Nothing Special   »   [go: up one dir, main page]

JP2001040439A - Cu-Ag ALLOY AND ITS MANUFACTURE - Google Patents

Cu-Ag ALLOY AND ITS MANUFACTURE

Info

Publication number
JP2001040439A
JP2001040439A JP11214336A JP21433699A JP2001040439A JP 2001040439 A JP2001040439 A JP 2001040439A JP 11214336 A JP11214336 A JP 11214336A JP 21433699 A JP21433699 A JP 21433699A JP 2001040439 A JP2001040439 A JP 2001040439A
Authority
JP
Japan
Prior art keywords
alloy
tensile strength
elongation
cold working
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11214336A
Other languages
Japanese (ja)
Other versions
JP3856073B2 (en
Inventor
Kiyotaka Utsunomiya
清高 宇都宮
Tetsuji Maruyama
哲二 丸山
Takuji Otsuka
拓次 大塚
Yukifumi Chiba
幸文 千葉
Taichiro Nishikawa
太一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21433699A priority Critical patent/JP3856073B2/en
Publication of JP2001040439A publication Critical patent/JP2001040439A/en
Application granted granted Critical
Publication of JP3856073B2 publication Critical patent/JP3856073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Ag alloy having an excellent tensile strength and elongation, and a high electric conductivity and an excellent bending characteristics, as a substitute to a Cu-Sn alloy, and a manufacturing method therefor, in particular, a manufacturing method giving a minimized working process and an excellent workability. SOLUTION: In the manufacturing method of a Cu-Ag alloy, a lot obtained by casting a Cu-Ag alloy consisting essentially of Cu and containing 1.0 to 15.0 wt.% Ag is cold-worked with an area reducing of 70% or larger, then a heat treatment is executed at a temperature between 400 and 500 deg.C for 1 to 30 hours, and further a cold working is executed with an area reducing of 95% or more. The Cu-Ag alloy obtained by the above described manufacture has a tensile strength of 80 kgf/mm2 or larger, an elongation of 0.2% or larger, and an electric conductivity of 60% IACS or larger.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐屈曲性に優れた
高強度・高導電性のCu-Ag合金及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength and high-conductivity Cu-Ag alloy having excellent bending resistance and a method for producing the same.

【0002】[0002]

【従来の技術】電子機器、例えばロボットやスピーカー
等の内部で繰り返し開閉または回転するような可動部に
使用される導体には、耐屈曲性が必要である。導体に耐
屈曲性を持たせるには、強度(引張強度)を増せばよ
い。そこで上記可動部の導体には、錫を添加することで
高強度にしたCu-Sn合金が使用されている。しかし、錫
の添加量を増加すると強度は増すが、それに伴い導電率
が急激に低下するため、錫の添加量と強度には上限があ
った。そのため、導体の導電率を良くすると、耐屈曲性
は得られないことになる。
2. Description of the Related Art A conductor used for a movable portion that repeatedly opens and closes or rotates inside an electronic device, for example, a robot or a speaker, needs to have bending resistance. In order to impart flex resistance to the conductor, the strength (tensile strength) may be increased. Therefore, a Cu—Sn alloy whose strength is increased by adding tin is used for the conductor of the movable portion. However, although the strength increases as the amount of tin added increases, the electrical conductivity sharply decreases with this. Therefore, there is an upper limit to the amount of tin added and the strength. Therefore, if the conductivity of the conductor is improved, bending resistance cannot be obtained.

【0003】一方、上記導電率の低下を最小限にするた
めに銀を添加したCu-Ag合金がある。このCu-Ag合金とし
て例えば、特公平7-109027号公報、特開平6-103809号公
報などに開示されたものがある。これらは、ロングパル
スマグネットなどの高磁界発生用マグネットの導体材料
に使用されているものである。
[0003] On the other hand, there is a Cu-Ag alloy to which silver is added in order to minimize the decrease in the conductivity. Examples of the Cu-Ag alloy include those disclosed in Japanese Patent Publication No. 7-09027 and Japanese Patent Application Laid-Open No. 6-103809. These are used as conductor materials for high magnetic field generating magnets such as long pulse magnets.

【0004】前者は、銅に対し銀を4〜32at%(6.6〜4
4.4wt%)含むCu-Ag合金の製造方法を記載している。こ
の製造方法は、銀6.6〜44.4wt%含有のCu-Ag合金を鋳造
後、急冷しロットを作製して、減面率80%以上で冷間加
工し、300〜500℃で0.5〜5時間熱処理を施す。上記冷
間加工と熱処理とは2回以上繰り返す。その後、場合に
より更に冷間加工を行うものである。この製造方法によ
るCu-Ag合金は、引張強さ85〜99kgf/mm、導電率78〜8
4%IACSである。
In the former, silver is added to copper in an amount of 4 to 32 at% (6.6 to 4 at%).
A method for producing a Cu-Ag alloy containing 4.4 wt%) is described. This production method involves casting a Cu-Ag alloy containing 6.6 to 44.4 wt% of silver, quenching it to produce a lot, cold working at a surface reduction rate of 80% or more, and 0.5 to 5 hours at 300 to 500 ° C. Heat treatment is performed. The cold working and the heat treatment are repeated twice or more. Thereafter, cold working is further performed in some cases. The Cu-Ag alloy produced by this method has a tensile strength of 85 to 99 kgf / mm 2 and a conductivity of 78 to 8
4% IACS.

【0005】後者は、銅に対し銀を10〜20at%(15.8〜
29.7wt%)含むCu-Ag合金の製造方法を記載している。
この製造方法は、銀15.8〜29.7wt%含有のCu-Ag合金を
鋳造後、急冷しロットを作製して、減面率95%以上で冷
間加工し、450〜500℃で10〜20時間熱処理を施す。冷間
加工と熱処理は2回以上繰り返す。その後減面率90%以
上の冷間加工を行う。この製造方法によるCu-Ag合金
は、鋳造径8mmで引張強さ95〜102kgf/mm、導電率80
〜85%IACSである。
In the latter, silver is contained in an amount of 10 to 20 at% (15.8 to
It describes a method for producing a Cu-Ag alloy containing 29.7 wt%).
This production method involves casting a Cu-Ag alloy containing 15.8 to 29.7 wt% of silver, quenching it, making a lot, cold working at a surface reduction rate of 95% or more, and 450 to 500 ° C for 10 to 20 hours. Heat treatment is performed. The cold working and the heat treatment are repeated twice or more. After that, cold work is performed to reduce the area by 90% or more. The Cu-Ag alloy manufactured by this method has a casting diameter of 8 mm, a tensile strength of 95 to 102 kgf / mm 2 , and a conductivity of 80.
~ 85% IACS.

【0006】これらの数値より上記Cu-Sn合金に比較し
てCu-Ag合金は、耐屈曲性・導電性が優れていると言え
る。またCu-Ag合金はCu-Sn合金より細径にでき、連続稼
動にも耐え得るので、これらCu-Ag合金はCu-Sn合金に代
わって使用できる。
[0006] From these figures, it can be said that the Cu-Ag alloy is superior in bending resistance and conductivity as compared with the Cu-Sn alloy. Further, since the Cu-Ag alloy can be made smaller in diameter than the Cu-Sn alloy and can withstand continuous operation, these Cu-Ag alloys can be used instead of the Cu-Sn alloy.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記Cu
-Ag合金は、銀の含有量が多くコスト高である。また、
銀の含有量が多いほど導電率が悪くなるため、導電率の
改善をする必要がある。その対策として、上記Cu-Ag合
金の製造方法のように、冷間加工と熱処理との工程を2
回以上施して熱処理の作業工程を多くしているため、作
業性が悪い。
However, the above Cu
-Ag alloys have a high silver content and are expensive. Also,
Since the conductivity becomes worse as the silver content increases, it is necessary to improve the conductivity. As a countermeasure, two steps of cold working and heat treatment are required, as in the above-mentioned method for producing Cu-Ag alloy.
The workability is poor because the number of process steps of the heat treatment is increased by performing the heat treatment more than once.

【0008】加えて上記Cu-Ag合金では、耐屈曲性を向
上させる方法として引張強さのみを検討しているが、耐
屈曲性のもう一つの因子である伸びについては言及して
いない。
[0008] In addition, in the above Cu-Ag alloy, only tensile strength has been studied as a method for improving flex resistance, but elongation, which is another factor of flex resistance, is not mentioned.

【0009】本発明は、製造における作業性が良く、コ
ストを低減しても、引張強さ・伸びが共に高く、かつ導
電率の良いCu-Ag合金及びその製造方法を提供しようと
するものである。特に、伸びと引張強さとを向上させる
のに、有効な製造方法を提供する。
An object of the present invention is to provide a Cu-Ag alloy having high tensile strength and elongation and high conductivity even if the workability in the production is good and the cost is reduced, and a method for producing the same. is there. In particular, it provides an effective production method for improving elongation and tensile strength.

【0010】[0010]

【課題を解決するための手段】本発明は、銅を主体とし
て銀を含有したCu-Ag合金であって、銀を1.0〜15.0wt%
含有し、引張強さ80kgf/mm以上、伸び0.2%以上、導
電率60%IACS以上であることを特徴とする耐屈曲性に優
れたCu-Ag合金である。更に伸びを良くするために好ま
しい銀の含有量は、1.0〜6.0wt%である。
SUMMARY OF THE INVENTION The present invention relates to a Cu-Ag alloy mainly containing copper and containing silver, wherein silver is contained in an amount of 1.0 to 15.0 wt%.
It is a Cu-Ag alloy with excellent flex resistance, characterized by having a tensile strength of 80 kgf / mm 2 or more, an elongation of 0.2% or more, and a conductivity of 60% IACS or more. A preferable silver content for further improving elongation is 1.0 to 6.0% by weight.

【0011】上記のようなCu-Ag合金の製造は、銅を
主体として銀を1.0〜15.0wt%含有したCu-Ag合金を連続
機で鋳造してロットを作製し、そこで得たロットに減面
率70%以上の冷間加工した後、400〜500℃の温度で1
〜30時間熱処理を施し、次いで、減面率95%以上の冷
間加工を行うことによる。
[0011] In the production of the above-mentioned Cu-Ag alloy, a lot is produced by casting a Cu-Ag alloy mainly composed of copper and containing 1.0 to 15.0 wt% of silver by a continuous machine, and reduced to a lot obtained therefrom. After cold working with an area ratio of 70% or more, at a temperature of 400 to 500 ° C,
Heat treatment for up to 30 hours, followed by cold working with a reduction in area of 95% or more.

【0012】更に導電率を向上させるために、熱処理を
2回行っても良い。具体的には、上記の後に、減面
率70%以上の冷間加工を行う工程と、400〜500℃の温
度で1〜30時間熱処理を施す工程とを加え、更に上記
減面率95%以上の冷間加工を行うCu-Ag合金の製造方法
である。
In order to further improve the conductivity, the heat treatment may be performed twice. Specifically, after the above, a step of performing cold working at a surface reduction rate of 70% or more and a step of performing heat treatment at a temperature of 400 to 500 ° C. for 1 to 30 hours are added. This is a method for producing a Cu-Ag alloy that performs the above cold working.

【0013】上記Cu-Ag合金の製造方法において、凝固
速度を速めることで伸びを向上させるために線材の鋳造
径を小さくすることが望ましい。特に、線材の鋳造断面
積は750mm以下で鋳造することが好適である。
In the above-described method for producing a Cu-Ag alloy, it is desirable to reduce the casting diameter of the wire rod in order to improve the elongation by increasing the solidification rate. In particular, it is preferable to cast the wire with a casting cross-sectional area of 750 mm 2 or less.

【0014】また上記Cu-Ag合金の製造方法において、
鋳造材に伸線加工することでCu-Ag合金の組織は極めて
微細な繊維状にされ、導電率を損なうことなく、強度を
高めることができる。
[0014] In the above method for producing a Cu-Ag alloy,
By drawing the cast material, the structure of the Cu-Ag alloy is made into an extremely fine fiber, and the strength can be increased without impairing the electrical conductivity.

【0015】本発明Cu-Ag合金における合金成分の組成
と導体サイズとを上記範囲に限定したのは、この範囲の
ものが最も伸びと引張強さとが良く、かつ導電率も高い
からである。Ag含有量が1.0wt%未満であると、導電率
は高いが引張強さが大きくない。また後述する特公平7-
109027号公報、特開平6-103809号公報記載のCu-Ag合金
のようにAg含有量が15.0wt%を超えると、高価になる
上、引張強さは殆ど変わらないが、導電率を良くするた
めに加工工程を増やす必要があり作業効率が悪い。なお
銀の含有量が6.0wt%以下では、引張強さが特に大き
い。
The composition of the alloy component and the conductor size in the Cu-Ag alloy of the present invention are limited to the above ranges, because those in this range have the best elongation and tensile strength and the highest electric conductivity. If the Ag content is less than 1.0 wt%, the electrical conductivity is high but the tensile strength is not large. In addition, Tokiko 7-
If the Ag content exceeds 15.0 wt%, such as the Cu-Ag alloy described in JP 109027 and JP-A-6-103809, the cost becomes high and the tensile strength is hardly changed, but the conductivity is improved. Therefore, it is necessary to increase the number of processing steps, and the working efficiency is poor. When the silver content is 6.0 wt% or less, the tensile strength is particularly large.

【0016】本発明Cu-Ag合金の製造工程において、冷
間加工と熱処理とをそれぞれ1回ずつのみ施すのは、こ
れ以上行っても伸びや引張強さに余り差はないからであ
る。逆に、冷間加工のみ或いは熱処理のみだと所望の特
性は得られない。更に初回冷間加工の減面率を70%以
上、最終減面率を95%以上という範囲限定は、それらの
値未満であると引張強さが極端に悪くなるためである。
[0016] In the manufacturing process of the Cu-Ag alloy of the present invention, the cold working and the heat treatment are performed only once, respectively, because there is no significant difference in elongation and tensile strength even if it is performed more than that. Conversely, if only cold working or only heat treatment is performed, desired characteristics cannot be obtained. Furthermore, the reason why the area reduction rate of the initial cold working is 70% or more and the final area reduction rate is 95% or more is that if the values are less than these values, the tensile strength becomes extremely poor.

【0017】なお、導電率とは、標準軟銅線を100%IAC
Sとしたときの電気の流れ易さを表すものである。ま
た、本発明Cu-Ag合金において、不可避的不純物が含ま
れていることは言うまでも無い。
The electrical conductivity is defined as a standard soft copper wire of 100% IAC
It represents the ease of electricity flow when S is set. Needless to say, the Cu-Ag alloy of the present invention contains unavoidable impurities.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)本発明Cu-Ag合金と比較例とを製造し、比
較検討してみた。共に基本的製造工程は、ロット作製→
冷間加工→熱処理→(冷間加工→熱処理)→冷間加工、
という手順である。なお、括弧内は熱処理を2回施した
ものを示している。以下、各Cu-Ag合金について、引張
強さ・導電率・伸びを測定した。その測定結果を表1〜
表3に示した。なお製造条件も併せて示す。また加工処
理を施行していないところには、ハイフンを記入してい
る。
Embodiments of the present invention will be described below. (Example 1) A Cu-Ag alloy of the present invention and a comparative example were manufactured and compared. Both basic production processes are lot production →
Cold working → heat treatment → (cold working → heat treatment) → cold working,
This is the procedure. In addition, the inside of the parenthesis shows that the heat treatment was performed twice. Hereinafter, the tensile strength, conductivity, and elongation of each Cu-Ag alloy were measured. Table 1 shows the measurement results.
The results are shown in Table 3. The manufacturing conditions are also shown. Hyphens are entered where no processing is performed.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】表1は、本発明Cu-Ag合金の実施例であ
る。表1に表されているように、No.1〜3において鋳
造径が小さいほど伸びが良くなっているのが分かる。次
に、銀の含有量を変えたNo.1・8・10を比較すると、
銀の含有量が多いほど伸びが悪くなっている。鋳造径が
同じで冷間加工と熱処理とを2回施したものでは(No.
2・4、6・7、8・9、10・11との比較)、加工処理
が多いほど特性が良くなっているとは必ずしも言えず、
加工処理が1回であるもの(No.2、6、8、10)の方
が、比較的特性のバランスが取れている。なお導電率は
いずれの条件においても、殆ど差がなく72〜84%IACSと
いう高い値である。
Table 1 shows examples of the Cu-Ag alloy of the present invention. As shown in Table 1, in Nos. 1 to 3, the smaller the casting diameter, the better the elongation. Next, comparing No. 1, 8, and 10 with different silver contents,
The higher the silver content, the worse the elongation. In the case of cold working and heat treatment performed twice with the same casting diameter (No.
(Compared with 2.4, 6.7, 8.9, and 10/11), it is not necessarily said that the more the processing, the better the characteristics.
In the case of one processing (Nos. 2, 6, 8, and 10), the characteristics are relatively balanced. Note that the conductivity has almost no difference under any conditions, and is a high value of 72 to 84% IACS.

【0023】表2・3は、比較例を表す。表2に示すCu
-Ag合金は、種々の製造条件で製造したものである。表
2に示すように、No.2の冷間加工のみ施したCu-Ag合金
では、導電率が極端に悪く58%IACSである。また伸びも
良くない。逆にNo.12に示すように鋳造後、冷間加工を
行わず熱処理のみを施したものでは、伸びが極めて悪
い。
Tables 2 and 3 show comparative examples. Cu shown in Table 2
-Ag alloys are manufactured under various manufacturing conditions. As shown in Table 2, the electrical conductivity of the Cu-Ag alloy subjected to only the cold working of No. 2 is extremely poor and is 58% IACS. Also the elongation is not good. Conversely, as shown in No. 12, after casting, only the heat treatment was performed without performing cold working, the elongation was extremely poor.

【0024】No.3・6のCu-Ag合金は、熱処理温度を本
発明の範囲限定外である各々350℃・550℃としたもので
ある。これらは、導電率がよくても引張強さが小さい。
減面率を本発明の範囲限定外にしたNo.4・5、7・
8、10・11においても、同様である。No.1のように銀
含有量が1.0%未満のものは、引張強さが小さい。またN
o.9に示すように、鋳造断面積が750mmを超えると伸
びが悪い。
The Cu-Ag alloys Nos. 3.6 have heat treatment temperatures of 350 ° C. and 550 ° C., respectively, which are outside the scope of the present invention. These have low tensile strength even with good conductivity.
Nos. 4, 5, and 7 with the area reduction rate outside the scope of the present invention.
The same applies to 8, 10 and 11. No. 1 having a silver content of less than 1.0% has a low tensile strength. Also N
As shown in o.9, the elongation is poor when the casting cross section exceeds 750 mm 2 .

【0025】表3に示すCu-Ag合金は、特公平7-109027
号公報・特開平6-103809号公報・特開平6-93399号公報
・特開平6-93398号公報・特許登録2566877号公報記載に
該当するものである。
The Cu-Ag alloys shown in Table 3 are described in JP-B-7-09027.
Japanese Patent Application Laid-Open No. 6-103809, Japanese Patent Application Laid-Open No. 6-93399, Japanese Patent Application Laid-Open No. 6-93398, and Patent Registration No. 2566877.

【0026】表3に示すように、導電率は実施例とほぼ
同様であるが、引張強さは実施例よりもかなり小さくな
っており、伸びとのバランスが取れていない。
As shown in Table 3, the conductivity is almost the same as that of the embodiment, but the tensile strength is considerably smaller than that of the embodiment, and the balance with the elongation is not obtained.

【0027】(実施例2)本発明Cu-Ag合金及びCu-0.3
%Sn合金において、これら2つの特性を比較検討した。
なお、評価線経は共にφ0.08mmである。
(Example 2) Cu-Ag alloy of the present invention and Cu-0.3
These two characteristics were compared and examined in a% Sn alloy.
The evaluation meridians are both φ0.08 mm.

【0028】図1は、本発明Cu-Ag合金及びCu-Sn合金に
おける、引張強さと導電率とを示すグラフである。本発
明Cu-Ag合金及びCu-0.3%Sn合金において、同じ導電率
(75%IACS)線材で比較すると、図1に示すように、引
張強さは、Cu-0.3%Sn合金:80kgf/mmであるのに対
し、本発明Cu-Ag合金は、125kgf/mmであり、引張強さ
が大きいことが分かる。
FIG. 1 is a graph showing the tensile strength and the electrical conductivity of the Cu-Ag alloy and the Cu-Sn alloy of the present invention. In the Cu-Ag alloy and the Cu-0.3% Sn alloy of the present invention, when compared with the same conductivity (75% IACS) wire rod, as shown in FIG. 1, the tensile strength is as follows: Cu-0.3% Sn alloy: 80 kgf / mm 2 , whereas the Cu-Ag alloy of the present invention has a tensile strength of 125 kgf / mm 2 , which is large.

【0029】図2は、本発明Cu-Ag合金とCu-Sn合金及び
軟銅・硬銅とにおける、引張強さと屈曲回数とを示すグ
ラフである。図3に示すように、試験線材3に負荷荷重
1を5gfかけ、マンドレル2径をφ2mmとして屈曲試験
を行った。カウント方式は90°往復で1回とした。この
結果、引張強さ140kgf/mmである本発明Cu-Ag合金は、
軟銅の約70倍、Cu-0.3%Sn合金の約10倍の寿命を示し、
耐屈曲性が良いことが分かる。
FIG. 2 is a graph showing the tensile strength and the number of times of bending in the Cu-Ag alloy of the present invention, Cu-Sn alloy and soft copper / hard copper. As shown in FIG. 3, a bending test was performed by applying a load 1 of 5 gf to the test wire 3 and setting the diameter of the mandrel 2 to φ2 mm. The counting method was once in 90 ° reciprocation. As a result, the Cu-Ag alloy of the present invention having a tensile strength of 140 kgf / mm 2
Shows about 70 times the life of mild copper and about 10 times the life of Cu-0.3% Sn alloy,
It can be seen that the bending resistance is good.

【0030】[0030]

【発明の効果】以上、説明したように本発明Cu-Ag合金
の製造方法によれば、減面率、温度条件等の条件を範囲
限定することで引張り強さ・伸びが共に高く且つ導電率
が良いという優れた効果を奏すCu-Ag合金が得られる。
特に銀の含有量を1.0〜15.0wt%に限定することで、上
記の効果をより良いものにする。これにより、屈曲を繰
り返すような部材に適用できる。
As described above, according to the method for producing a Cu-Ag alloy of the present invention, by limiting the conditions such as the area reduction rate and the temperature conditions, both the tensile strength and the elongation are high and the conductivity is high. A Cu-Ag alloy exhibiting an excellent effect of being excellent is obtained.
In particular, by limiting the silver content to 1.0 to 15.0 wt%, the above-mentioned effect is further improved. Thereby, the present invention can be applied to a member that bends repeatedly.

【0031】本発明Cu-Ag合金の製造方法において、鋳
造断面積を小さくすることで凝固速度が速くなり、それ
が伸びを向上させている。それに伴い熱処理加工の回数
を減少させることにもなる。また加工処理が少ないこと
で作業性も高い。
In the method for producing a Cu-Ag alloy according to the present invention, the solidification rate is increased by reducing the casting cross-sectional area, which improves the elongation. Accordingly, the number of heat treatments is reduced. In addition, workability is high due to less processing.

【0032】また本発明Cu-Ag合金のように銀の含有を
低濃度とすることでコストを削減でき、経済性がよい。
更に、本発明は屈曲性に効く因子である伸びを良くした
ことで、高強度でかつ撚加工性の良いCu-Ag合金を提供
できる。
Further, by reducing the silver content as in the case of the Cu-Ag alloy of the present invention, the cost can be reduced and the economy is good.
Furthermore, the present invention can provide a Cu-Ag alloy having high strength and good twistability by improving elongation, which is a factor that affects the flexibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明Cu-Ag合金とCu-Sn合金における、引張強
さと導電率とを示すグラフである。
FIG. 1 is a graph showing tensile strength and electric conductivity in a Cu—Ag alloy and a Cu—Sn alloy of the present invention.

【図2】本発明Cu-Ag合金とCu-Sn合金及び軟銅・硬銅と
における、引張強さと屈曲回数とを示すグラフである。
FIG. 2 is a graph showing the tensile strength and the number of times of bending in the Cu-Ag alloy, the Cu-Sn alloy, and the soft copper and hard copper according to the present invention.

【図3】屈曲試験の様子を表す説明図である。FIG. 3 is an explanatory diagram illustrating a state of a bending test.

【符号の説明】[Explanation of symbols]

1 負荷荷重 2 マンドレル 3 試験線材 1 applied load 2 mandrel 3 test wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661A 685 685Z 691 691B 691C (72)発明者 大塚 拓次 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業株式会社大阪製作所内 (72)発明者 千葉 幸文 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業株式会社大阪製作所内 (72)発明者 西川 太一郎 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業株式会社大阪製作所内 Fターム(参考) 5G301 AA01 AA08 AB02 AB05 AB20 AD01 AE10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 661 C22F 1/00 661A 685 685Z 691 691B 691C (72) Inventor Takuji Otsuka Osaka-shi, Osaka 1-3-3 Shimaya, Konohana-ku, Osaka Works, Sumitomo Electric Industries, Ltd. (72) Inventor Yukifumi Chiba 1-3-1, Shimaya, Konohana-ku, Osaka, Osaka, Japan Taiichiro Nishikawa 1-3-1 Shimaya, Konohana-ku, Osaka-shi, Osaka F-term in Sumitomo Electric Industries, Ltd. Osaka Works 5G301 AA01 AA08 AB02 AB05 AB20 AD01 AE10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅を主体として銀を含有したCu-Ag合金
であって、銀を1.0〜15.0wt%含有し、引張強さ80kgf/m
m以上、伸び0.2%以上、導電率60%IACS以上であるこ
とを特徴とするCu-Ag合金。
1. A Cu-Ag alloy mainly containing copper and containing silver, containing 1.0 to 15.0% by weight of silver and having a tensile strength of 80 kgf / m2.
m 2 or more, elongation of 0.2% or more, Cu-Ag alloy, characterized in that at conductivity 60% IACS or more.
【請求項2】 Cu-Ag合金の製造方法において、 銅を主体として銀を1.0〜15.0wt%含有したCu-Ag合金
を鋳造して得たロットに減面率70%以上の冷間加工を行
う工程、 400〜500℃の温度で1〜30時間熱処理を施す工程、 減面率95%以上の冷間加工を行う工程、 とを具えることを特徴とするCu-Ag合金の製造方法。
2. A method for producing a Cu-Ag alloy, comprising: subjecting a lot obtained by casting a Cu-Ag alloy mainly containing copper to containing 1.0 to 15.0 wt% of silver to cold working with a surface reduction rate of 70% or more. A process of performing heat treatment at a temperature of 400 to 500 ° C. for 1 to 30 hours, and a process of performing cold working with a reduction in area of 95% or more.
【請求項3】 請求項2記載のCu-Ag合金の製造方法に
おいて、 製造工程ととの間に、 減面率70%以上の冷間加工を行う工程、 400〜500℃の温度で1〜30時間熱処理を施す工程、 とを有することを特徴とするCu-Ag合金の製造方法。
3. The method for producing a Cu-Ag alloy according to claim 2, wherein a step of performing cold working with a surface reduction rate of 70% or more between the production step and the production step. Performing a heat treatment for 30 hours.
【請求項4】 鋳造断面積は750mm以下で鋳造される
ことを特徴とする請求項2又は3記載のCu-Ag合金の製
造方法。
4. The method for producing a Cu-Ag alloy according to claim 2, wherein the casting is performed with a casting cross-sectional area of 750 mm 2 or less.
JP21433699A 1999-07-28 1999-07-28 Method for producing Cu-Ag alloy Expired - Lifetime JP3856073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21433699A JP3856073B2 (en) 1999-07-28 1999-07-28 Method for producing Cu-Ag alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21433699A JP3856073B2 (en) 1999-07-28 1999-07-28 Method for producing Cu-Ag alloy

Publications (2)

Publication Number Publication Date
JP2001040439A true JP2001040439A (en) 2001-02-13
JP3856073B2 JP3856073B2 (en) 2006-12-13

Family

ID=16654083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21433699A Expired - Lifetime JP3856073B2 (en) 1999-07-28 1999-07-28 Method for producing Cu-Ag alloy

Country Status (1)

Country Link
JP (1) JP3856073B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241872A (en) * 2001-02-09 2002-08-28 Showa Electric Wire & Cable Co Ltd Bending resistant conductor and manufacturing method therefor
CN100422364C (en) * 2004-05-24 2008-10-01 日立电线株式会社 Superfine copper alloy wire and method for manufacturing same
US7544886B2 (en) 2005-12-20 2009-06-09 Hitachi Cable, Ltd. Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
JP2009280860A (en) * 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
CN101791638A (en) * 2009-01-29 2010-08-04 住友电气工业株式会社 The manufacture method of Cu-Ag alloy wire and Cu-Ag alloy wire
JP2013235674A (en) * 2012-05-07 2013-11-21 Tanaka Kikinzoku Kogyo Kk Electrode material for temperature fuse movable electrode
WO2015129457A1 (en) * 2014-02-28 2015-09-03 株式会社オートネットワーク技術研究所 Copper alloy twisted wire, manufacturing method therefor, and electrical wire for automobile
CN105261422A (en) * 2015-10-30 2016-01-20 西北有色金属研究院 Preparation method of high-strength high-conductivity copper-silver alloy wire
KR20180011344A (en) 2010-04-28 2018-01-31 스미토모 덴키 고교 가부시키가이샤 COAXIAL CABLE BUNDLE, METHOD FOR PRODUCING Cu-Ag ALLOY WIRE, AND Cu-Ag ALLOY WIRE

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241872A (en) * 2001-02-09 2002-08-28 Showa Electric Wire & Cable Co Ltd Bending resistant conductor and manufacturing method therefor
CN100422364C (en) * 2004-05-24 2008-10-01 日立电线株式会社 Superfine copper alloy wire and method for manufacturing same
US8163110B2 (en) 2004-05-24 2012-04-24 Hitachi Cable, Ltd. Superfine copper alloy wire and method for manufacturing same
US8143517B2 (en) 2005-12-20 2012-03-27 Hitachi Cable, Ltd. Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
US7544886B2 (en) 2005-12-20 2009-06-09 Hitachi Cable, Ltd. Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
JP2009280860A (en) * 2008-05-21 2009-12-03 Sumitomo Electric Ind Ltd Cu-Ag ALLOY WIRE AND METHOD FOR PRODUCING THE SAME
CN101791638A (en) * 2009-01-29 2010-08-04 住友电气工业株式会社 The manufacture method of Cu-Ag alloy wire and Cu-Ag alloy wire
KR20180011344A (en) 2010-04-28 2018-01-31 스미토모 덴키 고교 가부시키가이샤 COAXIAL CABLE BUNDLE, METHOD FOR PRODUCING Cu-Ag ALLOY WIRE, AND Cu-Ag ALLOY WIRE
JP2013235674A (en) * 2012-05-07 2013-11-21 Tanaka Kikinzoku Kogyo Kk Electrode material for temperature fuse movable electrode
WO2015129457A1 (en) * 2014-02-28 2015-09-03 株式会社オートネットワーク技術研究所 Copper alloy twisted wire, manufacturing method therefor, and electrical wire for automobile
JP2015161013A (en) * 2014-02-28 2015-09-07 株式会社オートネットワーク技術研究所 Copper alloy twisted wire and manufacturing method thereof, automotive cable
CN106029930A (en) * 2014-02-28 2016-10-12 株式会社自动网络技术研究所 Copper alloy twisted wire, manufacturing method therefor, and electrical wire for automobile
US20160368035A1 (en) * 2014-02-28 2016-12-22 Autonetworks Technologies, Ltd. Copper alloy twisted wire, method for manufacturing same, and electric wire for automobile
CN105261422A (en) * 2015-10-30 2016-01-20 西北有色金属研究院 Preparation method of high-strength high-conductivity copper-silver alloy wire

Also Published As

Publication number Publication date
JP3856073B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4177266B2 (en) High strength and high conductivity copper alloy wire with excellent stress relaxation resistance
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
US20100294534A1 (en) Conductor wire for electronic apparatus and electrical wire for wiring using the same
WO2007046378A1 (en) Cu-Ag ALLOY WIRE HAVING HIGH STRENGTH AND HIGH CONDUCTIVITY AND METHOD FOR MANUFACTURE THEREOF
JPS633936B2 (en)
JP2001040439A (en) Cu-Ag ALLOY AND ITS MANUFACTURE
JPH05311283A (en) Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JP5009849B2 (en) Copper alloy wire for high strength spring and copper alloy spring using the copper alloy wire
JP4973437B2 (en) Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JPS6328971B2 (en)
JP5497321B2 (en) Compressed stranded conductor, method for producing the same, and insulated wire
JP2008115423A (en) Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor
JPH07268573A (en) Production of high strength and high conductivity copper alloy for electronic equipment
JPS6012421B2 (en) Manufacturing method of lead wire material
JPH0416534B2 (en)
JP2619326B2 (en) Special alloy gold material
JP3302840B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JP2006291271A (en) High-strength copper alloy material having excellent settling resistance, and method for producing the same
JP3333654B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JPH06290639A (en) High strength high conductance flexibility complex wire
JP2002241872A (en) Bending resistant conductor and manufacturing method therefor
JPH09143597A (en) Copper alloy for lead frame and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Ref document number: 3856073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term