JPH11263916A - Low dielectric constant insulating material for wiring circuit and electronic parts using the same - Google Patents
Low dielectric constant insulating material for wiring circuit and electronic parts using the sameInfo
- Publication number
- JPH11263916A JPH11263916A JP6728798A JP6728798A JPH11263916A JP H11263916 A JPH11263916 A JP H11263916A JP 6728798 A JP6728798 A JP 6728798A JP 6728798 A JP6728798 A JP 6728798A JP H11263916 A JPH11263916 A JP H11263916A
- Authority
- JP
- Japan
- Prior art keywords
- insulating material
- dielectric constant
- carbon
- fullerene
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4673—Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
- H05K3/4676—Single layer compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体素子など電
子デバイスを高密度に実装し、信号の高速伝播に適し
た、低誘電率多層回路配線の層間絶縁材料と、このよう
な多層回路配線基板を含む大規模集積回路(LSI)等
の電子部品に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interlayer insulating material for a low dielectric constant multilayer circuit wiring suitable for high-speed propagation of signals by mounting electronic devices such as semiconductor elements at high density, and such a multilayer circuit wiring board. And electronic components such as large-scale integrated circuits (LSI).
【0002】パーソナルコンピュータからハイパフォー
マンスコンピュータに至るまでの各種コンピュータで使
用される半導体素子の高速化は著しく、相対的に基板配
線部における伝送遅延が、コンピュータの演算速度を左
右するようになってきている。この結果、コンピュータ
の中央処理装置(CPU)用回路基板には、樹脂薄膜を
層間絶縁膜とする、高密度かつ微細な多層配線に適した
樹脂薄膜配線が適用されるようになってきた。将来のよ
り高速なコンピュータを実現するには、高密度かつ微細
な多層配線を活かし、かつ信号の高速伝播に適した低誘
電率絶縁材料の開発が不可欠である。2. Description of the Related Art The speed of semiconductor devices used in various computers ranging from personal computers to high-performance computers has been remarkably increased, and the transmission delay in a wiring section of a board relatively affects the operation speed of the computer. . As a result, resin thin film wiring suitable for high-density and fine multi-layer wiring using a resin thin film as an interlayer insulating film has come to be applied to a circuit board for a central processing unit (CPU) of a computer. In order to realize a higher-speed computer in the future, it is essential to develop a low-dielectric-constant insulating material that utilizes high-density and fine multilayer wiring and is suitable for high-speed signal propagation.
【0003】[0003]
【従来の技術】従来、高速コンピュータに使用されてい
る高密度実装基板材料には、エポキシ、ポリイミドなど
の樹脂が使用されている。更に、最近では、より低い誘
電率を有する樹脂としてオレフィン系やフッ素系の材料
が注目されている。2. Description of the Related Art Conventionally, resins such as epoxy and polyimide have been used as high-density mounting board materials used in high-speed computers. Furthermore, recently, olefin-based and fluorine-based materials have been attracting attention as resins having lower dielectric constants.
【0004】材料の比誘電率εs は、クラウジウス−モ
ソッテイの式によると以下のように表される。The relative permittivity ε s of a material is expressed as follows according to the Clausius-Mossottey equation.
【0005】[0005]
【数1】 (Equation 1)
【0006】ただし、この式のαは材料分子の分極率、
Nは単位体積あたりの分子数、ε0 は真空の誘電率であ
る。Where α in this equation is the polarizability of the material molecule,
N is the number of molecules per unit volume, and ε 0 is the dielectric constant in vacuum.
【0007】上式で、εs について解き、α又はNで偏
微分すればわかるように、分極率αが小さいほど、また
単位体積中の分子数Nが小さいほど、比誘電率εs が小
さくなる。この関係は、図1に示したNαと比誘電率ε
s との関係の一例を示すグラフから明らかである。以
下、比誘電率のことを単に「誘電率」と称することにす
る。As can be seen from the above equation, solving for ε s and performing partial differentiation with α or N, the relative permittivity ε s decreases as the polarizability α decreases and the number of molecules N per unit volume decreases. Become. This relationship is expressed by Nα and the relative dielectric constant ε shown in FIG.
This is clear from a graph showing an example of the relationship with s . Hereinafter, the relative dielectric constant is simply referred to as “dielectric constant”.
【0008】上述のようにオレフィン系あるいはフッ素
系の樹脂を用いることは、材料の分極率αを低く抑える
のに効果がある。しかし、これらの誘電率は2を下回ら
ないことが知られている。また、これらの樹脂材料は、
自己融着性や導体金属との密着性、層間のビア孔加工性
など、現状では解決すべきことが多く残されている。As described above, the use of an olefin-based or fluorine-based resin is effective in suppressing the material's polarizability α. However, it is known that their dielectric constants do not fall below 2. In addition, these resin materials,
At present, there are still many things to be solved, such as self-fusing properties, adhesion to conductive metals, and workability of via holes between layers.
【0009】一方、単位体積当たりの分子数Nを小さく
することにより誘電率を下げる方法もある。例えば、単
位体積当たりの分子数の少ないものとして発泡させた材
料が存在するが、これらが微細配線の数μmあるいは数
十μmオーダーの厚みの絶縁体として適さないことは明
白である。On the other hand, there is a method of lowering the dielectric constant by reducing the number N of molecules per unit volume. For example, there are foamed materials having a small number of molecules per unit volume, but it is clear that these are not suitable as insulators having a thickness of the order of several μm or tens of μm of fine wiring.
【0010】また、絶縁膜の軽量、低熱膨張率化を目的
として、樹脂材料にガラス繊維や炭素繊維を混入して複
合化することも考えられるが、ガラス繊維には誘電率を
引き上げるという欠点があり、炭素繊維には絶縁耐圧を
低下させるという欠点がある。In order to reduce the weight of the insulating film and to reduce the coefficient of thermal expansion, it is conceivable to mix glass fibers or carbon fibers into a resin material to form a composite. However, glass fibers have the disadvantage of increasing the dielectric constant. In addition, carbon fibers have a drawback of lowering the dielectric strength.
【0011】更に、分子レベルでの空間を取り入れるこ
とで材料の誘電率を低下させるために、分子内に空間の
ある構造を持つフラーレンなどを樹脂材料に混合する方
法も考えられるが、フラーレンは限られた溶媒に、微量
しか溶解せず、そのため樹脂に混合しても相分離しやす
いという間題があった。Further, in order to reduce the dielectric constant of the material by introducing a space at the molecular level, a method of mixing fullerene or the like having a structure with a space in the molecule with a resin material can be considered, but fullerene is limited. There is a problem that only a very small amount is dissolved in the obtained solvent, so that even when mixed with the resin, the phase is easily separated.
【0012】[0012]
【発明が解決しようとする課題】体誘電率の層間絶縁膜
材料として将来より注目されているオレフイン系やフッ
素系樹脂材料の誘電率は、2.1から2.8程度の範囲
である。これまでも、これらの材料の誘電率を更に下回
る材料がいくつか提案されてはいるが、現実の製造ある
いは実装プロセスに対応できる特性を有し、また自己融
着性や導体金属との密着性、層間のビア孔加工性など、
絶縁材料として必須な性質を兼ね備えた、実用的な低誘
電率層間絶縁材料に対して依然として大きな期待が寄せ
られている。The dielectric constant of an olefin-based or fluorine-based resin material, which is attracting attention as an interlayer insulating film material having a body dielectric constant in the future, is in the range of about 2.1 to 2.8. Until now, some materials have been proposed that have a dielectric constant lower than these materials, but they have characteristics that can be used in actual manufacturing or mounting processes, and have self-fusing properties and adhesion to conductive metals. , Via hole processability between layers, etc.
There is still great expectation for a practical low dielectric constant interlayer insulating material having essential properties as an insulating material.
【0013】本発明は、それに応えて、微細パターンの
回路配線用の低誘電率の絶縁材料として有用な新しい材
料を提供するのを目的とする。また、このような新しい
低誘電率絶縁材料から形成した絶縁膜を含む電子部品を
提供することも本発明の目的である。An object of the present invention is to provide a new material useful as a low dielectric constant insulating material for fine pattern circuit wiring in response thereto. It is another object of the present invention to provide an electronic component including an insulating film formed from such a new low dielectric constant insulating material.
【0014】[0014]
【課題を解決するための手段】本発明の回路配線用絶縁
材料は、絶縁性樹脂基剤とフラーレンあるいはカーボン
ナノチューブに化学修飾を施した化合物とを含むことを
特徴とする。The insulating material for circuit wiring of the present invention is characterized by containing an insulating resin base and a compound obtained by chemically modifying fullerene or carbon nanotube.
【0015】このように、本発明は、絶縁膜材料の基剤
として用いられる樹脂との相溶性が本質的によくないフ
ラーレンやカーボンナノチューブに化学修飾を施すこと
によって樹脂との相溶性を高めることで、樹脂中へのフ
ラーレンやカーボンナノチューブの分散量を大きくし、
形成した絶縁膜の低誘電率化を達成したものである。As described above, the present invention is to improve the compatibility with a resin by chemically modifying fullerenes and carbon nanotubes, which have essentially poor compatibility with a resin used as a base material for an insulating film. By increasing the amount of dispersion of fullerenes and carbon nanotubes in the resin,
This achieves a low dielectric constant of the formed insulating film.
【0016】フラーレンやカーボンナノチューブは、炭
素原子のみから構成された分子内に空間を持つ構造の物
質としてよく知られている。フラーレンは、表面に炭素
原子から形成された網目構造のある中空の球状分子の化
合物であり、カーボンナノチューブは同様に表面に炭素
原子から形成された網目構造のある、中空の円筒状分子
の化合物である。これらは、合成してもよく、あるいは
市販のものを使用してもよい。[0016] Fullerenes and carbon nanotubes are well known as substances having a structure having a space in a molecule composed of only carbon atoms. Fullerene is a compound of a hollow spherical molecule having a network structure formed of carbon atoms on the surface, and a carbon nanotube is a compound of a hollow cylindrical molecule having a network structure formed of carbon atoms on the surface. is there. These may be synthesized or commercially available ones may be used.
【0017】フラーレンなどは、例えば、有機リチウム
やグリニャール試薬を用いることにより化学修飾を施す
ことができる(永島、神野、伊藤、日本化学会誌、Vo
l.2、p91(1997)を参照)。これにより、フ
ラーレンなどとポリイミドなどの絶縁樹脂との相溶性を
向上させ、樹脂中の空間を大きくすることにより、形成
した絶縁膜の誘電率を低下させることができる。あるい
は、化学修飾によりフラーレンなどに絶縁樹脂との反応
性を付与することもできる。Fullerenes and the like can be chemically modified by using, for example, organolithium or Grignard reagents (Nagashima, Kamino, Ito, Journal of the Chemical Society of Japan, Vo
l. 2, p91 (1997)). Thereby, the compatibility between the fullerene and the like and the insulating resin such as the polyimide is improved, and the space in the resin is enlarged, so that the dielectric constant of the formed insulating film can be reduced. Alternatively, fullerene or the like can be given reactivity with an insulating resin by chemical modification.
【0018】フラーレンあるいはカーボンナノチューブ
の化学修飾は、例えばシリコーン系官能基や酸素を含む
置換基などで施すことができる。シリコーン系官能基や
酸素を含む置換基の例は、−Si(CH3 )3 ,−Si
(CH3 )2 OCH3 ,−Si(CH3 )(OCH3 )
2 ,−Si(CH3 )(OCH(CH3 )2 )2 等であ
り、これらで化学修飾されたフラーレンあるいはカーボ
ンナノチューブは絶縁材料の基剤樹脂との相溶性が向上
する。不飽和結合を持つ官能基を加えて、フラーレンあ
るいはカーボンナノチューブの反応性を増加させてもよ
い。不飽和結合を持つ官能基の代表例は、アリル基、ア
リール基、−C≡C−R(Rはアルキル基)等である。
また、フラーレンあるいはカーボンナノチューブ分子に
水素や、ふっ素を付加させて、これらの分子の共役系の
一部を飽和結合にすることも、絶縁材料の誘電率を低下
させるために効果がある。Chemical modification of fullerenes or carbon nanotubes can be performed, for example, with a silicone-based functional group or a substituent containing oxygen. Examples of substituents containing a silicone-based functional groups and oxygen, -Si (CH 3) 3, -Si
(CH 3 ) 2 OCH 3 , —Si (CH 3 ) (OCH 3 )
2 , -Si (CH 3 ) (OCH (CH 3 ) 2 ) 2 and the like. Fullerenes or carbon nanotubes chemically modified with these improve the compatibility with the base resin of the insulating material. A functional group having an unsaturated bond may be added to increase the reactivity of fullerene or carbon nanotube. Representative examples of the functional group having an unsaturated bond include an allyl group, an aryl group, and -C≡CR (R is an alkyl group).
Further, adding hydrogen or fluorine to fullerene or carbon nanotube molecules to make a part of a conjugated system of these molecules into a saturated bond is also effective for lowering the dielectric constant of the insulating material.
【0019】絶縁材料の誘電率の低下に寄与する空間を
形成するためには、フラーレン等の分子長軸方向の炭素
一炭素間の距離が少なくとも4オングストローム(0.
4nm)以上あることが好ましい。例として、分子長軸
方向の炭素一炭素間の距離が4オングストローム(0.
4nm)以上のフラーレンとしては、C20、C24、
C 26、C28、C30、C32、C36、C50、C60、C70、C
76、C78、C80、C180 、C240 、C320 、C540 など
が考えられる。The space that contributes to the decrease in the dielectric constant of the insulating material is
In order to form, carbon in the molecular long axis direction such as fullerene
The distance between carbons is at least 4 Å (0.
4 nm) or more. As an example, the molecular long axis
The carbon-to-carbon distance in the direction is 4 angstroms (0.
4 nm) or more as fullerene,20, Ctwenty four,
C 26, C28, C30, C32, C36, C50, C60, C70, C
76, C78, C80, C180, C240, C320, C540Such
Can be considered.
【0020】本発明の絶縁材料は、化学修飾したフレー
レンあるいはカーボンナノチューブを、絶縁材料の基剤
樹脂と混合して調製することができる。必要に応じ、溶
媒を使用しても差し支えない。フレーレンあるいはカー
ボンナノチューブは、基剤樹脂又は基剤樹脂溶液に対す
る溶解度に依存するとは言え、基剤樹脂又は基剤樹脂溶
液に飽和するまで加えることができる。この最大限の添
加量を用いた場合に、例えば形成した絶縁膜の耐熱性等
が問題となる場合には、フラーレン等の添加量を減少さ
せるべきである。いずれにせよ、本発明の絶縁材料に混
入するフラーレンあるいはカーボンナノチューブの量
は、基剤樹脂の種類や絶縁膜に要求される特性に応じて
実験により簡単に決定することができる。The insulating material of the present invention can be prepared by mixing chemically modified fullerene or carbon nanotube with a base resin of the insulating material. If necessary, a solvent may be used. Fullerene or carbon nanotubes can be added to the base resin or the base resin solution until saturation, although it depends on the solubility in the base resin or base resin solution. In the case where the maximum addition amount is used, for example, when the heat resistance of the formed insulating film becomes a problem, the addition amount of fullerene or the like should be reduced. In any case, the amount of fullerenes or carbon nanotubes mixed in the insulating material of the present invention can be easily determined by experiment according to the type of the base resin and the characteristics required for the insulating film.
【0021】基剤樹脂は、多層配線の製造に用いられる
低誘電率の樹脂のいずれでもよい。基剤樹脂がポリイミ
ドあるいはシリコーン樹脂であると、これらは特に耐熱
性にも優れることから、電子部品の組み立て工程や製品
の信頼性の面で有利である。The base resin may be any of low-permittivity resins used for manufacturing multilayer wiring. If the base resin is a polyimide or silicone resin, these are particularly excellent in heat resistance, which is advantageous in terms of the assembly process of electronic components and the reliability of products.
【0022】本発明の絶縁材料から多層回路基板の層間
絶縁膜を形成するには、絶縁材料を基板に塗布し、乾燥
後、基剤樹脂を硬化させればよく、これは多層回路基板
の分野でよく知られた手法であり、ここで詳しく説明す
るには及ばない。In order to form an interlayer insulating film of a multilayer circuit board from the insulating material of the present invention, the insulating material is applied to the substrate, dried, and then the base resin is cured. It is not well-known here.
【0023】本発明の絶縁材料から形成した絶縁膜は、
基剤樹脂に分散した、分子レベルでの空間を備えた炭素
化合物の効果により、低誘電率、低熱膨張、高絶縁性を
具備する。この絶縁膜を層間絶縁膜として用いた、例え
ばLSI等の電子部品は、高密度かつ微細な多層配線構
造を備えることができ、各種コンピュータの演算速度の
向上に大きく貢献する。The insulating film formed from the insulating material of the present invention comprises:
It has low dielectric constant, low thermal expansion, and high insulating properties due to the effect of the carbon compound having a space at the molecular level dispersed in the base resin. An electronic component such as an LSI using this insulating film as an interlayer insulating film, for example, can have a high-density and fine multilayer wiring structure, and greatly contributes to improvement in the operation speed of various computers.
【0024】[0024]
【実施例】次に、本発明の実施例を説明するが、言うま
でもなく本発明はこれらの実施例に限定されるものでは
ない。Next, embodiments of the present invention will be described, but it goes without saying that the present invention is not limited to these embodiments.
【0025】〔実施例1〕C60フラーレン(アルドリッ
チ社製)を70gのテトラヒドロフラン(THF)に過
飽和になるまで溶解後、グリニャール試薬ClMgCH
2 SiMe2 (OCH(Me)2 )(この式のMeはメ
チル基を表す)を用いて、20℃の温度で2時間の付加
反応を行った。付加反応後、溶媒のTHFを除去してか
ら、この化学修飾したC60フラーレンを、特開平8−2
59784号公報で示されるように、6−メチル−1,
4,5,8−ジメタノ−1,2,3,4,4a,5,
8,8a−オクタヒドロナフタレンを公知の方法で開環
重合し、水素添加して得た脂環式ポリオレフィンの10
重量%THF溶液に加えて、化学修飾C60フラーレンで
飽和させた絶縁材料溶液を作った。[0025] After dissolving Example 1 C 60 fullerene (manufactured by Aldrich) until supersaturation 70g of tetrahydrofuran (THF), a Grignard reagent ClMgCH
Using 2 SiMe 2 (OCH (Me) 2 ) (Me in this formula represents a methyl group), an addition reaction was performed at a temperature of 20 ° C. for 2 hours. After the addition reaction, the THF was removed of the solvent, the C 60 fullerenes this chemical modification, JP-8-2
No. 59784, 6-methyl-1,
4,5,8-Dimethano-1,2,3,4,4a, 5
Ring opening polymerization of 8,8a-octahydronaphthalene by a known method and hydrogenation of alicyclic polyolefin 10
In addition to weight% THF solution, made an insulating material solution saturated with chemically modified C 60 fullerene.
【0026】次に、この溶液をシリコン基板上にスピン
コートし、乾燥後、220℃で5分の条件で熱硬化させ
た。更に、アフターキュアとして、酸素濃度10ppm
以下の窒素雰囲気中にて200℃で5時間の熱硬化を行
い、絶縁膜を形成した。この絶縁膜の誘電率を、金電極
(1mm×1mm)を蒸着し1MHzで測定したところ、
2.2であった。Next, this solution was spin-coated on a silicon substrate, dried, and thermally cured at 220 ° C. for 5 minutes. Furthermore, as an after cure, an oxygen concentration of 10 ppm
Thermal curing was performed at 200 ° C. for 5 hours in the following nitrogen atmosphere to form an insulating film. The dielectric constant of this insulating film was measured at 1 MHz by depositing a gold electrode (1 mm × 1 mm).
2.2.
【0027】〔実施例2〕C60フラーレン(アルドリッ
チ社製)を70gのテトラヒドロフラン(THF)に過
飽和になるまで溶解後、グリニャール試薬ClMgCH
2 SiMe2 (OCH(Me)2 )(この式のMeはメ
チル基を表す)を用いて、20℃の温度で2時間の付加
反応を行った。この生成物に対し、更にt−ブチルリチ
ウムにより付加反応(20℃、2時間)を行って、C60
フラーレンに水素とt−ブチル基を付加させた。反応終
了後、溶媒のTHFを除去してから、この化学修飾した
C60フラーレンを実施例1で使用したのと同じ脂環式ポ
リオレフィンの10重量%THF溶液に加えて、化学修
飾C60フラーレンで飽和させた絶縁材料溶液を作った。[0027] After dissolving Example 2 C 60 fullerene (manufactured by Aldrich) until supersaturation 70g of tetrahydrofuran (THF), a Grignard reagent ClMgCH
Using 2 SiMe 2 (OCH (Me) 2 ) (Me in this formula represents a methyl group), an addition reaction was performed at a temperature of 20 ° C. for 2 hours. This product was further subjected to an addition reaction (20 ° C., 2 hours) with t-butyllithium to obtain C 60
Fullerene was added with hydrogen and a t-butyl group. After completion of the reaction, the THF was removed of the solvent, in addition to 10 wt% THF solution of the same alicyclic polyolefin as that used for C 60 fullerenes This chemical modification in Example 1, in chemically modified C 60 fullerene A saturated insulating material solution was made.
【0028】次に、この溶液をシリコン基板上に塗布
し、乾燥後、220℃で5分の条件で熱硬化させた。更
に、アフターキュアとして、酸素濃度10ppm以下の
窒素雰囲気中にて200℃で5時間の熱硬化を行い、絶
縁膜を形成した。この絶縁膜の誘電率を実施例1で説明
したとおりに測定したところ、誘電率は2.0であっ
た。Next, this solution was applied on a silicon substrate, dried, and thermally cured at 220 ° C. for 5 minutes. Further, as an after cure, thermal curing was performed at 200 ° C. for 5 hours in a nitrogen atmosphere having an oxygen concentration of 10 ppm or less to form an insulating film. When the dielectric constant of this insulating film was measured as described in Example 1, the dielectric constant was 2.0.
【0029】〔比較例〕実施例1、2で使用したのと同
じC60フラーレンを、やはり実施例1、2で使用したの
と同じ脂環式ポリオレフィンの10重量%THF溶液に
飽和するまで溶解させた。こうして調製した絶縁材料の
溶液を基板上に塗布、乾燥し、220℃、5分の条件で
熱硬化させた。更に、アフターキュアとして、酸素濃度
10ppm以下の窒素雰囲気中にて200℃、5時間の
熱硬化を行い、絶縁膜を形成した。実施例1で説明した
方法で測定したこの絶縁膜の誘電率は2.8であった。[0029] dissolving the same C 60 fullerene as used in COMPARATIVE EXAMPLE Example 1, until again saturates 10 wt% THF solution of the same alicyclic polyolefin as used in Examples 1 and 2 I let it. The solution of the insulating material thus prepared was applied on a substrate, dried, and thermally cured at 220 ° C. for 5 minutes. Further, as an after cure, thermal curing was performed at 200 ° C. for 5 hours in a nitrogen atmosphere having an oxygen concentration of 10 ppm or less to form an insulating film. The dielectric constant of this insulating film measured by the method described in Example 1 was 2.8.
【0030】[0030]
【発明の効果】以上説明したように、本発明によれば、
分子レベルで空間を形成できるフラーレンやカーボンナ
ノチューブを絶縁材料中に効果的に取り込むことができ
るため、微細パターンに適用できる低誘電率の絶縁膜を
提供すること、及びこの絶縁膜を含み高速の信号伝播に
適した多層回路基板を含む電子部品を提供することが可
能になる。As described above, according to the present invention,
Fullerenes and carbon nanotubes that can form a space at the molecular level can be effectively incorporated into an insulating material, so that an insulating film with a low dielectric constant that can be applied to a fine pattern can be provided. It is possible to provide an electronic component including a multilayer circuit board suitable for propagation.
【図1】材料の単位体積中の分子数N及び分極率αの積
と、比誘電率εs との関係を示すグラフである。[1] and the product of the number of molecules N and polarizability in a unit volume of material alpha, is a graph showing the relationship between the relative dielectric constant epsilon s.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/768 H01L 21/90 S (72)発明者 佐藤 博之 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 横内 貴志男 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 福山 俊一 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 中田 義弘 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/768 H01L 21/90 S (72) Inventor Hiroyuki Sato 4-1-1 Uedanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Stock Inside the company (72) Inventor Takao Yokouchi 4-1-1, Kamidadanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Shunichi Fukuyama 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Fujitsu Inside (72) Inventor Yoshihiro Nakata 4-1-1, Kamidadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited
Claims (6)
ーボンナノチューブに化学修飾を施した化合物とを含む
ことを特徴とする回路配線用絶縁材料。1. An insulating material for circuit wiring, comprising an insulating resin base and a compound obtained by chemically modifying fullerene or carbon nanotube.
ューブの炭素−炭素間の距離が4オングストローム
(0.4nm)以上である、請求項1記載の回路配線用
絶縁材料。2. The insulating material for circuit wiring according to claim 1, wherein the fullerene or carbon nanotube has a carbon-carbon distance of 4 angstroms (0.4 nm) or more.
素を含む置換基、不飽和結合を持つ置換基又はフッ素原
子でなされている、請求項1又は2記載の回路配線用絶
縁材料。3. The insulating material for circuit wiring according to claim 1, wherein the chemical modification is made of a silicone-based functional group, a substituent containing oxygen, a substituent having an unsaturated bond, or a fluorine atom.
リコーン樹脂である、請求項1から3までのいずれか一
つに記載の回路配線用絶縁材料。4. The insulating material for circuit wiring according to claim 1, wherein the insulating resin base is a polyimide or a silicone resin.
載の材料を硬化させて形成されていることを特徴とする
回路配線用絶縁膜。5. An insulating film for circuit wiring, which is formed by curing the material according to claim 1.
路配線基板を含む電子部品。6. An electronic component including a multilayer circuit wiring board using the insulating film according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6728798A JPH11263916A (en) | 1998-03-17 | 1998-03-17 | Low dielectric constant insulating material for wiring circuit and electronic parts using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6728798A JPH11263916A (en) | 1998-03-17 | 1998-03-17 | Low dielectric constant insulating material for wiring circuit and electronic parts using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11263916A true JPH11263916A (en) | 1999-09-28 |
Family
ID=13340626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6728798A Withdrawn JPH11263916A (en) | 1998-03-17 | 1998-03-17 | Low dielectric constant insulating material for wiring circuit and electronic parts using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11263916A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098160A (en) * | 1999-09-30 | 2001-04-10 | Sumitomo Bakelite Co Ltd | Resin composition for insulating material and insulating material using the same |
JP2003096313A (en) * | 2001-09-27 | 2003-04-03 | Toray Ind Inc | Polymer composite |
WO2004058899A1 (en) * | 2002-12-25 | 2004-07-15 | Fuji Xerox Co., Ltd. | Liquid mixture, structure, and method for forming structure |
EP1473770A1 (en) * | 2002-12-18 | 2004-11-03 | Texas Instruments Incorporated | Low dielectric constant interconnect insulator having fullerene additive |
US6834439B2 (en) | 2002-05-21 | 2004-12-28 | Mitutoyo Corporation | Measuring tool, encoder and producing method of encoder |
JP2005508067A (en) * | 2001-10-29 | 2005-03-24 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | Polymers containing functionalized carbon nanotubes |
JP2005520021A (en) * | 2002-03-14 | 2005-07-07 | カーボン ナノテクノロジーズ インコーポレーテッド | Composite materials containing polar polymers and single-walled carbon nanotubes |
GB2411169A (en) * | 2001-01-29 | 2005-08-24 | Univ Rice William M | Derivatizing carbon nanotubes and combining with a polymer |
JP2005232165A (en) * | 2004-01-22 | 2005-09-02 | Mitsubishi Chemicals Corp | Fullerene derivative, fullerene metal complex, and method for producing the same |
EP1409574A4 (en) * | 2001-06-08 | 2006-02-15 | Eikos Inc | Nanocomposite dielectrics |
KR100559056B1 (en) * | 2000-09-25 | 2006-03-10 | 주식회사 동진쎄미켐 | Insulating layer having low dielectric constant used for semiconductor, method for producing the same and precursor composition for producing the same |
JP2006252852A (en) * | 2005-03-09 | 2006-09-21 | Matsushita Electric Ind Co Ltd | Insulated wire |
JP2007042697A (en) * | 2005-08-01 | 2007-02-15 | Mitsubishi Plastics Ind Ltd | Interlayer insulation material for printed wiring board and electronic component using the same |
JP2008527119A (en) * | 2005-01-13 | 2008-07-24 | シンベンション アーゲー | Composite materials containing carbon nanoparticles |
CN100452370C (en) * | 2002-06-12 | 2009-01-14 | 英特尔公司 | Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD |
US7531209B2 (en) | 2005-02-24 | 2009-05-12 | Michael Raymond Ayers | Porous films and bodies with enhanced mechanical strength |
US7790234B2 (en) | 2006-05-31 | 2010-09-07 | Michael Raymond Ayers | Low dielectric constant materials prepared from soluble fullerene clusters |
US20100239838A1 (en) * | 2006-04-27 | 2010-09-23 | Takenaka Seisakusho Co., Ltd. | Coating Composition and Coated Article |
US7875315B2 (en) | 2006-05-31 | 2011-01-25 | Roskilde Semiconductor Llc | Porous inorganic solids for use as low dielectric constant materials |
US7883742B2 (en) | 2006-05-31 | 2011-02-08 | Roskilde Semiconductor Llc | Porous materials derived from polymer composites |
US7919188B2 (en) | 2006-05-31 | 2011-04-05 | Roskilde Semiconductor Llc | Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials |
-
1998
- 1998-03-17 JP JP6728798A patent/JPH11263916A/en not_active Withdrawn
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098160A (en) * | 1999-09-30 | 2001-04-10 | Sumitomo Bakelite Co Ltd | Resin composition for insulating material and insulating material using the same |
KR100559056B1 (en) * | 2000-09-25 | 2006-03-10 | 주식회사 동진쎄미켐 | Insulating layer having low dielectric constant used for semiconductor, method for producing the same and precursor composition for producing the same |
GB2411169A (en) * | 2001-01-29 | 2005-08-24 | Univ Rice William M | Derivatizing carbon nanotubes and combining with a polymer |
GB2411169B (en) * | 2001-01-29 | 2005-10-26 | Univ Rice William M | Process for derivatizing carbon nanotubes with diazonium species and compositions thereof |
EP1409574A4 (en) * | 2001-06-08 | 2006-02-15 | Eikos Inc | Nanocomposite dielectrics |
CN1300254C (en) * | 2001-09-27 | 2007-02-14 | 东丽株式会社 | Organic semiconductor material and organic semiconductor element employing the same |
KR100865500B1 (en) * | 2001-09-27 | 2008-10-28 | 도레이 가부시끼가이샤 | Organic Semiconductor Material and Organic Semiconductor Element Employing the Same |
JP2003096313A (en) * | 2001-09-27 | 2003-04-03 | Toray Ind Inc | Polymer composite |
WO2003029354A1 (en) * | 2001-09-27 | 2003-04-10 | Toray Industries, Inc. | Organic semiconductor material and organic semiconductor element employing the same |
JP2005508067A (en) * | 2001-10-29 | 2005-03-24 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | Polymers containing functionalized carbon nanotubes |
KR101228702B1 (en) * | 2001-10-29 | 2013-02-01 | 하이페리온 커탤리시스 인터내셔널 인코포레이티드 | Polymer containing functionalized carbon nanotubes |
US8992799B2 (en) | 2001-10-29 | 2015-03-31 | Hyperion Catalysis International, Inc. | Polymers containing functionalized carbon nanotubes |
US8980136B2 (en) | 2001-10-29 | 2015-03-17 | Hyperion Catalysis International, Inc. | Polymers containing functionalized carbon nanotubes |
JP2005520021A (en) * | 2002-03-14 | 2005-07-07 | カーボン ナノテクノロジーズ インコーポレーテッド | Composite materials containing polar polymers and single-walled carbon nanotubes |
US6834439B2 (en) | 2002-05-21 | 2004-12-28 | Mitutoyo Corporation | Measuring tool, encoder and producing method of encoder |
US7045088B2 (en) | 2002-05-21 | 2006-05-16 | Mitutoyo Corporation | Measuring tool, encoder and producing method of encoder |
CN100452370C (en) * | 2002-06-12 | 2009-01-14 | 英特尔公司 | Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD |
EP1473770A1 (en) * | 2002-12-18 | 2004-11-03 | Texas Instruments Incorporated | Low dielectric constant interconnect insulator having fullerene additive |
WO2004058899A1 (en) * | 2002-12-25 | 2004-07-15 | Fuji Xerox Co., Ltd. | Liquid mixture, structure, and method for forming structure |
JP2005232165A (en) * | 2004-01-22 | 2005-09-02 | Mitsubishi Chemicals Corp | Fullerene derivative, fullerene metal complex, and method for producing the same |
JP2008527119A (en) * | 2005-01-13 | 2008-07-24 | シンベンション アーゲー | Composite materials containing carbon nanoparticles |
US7531209B2 (en) | 2005-02-24 | 2009-05-12 | Michael Raymond Ayers | Porous films and bodies with enhanced mechanical strength |
JP2006252852A (en) * | 2005-03-09 | 2006-09-21 | Matsushita Electric Ind Co Ltd | Insulated wire |
JP4717544B2 (en) * | 2005-08-01 | 2011-07-06 | 三菱樹脂株式会社 | Interlayer insulating material for printed wiring board and electronic component using the same |
JP2007042697A (en) * | 2005-08-01 | 2007-02-15 | Mitsubishi Plastics Ind Ltd | Interlayer insulation material for printed wiring board and electronic component using the same |
US20100239838A1 (en) * | 2006-04-27 | 2010-09-23 | Takenaka Seisakusho Co., Ltd. | Coating Composition and Coated Article |
US7875315B2 (en) | 2006-05-31 | 2011-01-25 | Roskilde Semiconductor Llc | Porous inorganic solids for use as low dielectric constant materials |
US7883742B2 (en) | 2006-05-31 | 2011-02-08 | Roskilde Semiconductor Llc | Porous materials derived from polymer composites |
US7919188B2 (en) | 2006-05-31 | 2011-04-05 | Roskilde Semiconductor Llc | Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials |
US7790234B2 (en) | 2006-05-31 | 2010-09-07 | Michael Raymond Ayers | Low dielectric constant materials prepared from soluble fullerene clusters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11263916A (en) | Low dielectric constant insulating material for wiring circuit and electronic parts using the same | |
US7892635B2 (en) | Precursors for porous low-dielectric constant materials for use in electronic devices | |
US8674046B2 (en) | Source material for preparing low dielectric constant material | |
KR101610978B1 (en) | Low-k dielectrics obtainable by twin polymerization | |
US6841256B2 (en) | Low dielectric constant polyorganosilicon materials generated from polycarbosilanes | |
KR100843392B1 (en) | Mold used in imprinting printed circuit board with excellent durability and preparing method for printed circuit board using the same | |
KR20020075876A (en) | Polycarbosilane Adhesion Promoters for Low Dielectric Constant Polymeric Materials | |
JP2003517713A (en) | Porous insulating compound and method for producing the same | |
US20060175685A1 (en) | Composition for forming low-dielectric constant film comprising fullerene, low-dielectric constant film formed from the composition and method for forming the low-dielectric constant film | |
US7029605B2 (en) | Low dielectric constant material having thermal resistance, insulation film between semiconductor layers using the same, and semiconductor device | |
US6599623B2 (en) | Nanoparticles formed with rigid connector compounds | |
US20050215732A1 (en) | Composition for film formation, coating solution containing the same and electronic device having insulating film obtained by using the coating solution | |
JPH11214382A (en) | Low-dielectric-constant insulating material, mounting circuit board, and electric solid device | |
JP2004533517A (en) | Method for producing organic silicate polymer and method for producing insulating film using the same | |
JP3483500B2 (en) | Insulating film forming material, insulating film forming method, and semiconductor device | |
KR20010098087A (en) | Method for preparing dielectrics material with low dielectric constant using organic spacer | |
KR20020064465A (en) | Method for preparing low dielectric materials for semiconductor ic device | |
JP2006253577A (en) | Insulating film, its manufacturing method and device having same | |
JP2006257212A (en) | Film-forming composition, insulation film using it and electronic device | |
US7192540B2 (en) | Low dielectric constant material having thermal resistance, insulation film between semiconductor layers using the same, and semiconductor device | |
JP4465288B2 (en) | Film-forming composition, insulating film and electronic device using the same | |
JP3489946B2 (en) | Method for forming insulating film of semiconductor device and material for forming insulating film | |
WO2010047398A1 (en) | Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate | |
JP2006019621A (en) | Polymer ceramic composite material for capacitor, multilayered wiring board and module board | |
KR20020024495A (en) | Insulating layer comprising organic-inorganic complex used for semiconductor, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050607 |