる。従って、本発明により、同一の通信路容量を達成するための送信電力は、従来の技術を用いる場合の0.770倍に低減される。
以上、理論的に通信路容量を最大化する送信電力制御アルゴリズムについて述べたが、厳密に上記アルゴリズムに従わなくてもほぼ同等の効果を得ることができる。すなわち、図8に示す伝搬路利得と送信電力の関係を近似する関数を用いて送信電力を行うことも可能である。該関数は全体として正の傾きを持っているものが望ましく、例えば、送信電力を伝搬路利得に比例させるような単純なものでもほぼ同様の効果を得ることができる。
なお、前記送信電力を決定するアルゴリズム
S(t) = P_const Nr(t)/g(t)
によれば、伝搬路利得が図9に示すように時刻t0でステップ状に増加した場合、送信電力は図10(a)のようにやはりステップ状に変化する。また、制御遅延が発生した場合などには図10(b)のようにある立上り時間をもって変化する。
図10(a), (b)の制御では、伝搬路利得が大きい基地局に近い場所に移動局が位置するときに通信路容量が大きく、逆に基地局から遠い場所に移動局が位置するときに通信路容量が小さくなる。この差がシステム設計上好ましくない場合は、例えば
P_const = C0 Ave(Nr(t))/Ave(g(t))
のように現在の通信路状況の平均的な利得と雑音電力を用いてP_constを比較的ゆっくり制御することが実際的である。ここで、C0は定数とする。これにより、基地局からの距離によらずにほぼ一定の通信路容量を得ながら通信路の短時間的な変動に対して前記電力制御が適用される。この場合、前記図9に示す伝搬路利得変動に対して、図10(c), (d)に示すように、短時間的には前記図10(a), (b)と同様な送信電力となり、その後、従来の電力制御と同様に伝播路利得変動を打消す送信電力に徐々に近づくような応答を示す。
以上の電力制御によれば、通信路容量が時間的に変動することになる。このため、ある程度の時間にわたって通信路容量が平均以上のときは、ビットレートを制御して高ビットレートにて通信を行い、逆に通信路容量が平均以下の時は低ビットレートにて通信を行うことが好ましい。
また、P_constの算出に用いるAve(Nr(t)), Ave(g(t))の平均時間を略通信路符号化を行う単位に一致させることにより明示的なビットレートの制御を行わなくても平均的なビットレートを向上させることが可能となり、一定のビットレートが要求されるシステムに適する。
以降、上記アルゴリズムを実施するためのシステム及び装置構成について説明する。
図30に本発明のシステム構成を示す。複数の移動局3,4,5が無線を介して基地局1,2と通信を行い、基地局1,2は基地局制御局6の制御の下、前記移動局どうし、もしくは、固定網に属する通信機器と通信を確立する。
図11に本発明の送信側無線通信機の構成、図13に本発明の受信側無線通信機の構成を示す。ここで、本発明の送信電力制御によりその送信電力が制御される無線通信機を送信側無線通信機、他方を受信側無線通信機としている。図30に示すシステム構成上、移動局、基地局のどちらの局がどちらの無線通信機であってもよく、基地局を送信側無線通信機とするなら下り信号の送信電力制御を行うことになり、逆に移動局を送信側無線通信機とするなら上り信号の送信電力制御を行うことになる。
図11でアンテナより受信された信号は無線周波数回路101にてベースバンド帯域の信号に変換される。該、ベースバンド帯域の信号は、復調器102にて検波等の復調処理が施され、通信路復号化器121にて誤り訂正される。一方、前記ベースバンド帯域の信号は電力信号生成部105に入力され、前記電力制御アルゴリズムに従った送信電力制御信号を生成する。該、送信電力制御信号は、第3パイロット信号生成部130で生成される第3パイロット信号、並びに誤り訂正符号化器106、インタリーバ107にて通信路符号化を受けたデータ信号と多重化器109にて多重化される。該多重化された信号は、例えば図14のような形式になる。303がデータ信号、304が電力制御信号、305が第3のパイロット信号であり、図中、横方向が時間、縦方向が符号分割に用いられる符号を表し、時間多重、符号分割多重等の多重方法で多重されている。前記、多重された信号は変調器110にて変調され、無線周波数回路101を介して無線伝搬路に送出される。
該、受信側無線通信機から送出された信号は、図13に示す送信側無線通信機にて受信される。101,102,103,104の動作は受信側無線通信機と同様である。送信電力制御部111は前記電力制御信号304を抽出し、該抽出された送信電力制御信号304に従った送信電力を算出する。一方、通信路符号化器122で符号化された送信データは第2パイロット信号生成手段108にて生成される第2パイロット信号と多重化器112で多重され、送信電力可変手段113に入力される。送信電力可変手段113は前記送信電力制御部111から指定された送信電力になるよう信号振幅を可変する。該、送信電力可変手段113の出力は第1のパイロット信号生成手段114にて所定の電力に設定された第1のパイロット信号と多重化器115にて多重化され、図12に示すような形式の信号となる。図12において301は第1のパイロット信号、302は第2のパイロット信号、303はデータ信号である。図12に示すように、様々な多重形式が可能である。また、第1のパイロット信号301(P0)は前記送信電力制御部111による電力制御を受けず、所定の電力で送信される。一方、第2のパイロット信号302はデータ信号303とともに前記電力制御を受けて送信される。図12の形式に多重された信号は、変調器110で変調され、無線周波数回路101を介して無線伝搬路に送出される。
前記受信側無線通信機における送信電力信号生成部105、および前記送信側無線通信機における送信電力生成部111は、例えばそれぞれ図15、図16のように構成される。図15の送信電力信号生成部は、第1のパイロット信号分離手段201、第2のパイロット信号分離手段205にてそれぞれ第1のパイロット信号、第2のパイロット信号を分離し、前記
S(t) = P_const Nr(t)/g(t)
において、
P_const = C0 Ave(Nr(t))/Ave(g(t))
となる送信電力に対して、現在の送信電力が大きいか小さいかを比較器211にて判定し、大きい場合に送信電力の減少、小さい場合に送信電力の増加を指示する送信電力制御信号304を生成する。従って、図16の送信電力制御部は前期送信電力制御信号304を抽出し、該送信電力制御信号に従って現在の送信電力を増減する。なお、図15において雑音電力は第2のパイロット信号から求めているが、第1のパイロット信号から求めることも可能である(点線)。
以上の実施形態において、前述のようにある程度の時間にわたって通信路容量が平均以上のときは、ビットレートを制御して高ビットレートにて通信を行い、逆に通信路容量が平均以下の時は低ビットレートにて通信を行うことが好ましい。このためには図13の通信路符号化器122と図11の通信路復号化器121にかえてそれぞれ図17、図18に示すようにデータレートの指示を受けてデータレートを可変し、用いたデータレートを特定するレート情報をデータ信号に多重して伝送し、通信路復号化器121において該レート情報に従った通信路復号化処理を行うようにすれば良い。前記、送信電力制御部105はまた、図19に示すように構成することも可能である。図中、関数演算部214は、入力信号の増加に対して出力が増加する関数f(x)の演算を行う。これにより、伝搬路利得が平均値より増加すると、送信電力の増加を指示する送信電力制御信号を生成する。また、雑音電力が時間によらず一定であると仮定できる場合には、図20のように簡単化が可能である。
さらに、図21に示すように、送信側無線通信機が送出する信号に第2のパイロット信号302が含まれない場合にも、例えば図22に示す構成にて規格化送信電力S(t)/P0を求め、これを送信電力制御信号とし、図23に示す送信電力制御部にてS(t)を求めることが可能である。より単純には、図22に代えて図24の構成、図23に代えて図25の構成を用いることも可能である。
また、図26に示すように、送信側無線通信機が送出する信号に第1のパイロット信号301が含まれない場合にも、例えば図27に示す送信電力制御信号生成部と、図16に示す送信電力制御部にてS(t)を求めることが可能である。より単純には、図27に代えて図28の構成、図16に代えて図29の構成を用いることも可能である。
First, the power control algorithm of the present invention will be described.
Consider the case where the channel gain fluctuates as shown in FIG. That is, consider a propagation path in which the average gain becomes 1 at times t1, t2, t3, and t4 and gains of 2, 1, 1/3, and 2/3, respectively. Assuming that constant noise is added at power 1 on the receiving side as shown in FIG. 2, this is equivalent to power 1/2, 1, 2, and t4 at times t1, t2, t3, and t4 as shown in FIG. Equivalent to the addition of 3, 3/2 noise. That is, the fluctuation of the propagation path gain can be equivalently regarded as the fluctuation of the noise power.
On the other hand, it is known that the capacity C of the communication path is theoretically C = W log2 (1 + S / N). Here, C is the number of bits that can be transmitted per second, W is the frequency bandwidth, S is the signal power, N is the noise power, and log2 (x) is the logarithm of x with 2 as the base. Therefore, the channel capacity in the time-varying propagation path as described above is C = Ave (W log2 (1 + S (t)), where signal power S (t) at time t and noise power N (t) / N (t))). Here, Ave (x) represents the time average of x. Therefore, when S (t) is changed with time by power control, the channel capacity changes. In the present invention, transmission power is controlled so as to increase the channel capacity as much as possible. Specifically, it is as follows. Consider S (t) that maximizes the channel capacity C when the average transmission power, that is, the time average Ave (S (t)) of S (t) is constant. Since Ave (S (t)) is constant, if the transmission power at a certain time is increased, the transmission power at another time must be decreased. Here, since the rate of increase of C with respect to the slight increase of S is dC / dS = W / log (2) / (N + S) from the definition equation of the channel capacity, constant power is distributed in the time direction. Sometimes distributing transmission power where N + S is the smallest will increase the channel capacity. In this way, when the transmission power is sequentially distributed to the place where N + S is the smallest, when all the power is finally distributed, N + S is constant and N is higher than S + N achieved. S is not distributed at all in the time zone when is large, and this state has the largest channel capacity.
Here, if the noise power received by the receiver is a function of time Nr (t) and the propagation path gain is a function of time g (t), the equivalent noise power N (t) seen on the transmission side is
N (t) = Nr (t) / g (t)
It becomes. Therefore, the transmission power S (t) that maximizes the channel capacity is
N (t) + S (t) = Nr (t) / g (t) + S (t) = P_const.
This condition is satisfied. That is,
S (t) = P_const Nr (t) / g (t)
Control may be performed so that However, when S (t) <0, the actual transmission power is 0 (that is, transmission is stopped). If P_const is increased, average transmission power and channel capacity increase. Conversely, if P_const is reduced, the average transmission power and the channel capacity are reduced. Therefore, it is only necessary to determine P_const to a value that provides a desired communication path capacity.
For example, when the average transmission power is 1 under the propagation path gain fluctuation shown in FIG. 1, the transmission power control result is as shown in FIG. In the figure, a portion surrounded by a thick line is signal power, and a portion surrounded by a thin line is noise power. That is, the transmission powers at times t1, t2, t3, and t4 are 11/6, 4/3, 0, and 5/6, respectively. Average transmit power is (11/6 + 4/3 + 0 + 5/6) / 4 = 1
Also, the received power when the result of the transmission power control in FIG. 4 is viewed on the receiving side is 11/3, 4/3, and t3 at time t1, t2, t3, t4, respectively, as shown in FIG. 0, 5/9.
On the other hand, in the power control according to the conventional technique, in order to keep the reception power or the reception quality constant, the transmission power is controlled to be proportional to the noise power as shown in FIG. That is, the transmission powers at times t1, t2, t3, and t4 are 1/3, 2/3, 2, and 1, respectively. The average transmission power is (1/3 + 2/3 + 2 + 1) / 4 = 1, and reception when the result of power distribution (transmission power control) in Fig. 6 is viewed on the reception side. As shown in FIG. 7, the electric power becomes 2/3, 2/3, 2/3, and 2/3 at times t1, t2, t3, and t4, respectively.
FIG. 8 compares transmission power control with respect to fluctuations in propagation path gain. The horizontal axis represents propagation path gain, and the vertical axis represents transmission power as a transmission power control result. In the figure, circles indicate the present invention, and diamonds indicate the prior art. In other words, in the conventional transmission power control, the channel gain and the transmission power are in an inversely proportional relationship, and when the channel gain decreases, the transmission power increases, whereas when the channel gain increases, the transmission power decreases. In the present invention, conversely, when the channel gain decreases, the transmission power is reduced, and when the channel gain increases, the transmission power is increased.
The channel capacity achieved by the transmission power control according to the present invention is
C = W (log2 (1 + 11/3) + log2 (1 + 4/3) + log2 (1 + 0) + log2 (1 + 5/9)) / 4
= 0.90W
It becomes. On the other hand, the channel capacity achieved by the conventional transmission power control is
C = W log2 (1 + 2/3) = 0.707W
It becomes.
Accordingly, in the example shown here, the channel capacity increases by 1.27 (= 0.90 / 0.707) times as compared with the conventional power control method according to the power control of the present invention. On the other hand, using the conventional transmission power control method, in order to achieve the same channel capacity as that when the present invention is applied, 0.90 = log2 (1 + 0.8661). N = 0.8661 is required, and an average transmission power of 1.30 (= 0.8661 / (2/3)) times S / N = 2/3 achieved by the conventional transmission power control is required. Therefore, according to the present invention, the transmission power for achieving the same channel capacity is reduced to 0.770 times that when the conventional technique is used.
The transmission power control algorithm that theoretically maximizes the channel capacity has been described above, but substantially the same effect can be obtained without strictly following the above algorithm. That is, it is possible to perform transmission power using a function that approximates the relationship between the propagation path gain and transmission power shown in FIG. It is desirable that the function has a positive slope as a whole. For example, even a simple function that makes the transmission power proportional to the channel gain can obtain substantially the same effect.
The algorithm for determining the transmission power
S (t) = P_const Nr (t) / g (t)
According to FIG. 9, when the propagation path gain increases stepwise at time t0 as shown in FIG. 9, the transmission power also changes stepwise as shown in FIG. 10 (a). Further, when a control delay occurs, it changes with a certain rise time as shown in FIG. 10 (b).
In the control of FIGS. 10 (a) and 10 (b), the channel capacity is large when the mobile station is located near the base station where the channel gain is large, and conversely the mobile station is located far from the base station. Sometimes the channel capacity becomes smaller. If this difference is undesirable in system design, for example
P_const = C0 Ave (Nr (t)) / Ave (g (t))
Thus, it is practical to control P_const relatively slowly using the average gain and noise power of the current channel condition. Here, C0 is a constant. As a result, the power control is applied to short-term fluctuations in the communication path while obtaining a substantially constant communication path capacity regardless of the distance from the base station. In this case, with respect to the propagation path gain fluctuation shown in FIG. 9, as shown in FIGS. 10 (c) and 10 (d), transmission power similar to that shown in FIGS. 10 (a) and 10 (b) is obtained in a short time. After that, the response gradually approaches the transmission power that cancels the propagation path gain variation as in the conventional power control.
According to the power control described above, the channel capacity varies with time. For this reason, when the channel capacity is above the average over a certain period of time, the bit rate is controlled to perform communication at a high bit rate. Conversely, when the channel capacity is below the average, communication is performed at a low bit rate. Preferably it is done.
In addition, it is not necessary to explicitly control the bit rate by making the average time of Ave (Nr (t)) and Ave (g (t)) used for calculating P_const coincide with the unit for performing substantially channel coding. It is possible to improve the average bit rate, which is suitable for a system that requires a constant bit rate.
Hereinafter, a system and apparatus configuration for executing the above algorithm will be described.
FIG. 30 shows the system configuration of the present invention. A plurality of mobile stations 3, 4, 5 communicate with the base stations 1, 2 via radio, and the base stations 1, 2 are controlled by the base station control station 6 between the mobile stations or in a fixed network Establish communication with the communication device to which it belongs.
FIG. 11 shows the configuration of the transmission side wireless communication device of the present invention, and FIG. 13 shows the configuration of the reception side wireless communication device of the present invention. Here, the wireless communication device whose transmission power is controlled by the transmission power control of the present invention is a transmission-side wireless communication device, and the other is a reception-side wireless communication device. In the system configuration shown in FIG. 30, either the mobile station or the base station may be either radio communication device, and if the base station is a transmission side radio communication device, the transmission power control of the downlink signal is performed. On the contrary, if the mobile station is a transmitting side wireless communication device, the transmission power control of the uplink signal is performed.
The signal received from the antenna in FIG. 11 is converted into a baseband signal by the radio frequency circuit 101. The baseband signal is subjected to demodulation processing such as detection by the demodulator 102 and error-corrected by the channel decoder 121. On the other hand, the baseband signal is input to the power signal generation unit 105 to generate a transmission power control signal according to the power control algorithm. The transmission power control signal includes the third pilot signal generated by the third pilot signal generator 130, the data signal subjected to channel coding by the error correction encoder 106 and the interleaver 107, and the multiplexer 109. Is multiplexed. The multiplexed signal has a format as shown in FIG. 14, for example. 303 is a data signal, 304 is a power control signal, and 305 is a third pilot signal. In the figure, the horizontal direction represents time and the vertical direction represents a code used for code division. Multiplexed in the way. The multiplexed signal is modulated by the modulator 110 and sent to the radio propagation path via the radio frequency circuit 101.
The signal transmitted from the receiving wireless communication device is received by the transmitting wireless communication device shown in FIG. Operations of 101, 102, 103, and 104 are the same as those of the reception-side wireless communication device. The transmission power control unit 111 extracts the power control signal 304, and calculates transmission power according to the extracted transmission power control signal 304. On the other hand, the transmission data encoded by the channel encoder 122 is multiplexed by the multiplexer 112 with the second pilot signal generated by the second pilot signal generator 108 and input to the transmission power variable means 113. . The transmission power varying means 113 varies the signal amplitude so that the transmission power specified by the transmission power control unit 111 is obtained. The output of the transmission power varying means 113 is multiplexed by the multiplexer 115 with the first pilot signal set to a predetermined power by the first pilot signal generating means 114, and has the form as shown in FIG. Signal. In FIG. 12, 301 is a first pilot signal, 302 is a second pilot signal, and 303 is a data signal. As shown in FIG. 12, various multiplexing formats are possible. The first pilot signal 301 (P0) is transmitted with a predetermined power without being subjected to power control by the transmission power control unit 111. On the other hand, the second pilot signal 302 is transmitted together with the data signal 303 under the power control. The signal multiplexed in the format of FIG. 12 is modulated by the modulator 110 and sent to the radio propagation path via the radio frequency circuit 101.
The transmission power signal generation unit 105 in the reception-side wireless communication device and the transmission power generation unit 111 in the transmission-side wireless communication device are configured, for example, as shown in FIGS. 15 and 16, respectively. The transmission power signal generation unit in FIG. 15 separates the first pilot signal and the second pilot signal by the first pilot signal separation unit 201 and the second pilot signal separation unit 205, respectively.
S (t) = P_const Nr (t) / g (t)
In
P_const = C0 Ave (Nr (t)) / Ave (g (t))
The comparator 211 determines whether the current transmission power is large or small with respect to the transmission power to be, and when the transmission power is large, a transmission power control signal 304 instructing a decrease in transmission power and a transmission power increase when the transmission power is small Generate. Accordingly, the transmission power control unit in FIG. 16 extracts the previous transmission power control signal 304, and increases or decreases the current transmission power according to the transmission power control signal. In FIG. 15, the noise power is obtained from the second pilot signal, but can also be obtained from the first pilot signal (dotted line).
In the above embodiment, when the channel capacity is above the average over a certain period of time as described above, the bit rate is controlled to perform communication at a high bit rate, and conversely, when the channel capacity is below the average, It is preferable to perform communication at a low bit rate. For this purpose, instead of the channel encoder 122 in FIG. 13 and the channel decoder 121 in FIG. 11, the data rate is changed in response to the data rate instruction as shown in FIGS. 17 and 18, respectively. It is only necessary to multiplex and transmit the data rate information specifying the data rate to the data signal, and to perform the channel decoding process in accordance with the rate information in the channel decoder 121. The transmission power control unit 105 can also be configured as shown in FIG. In the figure, a function calculation unit 214 calculates a function f (x) whose output increases as the input signal increases. Thereby, when the propagation path gain increases from the average value, a transmission power control signal instructing an increase in transmission power is generated. Further, when it can be assumed that the noise power is constant regardless of time, simplification is possible as shown in FIG.
Furthermore, as shown in FIG. 21, even when the second pilot signal 302 is not included in the signal transmitted by the transmission-side wireless communication device, for example, the normalized transmission power S (t) / It is possible to obtain P0, use this as a transmission power control signal, and obtain S (t) by the transmission power control unit shown in FIG. More simply, the configuration of FIG. 24 can be used instead of FIG. 22, and the configuration of FIG. 25 can be used instead of FIG.
Also, as shown in FIG. 26, even when the first pilot signal 301 is not included in the signal transmitted by the transmission-side wireless communication device, for example, the transmission power control signal generation unit shown in FIG. The transmission power control unit can determine S (t). More simply, the configuration of FIG. 28 can be used instead of FIG. 27, and the configuration of FIG. 29 can be used instead of FIG.

1,2 基地局
3,4,5 移動局
6 基地局制御局
7 固定網
101 無線周波数回路
102 復調器
103 デインタリーバ
104 誤り訂正復号器
121 通信路復号化器
105 送信電力制御信号生成部
106 誤り訂正符号化器
107 インタリーバ
109, 112, 115, 124 信号多重器
110 変調器
111 送信電力制御部
122 通信路符号化器
108 第2パイロット信号生成部
113 送信電力可変手段
114 第1パイロット信号生成部
130 第3パイロット信号生成部
301 第1パイロット信号
302 第2パイロット信号
303 データ信号
304 電力制御信号
305 第3パイロット信号
201 第1パイロット信号分離手段
202, 210 信号電力測定手段
203, 207, 223 信号平均手段
204, 212, 216, 217, 228 除算器
205 第2パイロット信号分離手段
206 雑音電力測定手段
208, 213, 215, 218, 222, 224, 226 乗算器
209, 219, 225 加算器
211 比較手段
220 電力制御信号分離手段
221 送信電力算出手段
123 データレート情報生成手段
125 データレート情報分離手段
214 関数演算手段
227 信号遅延手段。
1,2 Base station
3,4,5 mobile station
6 Base station control station
7 Fixed net
101 radio frequency circuit
102 Demodulator
103 Deinterleaver
104 Error correction decoder
121 Channel decoder
105 Transmission power control signal generator
106 Error correction encoder
107 Interleaver
109, 112, 115, 124 Signal multiplexer
110 modulator
111 Transmit power controller
122 channel encoder
108 Second pilot signal generator
113 Transmission power variable means
114 First pilot signal generator
130 Third pilot signal generator
301 1st pilot signal
302 2nd pilot signal
303 Data signal
304 Power control signal
305 3rd pilot signal
201 First pilot signal separation means
202, 210 Signal power measurement means
203, 207, 223 Signal averaging means
204, 212, 216, 217, 228 Divider
205 Second pilot signal separation means
206 Noise power measurement means
208, 213, 215, 218, 222, 224, 226 multiplier
209, 219, 225 Adder
211 Comparison means
220 Power control signal separation means
221 Transmission power calculation means
123 Data rate information generation means
125 Data rate information separation means
214 Function calculation means
227 Signal delay means.

Claims (9)

無線通信システムであって、
参照信号として用いる第1のパイロット信号及び第2のパイロット信号ならびに情報の伝達に用いるデータ信号を送信局から受信局に対して送信する送信手段と、
前記受信局は、前記第1のパイロット信号を用いて送信局と受信局との間の通信路の等価雑音電力を測定する手段と、
前記測定される等価雑音電力に基づいて送信局に対して、制御信号を送信する制御信号生成手段と、を有し、
前記送信局は、前記制御信号に従って前記第2のパイロット信号ならびに前記データ信号に対して前記等価雑音電力と負の相関となる送信電力を補正し、前記第1のパイロット信号に対して前記制御信号に従って送信電力の補正を行わない送信電力制御手段を有する、ことを特徴とする無線通信システム。
A wireless communication system,
Transmitting means for transmitting a first pilot signal and a second pilot signal used as reference signals and a data signal used for transmission of information from the transmitting station to the receiving station;
The receiving station measures the equivalent noise power of the communication path between the transmitting station and the receiving station using the first pilot signal;
Control signal generating means for transmitting a control signal to the transmitting station based on the measured equivalent noise power,
The transmitting station corrects transmission power having a negative correlation with the equivalent noise power with respect to the second pilot signal and the data signal according to the control signal, and the control signal with respect to the first pilot signal. And a transmission power control means that does not correct transmission power according to the above.
請求項1記載の無線通信システムであって、
等価雑音電力とは伝搬路利得が大きいほど小さい値であることを特徴とする無線通信システム。
The wireless communication system according to claim 1,
The wireless communication system, wherein the equivalent noise power is smaller as the propagation path gain is larger.
請求項1記載の無線通信システムであって、
前記制御信号生成手段は、受信パイロット信号を平均化し、前記平均化された平均化パイロット信号と、前記受信パイロット信号に基づいて制御信号を送信し、
前記送信電力制御手段は、受信される制御信号に基づいて、伝搬路利得の平均値が大きいほど送信電力が大きくなるように送信電力を制御し、伝搬路利得が大きくなるような変動が生じた場合に送信電力が大きくなるように送信電力を補正することを特徴とする無線通信システム。
The wireless communication system according to claim 1,
The control signal generating means averages a received pilot signal, transmits the averaged pilot signal averaged, and a control signal based on the received pilot signal,
It said transmission power control means, based on the control signal received, and controls the transmission power so as transmit power larger average value of the propagation path gain increases, variations such as channel gain increases occurred In this case, the wireless communication system corrects the transmission power so that the transmission power increases.
請求項1記載の無線通信システムであって、
前記第1のパイロット信号と前記第2のパイロット信号とは時間多重されて送信されることを特徴とする無線通信システム。
The wireless communication system according to claim 1,
The wireless communication system, wherein the first pilot signal and the second pilot signal are time-multiplexed and transmitted.
請求項1記載の無線通信システムであって、
等価雑音電力と負の相関を持つように前記データ信号のデータレートを制御することを特徴とする無線通信システム。
The wireless communication system according to claim 1,
A wireless communication system, wherein a data rate of the data signal is controlled to have a negative correlation with an equivalent noise power.
無線局であって、
無線送信局に対して第1の通知信号を送信し、第1の通知信号に従って送信電力が制御されない第1のパイロット信号と第1の通知信号に従って送信電力が制御される第2のパイロット信号とを前記無線送信局から受信する送受信手段と、
受信した第1のパイロット信号を用いて前記無線送信局との間の通信路の等価雑音電力を測定する手段と、
等価雑音電力と負の相関を持つように送信電力を補正する前記第1の通知信号を生成する手段と、を有することを特徴とする無線局。
A radio station,
Transmitting a first notification signal to the radio transmission station, the second pilot signal transmission power in accordance with the first pilot signal and the first notification signal transmission power in accordance with the first notification signal is not controlled is controlled Transmitting and receiving means for receiving from the wireless transmission station,
Means for measuring an equivalent noise power of a communication path with the wireless transmission station using the received first pilot signal;
And a means for generating the first notification signal for correcting the transmission power so as to have a negative correlation with the equivalent noise power.
請求項6記載の無線局であって、
前記等価雑音電力とは伝搬路利得が大きいほど小さい値であることを特徴とする無線局。
The radio station according to claim 6,
The equivalent noise power is a radio station having a smaller value as the propagation path gain is larger.
無線局であって、
無線送信局に対して第1の通知信号を送信し、第1の通知信号に従って送信電力が制御される第2のパイロット信号と、第1の通知信号に従って送信電力が制御されない第1のパイロット信号と、第1の通知信号に従ってデータレートが制御されるデータ信号とを無線送信局から受信する送受信手段と、
受信した第1のパイロット信号を用いて無線送信局との間の通信路の等価雑音電力を測定する手段と、
等価雑音電力が小さいほど送信するデータのデータレートを高くし、等価雑音電力と負の相関を持つように送信電力を補正する前記第1の通知信号を生成する手段とを有することを特徴とする無線局。
A radio station,
A first pilot signal that transmits a first notification signal to the radio transmission station, the transmission power of which is controlled according to the first notification signal, and a first pilot signal whose transmission power is not controlled according to the first notification signal Transmitting and receiving means for receiving from the wireless transmission station a data signal whose data rate is controlled in accordance with the first notification signal;
Means for measuring the equivalent noise power of the communication path with the wireless transmission station using the received first pilot signal;
And a means for generating the first notification signal for correcting the transmission power so as to increase the data rate of data to be transmitted as the equivalent noise power is smaller and to have a negative correlation with the equivalent noise power. Radio station.
請求項8記載の無線局であって、
前記等価雑音電力とは伝搬路利得が大きいほど小さい値であることを特徴とする無線局。
The radio station according to claim 8, wherein
The equivalent noise power is a radio station having a smaller value as the propagation path gain is larger.
JP2009112429A 2009-05-07 2009-05-07 Transmission power control method for wireless communication system Expired - Lifetime JP4978656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112429A JP4978656B2 (en) 2009-05-07 2009-05-07 Transmission power control method for wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112429A JP4978656B2 (en) 2009-05-07 2009-05-07 Transmission power control method for wireless communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007257045A Division JP4922887B2 (en) 2007-10-01 2007-10-01 Transmission power control method for wireless communication system, wireless communication system, transmission device, and reception device

Publications (2)

Publication Number Publication Date
JP2009171625A JP2009171625A (en) 2009-07-30
JP4978656B2 true JP4978656B2 (en) 2012-07-18

Family

ID=40972194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112429A Expired - Lifetime JP4978656B2 (en) 2009-05-07 2009-05-07 Transmission power control method for wireless communication system

Country Status (1)

Country Link
JP (1) JP4978656B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355295B2 (en) * 1997-11-13 2002-12-09 松下電器産業株式会社 Transmission power control method and transmission / reception device
JP3411854B2 (en) * 1998-07-24 2003-06-03 松下電器産業株式会社 Receiving device and transmitting device
US6587446B2 (en) * 1999-02-11 2003-07-01 Qualcomm Incorporated Handoff in a wireless communication system
JP2000278207A (en) * 1999-03-23 2000-10-06 Oki Electric Ind Co Ltd Transmission power control method and radio communication apparatus
JP2001044930A (en) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd Device and method for radio communication

Also Published As

Publication number Publication date
JP2009171625A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
KR101121888B1 (en) Wireless communication station
CA2367363C (en) Outer loop/weighted open loop power control in a time division duplex communication system
JP4472765B2 (en) Power control subsystem
US20040193971A1 (en) Power control for reverse packet data channel in CDMA systems
KR101691826B1 (en) Method and apparatus for controlling uplink power in a wireless communication system
US20170223771A1 (en) Methods, base station system, radio unit and radio head of a wireless communication network, for increasing signal quality of signals sent from the radio head to the radio unit
EP2235855A1 (en) Report mechanism in a radio system reusing one time-slot
JP4978656B2 (en) Transmission power control method for wireless communication system
JP5445541B2 (en) Transmission power control method for wireless communication system
JP4274106B2 (en) Transmission power control method for wireless communication system
JP5626437B2 (en) Transmission power control method for wireless communication system
JP4922887B2 (en) Transmission power control method for wireless communication system, wireless communication system, transmission device, and reception device
JP4003436B2 (en) Transmission power control method for wireless communication system, wireless communication system, transmission device, and reception device
JP4591469B2 (en) COMMUNICATION CONTROL METHOD, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION DEVICE
CN102651675A (en) Method for determining service authorization information and user equipment
JP3941518B2 (en) COMMUNICATION CONTROL METHOD, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION DEVICE
JP2005102271A (en) Communication control method, radio communication system, and radio communication device
JP3948367B2 (en) Wireless communication method for wireless communication device, wireless communication method for wireless communication system, wireless communication system, and wireless communication device
US20230093810A1 (en) Transmission control method and information processing apparatus
JP5324499B2 (en) Receiver, program and method for controlling transmission power of transmitter based on fluctuation of radio quality
MXPA01009199A (en) Outer loop/weighted open loop power control in a time division duplex communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4978656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

EXPY Cancellation because of completion of term