Nothing Special   »   [go: up one dir, main page]

JP2001098160A - Resin composition for insulating material and insulating material using the same - Google Patents

Resin composition for insulating material and insulating material using the same

Info

Publication number
JP2001098160A
JP2001098160A JP28044599A JP28044599A JP2001098160A JP 2001098160 A JP2001098160 A JP 2001098160A JP 28044599 A JP28044599 A JP 28044599A JP 28044599 A JP28044599 A JP 28044599A JP 2001098160 A JP2001098160 A JP 2001098160A
Authority
JP
Japan
Prior art keywords
insulating material
resin composition
resin
heat
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28044599A
Other languages
Japanese (ja)
Inventor
Mitsuru Murata
満 村田
Hisafumi Enoki
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28044599A priority Critical patent/JP2001098160A/en
Publication of JP2001098160A publication Critical patent/JP2001098160A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition for an insulating material and an insulating material having an excellent heat characteristic and electrical characteristic in a semiconductor use. SOLUTION: The present invention provides the resin composition for the insulating material comprising a component (A) having a hollow structure in which the free volume is 0.001-1,000 nm3 such as a fullerene or a carbon nanotube and a heat resistant resin or its precursor (B) as an essential component, and the insulating material using the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁材に関するも
のであり、更に詳しくは、電気・電子機器用、半導体装
置用として優れた特性を有する絶縁材用樹脂組成物及び
これを用いた絶縁材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, and more particularly, to a resin composition for an insulating material having excellent characteristics for use in electric / electronic devices and semiconductor devices, and an insulating material using the same. It is about.

【0002】[0002]

【従来の技術】電気電子機器用、半導体装置用材料に求
められている特性のなかで、電気特性と耐熱性は、最も
重要な特性である。特に、近年、回路の微細化と信号の
高速化に伴い、誘電率の低い絶縁材料が要求されてい
る。この2つの特性を両立させるための材料として、耐
熱性樹脂を用いた絶縁材が、期待されている。例えば、
従来から用いられている二酸化シリコン等の無機の絶縁
材は、高耐熱性を示すが、誘電率が高く、要求特性が高
度化している現在では、前述の特性について、両立が困
難になりつつあり、ポリイミド樹脂に代表される耐熱性
樹脂は、電気特性と耐熱性に優れ、2つの特性の両立が
可能であり、実際にプリント回路のカバーレイや半導体
装置のパッシベーション膜などに用いられている。
2. Description of the Related Art Among the characteristics required for materials for electric / electronic devices and semiconductor devices, electric characteristics and heat resistance are the most important characteristics. In particular, in recent years, with miniaturization of circuits and speeding up of signals, an insulating material having a low dielectric constant has been required. An insulating material using a heat-resistant resin is expected as a material for achieving both of these characteristics. For example,
Conventionally, inorganic insulating materials such as silicon dioxide have high heat resistance, but have a high dielectric constant and the required characteristics are now sophisticated. A heat-resistant resin typified by a polyimide resin has excellent electrical characteristics and heat resistance, and can achieve both of the two characteristics, and is actually used for a coverlay of a printed circuit, a passivation film of a semiconductor device, and the like.

【0003】しかしながら、近年の半導体装置の高機能
化、高性能化にともない、電気特性、耐熱性について著
しい向上が必要とされているため、更に高性能な樹脂
が、必要とされるようになっている。特に、誘電率につ
いて、2.5を下回るような低誘電率材料が期待されて
おり、従来の絶縁材では、必要とされる特性に達してい
ない。これに対して、これまでには、例えば、ポリイミ
ド及び溶剤から成る樹脂組成物に、ポリイミド以外の熱
分解性樹脂を加え、加熱工程により、この熱分解性樹脂
を分解させて、空隙を形成することにより、絶縁材の誘
電率を低減させることが試みられている。しかし、ポリ
イミド等の耐熱性樹脂と熱分解性樹脂が相溶するとガラ
ス転移点が低くなってしまうために、熱分解性樹脂を分
解させる際に、空隙が潰れていまい、誘電率を低減させ
る効果が少ない。また、ポリイミド等の耐熱性樹脂と熱
分解性樹脂とを、相溶させずにうまく相分離構造を形成
せしめたとしても、熱分解樹脂を分解させる際の加熱方
法等に、多大なる労力を要するものであった。
[0003] However, with recent advances in the functions and performance of semiconductor devices, remarkable improvements in electrical characteristics and heat resistance have been required, so that even higher performance resins have been required. ing. In particular, a low dielectric constant material having a dielectric constant of less than 2.5 is expected, and a conventional insulating material does not reach required characteristics. In contrast, heretofore, for example, to a resin composition comprising polyimide and a solvent, a heat-decomposable resin other than polyimide is added, and a heating step is performed to decompose the heat-decomposable resin to form voids. Thus, attempts have been made to reduce the dielectric constant of the insulating material. However, when the heat-resistant resin such as polyimide and the heat-decomposable resin are compatible with each other, the glass transition point is lowered, so that when the heat-decomposable resin is decomposed, the voids are crushed and the effect of reducing the dielectric constant is reduced. Less is. In addition, even if a heat-resistant resin such as polyimide and a thermally decomposable resin are successfully formed into a phase-separated structure without being compatible with each other, a large amount of labor is required for a heating method or the like when decomposing the thermally decomposed resin. Was something.

【0004】[0004]

【発明が解決しようとする課題】本発明は、極めて低い
誘電率と良好な絶縁性を示すとともに、耐熱性にも優れ
た絶縁材用樹脂組成物及びこれを用いた絶縁材を提供す
る事を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a resin composition for an insulating material which exhibits an extremely low dielectric constant and good insulating properties, and also has excellent heat resistance and an insulating material using the same. Aim.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記従来
の問題点を鑑み、鋭意検討を重ねた結果、以下の手段に
より、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, have completed the present invention by the following means.

【0006】すなわち、本発明は、 1.自由体積が0.001〜1000nm3である中空構造を有する
成分(A)と、耐熱性樹脂またはその前駆体(B)とを
必須成分とする絶縁材用樹脂組成物、
That is, the present invention provides: A resin composition for an insulating material comprising a component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 and a heat-resistant resin or its precursor (B) as essential components;

【0007】2.自由体積が0.001〜1000nm3である中空
構造を有する成分(A)がフラーレンである第1項記載
の絶縁材用樹脂組成物、
[0007] 2. The resin composition for an insulating material according to claim 1, wherein the component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 is fullerene,

【0008】3.自由体積が0.001〜1000nm3である中空
構造を有する成分(A)がカーボンナノチューブである
第1項記載の絶縁材用樹脂組成物、
[0008] 3. 2. The resin composition for an insulating material according to claim 1, wherein the component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 is a carbon nanotube.

【0009】4.耐熱性樹脂またはその前駆体(B)が
ポリイミド樹脂またはポリイミド前駆体である第1〜3
項のいずれか1項に記載の絶縁材用樹脂組成物、
4. First to third heat-resistant resins or their precursors (B) are polyimide resins or polyimide precursors.
The resin composition for an insulating material according to any one of the above items,

【0010】5.耐熱性樹脂またはその前駆体(B)が
ポリベンゾオキサゾール樹脂またはポリベンゾオキサゾ
ール前駆体である第1〜3項のいずれか1項に記載の絶
縁材用樹脂組成物、
[0010] 5. Item 4. The resin composition for an insulating material according to any one of Items 1 to 3, wherein the heat-resistant resin or its precursor (B) is a polybenzoxazole resin or a polybenzoxazole precursor.

【0011】6.第1〜5項のいずれか1項に記載の絶
縁材用樹脂組成物を用いて得られた絶縁材、である。
6. An insulating material obtained by using the resin composition for an insulating material according to any one of Items 1 to 5.

【0012】[0012]

【発明の実施の形態】本発明の絶縁材用樹脂組成物は、
自由体積が0.001〜1000nm3である中空構造を有する成分
(A)と、耐熱性樹脂またはその前駆体(B)とを必須
成分として成るものである。成分(A)と耐熱性樹脂ま
たはその前駆体(B)以外の成分としては、溶剤を用い
ることが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The resin composition for insulating material of the present invention comprises:
It comprises, as essential components, a component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 and a heat-resistant resin or its precursor (B). Solvents can be used as components other than the component (A) and the heat-resistant resin or its precursor (B).

【0013】本発明の絶縁材用樹脂組成物は、基板等の
上に塗布して、加熱・製膜したり、ガラスクロス等に含
浸させて、加熱することにより絶縁材とすることができ
る。自由体積が0.001〜1000nm3である中空構造を有する
成分(A)を、耐熱性樹脂またはその前駆体(B)と、
混合又は化学的に結合させることにより、組成物とする
ことができる。成分(A)の空隙内部の誘電率は、空気
であるため、1と考えられるので、1よりも大きな耐熱
性樹脂またはその前駆体(B)に、成分(A)を添加す
ることによって、誘電率を低減させることができ、絶縁
材とした後も、中空構造が保持され、低い誘電率の絶縁
材を得ることが出来るものである。
The resin composition for an insulating material of the present invention can be applied to a substrate or the like and heated and formed into a film, or impregnated in a glass cloth or the like and heated to form an insulating material. The components (A) to free volume having a hollow structure is 0.001~1000nm 3, the heat resistant resin or its precursor (B), and
The composition can be obtained by mixing or chemically bonding. Since the dielectric constant inside the void of the component (A) is air, it is considered to be 1. Therefore, by adding the component (A) to a heat-resistant resin or its precursor (B) larger than 1 to obtain a dielectric constant. The hollow structure is maintained even after the insulating material is formed, and an insulating material having a low dielectric constant can be obtained.

【0014】本発明に用いる自由体積が0.001〜1000nm3
である中空構造を有する成分(A)の例を挙げると、フ
ラーレンC60、フラーレンC70、フラーレンC7
6、フラーレンC78、フラーレンC82、単層カーボ
ンナノチューブ、多層カーボンナノチューブ、カリック
スアレーン、α-シクロデキストリン、β-シクロデキス
トリン、γ-シクロデキストリン、δ-シクロデキストリ
ン、クラウンエーテル等であるがこれらに限られるもの
ではない。これらのなかで、フラーレン、カーボンナノ
チューブが好ましい。また、これらのうち一種のみを用
いてもよく、2種以上を混合して用いてもよい。
The free volume used in the present invention is 0.001 to 1000 nm 3
Examples of the component (A) having a hollow structure are: fullerene C60, fullerene C70, fullerene C7
6, fullerene C78, fullerene C82, single-walled carbon nanotube, multi-walled carbon nanotube, calixarene, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, δ-cyclodextrin, crown ether, etc., but are not limited thereto. Not something. Of these, fullerenes and carbon nanotubes are preferred. Further, only one of these may be used, or two or more thereof may be used in combination.

【0015】本発明に用いる耐熱性樹脂またはその前駆
体(B)の例を挙げると、ポリイミド、ポリアミド酸、
ポリアミド酸エステル、ポリイソイミド、ポリアミドイ
ミド、ポリアミド、ビスマレイミド、ポリベンゾオキサ
ゾール、ポリヒドロキシアミド、ポリベンゾチアゾール
等であるが、これらに限られるものではない。これらの
なかで、ポリイミド樹脂と、ポリアミド酸、ポリアミド
酸エステル及びポリイソイミドなどのポリイミド前駆
体、ポリベンゾオキサゾール樹脂と、ポリヒドロキシア
ミドなどのポリベンゾオキサゾール前駆体は、耐熱性が
高く好ましい。また、これらを単独で用いても良いし、
混合あるいは共重合させてもよい。
Examples of the heat-resistant resin or its precursor (B) used in the present invention include polyimide, polyamic acid,
Polyamic acid ester, polyisoimide, polyamideimide, polyamide, bismaleimide, polybenzoxazole, polyhydroxyamide, polybenzothiazole, etc., but not limited thereto. Among them, a polyimide resin, a polyimide precursor such as polyamic acid, polyamic acid ester and polyisoimide, a polybenzoxazole resin, and a polybenzoxazole precursor such as polyhydroxyamide are preferable because of high heat resistance. Also, these may be used alone,
They may be mixed or copolymerized.

【0016】本発明の絶縁材用樹脂組成物の成分とし
て、溶剤を用いる場合に、好ましいものの例を挙げる
と、N,N-ジメチルアセトアミド、N-メチル-2-ピロリド
ン、テトラヒドロフラン、プロピレングリコールモノメ
チルエーテル、プロピレングリコールモノメチルエーテ
ルアセテート、ジエチレングリコールモノメチルエーテ
ル、γ-ブチロラクトン、1,1,2,2-テトラクロロ
エタン等であるが、これらに限定されるものではない。
また、これらを2種以上同時に用いても良い。さらに、
塗布性や含浸性を向上させるために、界面活性剤を添加
しても良い。
When a solvent is used as a component of the resin composition for insulating material of the present invention, preferable examples thereof include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, tetrahydrofuran, propylene glycol monomethyl ether. Propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, γ-butyrolactone, 1,1,2,2-tetrachloroethane, and the like, but are not limited thereto.
Further, two or more of these may be used simultaneously. further,
A surfactant may be added to improve coatability and impregnation.

【0017】本発明の絶縁材用樹脂組成物は、各成分
を、絶縁材の空隙率が、1〜70体積%となるように配
合され、これらを均一に混合または化学的に結合させて
得られる。配合割合は、成分(A)と成分(B)との重
量比A/Bが、5/95から90/10、より好ましく
は10/90から70/30である。
The resin composition for an insulating material of the present invention is obtained by blending each component so that the porosity of the insulating material is 1 to 70% by volume, and uniformly mixing or chemically bonding them. Can be The mixing ratio is such that the weight ratio A / B of the component (A) and the component (B) is 5/95 to 90/10, and more preferably 10/90 to 70/30.

【0018】本発明の絶縁材の製造方法の例としては、
本発明の絶縁材用樹脂組成物を用い、上記溶剤に溶解し
ワニスとした後、適当な支持体、例えば、ガラス、金
属、シリコーンウエハーやセラミック基盤などに塗布す
る。具体的な塗布の方法としては、スピンナーを用いた
回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、
印刷、ロールコーティングなどが挙げられる。このよう
にして、塗膜を形成し、加熱乾燥させることにより、誘
電率の低い絶縁材を形成することができる。
Examples of the method for producing an insulating material of the present invention include:
The resin composition for an insulating material of the present invention is dissolved in the above-mentioned solvent to form a varnish, and then applied to an appropriate support, for example, a glass, metal, silicone wafer, or ceramic substrate. Specific coating methods include spin coating using a spinner, spray coating using a spray coater, dipping,
Printing, roll coating and the like. Thus, by forming a coating film and drying by heating, an insulating material having a low dielectric constant can be formed.

【0019】[0019]

【実施例】以下に、実施例により、本発明を具体的に説
明するが、本発明は、実施例の内容になんら限定される
ものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention.

【0020】「実施例1」 (1)ポリイミド樹脂の合成 攪拌装置、窒素導入管、原料投入口を備えたセパラブル
フラスコ中、2,2’−ビス(4−(4,4’−アミノ
フェノキシ)フェニル)ヘキサフルオロプロパン5.1
8g(0.01mol)と2,2’−ビス(トリフルオ
ロメチル)−4,4’−ジアミノビフェニル9.60g
(0.03mol)を、乾燥したN−メチル−2−ピロ
リドン(以下NMPと略す)200gに溶解する。乾燥
窒素下、10℃に溶液を冷却して、ビフェニルテトラカ
ルボン酸二無水物2.94g(0.01mol)とヘキ
サフルオロイソプロピリデン−2,2’−ビス(フタル
酸無水物)13.32g(0.03mol)を添加し
た。添加してから5時間後に室温まで戻し、室温で2時
間攪拌し、ポリイミド前駆体であるポリアミド酸の溶液
を得た。このポリアミド酸溶液に、ピリジン50gを加
えた後、無水酢酸5.1g(0.05mol)を滴下
し、系の温度を70℃に保って、7時間イミド化反応を
行った。この溶液を20倍量の水中に滴下して沈殿を回
収し、60℃で72時間真空乾燥して、耐熱性樹脂であ
るポリイミド樹脂の固形物を得た。ポリイミド樹脂の分
子量は、数平均分子量26000,重量平均分子量54
000であった。
Example 1 (1) Synthesis of polyimide resin In a separable flask equipped with a stirrer, a nitrogen inlet tube, and a raw material inlet, 2,2′-bis (4- (4,4′-aminophenoxy) was used. ) Phenyl) hexafluoropropane 5.1
8 g (0.01 mol) and 9.60 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
(0.03 mol) is dissolved in 200 g of dried N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP). The solution was cooled to 10 ° C. under dry nitrogen, and 2.94 g (0.01 mol) of biphenyltetracarboxylic dianhydride and 13.32 g of hexafluoroisopropylidene-2,2′-bis (phthalic anhydride) ( 0.03 mol) was added. Five hours after the addition, the temperature was returned to room temperature, and the mixture was stirred at room temperature for 2 hours to obtain a solution of polyamic acid as a polyimide precursor. After 50 g of pyridine was added to this polyamic acid solution, 5.1 g (0.05 mol) of acetic anhydride was added dropwise, and an imidization reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into 20 times the volume of water to collect a precipitate, which was then vacuum-dried at 60 ° C. for 72 hours to obtain a solid polyimide resin as a heat-resistant resin. The molecular weight of the polyimide resin is 26,000 number average molecular weight, 54 weight average molecular weight.
000.

【0021】(2)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリイミド樹脂10.0gを、γ-
ブチロラクトン/1,1,2,2-テトラクロロエタン
(70/30,vol/vol)50.0gに溶解した
後、高純度のフラーレンC60(99.98%、Term社
製)2.0gを加えて攪拌し、絶縁材用樹脂組成物を得
た。厚さ200nmのタンタルを成膜したシリコンウエ
ハ上に、この絶縁材用樹脂組成物をスピンコートした
後、窒素雰囲気のオーブン中で加熱硬化した。加熱硬化
の際は、120℃で4分間150℃で30分間保持した
後、400℃で60分間保持した。このようにして、厚
さ0.8μmの絶縁材の被膜を得た。この絶縁材の皮膜
上に、面積0.1cm2のアルミの電極を蒸着により形
成し、基板のタンタルとの間のキャパシタンスをLCR
メーターにより測定した。膜厚、電極面積、キャパシタ
ンスから絶縁材の誘電率を算出したところ、2.4であ
った。また、絶縁材の密度を密度勾配管により求めたと
ころ、1.10であった。フラーレンC60を添加せ
ず、空隙が全くない場合の密度は1.41であったの
で、これから空隙率は22.0%と算出された。さらに
TEMで絶縁材皮膜の断面を観察したところ、直径が
0.7nmの空隙が均一に分散していることが分かった。
(2) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyimide resin synthesized above was
After dissolving in 50.0 g of butyrolactone / 1,1,2,2-tetrachloroethane (70/30, vol / vol), 2.0 g of high-purity fullerene C60 (99.98%, manufactured by Term) is added. The mixture was stirred to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. At the time of heat curing, the substrate was kept at 120 ° C. for 4 minutes, 150 ° C. for 30 minutes, and then kept at 400 ° C. for 60 minutes. Thus, a 0.8 μm thick insulating film was obtained. An aluminum electrode having an area of 0.1 cm 2 is formed on the insulating film by vapor deposition, and the capacitance between the electrode and tantalum on the substrate is determined by LCR.
It was measured with a meter. The dielectric constant of the insulating material calculated from the film thickness, the electrode area, and the capacitance was 2.4. The density of the insulating material was determined to be 1.10. The density in the case where fullerene C60 was not added and there were no voids was 1.41, and the porosity was calculated to be 22.0% from this. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.7 nm were uniformly dispersed.

【0022】「実施例2」 (1)ポリイミド前駆体の合成 実施例1のポリイミド樹脂の合成においてポリイミド前
駆体の合成に用いた2,2’−ビス(4−(4,4’−
アミノフェノキシ)フェニル)ヘキサフルオロプロパン
5.18g(0.01mol)と2,2’−ビス(トリ
フルオロメチル)−4,4’−ジアミノビフェニル9.
60g(0.03mol)とを4,4’−ジアミノジフ
ェニルエーテル8.01g(0.04mol)に、ビフ
ェニルテトラカルボン酸二無水物2.94g(0.01
mol)とヘキサフルオロイソプロピリデン−2,2’
−ビス(フタル酸無水物)13.32g(0.03mo
l)とをピロメリット酸二無水物8.72g(0.04
mol)に代えた以外は、実施例1と同様にしてポリイ
ミド前駆体であるポリアミド酸の溶液を得た。この溶液
を20倍量の水中に滴下して沈殿を回収し、25℃で7
2時間真空乾燥して、耐熱性樹脂であるポリイミドの前
駆体であるポリアミド酸の固形物を得た。得られたポリ
アミド酸の数平均分子量は27000,重量平均分子量
は55000であった。
Example 2 (1) Synthesis of Polyimide Precursor In the synthesis of the polyimide resin of Example 1, 2,2′-bis (4- (4,4′-
5.18 g (0.01 mol) of aminophenoxy) phenyl) hexafluoropropane and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
60 g (0.03 mol) and 4,01′-diaminodiphenyl ether (8.01 g, 0.04 mol) and biphenyltetracarboxylic dianhydride 2.94 g (0.01
mol) and hexafluoroisopropylidene-2,2 '
13.32 g of bis (phthalic anhydride) (0.03 mol
l) and 8.72 g (0.04 g) of pyromellitic dianhydride
mol), a solution of polyamic acid as a polyimide precursor was obtained in the same manner as in Example 1. This solution was dropped into 20 times the volume of water to collect a precipitate.
Vacuum drying was performed for 2 hours to obtain a solid of polyamic acid which is a precursor of polyimide which is a heat-resistant resin. The number average molecular weight of the obtained polyamic acid was 27,000, and the weight average molecular weight was 55,000.

【0023】(2)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリアミド酸10.0gを、γ-ブ
チロラクトン/1,1,2,2-テトラクロロエタン(7
0/30,vol/vol)50.0gに溶解した後、高
純度のフラーレンC60(99.98%、Term社製)
2.0g加えて攪拌し、絶縁材用樹脂組成物を得た。厚
さ200nmのタンタルを成膜したシリコンウエハ上
に、この絶縁材用樹脂組成物をスピンコートした後、窒
素雰囲気のオーブン中で加熱硬化した。加熱硬化の際
は、120℃で4分間150℃で30分間保持した後、
400℃で60分間保持した。このようにして、厚さ
0.7μmの絶縁材の被膜を得た。以下実施例1と同様
にして、この耐熱性樹脂の誘電率を測定したところ2.
4であった。また、絶縁材の密度を密度勾配管により求
めたところ、1.13であった。フラーレンC60を添
加せず、空隙が全くない場合の密度は1.43であった
ので、これから空隙率は21.0%と算出された。さら
にTEMで絶縁材皮膜の断面を観察したところ、直径が
0.7nmの空隙が均一に分散していることが分かった。
(2) Preparation of Resin Composition for Insulating Material and Production of Insulating Material 10.0 g of the polyamic acid synthesized as described above was mixed with γ-butyrolactone / 1,1,2,2-tetrachloroethane (7
0/30, vol / vol), and then dissolved in 50.0 g of high-purity fullerene C60 (99.98%, manufactured by Term).
2.0 g was added and stirred to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. In the case of heat curing, after holding at 120 ° C. for 4 minutes and 150 ° C. for 30 minutes,
It was kept at 400 ° C. for 60 minutes. Thus, a coating of an insulating material having a thickness of 0.7 μm was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1.
It was 4. Moreover, the density of the insulating material was determined to be 1.13 using a density gradient tube. The density in the case where fullerene C60 was not added and there were no voids was 1.43, and thus the porosity was calculated to be 21.0%. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.7 nm were uniformly dispersed.

【0024】「実施例3」 (1)ポリベンゾオキサゾール樹脂の合成 4,4’−ヘキサフルオロイソプロピリデンジフェニル
−1,1’−ジカルボン酸25g、塩化チオニル45m
l及び乾燥ジメチルホルムアミド0.5mlを反応容器
に入れ、60℃で2時間反応させた。反応終了後、過剰
の塩化チオニルを加熱及び減圧により留去した。残査
を、ヘキサンで再結晶させて、4,4’−ヘキサフルオ
ロイソプロピリデンジフェニル−1,1’ジカルボン酸
クロリドを得た。攪拌装置、窒素導入管、滴下漏斗を付
けたセパラブルフラスコ中、2,2’−ビス(3ーアミ
ノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン
7.32g(0.02mol)を、乾燥したジメチルア
セトアミド100gに溶解し、ピリジン3.96g
(0.05mol)を添加後、乾燥窒素導入下、−15
℃で、ジメチルアセトアミド50gに上記により合成し
た4,4’−ヘキサフルオロイソプロピリデンジフェニ
ル−1,1’−ジカルボン酸クロリド8.58g(0.
02mol)を溶解したものを、30分間掛けて滴下し
た。滴下終了後、室温まで戻し、室温で5時間攪拌し
た。その後、反応液を水1000ml中に滴下し、沈殿
物を集め、40℃で48時間真空乾燥することにより、
ポリベンゾオキサゾール前駆体であるポリヒドロキシア
ミドの固形物を得た。このポリヒドロキシアミドをNM
P200gに溶解した溶液に、ピリジン50gを加えた
後、無水酢酸3.1g(0.03mol)を滴下し、系
の温度を70℃に保って、7時間オキサゾール化反応を
行った。この溶液を20倍量の水中に滴下して沈殿を回
収し、60℃で72時間真空乾燥して、耐熱性樹脂であ
るポリベンゾオキサゾール樹脂の固形物を得た。得られ
たポリベンゾオキサゾール樹脂の数平均分子量は200
00、重量平均分子量は40000であった。
Example 3 (1) Synthesis of polybenzoxazole resin 25 g of 4,4'-hexafluoroisopropylidenediphenyl-1,1'-dicarboxylic acid, 45 m of thionyl chloride
l and 0.5 ml of dry dimethylformamide were placed in a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue was recrystallized from hexane to obtain 4,4'-hexafluoroisopropylidenediphenyl-1,1'dicarboxylic acid chloride. In a separable flask equipped with a stirrer, a nitrogen introducing tube, and a dropping funnel, 7.32 g (0.02 mol) of 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added to 100 g of dried dimethylacetamide. 3.96 g of pyridine
(0.05 mol), and then -15 under dry nitrogen introduction.
At 50 ° C., 8.58 g of 4,4′-hexafluoroisopropylidenediphenyl-1,1′-dicarboxylic acid chloride synthesized above in 50 g of dimethylacetamide (0.5 g).
02mol) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was added dropwise to 1000 ml of water, and the precipitate was collected and dried under vacuum at 40 ° C. for 48 hours.
A solid substance of polyhydroxyamide, which is a polybenzoxazole precursor, was obtained. This polyhydroxyamide is NM
After 50 g of pyridine was added to the solution dissolved in 200 g of P, 3.1 g (0.03 mol) of acetic anhydride was added dropwise, and the oxazole-forming reaction was carried out for 7 hours while maintaining the temperature of the system at 70 ° C. This solution was dropped into a 20-fold amount of water to collect a precipitate, followed by vacuum drying at 60 ° C. for 72 hours to obtain a solid substance of a polybenzoxazole resin as a heat-resistant resin. The number average molecular weight of the obtained polybenzoxazole resin is 200
00, and the weight average molecular weight was 40,000.

【0025】(2)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリベンゾオキサゾール樹脂10.
0gを、γ-ブチロラクトン/1,1,2,2-テトラク
ロロエタン(70/30,vol/vol)50.0gに
溶解した後、単層カーボンナノチューブ(MER社製)
2.0gを添加して攪拌し、絶縁材用樹脂組成物を得
た。厚さ200nmのタンタルを成膜したシリコンウエ
ハ上に、この絶縁材用樹脂組成物をスピンコートした
後、窒素雰囲気のオーブン中で加熱硬化した。加熱硬化
の際は、120℃で4分間150℃で30分間保持した
後、400℃で60分間保持した。このようにして厚さ
0.7μmの絶縁材の被膜を得た。以下実施例1と同様
にして、この耐熱性樹脂の誘電率を測定したところ2.
1であった。また、絶縁材の密度を密度勾配管により求
めたところ、1.11であった。単層カーボンナノチュ
ーブを添加せず、空隙が全くない場合の密度は1.45
であったので、これから空隙率は23.4%と算出され
た。さらにTEMで絶縁材皮膜の断面を観察したとこ
ろ、直径が0.2nmで長さが4nmの空隙が、均一に分散
していることが分かった。
(2) Preparation of resin composition for insulating material and production of insulating material Polybenzoxazole resin synthesized as described above
After dissolving 0 g in 50.0 g of γ-butyrolactone / 1,1,2,2-tetrachloroethane (70/30, vol / vol), single-wall carbon nanotubes (manufactured by MER)
2.0 g was added and stirred to obtain a resin composition for an insulating material. This resin composition for an insulating material was spin-coated on a silicon wafer on which a 200-nm-thick tantalum film was formed, and then heated and cured in an oven in a nitrogen atmosphere. At the time of heat curing, the substrate was kept at 120 ° C. for 4 minutes, 150 ° C. for 30 minutes, and then kept at 400 ° C. for 60 minutes. Thus, a 0.7 μm thick insulating film was obtained. Thereafter, the dielectric constant of this heat-resistant resin was measured in the same manner as in Example 1.
It was one. Further, the density of the insulating material was determined to be 1.11 by a density gradient tube. The density when no single-walled carbon nanotubes were added and there were no voids was 1.45.
Therefore, the porosity was calculated to be 23.4% from this. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.2 nm and a length of 4 nm were uniformly dispersed.

【0026】「実施例4」 (1)ポリヒドロキシアミドの合成 2,2’−ビス(トリフルオロメチル)ビフェニル−
4,4’−ジカルボン酸22g、塩化チオニル45ml
及び乾燥ジメチルホルムアミド0.5mlを反応容器に
入れ、60℃で2時間反応させた。反応終了後、過剰の
塩化チオニルを加熱及び減圧により留去した。残査を、
ヘキサンで再結晶させて、2,2’−ビス(トリフルオ
ロメチル)ビフェニル−4,4’−ジカルボン酸クロリ
ドを得た。攪拌装置、窒素導入管、滴下漏斗を付けたセ
パラブルフラスコ中、2,2’−ビス(3ーアミノ−4
−ヒドロキシフェニル)ヘキサフルオロプロパン7.3
2g(0.02mol)を、乾燥したジメチルアセトア
ミド100gに溶解し、ピリジン3.96g(0.05
mol)を添加後、乾燥窒素導入下、−15℃で、ジメ
チルアセトアミド50gに上記により合成した2,2’
−ビス(トリフルオロメチル)ビフェニル−4,4’−
ジカルボン酸クロリド8.30g(0.02mol)を
溶解したものを、30分間掛けて滴下した。滴下終了
後、室温まで戻し、室温で5時間攪拌した。その後、反
応液を水1000ml中に滴下し、沈殿物を集め、40
℃で48時間真空乾燥することにより、耐熱性樹脂であ
るポリベンゾオキサゾール前駆体であるポリヒドロキシ
アミドの固形物を得た。得られたポリヒドロキシアミド
の数平均分子量は、20000、重量平均分子量は、4
0000であった。
Example 4 (1) Synthesis of polyhydroxyamide 2,2'-bis (trifluoromethyl) biphenyl-
4,4'-dicarboxylic acid 22g, thionyl chloride 45ml
And 0.5 ml of dry dimethylformamide was put into a reaction vessel and reacted at 60 ° C. for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off by heating and reduced pressure. The residue,
Recrystallization from hexane gave 2,2'-bis (trifluoromethyl) biphenyl-4,4'-dicarboxylic acid chloride. In a separable flask equipped with a stirrer, nitrogen inlet tube, and dropping funnel, 2,2′-bis (3-amino-4
-Hydroxyphenyl) hexafluoropropane7.3
2 g (0.02 mol) was dissolved in 100 g of dried dimethylacetamide, and 3.96 g (0.05%) of pyridine was dissolved.
mol), 2,2 ′ synthesized above in 50 g of dimethylacetamide at −15 ° C. under dry nitrogen introduction.
-Bis (trifluoromethyl) biphenyl-4,4'-
A solution in which 8.30 g (0.02 mol) of dicarboxylic acid chloride was dissolved was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was returned to room temperature and stirred at room temperature for 5 hours. Thereafter, the reaction solution was dropped into 1000 ml of water, and the precipitate was collected.
Vacuum drying was performed at 48 ° C. for 48 hours to obtain a solid substance of polyhydroxyamide which is a polybenzoxazole precursor which is a heat-resistant resin. The number average molecular weight of the obtained polyhydroxyamide is 20,000, and the weight average molecular weight is 4
0000.

【0027】(2)絶縁材用樹脂組成物の調製と絶縁材
の製造 上記により合成したポリヒドロキシアミド10.0g
を、γ-ブチロラクトン/1,1,2,2-テトラクロロ
エタン(70/30,vol/vol)50.0gに溶解
した後、単層カーボンナノチューブ(MER社製)2.0
gを加えて攪拌し、絶縁材用樹脂組成物を得た。厚さ2
00nmのタンタルを成膜したシリコンウエハ上に、こ
の絶縁材用樹脂組成物をスピンコートした後、窒素雰囲
気のオーブン中で加熱硬化した。加熱硬化の際は、12
0℃で4分間150℃で30分間保持した後、400℃
で60分間保持した。このようにして、厚さ0.7μm
の絶縁材の被膜を得た。以下実施例1と同様にして、こ
の耐熱性樹脂絶縁材の誘電率を測定したところ2.1で
あった。また、耐熱性樹脂絶縁材の密度を密度勾配管に
より求めたところ、1.15であった。単層カーボンナ
ノチューブを添加せず、空隙が全くない場合の密度は
1.42であったので、これから空隙率は19.0%と
算出された。さらにTEMで絶縁材皮膜の断面を観察し
たところ、直径が0.2nmで長さが4nmの空隙が、均一
に分散していることが分かった。
(2) Preparation of resin composition for insulating material and production of insulating material 10.0 g of polyhydroxyamide synthesized as described above
Was dissolved in 50.0 g of γ-butyrolactone / 1,1,2,2-tetrachloroethane (70/30, vol / vol), and then a single-walled carbon nanotube (manufactured by MER) 2.0
g was added and stirred to obtain a resin composition for an insulating material. Thickness 2
The resin composition for an insulating material was spin-coated on a silicon wafer on which a 00 nm tantalum film was formed, and then heat-cured in an oven in a nitrogen atmosphere. In the case of heat curing, 12
After holding at 0 ° C for 4 minutes and 150 ° C for 30 minutes, 400 ° C
For 60 minutes. Thus, the thickness of 0.7 μm
Was obtained. Thereafter, the dielectric constant of this heat-resistant resin insulating material was measured in the same manner as in Example 1, and it was 2.1. Moreover, the density of the heat-resistant resin insulating material was determined to be 1.15 using a density gradient tube. Since the density when no single-walled carbon nanotube was added and there were no voids was 1.42, the porosity was calculated to be 19.0% from this. Further, when the cross section of the insulating material film was observed with a TEM, it was found that voids having a diameter of 0.2 nm and a length of 4 nm were uniformly dispersed.

【0028】「比較例1」実施例1の絶縁材用樹脂組成
物の調整において用いたフラーレンC60(99.98
%、Term社製)2.0gを添加しない以外は、全て実施
例1と同様に、絶縁材用樹脂組成物の調整と絶縁材の製
造を行った。得られた耐熱性樹脂絶縁材の誘電率は2.
9であり、密度は1.41であった。TEMによる絶縁
材皮膜の断面観察で、空隙は観察されなかった。
Comparative Example 1 Fullerene C60 (99.98) used in the preparation of the insulating resin composition of Example 1 was used.
%, Manufactured by Term Co.), except for the addition of 2.0 g, the preparation of a resin composition for an insulating material and the production of an insulating material were performed in the same manner as in Example 1. The dielectric constant of the obtained heat-resistant resin insulating material is 2.
9, and the density was 1.41. No void was observed in the cross section of the insulating film by TEM.

【0029】「比較例2」実施例2の絶縁材用樹脂組成
物の調整において用いたフラーレンC60(99.98
%、Term社製)2.0gを添加しない以外は、全て実施
例2と同様に、絶縁材用樹脂組成物の調整と絶縁材の製
造を行った。得られた耐熱性樹脂の誘電率は3.0であ
り、密度は1.43であった。TEMによる絶縁材皮膜
の断面観察で、空隙は観察されなかった。
Comparative Example 2 Fullerene C60 (99.98) used in the preparation of the insulating resin composition of Example 2 was used.
%, Manufactured by Term Co.), except that no addition of 2.0 g, the preparation of the insulating resin composition and the production of the insulating material were carried out in the same manner as in Example 2. The obtained heat-resistant resin had a dielectric constant of 3.0 and a density of 1.43. No void was observed in the cross section of the insulating film by TEM.

【0030】「比較例3」実施例3の絶縁材用樹脂組成
物の調整において用いた単層カーボンナノチューブ2.
0gを添加しない以外は、全て実施例3と同様に、絶縁
材用樹脂組成物の調整と絶縁材の製造を行った。得られ
た耐熱性樹脂の誘電率は2.6であり、密度は1.45
であった。TEMによる絶縁材皮膜の断面観察で、空隙
は観察されなかった。
Comparative Example 3 Single-Walled Carbon Nanotubes Used in Preparation of Resin Composition for Insulating Material of Example 3
Except not adding 0 g, adjustment of the resin composition for insulating materials and manufacture of insulating materials were performed in the same manner as in Example 3 in all cases. The resulting heat-resistant resin has a dielectric constant of 2.6 and a density of 1.45.
Met. No void was observed in the cross section of the insulating film by TEM.

【0031】「比較例4」実施例4の絶縁材用樹脂組成
物の調整において用いた単層カーボンナノチューブ2.
0gを添加しない以外は、全て実施例4と同様に、絶縁
材用樹脂組成物の調整と絶縁材の製造を行った。得られ
た耐熱性樹脂の誘電率は2.6であり、密度は1.42
であった。TEMによる絶縁材皮膜の断面観察で、空隙
は観察されなかった。
Comparative Example 4 Single-Walled Carbon Nanotubes Used in Preparation of Resin Composition for Insulating Material of Example 4
Except not adding 0 g, adjustment of the resin composition for insulating materials and manufacture of insulating materials were performed in the same manner as in Example 4. The obtained heat-resistant resin has a dielectric constant of 2.6 and a density of 1.42.
Met. No void was observed in the cross section of the insulating film by TEM.

【0032】実施例1〜4においては、誘電率が2.1
〜2.4と非常に低い耐熱性樹脂を得ることが出来た。
比較例1〜4では、自由体積が0.001〜1000nm3である中
空構造を有する成分(A)を含有していないために誘電
率を低減できなかった。
In Examples 1 to 4, the dielectric constant was 2.1.
A very low heat-resistant resin of ~ 2.4 was obtained.
In Comparative Examples 1 to 4, the dielectric constant could not be reduced because the component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 was not contained.

【0033】[0033]

【発明の効果】本発明の絶縁材用樹脂組成物及びこれを
用いた絶縁材は、電気特性および耐熱性に優れたもので
あり、これらの特性が要求される様々な分野、例えば、
半導体用の層間絶縁膜、多層回路の層間絶縁膜などとし
て有用である。
Industrial Applicability The resin composition for insulating material of the present invention and the insulating material using the same are excellent in electrical properties and heat resistance, and are used in various fields where these properties are required, for example,
It is useful as an interlayer insulating film for a semiconductor, an interlayer insulating film of a multilayer circuit, and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 3/00 H01B 3/00 A 3/02 3/02 Z 3/30 3/30 D H // H01L 21/312 H01L 21/312 A H05K 3/28 H05K 3/28 C Fターム(参考) 4J002 AA001 CM021 CM041 DA016 FD206 GQ01 5E314 AA36 AA41 BB01 5F058 AA10 AB05 AB07 AC02 AD04 AF04 AG01 AH02 5G303 AA07 AB01 AB20 BA12 CA11 CD01 5G305 AA07 AB01 AB24 BA15 CA21 CA32 CC01 CD01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 3/00 H01B 3/00 A 3/02 3/02 Z 3/30 3/30 DH // H01L 21/312 H01L 21/312 A H05K 3/28 H05K 3/28 CF term (reference) 4J002 AA001 CM021 CM041 DA016 FD206 GQ01 5E314 AA36 AA41 BB01 5F058 AA10 AB05 AB07 AC02 AD04 AF04 AG01 AH02 5G303 AA11 AB01 BA12 CA12 AA07 AB01 AB24 BA15 CA21 CA32 CC01 CD01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 自由体積が0.001〜1000nm3である中空構
造を有する成分(A)と、耐熱性樹脂またはその前駆体
(B)とを必須成分とする絶縁材用樹脂組成物。
1. A resin composition for an insulating material comprising a component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 and a heat-resistant resin or its precursor (B) as essential components.
【請求項2】 自由体積が0.001〜1000nm3である中空構
造を有する成分(A)がフラーレンである請求項1記載
の絶縁材用樹脂組成物。
2. The resin composition for an insulating material according to claim 1, wherein the component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 is fullerene.
【請求項3】 自由体積が0.001〜1000nm3である中空構
造を有する成分(A)がカーボンナノチューブである請
求項1記載の絶縁材用樹脂組成物。
3. The resin composition for an insulating material according to claim 1, wherein the component (A) having a hollow structure having a free volume of 0.001 to 1000 nm 3 is a carbon nanotube.
【請求項4】 耐熱性樹脂またはその前駆体(B)がポ
リイミド樹脂またはポリイミド前駆体である請求項1〜
3のいずれか1項に記載の絶縁材用樹脂組成物。
4. The heat-resistant resin or its precursor (B) is a polyimide resin or a polyimide precursor.
4. The resin composition for an insulating material according to any one of 3.
【請求項5】 耐熱性樹脂またはその前駆体(B)がポ
リベンゾオキサゾール樹脂またはポリベンゾオキサゾー
ル前駆体である請求項1〜3のいずれかに1項に記載の
絶縁材用樹脂組成物。
5. The resin composition for an insulating material according to claim 1, wherein the heat-resistant resin or its precursor (B) is a polybenzoxazole resin or a polybenzoxazole precursor.
【請求項6】 請求項1〜5のいずれかに1項に記載の
絶縁材用樹脂組成物を用いて得られた絶縁材。
6. An insulating material obtained by using the resin composition for an insulating material according to claim 1. Description:
JP28044599A 1999-09-30 1999-09-30 Resin composition for insulating material and insulating material using the same Pending JP2001098160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28044599A JP2001098160A (en) 1999-09-30 1999-09-30 Resin composition for insulating material and insulating material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28044599A JP2001098160A (en) 1999-09-30 1999-09-30 Resin composition for insulating material and insulating material using the same

Publications (1)

Publication Number Publication Date
JP2001098160A true JP2001098160A (en) 2001-04-10

Family

ID=17625164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28044599A Pending JP2001098160A (en) 1999-09-30 1999-09-30 Resin composition for insulating material and insulating material using the same

Country Status (1)

Country Link
JP (1) JP2001098160A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096313A (en) * 2001-09-27 2003-04-03 Toray Ind Inc Polymer composite
EP1376274A1 (en) * 2001-05-11 2004-01-02 Seiko Instruments Inc. Intermediate support structure and electronic timepiece having the same
US6834439B2 (en) 2002-05-21 2004-12-28 Mitutoyo Corporation Measuring tool, encoder and producing method of encoder
JP2005501935A (en) * 2001-08-29 2005-01-20 ジョージア テク リサーチ コーポレイション Composition comprising rigid rod polymer and carbon nanotube and method for producing the same
DE10345157A1 (en) * 2003-09-29 2005-05-19 Infineon Technologies Ag Thermally conductive packaging of electronic circuit units
JP2006252852A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Insulated wire
JP2007042697A (en) * 2005-08-01 2007-02-15 Mitsubishi Plastics Ind Ltd Interlayer insulation material for printed wiring board and electronic component using the same
CN100412533C (en) * 2004-02-21 2008-08-20 鸿富锦精密工业(深圳)有限公司 Device for measuring thermal coefficient
WO2008111393A1 (en) * 2007-03-13 2008-09-18 Kaneka Corporation Resin composition comprising empty silicone fine particles and organic polymer, and interlayer insulating film
KR100866465B1 (en) 2001-10-12 2008-10-31 토요 보세키 가부시기가이샤 Polybenzazole Fiber
JP2016501293A (en) * 2012-11-26 2016-01-18 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Mixed matrix polymer composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034405A (en) * 1989-04-27 1991-01-10 Siemens Ag Dielectric, which can be flattened
JPH08181133A (en) * 1994-12-27 1996-07-12 Sony Corp Dielectric material and manufacture of dielectric film
JPH11126774A (en) * 1997-10-24 1999-05-11 Sony Corp Insulating material and manufacture thereof, manufacture of film containing fullerene fluoride, semiconductor device and manufacture thereof
JPH11214382A (en) * 1998-01-29 1999-08-06 Fujitsu Ltd Low-dielectric-constant insulating material, mounting circuit board, and electric solid device
JPH11229153A (en) * 1998-02-09 1999-08-24 Hitachi Ltd Nonelectrolytic copper plating solution, production of multilayer printed circuit board using the solution and multilayer printed circuit board
JPH11263916A (en) * 1998-03-17 1999-09-28 Fujitsu Ltd Low dielectric constant insulating material for wiring circuit and electronic parts using the same
JP2002509354A (en) * 1997-12-16 2002-03-26 インフィネオン テクノロジース アクチエンゲゼルシャフト Electric integrated circuit and method of manufacturing the electric integrated circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034405A (en) * 1989-04-27 1991-01-10 Siemens Ag Dielectric, which can be flattened
JPH08181133A (en) * 1994-12-27 1996-07-12 Sony Corp Dielectric material and manufacture of dielectric film
JPH11126774A (en) * 1997-10-24 1999-05-11 Sony Corp Insulating material and manufacture thereof, manufacture of film containing fullerene fluoride, semiconductor device and manufacture thereof
JP2002509354A (en) * 1997-12-16 2002-03-26 インフィネオン テクノロジース アクチエンゲゼルシャフト Electric integrated circuit and method of manufacturing the electric integrated circuit
JPH11214382A (en) * 1998-01-29 1999-08-06 Fujitsu Ltd Low-dielectric-constant insulating material, mounting circuit board, and electric solid device
JPH11229153A (en) * 1998-02-09 1999-08-24 Hitachi Ltd Nonelectrolytic copper plating solution, production of multilayer printed circuit board using the solution and multilayer printed circuit board
JPH11263916A (en) * 1998-03-17 1999-09-28 Fujitsu Ltd Low dielectric constant insulating material for wiring circuit and electronic parts using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376274A1 (en) * 2001-05-11 2004-01-02 Seiko Instruments Inc. Intermediate support structure and electronic timepiece having the same
JP2005501935A (en) * 2001-08-29 2005-01-20 ジョージア テク リサーチ コーポレイション Composition comprising rigid rod polymer and carbon nanotube and method for producing the same
JP2003096313A (en) * 2001-09-27 2003-04-03 Toray Ind Inc Polymer composite
WO2003029354A1 (en) * 2001-09-27 2003-04-10 Toray Industries, Inc. Organic semiconductor material and organic semiconductor element employing the same
CN1300254C (en) * 2001-09-27 2007-02-14 东丽株式会社 Organic semiconductor material and organic semiconductor element employing the same
KR100866465B1 (en) 2001-10-12 2008-10-31 토요 보세키 가부시기가이샤 Polybenzazole Fiber
US7045088B2 (en) 2002-05-21 2006-05-16 Mitutoyo Corporation Measuring tool, encoder and producing method of encoder
US6834439B2 (en) 2002-05-21 2004-12-28 Mitutoyo Corporation Measuring tool, encoder and producing method of encoder
DE10345157A1 (en) * 2003-09-29 2005-05-19 Infineon Technologies Ag Thermally conductive packaging of electronic circuit units
CN100412533C (en) * 2004-02-21 2008-08-20 鸿富锦精密工业(深圳)有限公司 Device for measuring thermal coefficient
JP2006252852A (en) * 2005-03-09 2006-09-21 Matsushita Electric Ind Co Ltd Insulated wire
JP2007042697A (en) * 2005-08-01 2007-02-15 Mitsubishi Plastics Ind Ltd Interlayer insulation material for printed wiring board and electronic component using the same
JP4717544B2 (en) * 2005-08-01 2011-07-06 三菱樹脂株式会社 Interlayer insulating material for printed wiring board and electronic component using the same
WO2008111393A1 (en) * 2007-03-13 2008-09-18 Kaneka Corporation Resin composition comprising empty silicone fine particles and organic polymer, and interlayer insulating film
JP2016501293A (en) * 2012-11-26 2016-01-18 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Mixed matrix polymer composition

Similar Documents

Publication Publication Date Title
Devaraju et al. The synthesis and dielectric study of BaTiO3/polyimide nanocomposite films
JP5019152B2 (en) Carbon nanotube-dispersed polyimide composition
JP4896309B2 (en) Method for producing porous polyimide resin
JP2001098160A (en) Resin composition for insulating material and insulating material using the same
JP2005123428A (en) Capacitor and its manufacturing method
WO2022012076A1 (en) Low-dielectric polyimide composite thin film material and preparation method therefor
CN111087619A (en) Polyamide acid solution, polyimide film and application thereof
US5133989A (en) Process for producing metal-polyimide composite article
JP2006305914A (en) Method for producing laminated substrate
JP2002003724A (en) Insulating material and method of producing the same
JP2003105085A (en) Material for organic insulating film and organic insulating film
JP2001189109A (en) Resin composition for insulator, and insulator using the same
JP2006269558A (en) Method of producing flexible laminate substrate
JP4945858B2 (en) Organic insulating film material and organic insulating film
JP2002212288A (en) Manufacturing method of polyimide
JP2722333B2 (en) Manufacturing method of roughened polyimide film
JP2001283638A (en) Resin composition for insulating material and insulating material using the same
JP2001011181A (en) Resin composition for electrical insulation material and electrical insulation material using the same
KR100559056B1 (en) Insulating layer having low dielectric constant used for semiconductor, method for producing the same and precursor composition for producing the same
JP2005179480A (en) Resin composition for electrical insulation material and electrical insulation material using the same
JP2001226599A (en) Resin composition for forming multi-layered wiring with void and multi-layered wiring with void using the same
JP2002245855A (en) Resin component for insulation material, and insulation material using the same
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
JP2002008446A (en) Resin composite for insulating material and insulating material using it
JP2001332544A (en) Method of manufacturing insulating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419