Nothing Special   »   [go: up one dir, main page]

JP2005072691A - A/d conversion circuit and tube joining apparatus - Google Patents

A/d conversion circuit and tube joining apparatus Download PDF

Info

Publication number
JP2005072691A
JP2005072691A JP2003209208A JP2003209208A JP2005072691A JP 2005072691 A JP2005072691 A JP 2005072691A JP 2003209208 A JP2003209208 A JP 2003209208A JP 2003209208 A JP2003209208 A JP 2003209208A JP 2005072691 A JP2005072691 A JP 2005072691A
Authority
JP
Japan
Prior art keywords
voltage
wafer
converter
clamp
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003209208A
Other languages
Japanese (ja)
Other versions
JP4115353B2 (en
Inventor
Yoshio Kobayashi
義雄 小林
Osamu Sumiya
收 住家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Canon Finetech Nisca Inc
Original Assignee
Terumo Corp
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Nisca Corp filed Critical Terumo Corp
Priority to JP2003209208A priority Critical patent/JP4115353B2/en
Publication of JP2005072691A publication Critical patent/JP2005072691A/en
Application granted granted Critical
Publication of JP4115353B2 publication Critical patent/JP4115353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/857Medical tube welding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2007Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by the type of welding mirror
    • B29C65/203Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by the type of welding mirror being several single mirrors, e.g. not mounted on the same tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2046Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" using a welding mirror which also cuts the parts to be joined, e.g. for sterile welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • B29C65/2053Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position
    • B29C65/2061Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding
    • B29C65/2069Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding with an angle with respect to the plane comprising the parts to be joined
    • B29C65/2076Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror" characterised by special ways of bringing the welding mirrors into position by sliding with an angle with respect to the plane comprising the parts to be joined perpendicularly to the plane comprising the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0018Joining in special atmospheres characterised by the type of environment being sterile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7373Joining soiled or oxidised materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91212Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods involving measurement means being part of the welding jaws, e.g. integrated in the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an A/D conversion circuit from which an output with high accuracy can be obtained in spite of a simple configuration. <P>SOLUTION: The A/D conversion circuit 300 is provided with: an A/D converter 210; a 5V power supply 220 for generating a voltage applied to the A/D converter 210; a shunt regulator 230 for generating a voltage (2.5V±2%) with high accuracy lower than the voltage produced by the 5V power supply 220; and an arithmetic processing section for calculating digital values of a voltage of a wafer 41 and a voltage converted from a current of the wafer 41 in response to an output from the A/D converter 210. The A/D converter 210 uses an operating voltage generated by the 5V power supply 220 for a reference voltage and converts the voltage of the wafer 41, the converted voltage and the voltage generated by the shunt regulator 230 into the digital values, and the arithmetic processing section calculates the voltage of the wafer 41 and the converted voltage on the basis of the digital values of the voltage generated by the shunt regulator 230. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、A/D変換回路及びチューブ接合装置に係り、特に、アナログ電圧をデジタル変換するA/D変換回路、及び、このA/D変換回路を用い、可撓性チューブを加熱溶融して、無菌的に接合するチューブ接合装置に関する。
【0002】
【従来の技術】
従来、輸血システムにおける採血バッグ及び血液成分バッグのチューブ接合や持続的腹膜透析(CAPD)における透析液バッグと廃液バッグとの交換等を行う場合には、チューブの接合を無菌的に行うことが必要となる。この種のチューブ接合装置として、接続すべき2本のチューブを平行に保持し得る一対のホルダ(ブロック)と、両ホルダ間に配置されチューブを横切るように移動し得る切断板(板状の加熱素子、ウエハ)とを備え、両ホルダに形成された溝内に2本のチューブを平行にかつ反対方向に保持した状態で切断板を加熱、移動させてチューブを溶断し、次いで、一方のホルダをチューブの径方向(並べた方向)に移動させ、接合するチューブの切り口同士を一致させると共に、切断板を退避位置へ移動させて抜き取り、両チューブを融着するものが知られている(例えば、特許文献1参照)。
【0003】
また、上記チューブ接合装置と同様のチューブ接合方法を用いて、チューブ接合の確実性を高めるために、2本のチューブを平行状態で保持する第1クランプ及び第2クランプを有し、第1クランプを第2クランプに対して平行に移動させる、つまり、後退・前進の前後の動きのみを行う第1クランプ移動機構と、第2クランプを第1クランプに対して近接・離間する方向にのみ移動させる第2クランプ移動機構とを備えたものも開示されている(例えば、特許文献2参照)。
【0004】
更に、切断板を用いてチューブ同士を加熱、溶融し、無菌的に接合する基本的原理は同様であるが、チューブ内液を密封したまま漏れることなくチューブを接合できるといった目的の他に、チューブを接続する際のチューブの移動量が少なく、装置及び装置の構成部材の小型化を図ることができるチューブ接合装置として、U字状の溝を有する2つのチューブ保持具(第1、第2チューブ保持具)に接続すべき2本のチューブ同士を接触した(重ねた)状態で収容保持し、加熱された切断板により両チューブを切断した後、第1チューブ保持具に対し第2チューブ保持具を相対的に180°回転させて、両チューブの切断端面同士が互いに交換・整列するように作動させ、切断板を退避させて両チューブを融着するチューブ接合装置も知られている(例えば、特許文献3参照)。
【0005】
これらいずれの従来装置においても、加熱状態でチューブを切断する切断板が、通常、1回のチューブの接合毎に使い捨てされるようにその都度交換して用いられており、また、この切断板は、チューブを切断する際に加熱状態でチューブを溶断するように、電力供給を受けて通電により発熱する構成が用いられている。このような構成にあっては、確実にチューブを切断するために切断板に対する適切な温度制御を行う必要があり、熱電対等の温度検出手段の出力に基づいて補正温度を算出し、この算出された補正温度と切断板の目的加熱温度との偏差に基づき通電パルス幅を変調するように定電圧源を制御する手法(例えば、特許文献2参照)や、切断板に定電流を印加して、測定した切断板の初期電圧値及び印加時間から所望の加熱温度を達成するために必要な電圧乃至時間を算出して加熱状態の切断板の温度を予測するように、上記電圧及び時間を反復して測定する手法を用いたチューブ接合装置が知られている(例えば、特許文献4)。
【0006】
更に、上述した温度制御を行う場合に、チューブ接合装置に限らず既知の各種電子機器では、入力されたアナログ電圧をデジタル電圧に変換するA/Dコンバータが用いられている。しかしながら、電源電圧の変動によりA/Dコンバータの出力電圧に誤差が生ずることがあり、所定の制御等を適正かつ確実に行うためにはA/D変換コンバータからの出力値を補正する必要がある。このため、A/D変換された基準電圧Vrefから、電源電圧Vccの変化に起因して生じた変化を検出し、その結果に応じて、A/Dコンバータの出力のうちVref系測定回路の出力に対応する信号に補正を施す処理手段(CPU)を備えた技術が開示されている(例えば、特許文献5参照)。
【0007】
【特許文献1】
特公昭61−30582号公報
【特許文献2】
特開平6−78971号公報
【特許文献3】
特開平9−154920号公報
【特許文献4】
特開昭59−64034号公報
【特許文献5】
特開平11−298326号公報
【0008】
【発明が解決しようとする課題】
しかしながら、切断板の温度制御を有する従来のチューブ接合装置において、特許文献2の装置では、切断板の加熱温度を検出する熱電対を採用することでコスト高となり、更には熱電対を精度良く機能(温度検出)させるための切断板への取付精度出しが難しく、この熱電対は個々の特性が異なるために、製造工程で1台毎に調整する必要があり、製造コストも高くならざるを得ない。また、特許文献4の装置では、抵抗体としての切断板の抵抗値温度変化を利用して、抵抗値から切断板の温度を予測するものであり、実際に切断板の温度を測定し制御するものではないので、確実な温度制御を行うことが困難である、という問題点を有している。つまり、制御対象が実際には測定しない予測温度であるため、その制御精度の信頼性は高いものとは云い難い。
【0009】
また、チューブ接合装置に用いられるA/Dコンバータの出力値誤差補正において、特許文献5のA/Dコンバータでは、安定化電源は駆動回路であるVref系測定回路等が接続された電源であるため、Vref系測定回路等による負荷(消費電流)が大きなものとなり、このような構成を正常に機能させるためには、安定化電源は電流容量が大きく、且つ、電圧精度が高いものを採用せざるを得ず、その電源回路は大掛かりで複雑なものとなるため、装置の大型化、コスト高が避けられない。
【0010】
本発明は上記事案に鑑み、簡単な構成でありながらも高精度の出力が得られるA/D変換回路、及び該A/D変換回路を有しチューブを溶融切断する切断板の温度管理を適正に行うことができるチューブ接合装置を提供することを課題とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の態様は、入力されたアナログ電圧をデジタル値に変換するA/D変換器と、前記A/D変換器の作動電圧を生成する作動電圧生成手段と、前記作動電圧生成手段が生成する電圧より低電圧かつ高精度の電圧を生成する高精度電圧生成手段と、前記A/D変換器からの出力に応じて、計測対象のアナログ電圧のデジタル値を演算する演算手段と、を備えたA/D変換回路であって、前記A/D変換器は、前記作動電圧生成手段で生成された作動電圧を基準電圧とすると共に、前記計測対象のアナログ電圧及び前記高精度電圧生成手段で生成された電圧をデジタル値に変換し、前記演算手段は、前記高精度電圧生成手段で生成された電圧のデジタル値に基づいて前記計測対象のアナログ電圧のデジタル値を演算する、ことを特徴とする。
【0012】
第1の態様では、A/D変換器の作動を確保するために、作動電圧生成手段で生成された電圧がA/D変換器の作動電圧とされ、該作動電圧が基準電圧として入力されると共に、高精度電圧生成手段で生成され作動電圧生成手段が生成する電圧より低電圧かつ高精度の電圧が入力される。A/D変換器により計測対象のアナログ電圧及び高精度電圧生成手段で生成された電圧がデジタル値に変換され、演算手段により高精度電圧生成手段で生成された電圧のデジタル値に基づいて計測対象のアナログ電圧のデジタル値が演算される。第1の態様によれば、電圧変動が生じやすい基準電圧に代えて、基準電圧より低電圧かつ高精度の電圧のデジタル値に基づいて演算手段で計測対象のアナログ電圧のデジタル値が演算されるので、作動電圧と同一の基準電圧を基準とした場合に比べ高精度に計測対象のアナログ電圧のデジタル値を演算することができる。
【0013】
第1の態様において、計測対象のアナログ電圧を、計測対象に流れる電流を電圧に変換した第1の変換電圧及び計測対象の電圧を表す少なくとも2種の電圧からなるようにすれば、演算手段が演算するデジタル値には計測対象に流れる電流及び電圧の情報が含まれるので、計測対象の消費電力のデジタル値を高精度に得ることができる。また、計測対象のアナログ電圧を、計測対象の温度を電圧に変換した第2の変換電圧とすれば、計測対象の温度を高精度に演算することができる。演算手段は、高精度電圧生成手段で生成された電圧のデジタル値を基準として計測対象のアナログ電圧のデジタル値を演算することが好ましい。高精度電圧生成手段にはシャントレギュレータを用いることができる。このとき、シャントレギュレータは、作動電圧生成手段で生成された電圧から低電圧かつ高精度の電圧を生成するようにしてもよい。
【0014】
また、上記課題を解決するために、本発明の第2の態様は、少なくとも2本の可撓性チューブを保持する保持部と、前記保持部に保持されたチューブを加熱状態で切断する切断部と、前記切断されたチューブの位置を相対的に変化させて、接合される端部同士が密着するように前記保持部を移動させる保持部移動ユニットと、入力されたアナログ電圧をデジタル値に変換するA/D変換器と、前記A/D変換器の作動電圧を生成する作動電圧生成手段と、前記作動電圧生成手段が生成する電圧より低電圧かつ高精度の電圧を生成する高精度電圧生成手段と、前記A/D変換器からの出力に応じて、前記切断部に流れる電流を電圧に変換した変換電圧及び前記切断部の引加電圧のデジタル値を演算する演算手段とを有するA/D変換回路と、前記A/D変換回路からの出力に応じて前記切断部への加熱用電力を制御する電力制御部と、を備えたチューブ接合装置であって、前記A/D変換器は、前記作動電圧生成手段で生成された作動電圧を基準電圧とすると共に、前記変換電圧、前記引加電圧及び前記高精度電圧生成手段で生成された電圧をデジタル値に変換し、前記演算手段は、前記高精度電圧生成手段で生成された電圧のデジタル値に基づいて前記変換電圧及び前記引加電圧のデジタル値を演算する、ことを特徴とする。
【0015】
第2の態様では、保持部により少なくとも2本の可撓性チューブが保持され、切断部により保持部に保持されたチューブが加熱状態で切断され、保持部移動ユニットにより切断されたチューブの位置を相対的に変化させて、接合される端部同士が密着するように保持部が移動され、チューブ同士の接合がなされる。切断部を適正な加熱状態とするために、作動電圧生成手段で生成された作動電圧を基準電圧とするA/D変換器により変換電圧、引加電圧及び高精度電圧生成手段で生成された電圧がデジタル値に変換され、演算手段により高精度電圧生成手段で生成された電圧のデジタル値に基づいて変換電圧及び引加電圧のデジタル値が演算され、電力制御部によりA/D変換回路からの変換電圧及び引加電圧のデジタル値に応じて切断部への加熱用電力が制御される。第2の態様によれば、電圧変動が生じやすい基準電圧に代えて、基準電圧より低電圧かつ高精度の電圧のデジタル値に基づいて演算手段で変換電圧及び引加電圧のデジタル値が演算されるので、作動電圧と同一の基準電圧を基準とした場合に比べ高精度に変換電圧及び引加電圧のデジタル値を演算でき、電力制御部はA/D変換回路からの変換電圧及び引加電圧のデジタル値に応じて切断部への加熱用電力を高精度に制御することができる。
【0016】
第2の態様において、A/D変換回路は、切断部への加熱用電力の電圧を分圧する分圧手段を有すると共に、A/D変換器は分圧手段で分圧された電圧を引加電圧としてデジタル値に変換するようにしてもよい。この場合に、A/D変換回路は、切断部への加熱用電力の電流を電圧に変換する変換手段を有し、A/D変換器は変換手段で変換された電圧を変換電圧としてデジタル値に変換するようにしてもよい。このとき、電力制御部は、A/D変換回路から出力された変換電圧及び引加電圧のデジタル値に応じて切断部への加熱用電力をデューティ制御するようにしてもよい。また、切断部を保持する切断部ホルダと、この切断部ホルダを所定温度に加熱するヒータと、切断部ホルダの温度を検出する温度センサとを更に備え、A/D変換器は更に温度センサの電圧をデジタル値に変換するようにすれば、演算手段により温度センサの電圧のデジタル値が演算されるので、切断部ホルダの温度を高精度に把握することができる。このとき、切断部及びヒータに、作動電圧生成手段が生成する電圧より高電圧の電力が供給され、温度センサに、作動電圧生成手段が生成する電圧が引加されるようにしてもよい。
【0017】
【発明の実施の形態】
以下、図面を参照して、本発明を血液が封入された2本のチューブを切断、接合するチューブ接合装置に適用した実施の形態について説明する。
【0018】
(構成)
図1及び図2に示すように、本実施形態のチューブ接合装置1は、2本の可撓性チューブ8、9を略平行に保持する保持部としての第1クランプ6及び第2クランプ7と、第1クランプ6と第2クランプ7との間に第1クランプ6に隣接して配置されチューブ8、9を扁平状に押圧するチューブ押し込み部材10と、を備えている。チューブ接合装置1は、図1に示す突起状部材が隠れるようにケーシング内に収容されている(図3参照)。
【0019】
図2に示すように、第1クランプ6は、上顎となりチューブ8、9を扁平状に押圧する第1上顎部50と、下顎となり第1上顎部50により扁平状に押圧されるチューブ8、9を支持する第1下顎部70とを有している。一方、第2クランプ7は、上顎となりチューブ8、9を扁平状に押圧する第2上顎部60と、下顎となり第2上顎部60により扁平状に押圧されるチューブ8、9を支持する第2下顎部80とを有している。
【0020】
チューブ8、9は、例えば、軟質ポリ塩化ビニル等の軟質熱可塑性樹脂を材質とし可撓性(柔軟性)を有し、チューブ内には血液が封入されている。これらのチューブ8、9は、血液封入前の状態で内径、外径及び長さについて略同一形状を有している。第1クランプ6は、チューブ8、9を保持するホルダ21と、ヒンジ25によりホルダ21の後端部に回動自在に取り付けられ開閉可能な蓋体24とを有している。
【0021】
ホルダ21には、2本のチューブ8、9がそれぞれ装填される互いに平行で横断面形状がU字状の一対の溝22、23が形成されている。溝22、23の幅は、チューブ8、9の自然状態での外径と同等又はそれ以下とするのが好ましく、オペレータ(操作者)がチューブ8、9を溝22、23の奥側(図2に示す下部方向)へ押し込むことで溝22、23内に装填する。蓋体24は、閉じられた状態のときに、溝22、23を覆い、溝22、23内に装填されたチューブ8、9が離脱しないように固定する機能を有している。
【0022】
また、第1クランプ6は、蓋体24が閉じた状態を保持するための係止機構26を有している。係止機構26は、蓋体24の先端にヒンジ27を介して蓋体24に対し回動可能に着設された板片28と、板片28の内面に突出形成された爪部材29と、ホルダ21の先端に回転自在に配された係止ローラ20とで構成されており、蓋体24を閉じた状態で、板片28を図2の矢印F方向に回動させて爪部材29の先端部を係止ローラ20に係止させることが可能である。また、板片28には、端面から第2クランプ7側に突出するシャフト19が固設されている。
【0023】
第1クランプ6の第2クランプ7側には、チューブ押し込み部材10が連設されている。第1クランプ6は、ホルダ21の側面に固定された鋸刃状の圧閉部材61と、蓋体24の側面に固定され圧閉部材61と噛み合う鋸刃状の圧閉部材62とを有している。圧閉部材61は溝22、23にそれぞれ対応する位置に傾斜面63、64を有し、圧閉部材62には、傾斜面63、64に対しそれぞれ平行に、かつ、所定距離離間する位置に、傾斜面65、66が形成されている(図16参照)。このため、溝22、23にチューブ8、9を装填した状態で蓋体24を閉じると、圧閉部材61、62が噛み合い、傾斜面63、65によりチューブ8が圧閉され、傾斜面64、66によりチューブ9が圧閉される。このような第1クランプ6の構成により、後述するチューブ8、9の切り口同士を接合する際に、位置ずれや歪みが抑制され、容易かつ適正な接続が確保される。
【0024】
一方、第2クランプ7は、第1クランプ6の側方に、チューブ押し込み部材10を介して隣接して配置されている。第2クランプ7も第1クランプ6と同様に、一対の溝32、33が形成されチューブ8、9を保持するホルダ31と、ホルダ31に対し回動して開閉する蓋体34とを有しており、更に係止機構36を有している。これらの構成は第1クランプ6に準ずるものであり、係止機構36はヒンジ37、板片38、爪部材39を有しており、ホルダ31はヒンジ35、係止ローラ30を有している。なお、板片38の第1クランプ6側端面にはシャフト19が挿入可能な長穴40が形成されており、この長穴40は、後述するチューブ接合動作における第1クランプ6の移動に伴うシャフト19の移動を許容する機能を有している。
【0025】
第2クランプ7は、ホルダ31のホルダ21側の側面に固定された鋸刃状の圧閉部材71(不図示)と、蓋体34の蓋体24側の側面に固定され圧閉部材71と噛み合う鋸刃状の圧閉部材72とで構成されている。圧閉部材71は溝32、33にそれぞれ対応する位置に傾斜面73、74を有し(図16参照)、圧閉部材72には、傾斜面73、74に対しそれぞれ平行に、かつ、所定距離離間する位置に、傾斜面75、76が形成されている。
【0026】
これらの第1クランプ6及び第2クランプ7は、通常は溝22、32同士及び溝23、33同士が一致する(一直線上に並ぶ)ように配置されている。
【0027】
チューブ押し込み部材10は、第1クランプ6に一体的かつ移動可能に設けられている。チューブ押し込み部材10は、第1クランプ6及び第2クランプ7と同様に鋸歯状で傾斜面15、16が形成された先端部分12(圧閉部材62、72に相当)を有するが、チューブ8、9を挟んで対峙して噛み合う圧閉部材61、71を持たない点で第1クランプ6及び第2クランプ7とは相違している。また、チューブ押し込み部材10の先端部分12は、第1クランプ6の圧閉部材62及び第2クランプ7の圧閉部材72に対応して同形状の鋸歯状とされているが、第1クランプ6の圧閉部材62より若干突出した位置に位置決めされている。
【0028】
チューブ押し込み部材10には、断面L字状の支持部材11がねじ止め固定されている。支持部材11は、下方側に突出する支持部材突出部14を有している。また、支持部材11には図示しないコ字状のスライダが付設されており、このスライダが図示を省略したレールに沿って摺動可能に構成されている。図示を省略したレールはレール支持部材(不図示)に固着されており、レール支持部材は蓋体24にねじ止めされている。このため、チューブ押し込み部材10は、第1クランプ6と一体化されると共に、第1クランプ6に対して相対移動が可能である。なお、チューブ押し込み部材10の先端部分12は、第1クランプ6の圧閉部材62より突出しているので、蓋体24が閉じられたときに第1クランプ6に先立ってチューブ8、9を押し込むこととなる。
【0029】
また、チューブ接合装置1は、図3に示すように、切断部としてのウエハ41を繰り出すウエハ繰出機構100を備えている。
【0030】
チューブ接合装置1のケーシングには固定部材94が立設されており、固定部材94には正逆転可能なパルスモータからなるウエハ送りモータ110がねじ止めされている。ウエハ送りモータ110の出力軸111にはギヤ112が固着されており、ギヤ114との間にタイミングベルト113が張架されている。ギヤ114は、チューブ8、9を切断可能なウエハ41を1枚ずつ繰り出すシャトルと称されるウエハ繰り出し部材115をその軸上に配したボールねじ116の軸上に配置されている。ウエハ繰り出し部材115の内部にはボールねじ116に係合する図示を省略したナットが設けられており、ウエハ送りモータ110を駆動源とするギヤ114の回転に伴って、ボールねじ116の回転によりウエハ繰り出し部材115はボールねじ116に沿って移動する。ウエハ繰り出し部材115の一側はロッド状のシャフト117に支持されており、ウエハ繰り出し部材115のウエハの繰り出し時の姿勢(動作)を安定させている。ウエハ繰り出し部材115の端部には、ウエハ41を複数枚(本例においては70枚)収蔵するウエハカセット120から、ウエハ繰り出し部材115の移動に伴ってウエハカセット120内のウエハ41を一枚ずつ繰り出す押し出し片118が付設されている。ウエハカセット120の一側には、ウエハカセット120が装着されていることを検出するためのウエハカセット検出センサ121が固設されている。
【0031】
ウエハカセット120の内部には図示しない圧縮バネがウエハ41を付勢するように配設されており、ウエハ繰り出し部材115の押し出し片118によりウエハ41が繰り出されると、隣接するウエハがウエハ繰り出し部材115側に順次対向することで、押し出し片118によるウエハ41の連続的な繰り出し動作が許容されている。なお、ウエハ繰り出し部材115は、ウエハ送りモータ110の逆転により、ウエハ41の繰り出し方向とは反対方向に移動可能である。
【0032】
ウエハ41は、自己発熱型の加熱切断板であり、例えば銅板等の金属板を2つ折りにし、その内面に絶縁層を介して所望パターンの発熱用の抵抗体が形成されており、該抵抗体の両端の端子44、45(図2参照)がそれぞれ金属板の一端部に形成された開口から露出した構造を有している。
【0033】
また、ウエハ送りモータ110の出力軸111の端部には、ギヤ112に隣接して複数のスリットを有しウエハ送りモータ110の回転に伴って回転する回転盤130が固設されている。回転盤130は、ウエハ繰り出し部材115の移動量を検出するためのものである。回転盤130の近傍には、ギヤ114の反対側に回転盤130を跨ぐように、回転盤130の回転量を検出する透過型センサ131が固定部材94にねじ止めされている。
【0034】
ボールねじ116を介してウエハカセット120の反対側には、ウエハ41の繰出開始位置に位置付けられたウエハ繰り出し部材115を検出する透過型センサ132と、ウエハ41の繰出終了位置に位置付けられたウエハ繰り出し部材115を検出する透過型センサ133とが所定距離離間して配設されており、ウエハ繰り出し部材115には、押し出し片118の反対側に略L字状の被検片119が付設されている。なお、上述した回転盤130と透過型センサ131とによるウエハ繰り出し部材115の移動量の検出は、透過型センサ132、133の両者位置間で行われるものである。
【0035】
ウエハ繰り出し部材115によって繰り出されたウエハ41は、ウエハカセット120からそのウエハ搬送経路の下流側に位置し、ウエハ41を保持する切断部ホルダとしてのウエハホルダ140内に位置付けられる。図4に示すように、本例では、ウエハホルダ140内に2枚のウエハ41の端面同士が当接するように保持される構成が採られており、ウエハカセット120から先に繰り出されたウエハ41aが新たに繰り出されたウエハ41bにウエハホルダ140内の搬送路105上で押動されることでウエハ41の供給が行われる。換言すれば、ウエハ41bがウエハ41aを前方に押進させ、ウエハ41aがウエハホルダ140内でチューブ8、9の切断動作を行う位置に位置付けられる。
【0036】
ウエハホルダ140の先方側に位置付けられたウエハ41aの端子44、45には、図示を省略したハーネスを介して突起状の電極部145、146により電源部(図8参照、24V電源)からウエハ41aの加熱用電力の給電がなされる。電極部145、146は、ウエハホルダ140に一体に取り付けられており、ウエハホルダ140の一側(図4紙面奥側)の壁面端部に対してウエハ41を介して対向するように配設されている。なお、後述するように、ウエハホルダ140はチューブ8、9を切断する際に上下動するため、ウエハホルダ140に一体に取り付けられた電極部145、146もウエハ41に対して加熱のための給電可能な構造とされている。
【0037】
電極部145、146による給電によりウエハ41の内部の抵抗体が発熱して、ウエハ41はチューブ8、9を溶融、切断可能な所定温度(例えば、260〜320°C程度)に加熱される。なお、本例では、後述するように、この所定温度を280°Cに設定している。また、ウエハ41は、1回のチューブの接合(接続)毎に使い捨てされるもの(シングルユース)であるのが好ましく、ウエハ繰出機構100は、ウエハホルダ140に装填されるウエハ41を、チューブ8、9を接合する毎に交換可能な構成を有している。
【0038】
ウエハホルダ140は、回転支持板184に取り付けられたホルダ用ヒータ144により加熱される(図3参照)。ヒータ144へは、電源部から電力が供給されるが、チューブ接合装置1に電源が投入されている間、ウエハホルダ140は常時加熱状態を維持している。ウエハホルダ140には、ウエハホルダ140の温度を検出するサーミスタ等のホルダ温度センサ508が埋設されており、ウエハホルダ140は所定温度(本例においては78°C)を保つように制御される。
【0039】
上述したように、ウエハ41は表面が銅板で覆われているため、その材料(銅)特性からウエハホルダ140内に挿入された時点でウエハホルダ140が保有する温度の影響を受け、挿入直後に所定温度(本例においては65°C)に達する。後述する制御部190は、ウエハホルダ140内にウエハ41が挿入された時を基点として、電極部145、146により通電されるウエハ41自体の温度が所定時間後に所定温度(本例においては280°C)に到達したと予測してウエハ41によるチューブの切断動作(ウエハホルダ140の上昇動作)に移行する。
【0040】
図3及び図5に示すように、チューブ接合装置1は、第1クランプ6、第2クランプ7を移動させると共に、ウエハホルダ140を移動(上下動)させる駆動伝達機構200を備えている。
【0041】
ウエハホルダ140の側方かつウエハ繰り出し部材115の下流側には、チューブ接合装置1のケーシングに固定された不図示のモータ固定部材に駆動伝達機構200の駆動源となる正逆転可能なパルスモータからなるカムモータ150がねじ止めされている。カムモータ150の出力軸151にはギヤ152が固着されており、ギヤ152にはギヤ153が噛合している。ギヤ153の同軸上にはギヤ154が固着されており、このギヤ154にギヤ155が噛合している。ギヤ155の回転中心には、ギヤ155に伝達された駆動力によりギヤ155と共に回転する駆動軸156が配設されている。この駆動軸156の軸上には、第1クランプ6の移動を規制するカム157、第2クランプの移動を規制するカム158及びウエハホルダ140の移動を規制するカム159がそれぞれ固設されている。従って、カムモータ150からの駆動力は駆動軸156に伝達され、カム157、158、159がそれぞれ回転駆動する。
【0042】
カム157の内部には溝161が形成されており、この溝161の縁面に係合するベアリング162が取付部材163を介して第1クランプ6を固定状態で支持する支持台164(図1も参照)に接続されている。このため、カム157の回転によりベアリング162がカム157内部の溝161の縁面に沿って摺動し、第1クランプ6が所定の方向(図3の矢印A方向)に移動することが可能となる。なお、支持台164の下方には、支持台164(第1クランプ6)が安定に移動するように案内するリニアガイド165が支持台164の底部に接触状態で配置されている。更に、支持台164の一端には、この支持台164を所定の方向に付勢するように圧縮バネ166が掛架されている。
【0043】
一方、カム158の表面には、この面に係合するベアリング172が取付部材173を介して第2クランプ7を固定状態で支持する支持台174に接続されている。このため、カム158の回転によりベアリング172がカム158の表面に沿って摺動し、第2クランプ7が所定の方向(図3の矢印B方向)に移動することが可能となる。なお、本例において、ベアリング172はカム158の側面に係合すると共に、ウエハホルダ140の移動を規制するカム159と一体的に形成された鍔部177の表面にも係合可能な構成となっている。なお、カム158の一部には、切欠部178(図17(C)、(D)参照)が形成されている。また、支持台174の下方には、支持台174(第2クランプ7)が安定して移動するように案内するリニアガイド175が支持台174の底部に接触状態で配置されている。更に、支持台174の一端には、この支持台174を所定の方向に付勢するように圧縮バネ176が掛架されている。
【0044】
また、ウエハホルダ140の底部には、ベアリング182(図4も参照)が取付部材183を介して取り付けられており、このベアリング182がカム159の回転に伴ってカム159の表面形状に沿って摺動することでウエハホルダ140が所定方向(上下方向)に移動可能に構成されている。すなわち、ウエハホルダ140に取り付けられた回動支持板184の突起部185に形成された穴部186に貫通するシャフト軸187を中心として、シャフト軸187と一体に回動することで、ウエハホルダ140は上下方向に揺動可能に構成されている。ウエハホルダ140は上部側には、先端に金属製のコロ147を有し斜設された突起部148が一体に形成されており(図4参照)、コロ147は支持部材突出部14(図2参照)に当接している。従って、カム159の表面形状の変化により、ウエハホルダ140が所定のタイミングで上昇(揺動)するときに、チューブ押し込み部材10(図2参照)は押し上げられることとなり、突起部148はチューブ押し込み部材10を退避位置に案内する。
【0045】
更に、駆動軸156には、カム157とギヤ155との間に切欠き198が形成された回転盤197が固設されている(図6も参照)。回転盤197の近傍には回転盤197を跨ぐように透過型センサ195、196が配設されている。回転盤197に形成された切欠き198を利用して、第1クランプ6及び第2クランプ7の位置検出が透過型センサ195及び196で行われる。すなわち、回転盤197は駆動軸156の回転に伴って所定方向に回転するが、透過型センサ195からの光線が切欠き198により透過された状態(図6(A)参照)のときに第1クランプ6及び第2クランプ7の初期位置とされている。つまり、透過型センサ195は、第1クランプ6及び第2クランプ7の初期位置検出センサとして使用される。また、透過型センサ196は、チューブ8、9の接合動作が終了したことを検出するセンサとして使用され、接合動作が終了したときに、切欠き198が透過型センサ196に対向する位置に位置付けられる(図6(B)参照)。
【0046】
図3に示すように、ウエハホルダ140の下流側には、使用済みウエハ41を案内するガイド141及び使用済みウエハ41を収容する廃棄ボックス142が配設されている。チューブ切断動作可能位置に位置付けられたウエハ41は、チューブ8、9の切断及び接合動作後に廃棄ボックス142に廃棄(収容)されるが、この廃棄動作も上述したようにウエハ41の端面同士の押動により行われ、使用済みウエハ41はガイド141に沿って案内され廃棄ボックス142へと落下収容される。廃棄ボックス142の側方には、受光素子と発光素子とが離間配置され、廃棄収容された使用済みウエハ41の満杯状態を検出する透過型のウエハ満杯センサ143が廃棄ボックス142の底部から所定高さの位置に配設されている。
【0047】
更に、チューブ接合装置1は、装置全体の動作制御を行うマイクロコンピュータ(以下、マイコンという。)からなる制御部190、オペレータに装置状態を表示するLCD表示部192、商業交流電源からパルスモータ等のアクチュエータ及び制御部190を駆動/作動可能な直流電源に変換する定電圧電源部(5V電源、24V電源)等を備えている。
【0048】
図7及び図8に示すように、制御部190は、演算手段及び電力制御部の一部としての演算処理部及びA/D変換器としてのA/Dコンバータ210を含んで構成されている。すなわち、制御部190は、A/Dコンバータ210を内蔵したマイコンで構成されている。演算処理部は、中央演算装置として高速クロックで作動するCPU191(図3参照)、チューブ接合装置1の制御プログラム及び制御データが記憶されたROM、CPU191のワークエリアとして働くRAM及びこれらを接続する内部バスで構成されている。
【0049】
図7に示すように、制御部190には、外部バスが接続されている。外部バスには、停電時等に備えチューブの接合処理状態を記憶するための情報記憶部、第1クランプ6及び第2クランプ7の開閉状態やロック状態を検出すると共にこれらのクランプをロックするクランプ部、オペレータが切断、接合動作をチューブ接合装置1に指示するための接合スイッチ193(図3参照)を含むスイッチ入力部、ホルダ温度センサ508を有しウエハホルダ140を一定温度に保持するためにヒータ144のオン・オフを制御するホルダ温調制御部510、図示しない排煙ファンモータ及び冷却ファンモータを制御するファンモータ制御部、ウエハカセット120内のウエア41の有無や廃棄ボックス142内の使用済みウエアの満杯状態を検出するセンサ等を有するウエハカセット/廃棄制御部、チューブ接合装置1が配置される環境温度(室温)を監視する動作環境監視部、電極部145、146間に流れる電力を制御する電力制御部の一部としてのウエハ電力制御部530を含むウエハ定電力制御部520、ウエハ41の送り動作の制御を行うウエハ送り制御部、ウエハ41の初期位置を検出するウエハ位置検出センサやウエハ送りモータ110を回転駆動させるモータドライバを有するカム接合動作制御部、及び、LCD表示部192の操作や表示を制御するLCDドライバ等を有するメッセージ出力部が接続されている。なお、図7では、外部バスの記載を省略し制御部190とこれら各部とが直接接続された状態を示している。
【0050】
ここで、図8を参照して、A/D変換回路300、特に、ホルダ温度制御部510、ウエハ定電力制御部520、及び、A/Dコンバータ210の関係について詳述する。図8(A)は、ウエハ41の端子44、45にそれぞれ電極部145、146が接続された状態でのこれらの関係をブロック図で示したものであり、図8(B)はこのブロック図の具体的回路例(本例)である。なお、後述するように、A/Dコンバータ210には作動電源として作動電圧生成手段としての5V電源から回路電源電圧Vccが加えられ、ウエハ41にはウエハ電力制御部530を介してウエハ電源電圧VDDとして24V電源から加熱用電力の電圧が加えられる。
【0051】
図8(B)に示すように、制御部190は、A/Dコンバータ210への入力として、回路電源電圧Vcc、基準電圧Vref、A/D入力電圧AN0〜AN4及びグランドGNDの各端子を有している。ウエハ電源電圧VDD(例えば、24V)の+側は、上述した電極部145を介してウエハ41の一端(端子44)に接続されている。端子44には、分圧手段の一部としての分圧抵抗R1の一端が接続されており、分圧抵抗R1の他端はA/D入力電圧(端子)AN0及び他端がGNDに接続された分圧手段の一部としての分圧抵抗R2の一端に接続されている。ウエハ41の他端(端子45)はA/D入力電圧(端子)AN1及び他端がウエハ電源電圧VDDの−側(GND)に接続された変換手段としてのウエハ電流検出用の抵抗Riの一端に接続されている。このため、A/D入力電圧(端子)AN0、AN1には、それぞれ、抵抗R1、R2で分圧されたウエハ電圧Vv、ウエハ41に流れる電流Iを抵抗Riで電圧に変換したウエハ電流モニタ電圧Viが入力される。従って、図8(A)に示すウエハ電圧モニタ回路は、抵抗R1、R2で構成され、ウエハ電流モニタ回路は抵抗Riで構成されている。
【0052】
本例では、ホルダ温度センサ508としてサーミスタRtを用いている。A/Dコンバータ210の回路電源電圧Vcc(例えば、5V±5%)の+側は、回路電源電圧(端子)Vcc、基準電圧(端子)Vrefに接続されていると共に、サーミスタRtの一端に接続されている。サーミスタRtの他端は、A/D入力電圧(端子)AN4及び他端が回路電源電圧の−側(GND)に接続された抵抗Rに接続されている。このため、A/D入力電圧(端子)AN4には、ホルダ温度(ウエハホルダ140の温度)に従うサーミスタRtの抵抗値を抵抗Rの両端電圧から検出するホルダ温度モニタ電圧Vhが入力される。従って、図8(A)に示すウエハホルダ温度モニタ回路は、抵抗Rで構成されている。
【0053】
また、A/D入力電圧(端子)AN2は、高精度電圧生成手段としての2.5Vシャントレギュレータ230の出力に接続されている。シャントレギュレータ230は、回路電源電圧Vccを電圧降下させ、高精度の基準電圧を生成する。本例では、A/D入力電圧(端子)AN2に、シャントレギュレータ230から2.5V±2%の電圧が入力される。なお、GND端子はGNDに接続されている。
【0054】
一般に、アナログ入力電圧をVa(V)、基準電圧をVref(V)としたときに、A/Dコンバータに10ビットのものを用いると、A/Dコンバータのデジタル変換値(デジタル出力電圧)Daは、下式(1)で与えられる。また、サーミスタRt、サーミスタRtと直列に接続された抵抗Rのそれぞれの抵抗値をRt、R(Ω)としたときに、ホルダ温度モニタ電圧Vh(V)は、下式(2)で与えられる。更に、分圧抵抗R1、R2の抵抗値をそれぞれR1、R2(Ω)とすると、ウエハ電圧Vvは、下式(3)で与えられる。また、ウエハ41に流れる電流の電流値をI(A)、抵抗Riの抵抗値をRi(Ω)とすると、ウエハ電流モニタ電圧Vi(V)は、下式(4)で与えられる。
【0055】
【数1】

Figure 2005072691
【0056】
これらのアナログ電圧Vh、Vv、Viのデジタル変換値Dh、Dv、Diは、式(1)により、下式(5)〜(7)で与えられる。
【0057】
【数2】
Figure 2005072691
【0058】
式(5)から、ホルダ温度モニタ電圧Vhのデジタル変換値Dhは、回路電源電圧Vcc及び基準電圧Vrefの精度に影響されることが判明する。また、式(6)、(7)から、ウエハ電圧Vv、ウエハ電流モニタ電圧Viのデジタル変換値Dv、Diは、基準電圧Vrefの精度に影響されることとなる。A/Dコンバータ210の基準電圧Vrefをウエハホルダ温度モニタ回路の回路電源電圧Vccと同一とする(基準電圧Vrefを回路電源電圧Vccに接続する)と、式(5)の回路電源電圧Vccと基準電圧Vrefとが打ち消され、電源電圧に依存しない高精度のデジタル変換値を得ることができる。しかしながら、式(6)及び式(7)の基準電圧Vref項には回路電源電圧Vccが代入されるため、ウエハ電圧Vv、ウエハ電流モニタ電圧Viのデジタル変換値Dv、Diは、回路電源電圧Vccの変動に影響され、回路電源電圧Vccの精度が、例えば±5%の場合には大きな誤差を生ずる。
【0059】
また、A/Dコンバータ210の基準電圧Vrefに、シャントレギュレータ230などで生成される、例えば公差±2%程度の高精度電源を接続すると、ウエハ電圧Vv、ウエハ電流モニタ電圧Viのデジタル変換値Dv、Diの精度は向上するが、回路電源電圧Vccの精度が例えば±5%の場合に、ホルダ温度モニタ電圧Vhのデジタル変換値Dhについては、回路電源電圧Vccの変動の影響を排除できない。
【0060】
チューブ接合装置1のチューブ切断・接合時のウエハ温度は、これらに起因して、所望の温度範囲から外れることとなる。この結果、チューブ8、9の融着力を低下させ、適正な温度でのチューブ8、9の切断・接合を確保できなくなる場合がある。本実施形態のチューブ接合装置1は、この問題を解決するため、上述したように、A/Dコンバータ210の基準電圧Vrefに回路電源電圧Vccを接続し、シャントレギュレータ230で基準電圧Vrefよりも低電圧かつ高精度の第2の基準電圧V2(例えば、2.5V±2%)を生成し、A/Dコンバータ210に入力している。第2の基準電圧V2のデジタル変換値D2は、下式(8)で与えられる。ここで、式(8)を下式(9)のように変形することで、デジタル変換値D2から回路電源電圧Vccの算出が可能となる。
【0061】
【数3】
Figure 2005072691
【0062】
また、A/Dコンバータ210の基準電圧Vrefを回路電源電圧Vccと同一とすることで、式(5)〜(7)の基準電圧Vref項に式(9)で算出した回路電源電圧Vccを代入して、ホルダ温度モニタ電圧Vh、ウエハ電圧Vv、ウエハ電流モニタ電圧Viのデジタル変換値Dh、Dv、Diを高精度に算出することが可能となる。これらのデジタル変換値は、下式(10)〜(12)で与えられる。
【0063】
【数4】
Figure 2005072691
【0064】
従って、本実施形態の制御部190、ホルダ温度制御部510及びウエハ定電力制御部520は、ホルダ温度モニタ電圧Vhのデジタル変換値Dhが回路電源電圧Vcc(例えば、5V±5%)に依存することはなく、高精度のデジタル変換値を得ることができる。ウエハ電圧Vv、ウエハ電流モニタ電圧Viのデジタル変換値Dv、Diは、高精度の第2の基準電圧V2(例えば、2.5V±2%)に依存するが、回路電源電圧Vccの5V±5%に依存することはなく、5%の精度のものが2%の精度になるため、2.5倍精度の高い(温度)制御が可能となる。
【0065】
次に、A/D変換回路300に関連して、ウエハ電力制御部530及びホルダ温度制御部510の電力制御について詳述する。
【0066】
一般に、ウエハの箇々の特性にはバラツキがあるので、ウエハの昇温にかかる時間を短くすると同時に、処理動作時(チューブ8、9の切断・接合動作時)のウエハの安定かつ正確な昇温を図るために、定電力(によるフィードバック)制御が採用される。熱量は電力に時間を乗じた値に比例するため、チューブ切断時のウエハ41の加熱温度を一様にするためには、ウエハ41への加熱時間を一定とした場合に、電力も一定とする必要がある。電力を一定とするためには、上述したように、A/Dコンバータ210の精度を高めることが必要である。しかしながら、主にA/Dコンバータ210の作動電圧(基準電圧)の電圧変動に起因して、ウエハ41への通電開始から所定時間経過時の温度特性にバラツキが生じる。
【0067】
本例では、ウエハ41の昇温時間を短くすると共に、ウエハ41への通電開始から所定時間経過時の温度特性のバラツキを防止するため、(1)ウエハ41への通電開始前に、ホルダ温度制御部510でヒータ144への電力供給を制御してウエハホルダ140を所定温度(例えば、78°C)に維持することでウエハ41を一定温度(例えば、65°C)とし、(2)ウエハ41への通電開始から一定時間経過時(例えば、通電開始から7.1秒経過時)まで、ウエハ電力制御部530によるウエハ41への供給電力制御により、所定時間経過時(例えば、通電開始から5.1秒経過時)のウエハ41の加熱温度を一定(例えば、280°C)とする制御を行う。
【0068】
図9に示すように、ウエハ41は、通電開始前のヒータ144によるウエハホルダ140の加熱により、約65°Cとなる。ホルダ温度制御部510は、上述したサーミスタRtによる温度検出によりウエハホルダ144の加熱温度が78°Cを維持するように、ヒータ144に対する通電のオン・オフ制御を行う。この通電制御は、チューブ接合装置1に電源が投入された時点で(厳密には後述する初期設定処理が終了後)開始される。
【0069】
また、図9に示すように、ウエハ電力制御部530の供給電力によりウエハ41の昇温特性は異なり、ウエハ41への通電開始から所定時間経過時のウエハ41の加熱温度にバラツキが生じる。ウエハ電力制御部530は、時刻1sで電源部(24V電源)からウエハ41へ通電を開始させ、所定時間経過時にウエハ41の温度が280°Cとなるように電源部の電力デューティ制御を行う。つまり、電力31Wでは時刻t1で、電力30Wでは時刻t2で、電力28Wでは時刻t3で、電力26Wでは時刻t4で、ウエハ41がチューブの切断動作(ウエハホルダの上昇動作)に移行可能な適正温度の280°Cに到達する。このため、ウエハ電力制御部530は、複数の電力下でウエハ41の温度制御が可能であるが、本例では、ウエハ電力制御部530の制御電力を28Wに設定している。なお、図9では、ウエハ電力制御部530の供給電力による違いを分かり易いように対比するために、ウエハ41への通電開始時間を、時刻1s(1秒)に合わせ込んで示している。従って、時刻0sがウエハホルダ144への加熱のための通電開始を表すものではない。
【0070】
ウエハ電力制御部530の制御電力を28Wに設定した場合には、時刻t3でチューブ切断動作に移行するが、これはウエハ41への通電開始より約5.1秒後(一定に設定)である。ウエハ電力制御部530は、チューブ切断動作移行後もウエハ41へ電力を供給する電源部の電力デューティ制御を維持し、チューブ切断動作開始後約2秒間行われるチューブ接合動作が完了するまでの一定時間(約7.1秒)の間、電源部に対して電力デューティ制御を行う。従って、ウエハ電力制御部530は、ウエハ41にバラツキがあっても、時刻t3でウエハ41の温度が280°Cとなるように電力デューティ制御を行うものである。換言すると、ウエハ電力制御部530は、時間の経過に伴って図9に示す特性曲線に沿うように電力制御をするものであり、電力供給中のある時刻で特性曲線に示す温度数値に近づける制御を行う。
【0071】
(動作)
次に、本実施形態のチューブ接合装置1の動作について制御部190のCPU191を主体として説明する。なお、制御部190に図示しないスイッチを介して電源が投入されると、CPU191は、ROMから制御プログラム、設定値及びルックアップテーブル等を読み出してRAMに展開する初期設定処理を行い、図11に示すように、ホルダ温度制御部510と共働してウエハホルダ140を一定温度(78°C)とするためにヒータ144を制御する温度制御ルーチンを実行する。
【0072】
この温度制御ルーチンでは、まず、ステップ702でA/Dコンバータ210から出力されたサーミスタRt(ホルダ温度センサ508)によるホルダ温度モニタ電圧Vhのデジタル変換値Dhを取り込み、ステップ704で、デジタル変換値Dhとウエハホルダ140の温度との関係を示したルックアップテーブルを参照して、デジタル変換値Dhから、補完法を用いてウエハホルダ140の温度を算出する。
【0073】
次のステップ706では、ウエハホルダ140の温度が目標温度(78°C)以上か否かを判断し、否定判断のときは、ステップ708において、ヒータ144への電源供給をオフ状態とするように、ホルダ温度制御部510に対する2値信号をローレベルとしてステップ702へ戻る。これにより、ホルダ温度制御部510はヒータ144への電源供給を停止させる。一方、ステップ706で肯定判断のときは、ステップ708において、ヒータ144への電源供給をオン状態とするように、ホルダ制御部510に対し2値ハイレベル信号を送出してステップ702へ戻る。これにより、ホルダ温度制御部510はヒータ144への電源供給を行う。従って、ウエハホルダ140は目標温度(78°C)に維持され、ウエハホルダ144に収容されているウエハ41は約65°Cの一定温度となる。なお、温度制御ルーチンは、制御部190への電源投入が停止されるまで継続して実行される。
【0074】
次に、CPU191は、チューブ8、9の切断・接合動作を適正に開始できるかを確認する切断・接合確認ルーチンを実行する。この切断・接合確認ルーチンでは、まず、図6(A)に示すように、透過型センサ195が切欠き198を検出したか否かを判断することにより、第1クランプ6及び第2クランプ7が初期位置(チューブ8、9を互いに平行に溝部22、23、32、33に保持可能な位置)に位置付けられているか否かを判定する。否定判断のときは、第1クランプ6及び第2クランプ7が初期位置になく正常な切断及び接合動作を確保できないので、LCD表示部192にリセットスイッチ(図7参照)を押下する必要がある旨を表示させる。リセットスイッチが押下されると、カム接合動作制御部を介してカムモータ150を駆動させ、第1クランプ6及び第2クランプ7を初期位置に位置付ける。一方、肯定判断のとき(又は、第1クランプ6及び第2クランプ7が初期位置に位置付けられたとき)は、ウエハ満杯センサ143からの信号により廃棄ボックス142が満杯かを判定する。肯定判定のときは、廃棄ボックス142に廃棄収容されたウエハ41が満杯のため、ウエハ繰出機構100によるウエハカセット120からのウエハ41の繰り出しが不能なため、LCD表示部192に廃棄ボックス142が満杯である旨を表示させ、ウエハ満杯センサ143からの信号による廃棄ボックス142の満杯の判定が否定されるまで待機する。否定判定のときは、チューブ8、9の正常な切断及び接合動作が可能なため、LCD表示部192にチューブ8、9のセットを促す旨を表示させ、接合スイッチ193が押下されるまで待機する。
【0075】
オペレータは、第1クランプ6の蓋体24及び第2クランプ7の蓋体34を開けて、溝22、23、32、33にチューブ8、9を装填する。第1クランプ6の蓋体24及び第2クランプ7の蓋体34のいずれか一方を開けると、第1クランプ6のシャフト19が第2クランプ7の長穴40に挿入されているため、他方の第1クランプ6の蓋体24又は第2クランプ7の蓋体34も連動して略同時に開かれる。該装填されたチューブ8、9に対して、第1クランプ6の蓋体24及び第2クランプ7の蓋体34を図2の矢印F方向に閉じる操作を行う(図12も参照)。第1クランプ6の蓋体24及び第2クランプ7の蓋体34のいずれか一方を閉じると、第1クランプ6のシャフト19が第2クランプ7の長穴40に挿入されているため、他方の第1クランプ6の蓋体24又は第2クランプ7の蓋体34も連動して略同時に閉じられる。なおも蓋体24及び蓋体34の閉じ操作を継続すると、チューブ押し込み部材10の先端部分12が最初にチューブ8、9に当接して、当接位置の第1の位置P1で平行(並列)状態に載置されたチューブ8、9を扁平状態に変形させる(図13(A)参照)。この時点で、チューブ8、9のチューブ押し込み部材10により押し込まれた部分に内在している血液は、図13(A)の矢印c乃至矢印d方向に排除されるように押し出される。
【0076】
引き続き、蓋体24(及び蓋体34)の閉じ動作を継続して、第1クランプ6の爪部材29を係止ローラ20に係止させ蓋体24が開かないようにロックがなされると、第1クランプ6が、第1の位置P1に隣接する第2の位置P2において、チューブ8、9を所定の押圧力で扁平状態に押圧保持する。このとき、第1クランプ6に接して配置されているチューブ押し込み部材10もまた、図示しないバネの付勢力により第1クランプ6同様にチューブ8、9を殆ど潰し込んだ状態(殆どチューブ内部に血液がない状態)で押圧している(図13(B)参照)。
【0077】
図15(A)は、溝22、23に装填されたチューブ8、9に対して第1クランプ6の蓋体24が閉じられ、チューブ押し込み部材10の先端部分12がチューブ8、9を扁平状態に押圧する直前の状態を示している。図15(B)に示すように、オペレータにより蓋体24の閉じ動作が継続されると、チューブ押し込み部材10の先端部分12はチューブ8、9を扁平状態に押圧する。このとき、第1クランプ6及び第2クランプ7によるチューブ8、9の押圧動作も連動、継続して行われる。
【0078】
また、第2クランプ7は、シャフト19の長穴40への挿入により第1クランプ6の動きに連動するため、第1クランプ6の蓋体24を閉じる動作と略同時に第2クランプ7の蓋体34も閉じる動作が行われ、第2クランプ7の爪部材39は、係止ローラ30に係止され、蓋体34が開かないようにロックがなされると、第1クランプ6と同様にチューブ押し込み部材10に接して配置されている第2クランプ7が、第1の位置P1に隣接する位置であって、第1の位置P1を挟んで第2の位置P2に対向する第3の位置P3において、チューブ8、9を所定の押圧力でチューブ8、9を殆ど潰し込んだ状態(殆どチューブ内部に血液がない状態)で扁平状態に押圧保持する。これにより、第1の位置P1を挟んで第2の位置P2から第3の位置P3に至るチューブ8、9内、換言すると、チューブ押し込み部材10を挟んで、第1クランプ6により押圧された箇所から第2クランプ7により押圧された箇所に相当するチューブ8、9内、の血液は殆ど排除された状態となり(図13(B)参照)、チューブ8、9の押圧保持動作が完了する。図17(A)、図18(A)は、この状態でのカム158及びカム157、159の動作状態を示している。
【0079】
オペレータが装置1の接合スイッチ193を押下すると、CPU191はスイッチ入力部を介して信号を取り込み、ウエハ繰出機構100によるウエハカセット120からのウエハ41の繰り出し動作を実行する。
【0080】
上述したように、ウエハ送りモータ110の回転駆動により移動するウエハ繰り出し部材115は、ウエハ繰出開始位置とウエハ繰出終了位置との間をウエハ送りモータ110の正逆転駆動により往復動する。このとき、CPU191は、パルスモータ110の正転駆動時におけるウエハ繰り出し部材115のウエハ繰出開始位置からウエハ繰出終了位置までの間を、パルスモータ110の回転駆動に直結している回転盤130の回転量から透過型センサ131により1パルス毎に検出している。つまり、CPU191は、ウエハ繰出開始位置に位置付けられたウエハ繰り出し部材115の被検片119を透過型センサ132により検出して、それを基点としてウエハ繰り出し部材115の移動量を回転盤130の回転量から透過型センサ131により検出することで、ウエハ繰り出し部材115がどの位置にあるかを把握している。
【0081】
CPU191は、ウエハ繰り出し部材115がウエハ繰出開始位置からウエハ繰出終了位置方向へ所定量(本例では30mm、図15の二点鎖線で示すウエハ繰り出し部材15参照)以上移動しているか否かを判断し、否定判断のときは、ウエハ繰り出し部材115の位置把握を続行する。なお、本例では、ウエハ41の繰り出しのためのウエハ繰り出し部材115の移動量は約55mmに設定されている。
【0082】
肯定判断のときは、予め設定されたパルス数と実際に検出されたパルス数とに所定パルス(例えば、20パルス)以上の差異が生じたか否か、すなわち、予め設定されたパルス数に比して実際に検出されたパルス数が20パルス以上少なく検出された否かを判断し、肯定判断ときはウエハ41の繰出不良と判定してリセットボタンが押下されるまで待機し、否定判断のときは繰出正常と判定する。
【0083】
CPU191は、ウエハ41の繰出不良と判定すると、ウエハ送りモータ110の駆動を停止して、LCD表示部192にエラー表示(ウエハ繰出不良)とウエハの除去を促す表示を行うと共に、カムモータ150を、一連のチューブ接合動作を行うときの正転駆動とは反対に所定量逆転駆動させ、カム158を所定の位置に位置付けることで、カム158に形成された切欠部178をベアリング172に対向させる(図17(C)参照)。これにより、ベアリング172は切欠部178に進入可能な状態、すなわち、第2クランプ7を図3の矢印Bの右方向(チューブ接合時の第2クランプ7の移動方向とは反対方向への移動が許容される方向)の退避位置への移動が許容される(本例では、約4mmの移動が許容されている)。このとき、回転盤197は透過型センサ195、196の両者が遮光された状態となる(図6(C)参照)。
【0084】
オペレータは、第2クランプ7を退避位置へ移動させることで、第1クランプ6との間に生じる空間部にアクセスして、ウエハ41の重送などによる繰出不良を起こしたウエハを取り除くことができ(図17(D)参照)、エラー解除動作を終了した後、リセットスイッチを押下することにより、CPU191はその信号を取り込み、モータ110、150を駆動して、各種の機構部を初期状態に復帰させる。
【0085】
CPU191は、繰出正常と判定すると、切断/接合処理ルーチンを実行する。切断/接合処理ルーチンでは、まず、予め設定され初期設定処理でROMからRAMに展開された初期値デューティD0をデューティDとし、ウエハ電力制御部530に報知する。この報知を受けたウエハ電力制御部530は、初期値デューティD0で電源部から定格28Wの電力をウエハ41に供給させる。これにより、ウエハ41への通電が開始される。次に、CPU191は、所定の時間(例えば、16.6ミリ秒)が経過したかを判断し、否定判断のときは、ウエハ定電力制御部520と共働して電源部(24V電源)の電力デューティ制御を行うための割込サブルーチンを実行し、肯定判断のときは、チューブ8、9の切断/接合処理を行うためのメインサブルーチンを実行する。従って、CPU191は、初期値デューティD0をウエハ電力制御部530に報知した後、時分割により、所定の時間毎に割込サブルーチンとメインサブルーチンとを実行する。
【0086】
図10に示すように、割込サブルーチンでは、ステップ606、608、610において、それぞれ、A/Dコンバータ210から、ウエハ電圧Vv、ウエハ電流モニタ電圧Vi、第2の基準電圧V2のデジタル変換値Dv、Di、D2を取り込む。次いでステップ612で補正式V=14.25×Dv/D2によりデューティ演算用の電圧値Vを算出し、ステップ614で補正式I=4.965×Di/D2によりデューティ演算用の電流値Iを算出する。次のステップ616では、ステップ612、614で算出した電圧値V、電流値Iを用いて、(デューティD1)=(定格電力のデジタル値P)/(電圧値V×I)を算出し、ステップ618において、ステップ616で算出したデューティD1をデューティDとして、ウエハ電力制御部530に報知する。この報知を受けたウエハ電力制御部530は、デューティD1で電源部から定格28Wの電力をウエハ41に供給させる。次にステップ620において、内部時計により、ウエハ41への通電開始(上述した時刻s0)から一定時間(本例では7.1秒)が経過したか否かを判断し、否定判断のときはステップ606へ戻り、肯定判断のときは割込サブルーチンを終了する。これにより、電源部からウエハ41に供給される電力デューティDは割込時間(本例では16.6ミリ秒)毎に変化し、ウエハ41は図9に示した28W特性曲線に従って昇温する。
【0087】
一方、メインサブルーチンでは、上述したように、ウエハ41の通電開始からから所定時間(本例では5.1秒)が経過したか否かを判断することで、ウエハ41がチューブ8、9を溶断可能な所定温度(280°C)に到達したかを判定し、否定判断のときは所定時間が経過する間で待機し、肯定判断のときはカムモータ150を駆動させる。これにより、カム158及びカム157、159が所定方向に回転し始めるが、カム158は図17(A)に示した状態を所定時間維持している。この間、ウエハホルダ140はカム159の回転により揺動して第1クランプ6及び第2クランプ7の間で所定距離上昇する(図18(B)参照)。この上昇動作によりコロ147も上昇し、コロ147に当接する支持部材突出部14も上昇する。
【0088】
図14(A)に示すように、ウエハホルダ140の一部を形成し先端にコロ147を有する突起部148が第1の位置P1でチューブ8、9を押圧していたチューブ押し込み部材10の一部を押し上げると共に、ウエハ41が第1の位置P1と第2の位置P2との間(第1クランプ6と第2クランプ7との間)に進出して、ウエハホルダ140に保持され加熱されたウエハ41が2本のチューブ8、9を溶断する。このとき、チューブ押し込み部材10はウエハ41に対して退避位置に位置付けられた状態となる(図15(C)も参照)。この状態で、カム157は図18(A)に示した状態から回転するが(図18(B)参照)、第1クランプ6(支持台164)は図17(A)に示した第2クランプ7(支持台174)同様に不動である。
【0089】
CPU191は、なおもカムモータ150の駆動を続行するが、ウエハホルダ140は、図18(B)に示す状態を維持しながらも、第1クランプ6(支持台164)はカム157の回転により図18(C)の左側の図の矢印a方向(図3の矢印Aの上側に向かう方向、図19の矢印X方向)に所定距離(8mm)移動する。この時点で切断されたチューブの相対位置が変化して、接合される端部同士が対向することになる。このとき、図19に示すように、チューブ8、9を切断したウエハ41は、その切断位置に保持されて不動の状態をなしている。この際に、第1クランプ6のシャフト19は、第2クランプ7の長穴40に挿入された状態で、長穴40内を移動する。
【0090】
続いて、カム159の回転に伴ってウエハホルダ140は揺動して下降するが(図18(C)参照)、チューブ押し込み部材10は、上述した退避位置に保持された状態を維持する(図14(B)参照)。一方、カム158に隣接するベアリング172が鍔部177の形状に沿って摺動することで、第2クランプ7(支持台174)は図17(B)の矢印b方向(図3の矢印Bの左側に向かう方向、図14(C)の矢印Y方向)に所定距離(0.6mm)移動する。CPU191は、図6(B)に示すように、切欠き198が透過型センサ196に対向する位置に位置付けられ、所期の状態(第1クランプ6と第2クランプ7とがずれた状態に位置付けられた状態)を確認しカムモータ150の駆動を停止させる。そして、LCD表示部192にチューブ8、9の接合処理の完了を表示させて、切断/接合ルーチンを終了する。
【0091】
オペレータは、接合処理が完了したチューブを装置本体から取り除くために蓋体24、34の先端側に位置する板片28、38のいずれか一方を持ち上げて、係止機構26(又は36)による爪部材29(又は39)の係止ローラ20(又は30)に対する係止を解除すると、図2に示すように、蓋体24(又は30)は開放状態となる。このとき、蓋体24及び蓋体34は、相対位置が変化した状態であるが、シャフト19が長穴40に挿入されているため、蓋体24(又は34)を持ち上げると、蓋体34(又は24)も連動して略同時に持ち上げられる。なお、蓋体24(又は34)の開放動作に連動して、チューブ押し込み部材10によるチューブ8、9の押し込みも解除される。
【0092】
(作用等)
次に、本実施形態のチューブ接合装置1の作用等について説明する。
【0093】
本実施形態のチューブ接合装置1では、作動電源を基準電圧(5V±5%)とし式(5)〜(7)に示した従来のA/Dコンバータに代えて、演算制御部で式(10)〜(12)によりシャントレギュレータ230で生成された高精度基準電圧(2.5V±2%)のデジタル値を基準にウエハ電源電圧Vv、ウエハ電流モニタ電圧Vi、ホルダ温度モニタ電圧Vhのデジタル値Dv、Di、Dhを算出(演算)するので、従来のA/Dコンバータに比べ、高精度のデジタル変換値を得ることができる。従って、演算処理部は、回路電源電圧Vccに変動があっても、計測対象のウエハ41に流れる電流及びウエハ41に加わる電圧(ステップ606、608参照)、並びに、ウエハホルダ140に埋設されたサーミスタの電圧(温度、ステップ702、704参照)を正確に把握することができる。
【0094】
また、本実施形態のチューブ接合装置1では、演算処理部により高精度のデジタル値Dv、Diで算出(演算)されるデューティD1でウエハ電力制御部530が24V電源からウエハ41に供給する電力をデューティ制御する(ステップ612〜618参照)ので、ウエハ41は図9に示した28W特性曲線に従って温度が上昇し、通電開始から所定時間(5.1秒)経過時のウエハ41の温度を一定の280°Cに確保することができる。また、演算処理部により高精度のデジタル値Dhによりヒータ144をオン・オフ制御し(ステップ708、710参照)、ウエハホルダ140の温度を一定(78°C)としウエハ41を約65°Cの一定温度に予備加熱するので、通電開始から一定温度(280°C)となるまでの所定時間を短くすることができる。
【0095】
このため、本実施形態のチューブ接合装置1によれば、チューブ8、9の切断・接合動作を短時間(ウエハ41を予備加熱)かつ確実(ウエハ41が所定時間後に一定温度に到達)に行うことができる。また、図8に示したように、A/D変換回路300は、高精度の割には比較的簡単乃至単純であり、他の高精度デジタル変換値を得る技術に比べ、低コストでA/D変換回路を構成することができる。
【0096】
なお、本実施形態では、電圧、電力、時間等を具体的に例示したが、本発明はこれらに限定されないことは云うまでもない。また、A/Dコンバータ210に10ビットのものを例示したが、式(1)〜(12)はA/Dコンバータのビット数に応じて変更可能であり、本発明は例示した式やビット数のものに制限されないことも論を待たない。
【0097】
また、本実施形態では、分圧手段として分圧抵抗R1、R2を例示したが、中間タップのある1個の分圧抵抗や2個以上の分圧抵抗を用いてウエハ41に流れる電流を分圧するようにしてもよく、また、分圧手段には、OPアンプや抵抗で構成される差動増幅回路等を用いるようにしてもよい。更に、本実施形態では、変換手段に抵抗Riを例示したが、本発明はこれに限らず、例えば、ホール素子等を用いるようにしてもよい。更に、本実施形態では、高精度電圧生成手段にシャントレギュレータ230を例示したが、本発明はこれに限定されず、例えば、シリーズレギュレータやスイッチングレギュレータ等のDC−DCコンバータを用いるようにしてもよい。
【0098】
そして、本実施形態では、発明の把握が容易なように、ステップ704、706(図11参照)でデジタル値Dhを更にテーブルで温度変換する例を示したが、デジタル値Dhをそのまま用いてヒータ144のオン・オフ制御をするようにしてもよい。また、本実施形態では、ウエハ41の電力制御を制御部190の演算処理部及びウエハ電力制御部530で分担し、ウエハホルダ140のオン・オフ制御を演算処理部及びホルダ温調制御部510で分担する例を示したが、これらの制御を、演算処理部を介さず、ウエハ電力制御部530やホルダ温調制御部510が実行するようにしてもよい。
【0099】
以上説明したように、本発明の第1の態様によれば、電圧変動が生じやすい基準電圧に代えて、基準電圧より低電圧かつ高精度の電圧のデジタル値に基づいて演算手段で計測対象のアナログ電圧のデジタル値が演算されるので、作動電圧と同一の基準電圧を基準とした場合に比べ高精度に計測対象のアナログ電圧のデジタル値を演算することができる、という効果を得ることができる。
【0100】
また、本発明の第2の態様によれば、電圧変動が生じやすい基準電圧に代えて、基準電圧より低電圧かつ高精度の電圧のデジタル値に基づいて演算手段で変換電圧及び引加電圧のデジタル値が演算されるので、作動電圧と同一の基準電圧を基準とした場合に比べ高精度に変換電圧及び引加電圧のデジタル値を演算でき、電力制御部はA/D変換回路からの変換電圧及び引加電圧のデジタル値に応じて切断部への加熱用電力を高精度に制御することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態のチューブ接合装置の外観斜視図である。
【図2】実施形態のチューブ接合装置のクランプを示す斜視図である。
【図3】チューブ接合装置の一部破断平面図である。
【図4】ウエハホルダの拡大側面図である。
【図5】駆動伝達機構の拡大平面図である。
【図6】駆動軸に固着された回転盤及び透過型センサを示す側面図である。
【図7】制御部及び制御系各部の概略ブロック図である。
【図8】A/D変換回路を示し、(A)はブロック図、(B)は回路図である。
【図9】横軸を時間、縦軸を温度としたときのウエハへ供給される電力の時間温度特性線図である。
【図10】制御部のCPUが実行する切断/接合処理ルーチンの割込サブルーチンのフローチャートである。
【図11】制御部のCPUが実行する温度制御ルーチンのフローチャートである。
【図12】チューブ接合装置の主要部の動作その1を示す説明図であり、第1クランプ及び第2クランプの蓋体を閉じ始めた状態を模式的に示す正面図である。
【図13】チューブ接合装置の主要部の動作を模式的に示す正面図であり、(A)は動作その2、(B)は動作その3を示す。
【図14】チューブ接合装置の主要部の動作を模式的に示す正面図であり、(A)は動作その4、(B)は動作その5、(C)は動作その6を示す。
【図15】チューブ押し込み部材の退避動作を示す側面図であり、(A)はチューブ押し込み部材の先端部分がチューブを扁平状態に押圧する直前の状態を示し、(B)はチューブ押し込み部材の先端部分がチューブを扁平状態に押圧した状態を示し、(C)はウエハが扁平状態に保持されたチューブを切断する状態を示す。
【図16】ウエハを保持した保持部材を下降させてウエハを切断位置から退避させる状態を示す側面図である。
【図17】第2クランプの移動を規制するカムの近傍の拡大平面図であり、(A)は初期状態、(B)は接合動作完了状態、(C)切欠部がベアリングに対向した状態、(D)は第2クランプを退避位置へ移動させた状態を示す。
【図18】第1クランプの移動を規制するカム及びウエハホルダの移動を規制するカムの側面図であり、(A)は初期状態、(B)は切断動作状態、(C)は切断終了乃至接合開始状態を示す。
【図19】チューブ接合処理でのチューブ接合装置の主要部の動作を示す斜視図である。
【符号の説明】
1 チューブ接合装置
6 第1クランプ(保持部)
7 第2クランプ(保持部)
8 チューブ
9 チューブ
41 ウエハ(切断部)
140 ウエハホルダ(切断部ホルダ)
144 ホルダ用ヒータ
150 カムモータ(保持部移動ユニットの一部)
191 CPU(演算手段、電力制御部の一部)
200 駆動伝達機構(保持部移動ユニットの一部)
210 A/Dコンバータ(A/D変換器)
220 5V電源(作動電圧生成手段)
230 シャントレギュレータ(高精度電圧生成手段)
240 24V電源
300 A/D変換回路
508 ホルダ温度センサ(温度センサ)
530 ウエハ電力制御部(電力制御部の一部)
R1、R2 分圧抵抗(分圧手段)
Ri 抵抗(変換手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an A / D conversion circuit and a tube joining apparatus, and in particular, an A / D conversion circuit for digitally converting an analog voltage, and using this A / D conversion circuit, a flexible tube is heated and melted. The present invention relates to a tube joining apparatus that joins aseptically.
[0002]
[Prior art]
Conventionally, when joining a blood collection bag and blood component bag in a blood transfusion system or exchanging a dialysate bag and a waste solution bag in continuous peritoneal dialysis (CAPD), it is necessary to join the tubes aseptically. It becomes. As this kind of tube joining device, a pair of holders (blocks) that can hold two tubes to be connected in parallel, and a cutting plate (plate-like heating that is arranged between both holders and can move across the tubes) Element, wafer), the cutting plate is heated and moved in a state where the two tubes are held in parallel and in opposite directions in the grooves formed in both holders, and then the tubes are blown out. Are moved in the radial direction (arranged direction) of the tubes, the cut ends of the tubes to be joined are matched with each other, the cutting plate is moved to the retracted position, and the two tubes are fused (for example, , See Patent Document 1).
[0003]
Moreover, in order to improve the reliability of tube joining using the tube joining method similar to the said tube joining apparatus, it has the 1st clamp and 2nd clamp which hold | maintain two tubes in a parallel state, 1st clamp Is moved in parallel with the second clamp, that is, the first clamp moving mechanism that performs only the forward / backward movement and the second clamp is moved only in the direction of approaching / separating from the first clamp. The thing provided with the 2nd clamp movement mechanism is also indicated (for example, refer to patent documents 2).
[0004]
Furthermore, the basic principle of joining and aseptically heating and melting tubes together using a cutting plate is the same, but in addition to the purpose of being able to join the tubes without leaking with the liquid in the tube sealed, the tubes Two tube holders having a U-shaped groove (first and second tubes) are used as a tube joining device in which the amount of movement of the tube when connecting the tubes is small and the device and the components of the device can be miniaturized. The two tubes to be connected to the holder) are accommodated and held in contact with each other (overlapped), and both tubes are cut with a heated cutting plate, and then the second tube holder with respect to the first tube holder Also known is a tube joining device that rotates 180 ° relative to each other, operates so that the cut end faces of both tubes are exchanged and aligned with each other, and retracts the cut plate to fuse the tubes together. Are (e.g., see Patent Document 3).
[0005]
In any of these conventional apparatuses, a cutting plate that cuts a tube in a heated state is usually used by being replaced each time so that it is disposable for each joining of the tube. In order to melt the tube in a heated state when the tube is cut, a configuration is used in which power is supplied and heat is generated by energization. In such a configuration, it is necessary to perform appropriate temperature control on the cutting plate in order to reliably cut the tube, and the correction temperature is calculated based on the output of the temperature detection means such as a thermocouple, and this calculation is performed. A method of controlling the constant voltage source so as to modulate the energization pulse width based on the deviation between the corrected temperature and the target heating temperature of the cutting plate (see, for example, Patent Document 2), or applying a constant current to the cutting plate, The above voltage and time are repeated so that the voltage or time required to achieve the desired heating temperature is calculated from the measured initial voltage value of the cut plate and the application time, and the temperature of the heated cut plate is predicted. There has been known a tube joining apparatus using a method of measuring (for example, Patent Document 4).
[0006]
Furthermore, when performing the above-described temperature control, not only the tube bonding apparatus but also various known electronic devices use an A / D converter that converts an input analog voltage into a digital voltage. However, an error may occur in the output voltage of the A / D converter due to fluctuations in the power supply voltage, and it is necessary to correct the output value from the A / D conversion converter in order to perform predetermined control and the like appropriately and reliably. . For this reason, a change caused by the change in the power supply voltage Vcc is detected from the A / D converted reference voltage Vref, and the output of the Vref system measurement circuit among the outputs of the A / D converter is detected according to the result. A technique including processing means (CPU) for correcting a signal corresponding to the above is disclosed (for example, see Patent Document 5).
[0007]
[Patent Document 1]
Japanese Patent Publication No. 61-30582
[Patent Document 2]
JP-A-6-78971
[Patent Document 3]
JP-A-9-154920
[Patent Document 4]
JP 59-64034 A
[Patent Document 5]
JP-A-11-298326
[0008]
[Problems to be solved by the invention]
However, in the conventional tube joining device having the temperature control of the cutting plate, the device of Patent Document 2 increases the cost by adopting a thermocouple that detects the heating temperature of the cutting plate, and further functions the thermocouple with high accuracy. It is difficult to obtain the accuracy of mounting on the cutting plate for (temperature detection), and the thermocouples have different characteristics. Therefore, it is necessary to adjust each thermocouple in the manufacturing process, and the manufacturing cost must be high. Absent. Moreover, in the apparatus of patent document 4, the temperature of a cutting plate is estimated from resistance value using the resistance value temperature change of the cutting plate as a resistor, and the temperature of a cutting plate is actually measured and controlled. Therefore, there is a problem that it is difficult to perform reliable temperature control. That is, since the control target is a predicted temperature that is not actually measured, it is difficult to say that the reliability of the control accuracy is high.
[0009]
Further, in the output value error correction of the A / D converter used in the tube joining apparatus, in the A / D converter of Patent Document 5, the stabilized power source is a power source to which a Vref measurement circuit as a drive circuit is connected. The load (current consumption) due to the Vref measurement circuit and the like becomes large, and in order for such a configuration to function normally, a stabilized power source having a large current capacity and high voltage accuracy must be employed. Therefore, the power supply circuit is large and complicated, so that the size and cost of the apparatus cannot be avoided.
[0010]
In view of the above-described case, the present invention has an A / D conversion circuit capable of obtaining a high-accuracy output even with a simple configuration, and appropriate temperature management of a cutting plate having the A / D conversion circuit for melting and cutting a tube. It is an object of the present invention to provide a tube joining apparatus that can be performed in a simple manner.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, a first aspect of the present invention is an A / D converter that converts an input analog voltage into a digital value, and an operating voltage generator that generates an operating voltage of the A / D converter. Means, a high-accuracy voltage generating means for generating a voltage that is lower and more accurate than the voltage generated by the operating voltage generating means, and a digital of the analog voltage to be measured according to the output from the A / D converter An A / D converter circuit that calculates a value, wherein the A / D converter uses the operating voltage generated by the operating voltage generator as a reference voltage, and The analog voltage and the voltage generated by the high-accuracy voltage generation unit are converted into digital values, and the calculation unit calculates the analog voltage of the measurement target based on the digital value of the voltage generated by the high-accuracy voltage generation unit. Digital Calculating a, characterized in that.
[0012]
In the first aspect, in order to ensure the operation of the A / D converter, the voltage generated by the operating voltage generating means is used as the operating voltage of the A / D converter, and the operating voltage is input as the reference voltage. At the same time, a voltage that is lower than the voltage generated by the high-accuracy voltage generator and generated by the operating voltage generator is input with high accuracy. The analog voltage to be measured by the A / D converter and the voltage generated by the high-accuracy voltage generation means are converted into digital values, and the measurement target is based on the digital value of the voltage generated by the high-precision voltage generation means by the arithmetic means. The digital value of the analog voltage is calculated. According to the first aspect, the digital value of the analog voltage to be measured is calculated by the calculation means based on the digital value of the voltage that is lower than the reference voltage and highly accurate instead of the reference voltage that easily causes voltage fluctuation. Therefore, the digital value of the analog voltage to be measured can be calculated with higher accuracy than when the same reference voltage as the operating voltage is used as a reference.
[0013]
In the first aspect, when the analog voltage to be measured is made up of at least two kinds of voltages representing the first converted voltage obtained by converting the current flowing through the measurement object into a voltage and the voltage to be measured, the computing means Since the calculated digital value includes information on the current and voltage flowing through the measurement target, the digital value of the power consumption of the measurement target can be obtained with high accuracy. Further, if the analog voltage to be measured is the second converted voltage obtained by converting the temperature of the measurement target into a voltage, the temperature of the measurement target can be calculated with high accuracy. The calculation means preferably calculates the digital value of the analog voltage to be measured based on the digital value of the voltage generated by the high-accuracy voltage generation means. A shunt regulator can be used as the high-accuracy voltage generating means. At this time, the shunt regulator may generate a low-voltage and high-accuracy voltage from the voltage generated by the operating voltage generation unit.
[0014]
Moreover, in order to solve the said subject, the 2nd aspect of this invention is the cutting | disconnection part which cut | disconnects the holding | maintenance part which hold | maintains at least 2 flexible tubes, and the tube hold | maintained at the said holding | maintenance part in a heating state. A holding unit moving unit that moves the holding unit so that the ends to be joined closely contact each other by changing the position of the cut tube, and converts the input analog voltage into a digital value. An A / D converter that performs operation, an operation voltage generation unit that generates an operation voltage of the A / D converter, and a high-accuracy voltage generation that generates a voltage that is lower and more accurate than the voltage generated by the operation voltage generation unit And an arithmetic means for calculating a converted voltage obtained by converting a current flowing through the cutting unit into a voltage and a digital value of an applied voltage of the cutting unit according to an output from the A / D converter. D conversion circuit and front And a power control unit that controls heating power to the cutting unit in accordance with an output from the A / D conversion circuit, wherein the A / D converter includes the operating voltage generating unit. And the conversion voltage, the applied voltage, and the voltage generated by the high-accuracy voltage generation means are converted into digital values, and the calculation means generates the high-accuracy voltage generation The digital value of the conversion voltage and the applied voltage is calculated based on the digital value of the voltage generated by the means.
[0015]
In the second aspect, at least two flexible tubes are held by the holding unit, the tube held by the holding unit by the cutting unit is cut in a heated state, and the position of the tube cut by the holding unit moving unit is determined. The holding portion is moved so that the end portions to be joined closely contact each other, and the tubes are joined to each other. A voltage generated by the A / D converter using the operating voltage generated by the operating voltage generating means as a reference voltage, the applied voltage, and the voltage generated by the high-accuracy voltage generating means in order to bring the cutting portion into an appropriate heating state. Is converted into a digital value, and the digital value of the converted voltage and the applied voltage is calculated based on the digital value of the voltage generated by the high-accuracy voltage generating means by the calculating means, and the power control unit outputs the digital value from the A / D conversion circuit. The heating power to the cutting part is controlled according to the digital values of the conversion voltage and the applied voltage. According to the second aspect, instead of the reference voltage that is likely to cause voltage fluctuation, the digital value of the converted voltage and the applied voltage is calculated by the calculation means based on the digital value of the voltage that is lower than the reference voltage and highly accurate. Therefore, the digital value of the converted voltage and the applied voltage can be calculated with higher accuracy than when the same reference voltage as the operating voltage is used as a reference, and the power control unit converts the converted voltage and the applied voltage from the A / D converter circuit. The heating power to the cutting part can be controlled with high accuracy according to the digital value.
[0016]
In the second aspect, the A / D converter circuit has voltage dividing means for dividing the voltage of the heating power to the cutting section, and the A / D converter applies the voltage divided by the voltage dividing means. You may make it convert into a digital value as a voltage. In this case, the A / D conversion circuit has conversion means for converting the current of the heating power to the cutting section into voltage, and the A / D converter converts the voltage converted by the conversion means into a digital value as a conversion voltage. You may make it convert into. At this time, the power control unit may perform duty control on the heating power to the cutting unit according to the converted voltage output from the A / D conversion circuit and the digital value of the applied voltage. The cutting unit holder that holds the cutting unit, a heater that heats the cutting unit holder to a predetermined temperature, and a temperature sensor that detects the temperature of the cutting unit holder are further included, and the A / D converter further includes a temperature sensor. If the voltage is converted into a digital value, the digital value of the voltage of the temperature sensor is calculated by the calculation means, so that the temperature of the cutting portion holder can be grasped with high accuracy. At this time, power higher than the voltage generated by the operating voltage generating means may be supplied to the cutting unit and the heater, and the voltage generated by the operating voltage generating means may be applied to the temperature sensor.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a tube joining apparatus that cuts and joins two tubes filled with blood will be described with reference to the drawings.
[0018]
(Constitution)
As shown in FIG.1 and FIG.2, the tube joining apparatus 1 of this embodiment is the 1st clamp 6 and the 2nd clamp 7 as a holding part which hold | maintains the two flexible tubes 8 and 9 substantially parallel, And a tube pushing member 10 disposed adjacent to the first clamp 6 and pressing the tubes 8 and 9 in a flat shape between the first clamp 6 and the second clamp 7. The tube joining apparatus 1 is accommodated in the casing so that the protruding member shown in FIG. 1 is hidden (see FIG. 3).
[0019]
As shown in FIG. 2, the first clamp 6 serves as the upper jaw and presses the tubes 8 and 9 flatly, and the first upper jaw 50 serves as the lower jaw and is pressed flatly by the first upper jaw 50. And a first lower jaw portion 70 that supports the first lower jaw portion 70. On the other hand, the second clamp 7 becomes the upper jaw and supports the second upper jaw part 60 that presses the tubes 8 and 9 flatly, and the second clamp 7 that supports the tubes 8 and 9 that become the lower jaw and pressed flatly by the second upper jaw part 60. And a lower jaw 80.
[0020]
The tubes 8 and 9 are made of, for example, a soft thermoplastic resin such as soft polyvinyl chloride and have flexibility (softness), and blood is sealed in the tubes. These tubes 8 and 9 have substantially the same shape with respect to the inner diameter, the outer diameter, and the length before the blood is sealed. The first clamp 6 includes a holder 21 that holds the tubes 8 and 9, and a lid 24 that is pivotally attached to a rear end portion of the holder 21 by a hinge 25 and can be opened and closed.
[0021]
The holder 21 is formed with a pair of grooves 22 and 23 that are parallel to each other and have a U-shaped cross-section into which the two tubes 8 and 9 are loaded, respectively. The width of the grooves 22 and 23 is preferably equal to or less than the outer diameter of the tubes 8 and 9 in the natural state, and the operator (operator) places the tubes 8 and 9 on the back side of the grooves 22 and 23 (see FIG. 2 is pushed into the grooves 22 and 23. The lid 24 has a function of covering the grooves 22 and 23 and fixing the tubes 8 and 9 loaded in the grooves 22 and 23 so as not to be detached when the lid 24 is closed.
[0022]
Further, the first clamp 6 has a locking mechanism 26 for holding the lid 24 in a closed state. The locking mechanism 26 includes a plate piece 28 that is rotatably attached to the lid body 24 via a hinge 27 at the tip of the lid body 24, a claw member 29 that is formed to protrude from the inner surface of the plate piece 28, The claw member 29 is configured by a locking roller 20 rotatably disposed at the tip of the holder 21, and with the lid 24 closed, the plate piece 28 is rotated in the direction of arrow F in FIG. It is possible to lock the tip portion to the locking roller 20. The plate piece 28 is fixed with a shaft 19 projecting from the end face toward the second clamp 7.
[0023]
A tube pushing member 10 is continuously provided on the second clamp 7 side of the first clamp 6. The first clamp 6 has a saw blade-shaped pressure closing member 61 fixed to the side surface of the holder 21, and a saw blade-shaped pressure closing member 62 fixed to the side surface of the lid 24 and meshing with the pressure closing member 61. ing. The pressure closing member 61 has inclined surfaces 63 and 64 at positions corresponding to the grooves 22 and 23, respectively. The pressure closing member 62 is parallel to the inclined surfaces 63 and 64 and at a position separated by a predetermined distance. The inclined surfaces 65 and 66 are formed (see FIG. 16). For this reason, when the lid body 24 is closed in a state where the tubes 8 and 9 are loaded in the grooves 22 and 23, the pressure closing members 61 and 62 are engaged with each other, and the tube 8 is pressed and closed by the inclined surfaces 63 and 65. The tube 9 is closed by 66. Such a configuration of the first clamp 6 suppresses misalignment and distortion when joining the cut ends of the tubes 8 and 9 described later, and ensures an easy and proper connection.
[0024]
On the other hand, the second clamp 7 is disposed adjacent to the side of the first clamp 6 via the tube pushing member 10. Similarly to the first clamp 6, the second clamp 7 also has a holder 31 that is formed with a pair of grooves 32 and 33 and holds the tubes 8 and 9, and a lid 34 that rotates with respect to the holder 31 and opens and closes. In addition, a locking mechanism 36 is provided. These configurations are similar to the first clamp 6, the locking mechanism 36 has a hinge 37, a plate piece 38, and a claw member 39, and the holder 31 has a hinge 35 and a locking roller 30. . A long hole 40 into which the shaft 19 can be inserted is formed on the end face of the plate piece 38 on the first clamp 6 side, and this long hole 40 is a shaft that accompanies the movement of the first clamp 6 in the tube joining operation described later. It has a function that allows 19 movements.
[0025]
The second clamp 7 is a saw blade-shaped pressure closing member 71 (not shown) fixed to the side surface of the holder 31 on the holder 21 side, and is fixed to the side surface of the lid body 34 on the lid body 24 side. It is comprised with the press-closing member 72 of the saw blade shape which meshes | engages. The pressure closing member 71 has inclined surfaces 73 and 74 at positions corresponding to the grooves 32 and 33, respectively (see FIG. 16). The pressure closing member 72 is parallel to the inclined surfaces 73 and 74, respectively, and has a predetermined shape. Inclined surfaces 75 and 76 are formed at positions spaced apart from each other.
[0026]
The first clamp 6 and the second clamp 7 are usually arranged such that the grooves 22 and 32 and the grooves 23 and 33 are aligned (aligned in a straight line).
[0027]
The tube pushing member 10 is provided integrally with the first clamp 6 so as to be movable. Similar to the first clamp 6 and the second clamp 7, the tube pushing member 10 has a tip portion 12 (corresponding to the pressure-closure members 62 and 72) that is serrated and formed with inclined surfaces 15 and 16. 9 is different from the first clamp 6 and the second clamp 7 in that it does not have the pressure-closure members 61 and 71 that face each other with 9 therebetween. Further, the distal end portion 12 of the tube pushing member 10 has a sawtooth shape of the same shape corresponding to the pressure closing member 62 of the first clamp 6 and the pressure closing member 72 of the second clamp 7. It is positioned at a position slightly protruding from the pressure closing member 62.
[0028]
A support member 11 having an L-shaped cross section is fixed to the tube pushing member 10 with screws. The support member 11 has a support member protrusion 14 that protrudes downward. The support member 11 is provided with a U-shaped slider (not shown), and the slider is configured to be slidable along a rail (not shown). The rail (not shown) is fixed to a rail support member (not shown), and the rail support member is screwed to the lid 24. For this reason, the tube pushing member 10 is integrated with the first clamp 6 and can be moved relative to the first clamp 6. In addition, since the front-end | tip part 12 of the tube pushing-in member 10 protrudes from the press-closing member 62 of the 1st clamp 6, when the cover body 24 is closed, it pushes in the tubes 8 and 9 prior to the 1st clamp 6. It becomes.
[0029]
Further, as shown in FIG. 3, the tube bonding apparatus 1 includes a wafer feeding mechanism 100 that feeds out a wafer 41 as a cutting unit.
[0030]
A fixing member 94 is erected on the casing of the tube joining apparatus 1, and a wafer feed motor 110 composed of a pulse motor capable of forward and reverse rotation is screwed to the fixing member 94. A gear 112 is fixed to the output shaft 111 of the wafer feed motor 110, and a timing belt 113 is stretched between the gear 114. The gear 114 is arranged on the axis of a ball screw 116 on which a wafer feeding member 115 called a shuttle for feeding out the wafers 41 capable of cutting the tubes 8 and 9 one by one is arranged on the axis. A nut (not shown) that engages with the ball screw 116 is provided inside the wafer feeding member 115, and the wafer is rotated by the rotation of the ball screw 116 in accordance with the rotation of the gear 114 using the wafer feed motor 110 as a driving source. The feeding member 115 moves along the ball screw 116. One side of the wafer feeding member 115 is supported by a rod-shaped shaft 117, and the posture (operation) of the wafer feeding member 115 when the wafer is fed is stabilized. From the wafer cassette 120 that stores a plurality of wafers 41 (70 in this example) at the end of the wafer feeding member 115, the wafers 41 in the wafer cassette 120 are moved one by one as the wafer feeding member 115 moves. A push-out piece 118 to be fed out is attached. A wafer cassette detection sensor 121 for detecting that the wafer cassette 120 is mounted is fixed on one side of the wafer cassette 120.
[0031]
A compression spring (not shown) is disposed inside the wafer cassette 120 so as to urge the wafer 41. When the wafer 41 is fed out by the pushing piece 118 of the wafer feeding member 115, the adjacent wafer is moved to the wafer feeding member 115. By sequentially facing the sides, continuous feeding operation of the wafer 41 by the pushing piece 118 is allowed. The wafer feeding member 115 can be moved in the direction opposite to the feeding direction of the wafer 41 by the reverse rotation of the wafer feeding motor 110.
[0032]
The wafer 41 is a self-heating type heat cut plate, for example, a metal plate such as a copper plate is folded in half, and a heat generating resistor having a desired pattern is formed on the inner surface thereof via an insulating layer. The terminals 44 and 45 (see FIG. 2) at both ends of the metal plate are exposed from openings formed at one end of the metal plate.
[0033]
A rotating plate 130 having a plurality of slits adjacent to the gear 112 and rotating as the wafer feed motor 110 rotates is fixed to the end of the output shaft 111 of the wafer feed motor 110. The turntable 130 is for detecting the amount of movement of the wafer feeding member 115. In the vicinity of the turntable 130, a transmission type sensor 131 that detects the amount of rotation of the turntable 130 is screwed to the fixing member 94 so as to straddle the turntable 130 on the opposite side of the gear 114.
[0034]
On the opposite side of the wafer cassette 120 via the ball screw 116, a transmission type sensor 132 that detects a wafer feeding member 115 positioned at the feeding start position of the wafer 41 and a wafer feeding position positioned at the feeding end position of the wafer 41 are provided. A transmission sensor 133 for detecting the member 115 is disposed at a predetermined distance, and a substantially L-shaped test piece 119 is attached to the wafer feeding member 115 on the opposite side of the pushing piece 118. . Note that the detection of the amount of movement of the wafer feeding member 115 by the rotary disk 130 and the transmission type sensor 131 described above is performed between both positions of the transmission type sensors 132 and 133.
[0035]
The wafer 41 delivered by the wafer delivery member 115 is positioned on the downstream side of the wafer transfer path from the wafer cassette 120 and is positioned in a wafer holder 140 serving as a cutting unit holder for holding the wafer 41. As shown in FIG. 4, in this example, a configuration is adopted in which the end surfaces of the two wafers 41 are held in the wafer holder 140 so that the end surfaces of the two wafers 41 are in contact with each other. The wafer 41 is supplied by being pushed on the transfer path 105 in the wafer holder 140 by the newly drawn wafer 41b. In other words, the wafer 41 b pushes the wafer 41 a forward, and the wafer 41 a is positioned at a position where the cutting operation of the tubes 8 and 9 is performed in the wafer holder 140.
[0036]
The terminals 44 and 45 of the wafer 41a positioned on the front side of the wafer holder 140 are connected to the terminals 41 and 45 of the wafer 41a from the power supply part (see FIG. 8, 24V power supply) by the protruding electrode parts 145 and 146 through a harness (not shown). Power for heating is supplied. The electrode portions 145 and 146 are integrally attached to the wafer holder 140, and are arranged so as to face the wall surface end on one side (the back side in FIG. 4) of the wafer holder 140 through the wafer 41. . As will be described later, since the wafer holder 140 moves up and down when the tubes 8 and 9 are cut, the electrode portions 145 and 146 integrally attached to the wafer holder 140 can also supply power to the wafer 41 for heating. It is structured.
[0037]
The resistor inside the wafer 41 generates heat by power feeding by the electrode portions 145 and 146, and the wafer 41 is heated to a predetermined temperature (for example, about 260 to 320 ° C.) at which the tubes 8 and 9 can be melted and cut. In this example, the predetermined temperature is set to 280 ° C. as will be described later. The wafer 41 is preferably disposable (single use) for each tube connection (connection), and the wafer feeding mechanism 100 transfers the wafer 41 loaded into the wafer holder 140 to the tube 8. It has a replaceable structure every time 9 is joined.
[0038]
The wafer holder 140 is heated by a holder heater 144 attached to the rotation support plate 184 (see FIG. 3). Electric power is supplied to the heater 144 from the power supply unit, but the wafer holder 140 is always heated while the power is supplied to the tube bonding apparatus 1. A wafer temperature sensor 508 such as a thermistor for detecting the temperature of the wafer holder 140 is embedded in the wafer holder 140, and the wafer holder 140 is controlled to maintain a predetermined temperature (78 ° C. in this example).
[0039]
As described above, since the surface of the wafer 41 is covered with a copper plate, the material (copper) characteristics are affected by the temperature held by the wafer holder 140 when it is inserted into the wafer holder 140, and a predetermined temperature immediately after insertion. (65 ° C in this example). The control unit 190, which will be described later, starts from when the wafer 41 is inserted into the wafer holder 140, and the temperature of the wafer 41 itself energized by the electrode units 145 and 146 becomes a predetermined temperature (280 ° C. in this example) after a predetermined time. ), The process proceeds to the tube cutting operation (the wafer holder 140 ascending operation).
[0040]
As shown in FIGS. 3 and 5, the tube bonding apparatus 1 includes a drive transmission mechanism 200 that moves the first clamp 6 and the second clamp 7 and moves (moves up and down) the wafer holder 140.
[0041]
On the side of the wafer holder 140 and on the downstream side of the wafer feeding member 115, a motor fixing member (not shown) fixed to the casing of the tube bonding apparatus 1 is composed of a pulse motor capable of forward / reverse rotation serving as a drive source of the drive transmission mechanism 200. The cam motor 150 is screwed. A gear 152 is fixed to the output shaft 151 of the cam motor 150, and a gear 153 is engaged with the gear 152. A gear 154 is fixed on the same axis as the gear 153, and the gear 155 meshes with the gear 154. A drive shaft 156 that rotates together with the gear 155 by the driving force transmitted to the gear 155 is disposed at the rotation center of the gear 155. A cam 157 for restricting the movement of the first clamp 6, a cam 158 for restricting the movement of the second clamp, and a cam 159 for restricting the movement of the wafer holder 140 are fixed on the shaft of the drive shaft 156. Therefore, the driving force from the cam motor 150 is transmitted to the drive shaft 156, and the cams 157, 158, 159 are driven to rotate.
[0042]
A groove 161 is formed inside the cam 157, and a bearing 162 that engages with the edge surface of the groove 161 supports the first clamp 6 in a fixed state via the mounting member 163 (see FIG. 1 as well). Connected). Therefore, the bearing 162 slides along the edge surface of the groove 161 inside the cam 157 by the rotation of the cam 157, and the first clamp 6 can move in a predetermined direction (the direction of arrow A in FIG. 3). Become. A linear guide 165 that guides the support base 164 (first clamp 6) so as to move stably is disposed below the support base 164 in contact with the bottom of the support base 164. Further, a compression spring 166 is hung on one end of the support base 164 so as to bias the support base 164 in a predetermined direction.
[0043]
On the other hand, a bearing 172 that engages with the surface of the cam 158 is connected via a mounting member 173 to a support base 174 that supports the second clamp 7 in a fixed state. For this reason, the bearing 172 slides along the surface of the cam 158 by the rotation of the cam 158, and the second clamp 7 can move in a predetermined direction (the direction of arrow B in FIG. 3). In this example, the bearing 172 engages with the side surface of the cam 158 and can also engage with the surface of the flange 177 formed integrally with the cam 159 that restricts the movement of the wafer holder 140. Yes. Note that a notch 178 (see FIGS. 17C and 17D) is formed in a part of the cam 158. A linear guide 175 that guides the support base 174 (second clamp 7) so as to move stably is disposed in contact with the bottom of the support base 174 below the support base 174. Further, a compression spring 176 is hung on one end of the support base 174 so as to bias the support base 174 in a predetermined direction.
[0044]
A bearing 182 (see also FIG. 4) is attached to the bottom of the wafer holder 140 via an attachment member 183. The bearing 182 slides along the surface shape of the cam 159 as the cam 159 rotates. Thus, the wafer holder 140 is configured to be movable in a predetermined direction (vertical direction). That is, the wafer holder 140 moves up and down by rotating integrally with the shaft shaft 187 around the shaft shaft 187 passing through the hole 186 formed in the protrusion 185 of the rotation support plate 184 attached to the wafer holder 140. It is configured to be swingable in the direction. Wafer holder 140 is integrally formed with a protrusion 148 that is obliquely provided with a metal roller 147 at the tip (see FIG. 4), and roller 147 is formed on support member protrusion 14 (see FIG. 2). ). Accordingly, when the wafer holder 140 moves up (swings) at a predetermined timing due to the change in the surface shape of the cam 159, the tube pushing member 10 (see FIG. 2) is pushed up, and the protrusion 148 is formed in the tube pushing member 10. Is guided to the retracted position.
[0045]
Further, a rotating disk 197 having a notch 198 formed between the cam 157 and the gear 155 is fixed to the drive shaft 156 (see also FIG. 6). Transmission type sensors 195 and 196 are disposed in the vicinity of the turntable 197 so as to straddle the turntable 197. The transmission type sensors 195 and 196 detect the positions of the first clamp 6 and the second clamp 7 by using the notch 198 formed in the rotating disk 197. That is, the turntable 197 rotates in a predetermined direction as the drive shaft 156 rotates, but the first is when the light from the transmission sensor 195 is transmitted through the notch 198 (see FIG. 6A). The initial positions of the clamp 6 and the second clamp 7 are set. That is, the transmission type sensor 195 is used as an initial position detection sensor for the first clamp 6 and the second clamp 7. The transmissive sensor 196 is used as a sensor for detecting the end of the joining operation of the tubes 8 and 9, and the notch 198 is positioned at a position facing the transmissive sensor 196 when the joining operation is finished. (See FIG. 6B).
[0046]
As shown in FIG. 3, a guide 141 for guiding the used wafer 41 and a disposal box 142 for storing the used wafer 41 are disposed on the downstream side of the wafer holder 140. The wafer 41 positioned at the tube cutting operation enabled position is discarded (accommodated) in the disposal box 142 after the tubes 8 and 9 are cut and joined, and this discarding operation is also performed by pushing the end surfaces of the wafer 41 together. The used wafer 41 is guided along the guide 141 and dropped and accommodated in the disposal box 142. A light receiving element and a light emitting element are spaced apart from each other on the side of the waste box 142, and a transmissive wafer full sensor 143 that detects the full state of the used wafer 41 that has been disposed of is disposed at a predetermined height from the bottom of the waste box 142. It is arranged at this position.
[0047]
Furthermore, the tube joining apparatus 1 includes a control unit 190 composed of a microcomputer (hereinafter referred to as a microcomputer) that controls the operation of the entire apparatus, an LCD display unit 192 that displays the apparatus status to an operator, a commercial AC power source, a pulse motor, and the like. A constant voltage power supply unit (5V power supply, 24V power supply) that converts the actuator and control unit 190 into a DC power supply that can be driven / operated is provided.
[0048]
As shown in FIGS. 7 and 8, the control unit 190 includes an arithmetic processing unit as a part of the arithmetic means and the power control unit, and an A / D converter 210 as an A / D converter. That is, the control unit 190 is configured by a microcomputer incorporating the A / D converter 210. The arithmetic processing unit includes a CPU 191 (see FIG. 3) that operates as a central processing unit with a high-speed clock, a ROM that stores a control program and control data for the tube joining device 1, a RAM that serves as a work area for the CPU 191, and an internal connection for connecting these. Consists of buses.
[0049]
As shown in FIG. 7, an external bus is connected to the control unit 190. In the external bus, an information storage unit for storing the joining process state of the tube in case of a power failure, etc., a clamp for detecting the open / closed state and the locked state of the first clamp 6 and the second clamp 7 and locking these clamps , A switch input unit including a joining switch 193 (see FIG. 3) for instructing the tube joining apparatus 1 to perform cutting and joining operations by the operator, a holder temperature sensor 508, and a heater for maintaining the wafer holder 140 at a constant temperature. Holder temperature control unit 510 for controlling on / off of 144, fan motor control unit for controlling a smoke exhaust fan motor and a cooling fan motor (not shown), presence / absence of wear 41 in wafer cassette 120, and used in waste box 142 Wafer cassette / disposal control unit and tube bonding apparatus having sensors for detecting fullness of wear, etc. Wafer constant power control unit 520 including an operation environment monitoring unit that monitors the environmental temperature (room temperature) where the device is disposed, and a wafer power control unit 530 as part of a power control unit that controls the power flowing between the electrode units 145 and 146. A wafer feed control unit for controlling the feed operation of the wafer 41, a cam joint operation control unit having a wafer position detection sensor for detecting the initial position of the wafer 41 and a motor driver for rotating the wafer feed motor 110, and an LCD display A message output unit having an LCD driver and the like for controlling operation and display of the unit 192 is connected. In FIG. 7, the external bus is not shown and the control unit 190 and each of these units are directly connected.
[0050]
Here, with reference to FIG. 8, the relationship between the A / D conversion circuit 300, in particular, the holder temperature control unit 510, the wafer constant power control unit 520, and the A / D converter 210 will be described in detail. FIG. 8A is a block diagram showing these relationships in a state where the electrode portions 145 and 146 are connected to the terminals 44 and 45 of the wafer 41, respectively, and FIG. This is a specific circuit example (this example). As will be described later, a circuit power supply voltage Vcc is applied to the A / D converter 210 as an operating power supply from a 5 V power supply serving as an operating voltage generating means, and the wafer power supply voltage Vcc is applied to the wafer 41 via a wafer power control unit 530. DD As a voltage of heating power is applied from a 24V power source.
[0051]
As shown in FIG. 8B, the control unit 190 has terminals of the circuit power supply voltage Vcc, the reference voltage Vref, the A / D input voltages AN0 to AN4, and the ground GND as inputs to the A / D converter 210. doing. Wafer power supply voltage V DD The + side of (for example, 24V) is connected to one end (terminal 44) of the wafer 41 via the electrode portion 145 described above. One end of a voltage dividing resistor R1 as a part of the voltage dividing means is connected to the terminal 44. The other end of the voltage dividing resistor R1 is connected to the A / D input voltage (terminal) AN0 and the other end is connected to GND. Also connected to one end of a voltage dividing resistor R2 as a part of the voltage dividing means. The other end (terminal 45) of the wafer 41 is A / D input voltage (terminal) AN1, and the other end is the wafer power supply voltage V. DD Is connected to one end of a resistor Ri for detecting wafer current as conversion means connected to the negative side (GND). Therefore, the A / D input voltages (terminals) AN0 and AN1 have a wafer voltage Vv divided by the resistors R1 and R2, and a wafer current monitor voltage obtained by converting the current I flowing through the wafer 41 into a voltage by the resistor Ri. Vi is input. Therefore, the wafer voltage monitor circuit shown in FIG. 8A is composed of resistors R1 and R2, and the wafer current monitor circuit is composed of resistor Ri.
[0052]
In this example, the thermistor Rt is used as the holder temperature sensor 508. The + side of the circuit power supply voltage Vcc (for example, 5V ± 5%) of the A / D converter 210 is connected to the circuit power supply voltage (terminal) Vcc and the reference voltage (terminal) Vref and to one end of the thermistor Rt. Has been. The other end of the thermistor Rt is connected to an A / D input voltage (terminal) AN4 and a resistor R whose other end is connected to the negative side (GND) of the circuit power supply voltage. Therefore, a holder temperature monitor voltage Vh for detecting the resistance value of the thermistor Rt according to the holder temperature (the temperature of the wafer holder 140) from the voltage across the resistor R is input to the A / D input voltage (terminal) AN4. Therefore, the wafer holder temperature monitor circuit shown in FIG.
[0053]
The A / D input voltage (terminal) AN2 is connected to the output of a 2.5V shunt regulator 230 as high-precision voltage generating means. The shunt regulator 230 drops the circuit power supply voltage Vcc and generates a highly accurate reference voltage. In this example, a voltage of 2.5 V ± 2% is input from the shunt regulator 230 to the A / D input voltage (terminal) AN2. The GND terminal is connected to GND.
[0054]
In general, when an analog input voltage is Va (V) and a reference voltage is Vref (V), and a 10-bit A / D converter is used, a digital conversion value (digital output voltage) Da of the A / D converter is used. Is given by the following equation (1). Further, when the resistance values of the thermistor Rt and the resistor R connected in series with the thermistor Rt are Rt and R (Ω), the holder temperature monitor voltage Vh (V) is given by the following equation (2). . Further, assuming that the resistance values of the voltage dividing resistors R1 and R2 are R1 and R2 (Ω), respectively, the wafer voltage Vv is given by the following equation (3). Further, assuming that the current value of the current flowing through the wafer 41 is I (A) and the resistance value of the resistor Ri is Ri (Ω), the wafer current monitor voltage Vi (V) is given by the following equation (4).
[0055]
[Expression 1]
Figure 2005072691
[0056]
The digital conversion values Dh, Dv, and Di of these analog voltages Vh, Vv, and Vi are given by the following expressions (5) to (7) according to the expression (1).
[0057]
[Expression 2]
Figure 2005072691
[0058]
From the equation (5), it is found that the digital conversion value Dh of the holder temperature monitor voltage Vh is affected by the accuracy of the circuit power supply voltage Vcc and the reference voltage Vref. In addition, from equations (6) and (7), the digital conversion values Dv and Di of the wafer voltage Vv and the wafer current monitor voltage Vi are influenced by the accuracy of the reference voltage Vref. When the reference voltage Vref of the A / D converter 210 is made the same as the circuit power supply voltage Vcc of the wafer holder temperature monitor circuit (the reference voltage Vref is connected to the circuit power supply voltage Vcc), the circuit power supply voltage Vcc and the reference voltage of Expression (5) Vref is canceled out, and a highly accurate digital conversion value independent of the power supply voltage can be obtained. However, since the circuit power supply voltage Vcc is substituted for the reference voltage Vref term in the equations (6) and (7), the digital conversion values Dv and Di of the wafer voltage Vv and the wafer current monitor voltage Vi are the circuit power supply voltage Vcc. When the accuracy of the circuit power supply voltage Vcc is ± 5%, for example, a large error occurs.
[0059]
Further, if a high-precision power source having a tolerance of about ± 2%, for example, generated by the shunt regulator 230 or the like is connected to the reference voltage Vref of the A / D converter 210, the digital conversion value Dv of the wafer voltage Vv and the wafer current monitor voltage Vi. The accuracy of Di is improved, but when the accuracy of the circuit power supply voltage Vcc is ± 5%, for example, the influence of the fluctuation of the circuit power supply voltage Vcc cannot be eliminated with respect to the digital conversion value Dh of the holder temperature monitor voltage Vh.
[0060]
Due to these, the wafer temperature at the time of tube cutting / bonding of the tube bonding apparatus 1 deviates from the desired temperature range. As a result, the fusing force of the tubes 8 and 9 may be reduced, and cutting and joining of the tubes 8 and 9 at an appropriate temperature may not be ensured. In order to solve this problem, the tube joining apparatus 1 of the present embodiment connects the circuit power supply voltage Vcc to the reference voltage Vref of the A / D converter 210 as described above, and the shunt regulator 230 lowers the reference voltage Vref. A voltage and high-accuracy second reference voltage V <b> 2 (for example, 2.5 V ± 2%) is generated and input to the A / D converter 210. The digital conversion value D2 of the second reference voltage V2 is given by the following equation (8). Here, the circuit power supply voltage Vcc can be calculated from the digital conversion value D2 by transforming the equation (8) into the following equation (9).
[0061]
[Equation 3]
Figure 2005072691
[0062]
Further, by making the reference voltage Vref of the A / D converter 210 the same as the circuit power supply voltage Vcc, the circuit power supply voltage Vcc calculated by the expression (9) is substituted into the reference voltage Vref term of the expressions (5) to (7). Thus, the digital conversion values Dh, Dv, and Di of the holder temperature monitor voltage Vh, wafer voltage Vv, and wafer current monitor voltage Vi can be calculated with high accuracy. These digital conversion values are given by the following equations (10) to (12).
[0063]
[Expression 4]
Figure 2005072691
[0064]
Therefore, in the control unit 190, the holder temperature control unit 510, and the wafer constant power control unit 520 of this embodiment, the digital conversion value Dh of the holder temperature monitor voltage Vh depends on the circuit power supply voltage Vcc (for example, 5V ± 5%). In other words, a highly accurate digital conversion value can be obtained. The digital conversion values Dv and Di of the wafer voltage Vv and the wafer current monitor voltage Vi depend on the highly accurate second reference voltage V2 (for example, 2.5V ± 2%), but 5V ± 5 of the circuit power supply voltage Vcc. It is not dependent on%, and 5% accuracy becomes 2% accuracy, so 2.5 times higher (temperature) control is possible.
[0065]
Next, in relation to the A / D conversion circuit 300, the power control of the wafer power control unit 530 and the holder temperature control unit 510 will be described in detail.
[0066]
Generally, since there are variations in the characteristics of each wafer, the time required for heating the wafer is shortened, and at the same time, the wafer is stably and accurately heated during the processing operation (when the tubes 8 and 9 are cut and bonded). In order to achieve this, constant power (feedback) control is employed. Since the amount of heat is proportional to the value obtained by multiplying power by time, in order to make the heating temperature of the wafer 41 uniform when cutting the tube, the power is also constant when the heating time to the wafer 41 is constant. There is a need. In order to make the power constant, it is necessary to improve the accuracy of the A / D converter 210 as described above. However, due to voltage fluctuations in the operating voltage (reference voltage) of the A / D converter 210, the temperature characteristics at the time when a predetermined time elapses from the start of energization of the wafer 41 occur.
[0067]
In this example, in order to shorten the heating time of the wafer 41 and to prevent variation in temperature characteristics when a predetermined time has elapsed since the start of energization of the wafer 41, (1) the holder temperature before the energization of the wafer 41 is started. The controller 510 controls the power supply to the heater 144 to maintain the wafer holder 140 at a predetermined temperature (for example, 78 ° C.), thereby setting the wafer 41 to a constant temperature (for example, 65 ° C.). (2) The wafer 41 From the start of energization to the time when a predetermined time elapses (for example, when 7.1 seconds elapse from the start of energization), the wafer power control unit 530 controls the power supplied to the wafer 41 to control the elapse of a predetermined time (for example, 5 Control is performed so that the heating temperature of the wafer 41 is constant (for example, 280 ° C.) when 1 second has elapsed.
[0068]
As shown in FIG. 9, the wafer 41 becomes approximately 65 ° C. due to the heating of the wafer holder 140 by the heater 144 before the start of energization. The holder temperature control unit 510 controls energization of the heater 144 so that the heating temperature of the wafer holder 144 is maintained at 78 ° C. by detecting the temperature by the thermistor Rt. This energization control is started when the power is turned on to the tube joining apparatus 1 (strictly, after an initial setting process described later is completed).
[0069]
As shown in FIG. 9, the temperature rise characteristic of the wafer 41 varies depending on the power supplied from the wafer power control unit 530, and the heating temperature of the wafer 41 varies when a predetermined time has elapsed since the start of energization of the wafer 41. The wafer power control unit 530 starts energization from the power supply unit (24 V power supply) to the wafer 41 at time 1 s, and performs power duty control of the power supply unit so that the temperature of the wafer 41 becomes 280 ° C. when a predetermined time elapses. In other words, at the power 31W, at the time t1, at the power 30W, at the time t2, at the power 28W, at the time t3, and at the power 26W, at the time t4, the wafer 41 has an appropriate temperature at which it can shift to the tube cutting operation (the wafer holder ascending operation). Reach 280 ° C. Therefore, the wafer power control unit 530 can control the temperature of the wafer 41 under a plurality of powers, but in this example, the control power of the wafer power control unit 530 is set to 28 W. In FIG. 9, the energization start time for the wafer 41 is shown to be matched with the time 1 s (1 second) in order to make it easy to understand the difference due to the power supplied from the wafer power control unit 530. Therefore, the time 0 s does not indicate the start of energization for heating the wafer holder 144.
[0070]
When the control power of the wafer power control unit 530 is set to 28 W, the tube cutting operation is started at time t3, which is about 5.1 seconds (set constant) after the energization of the wafer 41 is started. . The wafer power control unit 530 maintains the power duty control of the power supply unit that supplies power to the wafer 41 even after the transition to the tube cutting operation, and a certain time until the tube bonding operation that is performed for about 2 seconds is completed after the tube cutting operation is started. During (about 7.1 seconds), power duty control is performed on the power supply unit. Accordingly, the wafer power control unit 530 performs power duty control so that the temperature of the wafer 41 becomes 280 ° C. at time t3 even if the wafer 41 varies. In other words, the wafer power control unit 530 performs power control so as to follow the characteristic curve shown in FIG. 9 as time elapses, and is controlled to approach the temperature value shown in the characteristic curve at a certain time during power supply. I do.
[0071]
(Operation)
Next, operation | movement of the tube joining apparatus 1 of this embodiment is demonstrated focusing on CPU191 of the control part 190. FIG. When the control unit 190 is turned on via a switch (not shown), the CPU 191 performs an initial setting process of reading a control program, setting values, a lookup table, and the like from the ROM and developing them in the RAM. As shown, a temperature control routine for controlling the heater 144 is executed in order to keep the wafer holder 140 at a constant temperature (78 ° C.) in cooperation with the holder temperature control unit 510.
[0072]
In this temperature control routine, first, the digital conversion value Dh of the holder temperature monitor voltage Vh by the thermistor Rt (holder temperature sensor 508) output from the A / D converter 210 in step 702 is fetched. In step 704, the digital conversion value Dh The temperature of the wafer holder 140 is calculated from the digital conversion value Dh using a complementing method with reference to a lookup table showing the relationship between the temperature of the wafer holder 140 and the wafer holder 140.
[0073]
In the next step 706, it is determined whether or not the temperature of the wafer holder 140 is equal to or higher than the target temperature (78 ° C.). If the determination is negative, in step 708, the power supply to the heater 144 is turned off. The binary signal for the holder temperature control unit 510 is set to low level, and the process returns to step 702. As a result, the holder temperature control unit 510 stops the power supply to the heater 144. On the other hand, if the determination in step 706 is affirmative, in step 708, a binary high level signal is sent to the holder controller 510 so that the power supply to the heater 144 is turned on, and the process returns to step 702. As a result, the holder temperature control unit 510 supplies power to the heater 144. Accordingly, the wafer holder 140 is maintained at the target temperature (78 ° C.), and the wafer 41 accommodated in the wafer holder 144 has a constant temperature of about 65 ° C. The temperature control routine is continuously executed until the power supply to the control unit 190 is stopped.
[0074]
Next, the CPU 191 executes a cutting / joining confirmation routine for checking whether the cutting / joining operation of the tubes 8 and 9 can be properly started. In this cutting / bonding confirmation routine, first, as shown in FIG. 6A, the first clamp 6 and the second clamp 7 are determined by determining whether or not the transmission sensor 195 has detected the notch 198. It is determined whether or not it is positioned at an initial position (a position where the tubes 8 and 9 can be held in the grooves 22, 23, 32, and 33 in parallel with each other). If the determination is negative, the first clamp 6 and the second clamp 7 are not in the initial positions, and normal cutting and joining operations cannot be ensured. Therefore, it is necessary to press the reset switch (see FIG. 7) on the LCD display unit 192. Is displayed. When the reset switch is pressed, the cam motor 150 is driven via the cam joining operation control unit, and the first clamp 6 and the second clamp 7 are positioned at the initial positions. On the other hand, when an affirmative determination is made (or when the first clamp 6 and the second clamp 7 are positioned at the initial positions), it is determined whether the disposal box 142 is full based on a signal from the wafer full sensor 143. When the determination is affirmative, since the wafer 41 discarded and accommodated in the disposal box 142 is full, the wafer delivery mechanism 100 cannot feed out the wafer 41 from the wafer cassette 120, so the disposal box 142 is full in the LCD display unit 192. Is displayed, and the process waits until the determination of the fullness of the disposal box 142 based on the signal from the wafer full sensor 143 is denied. When the negative determination is made, normal cutting and joining operations of the tubes 8 and 9 are possible. Therefore, the LCD display unit 192 displays a message prompting the user to set the tubes 8 and 9, and waits until the joining switch 193 is pressed. .
[0075]
The operator opens the lid body 24 of the first clamp 6 and the lid body 34 of the second clamp 7 and loads the tubes 8 and 9 into the grooves 22, 23, 32 and 33. When one of the lid body 24 of the first clamp 6 and the lid body 34 of the second clamp 7 is opened, the shaft 19 of the first clamp 6 is inserted into the elongated hole 40 of the second clamp 7. The lid 24 of the first clamp 6 or the lid 34 of the second clamp 7 is also opened substantially simultaneously in conjunction with it. An operation of closing the lid 24 of the first clamp 6 and the lid 34 of the second clamp 7 in the direction of arrow F in FIG. 2 is performed on the loaded tubes 8 and 9 (see also FIG. 12). When one of the lid body 24 of the first clamp 6 and the lid body 34 of the second clamp 7 is closed, the shaft 19 of the first clamp 6 is inserted into the elongated hole 40 of the second clamp 7. The lid body 24 of the first clamp 6 or the lid body 34 of the second clamp 7 is also interlocked and closes substantially simultaneously. If the closing operation of the lid body 24 and the lid body 34 is continued, the distal end portion 12 of the tube pushing member 10 first comes into contact with the tubes 8 and 9 and is parallel (parallel) at the first position P1 of the contact position. The tubes 8 and 9 placed in the state are deformed into a flat state (see FIG. 13A). At this time, the blood existing in the portion pushed by the tube pushing member 10 of the tubes 8 and 9 is pushed out so as to be excluded in the directions of arrows c to d in FIG.
[0076]
Subsequently, when the lid 24 (and the lid 34) is continuously closed, the claw member 29 of the first clamp 6 is locked to the locking roller 20 so that the lid 24 is not opened. The first clamp 6 presses and holds the tubes 8 and 9 in a flat state with a predetermined pressing force at a second position P2 adjacent to the first position P1. At this time, the tube pushing member 10 disposed in contact with the first clamp 6 is also in a state in which the tubes 8 and 9 are almost crushed like the first clamp 6 by a biasing force of a spring (not shown) (almost blood is inside the tube). (See FIG. 13B).
[0077]
15A, the lid 24 of the first clamp 6 is closed with respect to the tubes 8 and 9 loaded in the grooves 22 and 23, and the distal end portion 12 of the tube pushing member 10 flattens the tubes 8 and 9. The state immediately before pressing is shown. As shown in FIG. 15B, when the closing operation of the lid body 24 is continued by the operator, the distal end portion 12 of the tube pushing member 10 presses the tubes 8 and 9 in a flat state. At this time, the pressing operation of the tubes 8 and 9 by the first clamp 6 and the second clamp 7 is also interlocked and continuously performed.
[0078]
Further, since the second clamp 7 is interlocked with the movement of the first clamp 6 by inserting the shaft 19 into the elongated hole 40, the lid of the second clamp 7 is substantially simultaneously with the operation of closing the lid 24 of the first clamp 6. 34 is also closed, and the claw member 39 of the second clamp 7 is locked by the locking roller 30 and is locked so that the lid 34 is not opened. The second clamp 7 disposed in contact with the member 10 is a position adjacent to the first position P1 and at a third position P3 facing the second position P2 across the first position P1. The tubes 8 and 9 are pressed and held in a flat state in a state in which the tubes 8 and 9 are almost crushed by a predetermined pressing force (there is almost no blood inside the tube). Thereby, in the tubes 8 and 9 from the second position P2 to the third position P3 across the first position P1, in other words, the place pressed by the first clamp 6 across the tube pushing member 10 Therefore, the blood in the tubes 8 and 9 corresponding to the portion pressed by the second clamp 7 is almost eliminated (see FIG. 13B), and the pressing and holding operation of the tubes 8 and 9 is completed. FIGS. 17A and 18A show the operating states of the cam 158 and the cams 157 and 159 in this state.
[0079]
When the operator depresses the bonding switch 193 of the apparatus 1, the CPU 191 takes in a signal via the switch input unit and executes the operation of feeding the wafer 41 from the wafer cassette 120 by the wafer feeding mechanism 100.
[0080]
As described above, the wafer feeding member 115 that is moved by the rotation driving of the wafer feeding motor 110 reciprocates between the wafer feeding start position and the wafer feeding end position by the forward / reverse driving of the wafer feeding motor 110. At this time, the CPU 191 rotates the turntable 130 directly connected to the rotational drive of the pulse motor 110 from the wafer feed start position to the wafer feed end position of the wafer feed member 115 when the pulse motor 110 is driven forward. The amount is detected for each pulse by the transmission sensor 131 based on the quantity. That is, the CPU 191 detects the test piece 119 of the wafer feeding member 115 positioned at the wafer feeding start position by the transmission type sensor 132, and the movement amount of the wafer feeding member 115 is set as the rotation amount of the turntable 130 based on this. , The position of the wafer delivery member 115 is determined by the transmission type sensor 131.
[0081]
The CPU 191 determines whether or not the wafer payout member 115 has moved by a predetermined amount (in this example, 30 mm, refer to the wafer payout member 15 indicated by a two-dot chain line in FIG. 15) from the wafer payout start position toward the wafer payout end position. If the determination is negative, the position grasping of the wafer feeding member 115 is continued. In this example, the movement amount of the wafer feeding member 115 for feeding the wafer 41 is set to about 55 mm.
[0082]
When the determination is affirmative, whether or not a difference of a predetermined number of pulses (for example, 20 pulses) or more has occurred between the preset number of pulses and the actually detected number of pulses, that is, compared with the preset number of pulses. It is determined whether or not the number of pulses actually detected is detected to be less than 20 pulses. If the determination is affirmative, it is determined that the feeding of the wafer 41 is defective and the process waits until the reset button is pressed. It is determined that the feeding is normal.
[0083]
When the CPU 191 determines that the wafer 41 is unsatisfactory, the CPU 191 stops driving the wafer feed motor 110, displays an error display (wafer unsuccessful defect) on the LCD display 192, and prompts the removal of the wafer. In contrast to the forward rotation drive when performing a series of tube joining operations, the reverse rotation drive is performed by a predetermined amount, and the cam 158 is positioned at a predetermined position so that the notch 178 formed in the cam 158 faces the bearing 172 (see FIG. 17 (C)). Thereby, the bearing 172 can enter the notch 178, that is, the second clamp 7 is moved to the right of the arrow B in FIG. 3 (the movement in the direction opposite to the moving direction of the second clamp 7 at the time of tube joining). Movement to the retracted position in an allowable direction) is allowed (in this example, movement of about 4 mm is allowed). At this time, the rotating disk 197 is in a state where both of the transmissive sensors 195 and 196 are shielded from light (see FIG. 6C).
[0084]
By moving the second clamp 7 to the retracted position, the operator can access the space formed between the first clamp 6 and remove the wafer that has caused feeding failure due to double feeding of the wafer 41 or the like. (See FIG. 17D.) After completing the error canceling operation, when the reset switch is pressed, the CPU 191 captures the signal, drives the motors 110 and 150, and returns the various mechanisms to the initial state. Let
[0085]
When the CPU 191 determines that the feeding is normal, the CPU 191 executes a cutting / joining processing routine. In the cutting / bonding processing routine, first, the initial value duty D0 set in advance and expanded from the ROM to the RAM in the initial setting processing is set as the duty D, and the wafer power control unit 530 is notified. Receiving this notification, the wafer power control unit 530 causes the power of the power supply unit to supply the rated power of 28 W to the wafer 41 with the initial value duty D0. Thereby, energization to the wafer 41 is started. Next, the CPU 191 determines whether a predetermined time (for example, 16.6 milliseconds) has elapsed. If the determination is negative, the CPU 191 cooperates with the wafer constant power control unit 520 to turn on the power supply unit (24V power supply). An interrupt subroutine for performing power duty control is executed. If the determination is affirmative, a main subroutine for performing the cutting / joining processing of the tubes 8 and 9 is executed. Therefore, the CPU 191 notifies the initial value duty D0 to the wafer power control unit 530, and then executes an interrupt subroutine and a main subroutine at predetermined intervals by time division.
[0086]
As shown in FIG. 10, in the interrupt subroutine, in steps 606, 608, and 610, the A / D converter 210 respectively converts the wafer voltage Vv, the wafer current monitor voltage Vi, and the digital conversion value Dv of the second reference voltage V2. , Di, D2. Next, in step 612, the voltage value V for duty calculation is calculated by the correction formula V = 14.25 × Dv / D2, and in step 614, the current value I for duty calculation is calculated by the correction formula I = 4.965 × Di / D2. calculate. In the next step 616, (duty D1) = (digital value P of rated power) / (voltage value V × I) is calculated using the voltage value V and current value I calculated in steps 612 and 614. In 618, the duty D1 calculated in step 616 is notified to the wafer power control unit 530 as the duty D. Receiving this notification, the wafer power control unit 530 supplies the wafer 41 with a rated power of 28 W from the power supply unit with the duty D1. Next, at step 620, it is determined by the internal clock whether or not a fixed time (7.1 seconds in this example) has elapsed since the start of energization of the wafer 41 (time s0 described above). Returning to 606, if the determination is affirmative, the interrupt subroutine is terminated. As a result, the power duty D supplied from the power supply unit to the wafer 41 changes every interruption time (16.6 milliseconds in this example), and the wafer 41 is heated according to the 28 W characteristic curve shown in FIG.
[0087]
On the other hand, in the main subroutine, as described above, the wafer 41 blows the tubes 8 and 9 by determining whether or not a predetermined time (5.1 seconds in this example) has elapsed since the start of energization of the wafer 41. It is determined whether or not a predetermined temperature (280 ° C.) has been reached. When a negative determination is made, the process waits until a predetermined time elapses. When an affirmative determination is made, the cam motor 150 is driven. As a result, the cam 158 and the cams 157 and 159 start to rotate in a predetermined direction, but the cam 158 maintains the state shown in FIG. 17A for a predetermined time. During this time, the wafer holder 140 is swung by the rotation of the cam 159 and rises a predetermined distance between the first clamp 6 and the second clamp 7 (see FIG. 18B). By this raising operation, the roller 147 also rises, and the support member protrusion 14 that contacts the roller 147 also rises.
[0088]
As shown in FIG. 14A, a part of the tube pushing member 10 in which the protrusion 148 that forms a part of the wafer holder 140 and has a roller 147 at the tip presses the tubes 8 and 9 at the first position P1. , The wafer 41 advances between the first position P1 and the second position P2 (between the first clamp 6 and the second clamp 7), and is held by the wafer holder 140 and heated. Melts the two tubes 8 and 9. At this time, the tube pushing member 10 is positioned at the retracted position with respect to the wafer 41 (see also FIG. 15C). In this state, the cam 157 rotates from the state shown in FIG. 18A (see FIG. 18B), but the first clamp 6 (support base 164) is the second clamp shown in FIG. 17A. 7 (support stand 174) is immovable.
[0089]
The CPU 191 still continues to drive the cam motor 150, but the wafer holder 140 maintains the state shown in FIG. 18B, but the first clamp 6 (support base 164) is rotated as shown in FIG. C) is moved by a predetermined distance (8 mm) in the direction of arrow a in the left figure (the direction toward the upper side of arrow A in FIG. 3, the direction of arrow X in FIG. 19). At this time, the relative positions of the cut tubes change, and the joined ends face each other. At this time, as shown in FIG. 19, the wafer 41 obtained by cutting the tubes 8 and 9 is held at the cutting position and is in an immobile state. At this time, the shaft 19 of the first clamp 6 moves in the slot 40 while being inserted into the slot 40 of the second clamp 7.
[0090]
Subsequently, the wafer holder 140 swings and descends with the rotation of the cam 159 (see FIG. 18C), but the tube pushing member 10 maintains the state held in the retracted position (FIG. 14). (See (B)). On the other hand, the bearing 172 adjacent to the cam 158 slides along the shape of the flange 177, so that the second clamp 7 (support base 174) moves in the direction of arrow b in FIG. It moves a predetermined distance (0.6 mm) in the direction toward the left side (in the direction of arrow Y in FIG. 14C). As shown in FIG. 6B, the CPU 191 is positioned at a position where the notch 198 is opposed to the transmission type sensor 196, and is positioned in a state where the first clamp 6 and the second clamp 7 are shifted. The cam motor 150 is stopped. Then, the completion of the joining process of the tubes 8 and 9 is displayed on the LCD display unit 192, and the cutting / joining routine is ended.
[0091]
The operator lifts either one of the plate pieces 28 and 38 positioned on the distal end side of the lids 24 and 34 in order to remove the tube for which the joining process has been completed from the apparatus main body, and performs a claw by the locking mechanism 26 (or 36). When the locking of the member 29 (or 39) with respect to the locking roller 20 (or 30) is released, the lid 24 (or 30) is opened as shown in FIG. At this time, the lid body 24 and the lid body 34 are in a state in which the relative positions are changed. However, since the shaft 19 is inserted into the elongated hole 40, when the lid body 24 (or 34) is lifted, the lid body 34 ( Or 24) is also lifted substantially simultaneously in conjunction. In conjunction with the opening operation of the lid 24 (or 34), the pushing of the tubes 8 and 9 by the tube pushing member 10 is also released.
[0092]
(Action etc.)
Next, the operation and the like of the tube joining device 1 of the present embodiment will be described.
[0093]
In the tube joining apparatus 1 according to the present embodiment, the operation power source is set to the reference voltage (5 V ± 5%), and instead of the conventional A / D converter shown in the formulas (5) to (7), the calculation control unit uses the formula (10 ) To (12), the digital value of the wafer power supply voltage Vv, the wafer current monitor voltage Vi, and the holder temperature monitor voltage Vh based on the digital value of the high precision reference voltage (2.5V ± 2%) generated by the shunt regulator 230. Since Dv, Di, and Dh are calculated (calculated), a highly accurate digital conversion value can be obtained as compared with the conventional A / D converter. Therefore, even if the circuit power supply voltage Vcc fluctuates, the arithmetic processing unit determines the current flowing through the wafer 41 to be measured, the voltage applied to the wafer 41 (see steps 606 and 608), and the thermistor embedded in the wafer holder 140. The voltage (temperature, see steps 702 and 704) can be accurately grasped.
[0094]
Further, in the tube joining apparatus 1 of the present embodiment, the power supplied from the 24V power source to the wafer 41 by the wafer power control unit 530 with the duty D1 calculated (calculated) by the high-precision digital values Dv and Di by the arithmetic processing unit. Since the duty control is performed (see steps 612 to 618), the temperature of the wafer 41 rises according to the 28 W characteristic curve shown in FIG. 9, and the temperature of the wafer 41 at a predetermined time (5.1 seconds) after the start of energization is kept constant It can be ensured at 280 ° C. Further, the arithmetic processing unit controls on / off of the heater 144 with a high-precision digital value Dh (see steps 708 and 710), the temperature of the wafer holder 140 is constant (78 ° C.), and the wafer 41 is constant at about 65 ° C. Since the temperature is preliminarily heated, the predetermined time from the start of energization to the constant temperature (280 ° C.) can be shortened.
[0095]
For this reason, according to the tube bonding apparatus 1 of the present embodiment, the cutting and bonding operations of the tubes 8 and 9 are performed in a short time (preheating the wafer 41) and reliably (the wafer 41 reaches a constant temperature after a predetermined time). be able to. Further, as shown in FIG. 8, the A / D conversion circuit 300 is relatively simple or simple for high accuracy, and the A / D conversion circuit 300 is less expensive than the technique for obtaining other high accuracy digital conversion values. A D conversion circuit can be configured.
[0096]
In the present embodiment, voltage, power, time, and the like have been specifically exemplified, but it goes without saying that the present invention is not limited to these. Further, although the A / D converter 210 is exemplified as having 10 bits, the formulas (1) to (12) can be changed according to the number of bits of the A / D converter, and the present invention illustrates the exemplified formula and the number of bits. There is no need to argue that it is not limited to those.
[0097]
In this embodiment, the voltage dividing resistors R1 and R2 are illustrated as voltage dividing means. However, the current flowing through the wafer 41 is divided using one voltage dividing resistor having an intermediate tap or two or more voltage dividing resistors. The voltage dividing means may be a differential amplifier circuit composed of an OP amplifier or a resistor. Furthermore, in the present embodiment, the resistor Ri is exemplified as the conversion means. However, the present invention is not limited to this, and for example, a Hall element or the like may be used. Further, in the present embodiment, the shunt regulator 230 is exemplified as the high-accuracy voltage generating means, but the present invention is not limited to this, and for example, a DC-DC converter such as a series regulator or a switching regulator may be used. .
[0098]
In this embodiment, the digital value Dh is further converted into a temperature by using a table in steps 704 and 706 (see FIG. 11) so that the invention can be easily understood. However, the heater is obtained by using the digital value Dh as it is. It is also possible to perform 144 on / off control. In this embodiment, the power control of the wafer 41 is shared by the arithmetic processing unit and the wafer power control unit 530 of the control unit 190, and the on / off control of the wafer holder 140 is shared by the arithmetic processing unit and the holder temperature control unit 510. However, these controls may be executed by the wafer power control unit 530 or the holder temperature control unit 510 without using the arithmetic processing unit.
[0099]
As described above, according to the first aspect of the present invention, instead of the reference voltage that is likely to cause voltage fluctuations, the calculation means calculates the measurement target based on the digital value of the voltage that is lower than the reference voltage and highly accurate. Since the digital value of the analog voltage is calculated, it is possible to obtain the effect that the digital value of the analog voltage to be measured can be calculated with higher accuracy than when the same reference voltage as the operating voltage is used as a reference. .
[0100]
Further, according to the second aspect of the present invention, the conversion voltage and the applied voltage of the conversion voltage and the applied voltage are calculated by the arithmetic unit based on the digital value of the voltage that is lower than the reference voltage and highly accurate instead of the reference voltage that is likely to cause voltage fluctuation. Since the digital value is calculated, the digital value of the converted voltage and the applied voltage can be calculated with higher precision than when the same reference voltage as the operating voltage is used as a reference, and the power control unit converts from the A / D converter circuit. The effect that the heating power to the cutting part can be controlled with high accuracy according to the digital values of the voltage and the applied voltage can be obtained.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a tube joining apparatus according to an embodiment to which the present invention is applicable.
FIG. 2 is a perspective view showing a clamp of the tube bonding apparatus according to the embodiment.
FIG. 3 is a partially broken plan view of the tube joining apparatus.
FIG. 4 is an enlarged side view of a wafer holder.
FIG. 5 is an enlarged plan view of a drive transmission mechanism.
FIG. 6 is a side view showing a turntable and a transmission type sensor fixed to a drive shaft.
FIG. 7 is a schematic block diagram of a control unit and each part of a control system.
8A and 8B show an A / D conversion circuit, where FIG. 8A is a block diagram and FIG. 8B is a circuit diagram.
FIG. 9 is a time-temperature characteristic diagram of electric power supplied to a wafer when the horizontal axis represents time and the vertical axis represents temperature.
FIG. 10 is a flowchart of an interrupt subroutine of a cutting / joining processing routine executed by the CPU of the control unit.
FIG. 11 is a flowchart of a temperature control routine executed by the CPU of the control unit.
FIG. 12 is an explanatory view showing the first operation of the main part of the tube joining apparatus, and is a front view schematically showing a state in which the lids of the first clamp and the second clamp have begun to close.
13A and 13B are front views schematically showing the operation of the main part of the tube joining apparatus, wherein FIG. 13A shows operation 2 and FIG. 13B shows operation 3;
14A and 14B are front views schematically showing the operation of the main part of the tube joining apparatus, wherein FIG. 14A shows operation 4, FIG. 14B shows operation 5, and FIG. 14C shows operation 6.
FIGS. 15A and 15B are side views showing the retracting operation of the tube pushing member, in which FIG. 15A shows a state immediately before the tip of the tube pushing member presses the tube into a flat state, and FIG. 15B shows the tip of the tube pushing member; A part shows the state which pressed the tube in the flat state, (C) shows the state which cut | disconnects the tube with which the wafer was hold | maintained in the flat state.
FIG. 16 is a side view showing a state in which the holding member holding the wafer is lowered to retract the wafer from the cutting position.
FIGS. 17A and 17B are enlarged plan views of the vicinity of the cam that restricts the movement of the second clamp, in which FIG. 17A is an initial state, FIG. 17B is a joining operation complete state, and FIG. (D) shows a state in which the second clamp is moved to the retracted position.
18A and 18B are side views of a cam for restricting the movement of the first clamp and a cam for restricting the movement of the wafer holder. FIG. 18A is an initial state, FIG. 18B is a cutting operation state, and FIG. Indicates the starting state.
FIG. 19 is a perspective view showing the operation of the main part of the tube bonding apparatus in the tube bonding process.
[Explanation of symbols]
1 Tube joining device
6 First clamp (holding part)
7 Second clamp (holding part)
8 tubes
9 tubes
41 Wafer (cutting part)
140 Wafer holder (cutting section holder)
144 Heater for holder
150 Cam motor (part of holding unit moving unit)
191 CPU (calculation means, part of power control unit)
200 Drive transmission mechanism (part of holding unit moving unit)
210 A / D converter (A / D converter)
220 5V power supply (operating voltage generating means)
230 Shunt regulator (high precision voltage generator)
240 24V power supply
300 A / D conversion circuit
508 Holder temperature sensor (temperature sensor)
530 Wafer power control unit (part of power control unit)
R1, R2 Voltage divider resistance (voltage divider)
Ri resistance (conversion means)

Claims (12)

入力されたアナログ電圧をデジタル値に変換するA/D変換器と、
前記A/D変換器の作動電圧を生成する作動電圧生成手段と、
前記作動電圧生成手段が生成する電圧より低電圧かつ高精度の電圧を生成する高精度電圧生成手段と、
前記A/D変換器からの出力に応じて、計測対象のアナログ電圧のデジタル値を演算する演算手段と、
を備え、
前記A/D変換器は、前記作動電圧生成手段で生成された作動電圧を基準電圧とすると共に、前記計測対象のアナログ電圧及び前記高精度電圧生成手段で生成された電圧をデジタル値に変換し、
前記演算手段は、前記高精度電圧生成手段で生成された電圧のデジタル値に基づいて前記計測対象のアナログ電圧のデジタル値を演算する、
ことを特徴とするA/D変換回路。
An A / D converter that converts an input analog voltage into a digital value;
An operating voltage generating means for generating an operating voltage of the A / D converter;
High-accuracy voltage generation means for generating a voltage that is lower and more accurate than the voltage generated by the operating voltage generation means;
An arithmetic means for calculating a digital value of an analog voltage to be measured according to an output from the A / D converter;
With
The A / D converter converts the analog voltage to be measured and the voltage generated by the high-accuracy voltage generator into digital values while using the operating voltage generated by the operating voltage generator as a reference voltage. ,
The calculation means calculates a digital value of the analog voltage to be measured based on a digital value of the voltage generated by the high-accuracy voltage generation means.
An A / D conversion circuit characterized by the above.
前記計測対象のアナログ電圧が、前記計測対象に流れる電流を電圧に変換した第1の変換電圧及び前記計測対象の電圧を表す少なくとも2種の電圧からなることを特徴とする請求項1に記載のA/D変換回路。The analog voltage of the measurement object includes at least two kinds of voltages representing a first conversion voltage obtained by converting a current flowing through the measurement object into a voltage and a voltage of the measurement object. A / D conversion circuit. 前記計測対象のアナログ電圧が、前記計測対象の温度を電圧に変換した第2の変換電圧であることを特徴とする請求項1に記載のA/D変換回路。The A / D conversion circuit according to claim 1, wherein the analog voltage to be measured is a second converted voltage obtained by converting the temperature of the measurement target into a voltage. 前記演算手段は、前記高精度電圧生成手段で生成された電圧のデジタル値を基準として前記計測対象のアナログ電圧のデジタル値を演算することを特徴とする請求項1に記載のA/D変換回路。2. The A / D converter circuit according to claim 1, wherein the calculation unit calculates a digital value of the analog voltage to be measured with reference to a digital value of the voltage generated by the high-accuracy voltage generation unit. . 前記高精度電圧生成手段が、シャントレギュレータであることを特徴とする請求項4に記載のA/D変換回路。The A / D conversion circuit according to claim 4, wherein the high-accuracy voltage generation means is a shunt regulator. 前記シャントレギュレータは、前記作動電圧生成手段で生成された電圧から前記低電圧かつ高精度の電圧を生成することを特徴とする請求項5に記載のA/D変換回路。6. The A / D conversion circuit according to claim 5, wherein the shunt regulator generates the low voltage and a high-accuracy voltage from the voltage generated by the operating voltage generation unit. 少なくとも2本の可撓性チューブを保持する保持部と、
前記保持部に保持されたチューブを加熱状態で切断する切断部と、
前記切断されたチューブの位置を相対的に変化させて、接合される端部同士が密着するように前記保持部を移動させる保持部移動ユニットと、
入力されたアナログ電圧をデジタル値に変換するA/D変換器と、前記A/D変換器の作動電圧を生成する作動電圧生成手段と、前記作動電圧生成手段が生成する電圧より低電圧かつ高精度の電圧を生成する高精度電圧生成手段と、前記A/D変換器からの出力に応じて、前記切断部に流れる電流を電圧に変換した変換電圧及び前記切断部の引加電圧のデジタル値を演算する演算手段とを有するA/D変換回路と、
前記A/D変換回路からの出力に応じて前記切断部への加熱用電力を制御する電力制御部と、
を備え、
前記A/D変換器は、前記作動電圧生成手段で生成された作動電圧を基準電圧とすると共に、前記変換電圧、前記引加電圧及び前記高精度電圧生成手段で生成された電圧をデジタル値に変換し、
前記演算手段は、前記高精度電圧生成手段で生成された電圧のデジタル値に基づいて前記変換電圧及び前記引加電圧のデジタル値を演算する、
ことを特徴とするチューブ接合装置。
A holding part for holding at least two flexible tubes;
A cutting part for cutting the tube held by the holding part in a heated state;
A holding unit moving unit that changes the position of the cut tube relative to each other and moves the holding unit so that the joined end portions are in close contact with each other;
An A / D converter that converts an input analog voltage into a digital value, an operating voltage generating unit that generates an operating voltage of the A / D converter, and a voltage that is lower and higher than a voltage generated by the operating voltage generating unit High-accuracy voltage generating means for generating a voltage with high accuracy, and a converted voltage obtained by converting a current flowing through the cutting unit into a voltage according to an output from the A / D converter, and a digital value of an applied voltage of the cutting unit An A / D conversion circuit having an arithmetic means for calculating
A power control unit for controlling heating power to the cutting unit according to an output from the A / D conversion circuit;
With
The A / D converter uses the operating voltage generated by the operating voltage generating means as a reference voltage, and converts the converted voltage, the applied voltage, and the voltage generated by the high-accuracy voltage generating means into digital values. Converted,
The computing means computes the converted voltage and the digital value of the applied voltage based on the digital value of the voltage generated by the high-accuracy voltage generating means.
The tube joining apparatus characterized by the above-mentioned.
前記A/D変換回路は、前記切断部への加熱用電力の電圧を分圧する分圧手段を有すると共に、前記A/D変換器は前記分圧手段で分圧された電圧を前記引加電圧としてデジタル値に変換することを特徴とする請求項7に記載のチューブ接合装置。The A / D converter circuit has voltage dividing means for dividing the voltage of the heating power to the cutting section, and the A / D converter uses the voltage divided by the voltage dividing means as the applied voltage. The tube joining device according to claim 7, wherein the tube joining device is converted into a digital value. 前記A/D変換回路は、前記切断部への加熱用電力の電流を電圧に変換する変換手段を有し、前記A/D変換器は前記変換手段で変換された電圧を前記変換電圧としてデジタル値に変換することを特徴とする請求項8に記載のチューブ接合装置。The A / D conversion circuit has conversion means for converting a current of heating power to the cutting section into a voltage, and the A / D converter digitally converts the voltage converted by the conversion means as the conversion voltage. The tube joining device according to claim 8, wherein the tube joining device is converted into a value. 前記電力制御部は、前記A/D変換回路から出力された前記変換電圧及び前記引加電圧のデジタル値に応じて前記切断部への加熱用電力をデューティ制御することを特徴とする請求項9に記載のチューブ接合装置。The power control unit duty-controls heating power to the cutting unit according to a digital value of the conversion voltage and the applied voltage output from the A / D conversion circuit. The tube joining apparatus according to 1. 前記切断部を保持する切断部ホルダと、この切断部ホルダを所定温度に加熱するヒータと、前記切断部ホルダの温度を検出する温度センサとを更に備え、前記A/D変換器は更に前記温度センサの電圧をデジタル値に変換することを特徴とする請求項7に記載のチューブ接合装置。The cutting part holder that holds the cutting part, a heater that heats the cutting part holder to a predetermined temperature, and a temperature sensor that detects the temperature of the cutting part holder, the A / D converter further includes the temperature 8. The tube bonding apparatus according to claim 7, wherein the voltage of the sensor is converted into a digital value. 前記切断部及び前記ヒータには、前記作動電圧生成手段が生成する電圧より高電圧の電力が供給され、前記温度センサには、前記作動電圧生成手段が生成する電圧が引加されることを特徴とする請求項11に記載のチューブ接合装置。The cutting unit and the heater are supplied with electric power having a voltage higher than the voltage generated by the operating voltage generating unit, and the temperature sensor is supplied with the voltage generated by the operating voltage generating unit. The tube joining apparatus according to claim 11.
JP2003209208A 2003-08-28 2003-08-28 Tube joining device Expired - Fee Related JP4115353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209208A JP4115353B2 (en) 2003-08-28 2003-08-28 Tube joining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209208A JP4115353B2 (en) 2003-08-28 2003-08-28 Tube joining device

Publications (2)

Publication Number Publication Date
JP2005072691A true JP2005072691A (en) 2005-03-17
JP4115353B2 JP4115353B2 (en) 2008-07-09

Family

ID=34402222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209208A Expired - Fee Related JP4115353B2 (en) 2003-08-28 2003-08-28 Tube joining device

Country Status (1)

Country Link
JP (1) JP4115353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146354A (en) * 2012-01-18 2013-08-01 Terumo Corp Sterile connecting device
JP2013150719A (en) * 2012-01-25 2013-08-08 Terumo Corp Aseptic joining device
WO2014128972A1 (en) * 2013-02-25 2014-08-28 テルモ株式会社 Sterile connecting apparatus
JP2019062641A (en) * 2017-09-26 2019-04-18 テルモ株式会社 Constant power controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146354A (en) * 2012-01-18 2013-08-01 Terumo Corp Sterile connecting device
JP2013150719A (en) * 2012-01-25 2013-08-08 Terumo Corp Aseptic joining device
WO2014128972A1 (en) * 2013-02-25 2014-08-28 テルモ株式会社 Sterile connecting apparatus
JPWO2014128972A1 (en) * 2013-02-25 2017-02-02 テルモ株式会社 Aseptic bonding equipment
JP2019062641A (en) * 2017-09-26 2019-04-18 テルモ株式会社 Constant power controller
JP7051349B2 (en) 2017-09-26 2022-04-11 テルモ株式会社 Constant power control device for tube joining device

Also Published As

Publication number Publication date
JP4115353B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US7119305B2 (en) Tube connecting apparatus
WO2005000564A1 (en) Tube clamp device and tube connection device
KR101065934B1 (en) Tube splicing device
WO2004020179A1 (en) Tube-joining apparatus and tube-joining method
JP4115353B2 (en) Tube joining device
CN101412130A (en) Electric discharge machine having wire electrode cutting function, and wire electrode cutting method
JP3093887B2 (en) Flexible tube aseptic joining device
JP3354602B2 (en) Flexible tube aseptic joining device
KR101299230B1 (en) Soldering iron and control method thereof
JP4139202B2 (en) Tube joining device
JP2868494B2 (en) Pulse heating type bonding apparatus and its control method
JP4115262B2 (en) Tube joining device
JP3140213B2 (en) Flexible tube aseptic joining device
JP6691383B2 (en) Toilet device and film sealing device
EP2361819A2 (en) Relay welding detecting device
HK1078293B (en) Tube bonder
JP3140212B2 (en) Flexible tube aseptic joining device
JP3140214B2 (en) Flexible tube aseptic joining device
HK1090607B (en) Tube joining device
JP4330890B2 (en) Charge wire cleaning device
JP4523481B2 (en) Seam joining method and seam joining apparatus
JPH07164532A (en) Electric fusion welding equipment
JPH1189289A (en) Drive controller
JPH03295183A (en) Heating device for adhesive
JP2000055280A (en) Electric fusing joint and its resistance welding control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4115353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees