EP3408015B1 - Verfahren zum herstellen von emulsionen - Google Patents
Verfahren zum herstellen von emulsionen Download PDFInfo
- Publication number
- EP3408015B1 EP3408015B1 EP17706142.1A EP17706142A EP3408015B1 EP 3408015 B1 EP3408015 B1 EP 3408015B1 EP 17706142 A EP17706142 A EP 17706142A EP 3408015 B1 EP3408015 B1 EP 3408015B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- emulsion
- bar
- space
- gas
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000839 emulsion Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000007788 liquid Substances 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 35
- 239000002904 solvent Substances 0.000 claims description 18
- 230000004048 modification Effects 0.000 claims description 5
- 238000012986 modification Methods 0.000 claims description 5
- 239000003921 oil Substances 0.000 description 39
- 239000007789 gas Substances 0.000 description 27
- 239000000243 solution Substances 0.000 description 19
- 239000012071 phase Substances 0.000 description 15
- 238000005538 encapsulation Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 239000002775 capsule Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000003094 microcapsule Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003995 emulsifying agent Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000000341 volatile oil Substances 0.000 description 3
- 238000001016 Ostwald ripening Methods 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- LTPSRQRIPCVMKQ-UHFFFAOYSA-N 2-amino-5-methylbenzenesulfonic acid Chemical compound CC1=CC=C(N)C(S(O)(=O)=O)=C1 LTPSRQRIPCVMKQ-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 241000694440 Colpidium aqueous Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 102100027370 Parathymosin Human genes 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000012296 anti-solvent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
- B01F23/4105—Methods of emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
- B01F23/413—Homogenising a raw emulsion or making monodisperse or fine emulsions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/70—Pre-treatment of the materials to be mixed
- B01F23/702—Cooling materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/70—Pre-treatment of the materials to be mixed
- B01F23/711—Heating materials, e.g. melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/80—After-treatment of the mixture
- B01F23/802—Cooling the mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/80—After-treatment of the mixture
- B01F23/811—Heating the mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/23—Mixing by intersecting jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0427—Numerical distance values, e.g. separation, position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0468—Numerical pressure values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0481—Numerical speed values
Definitions
- the invention relates to a method for producing emulsions.
- emulsions are understood as meaning both colloidal emulsions and technical emulsions, the latter differing from colloidal emulsions in that they have considerably larger particle dimensions in the micrometer range.
- a large number of branches of industry for example the food industry, the pharmaceutical industry and the cosmetics industry, have a high demand for encapsulation, protection or targeted release of hydrophobic substances such as bioactive lipids, odorous substances, antioxidants and pharmaceuticals.
- Emulsions are formed when two or more immiscible liquids are mixed together.
- One of these liquids is usually water soluble and the other is a lipophilic liquid that is immiscible with water.
- either water-in-oil emulsions or oil-in-water emulsions can be produced.
- a disadvantage of emulsions is their instability, which is based on physicochemical mechanisms such as gravity separation, flocculation, coalescence and Ostwald ripening. In oil-in-water emulsions, the most common reason for instability is the gravitational separation in the form of "creaming", which occurs due to the lower density of the oil particles.
- Emulsions with an oil droplet size of more than 10 ⁇ m tend to change into two separate phases within a short time, while for an oil droplet size of less than 1 ⁇ m the stability of the emulsion increases with decreasing oil droplet size.
- an oil droplet size of less than 1 ⁇ m a four times larger energy input is necessary to reduce the oil droplet size by 50%, which limits the minimum oil droplet size that can be achieved.
- due to the energy input there is a risk of the temperature rising to temperatures above 70 ° C, at which the emulsifiers can be destroyed.
- the limiting factors are the pore size of the membranes used and the pressure resulting from the viscosity of the oil phase.
- a microjet reactor according to the EP 1 165 224 B1 is used.
- Such a microjet reactor has at least two opposing nozzles, each with an associated pump and feed line for spraying a liquid medium in each case into a reactor space enclosed by a reactor housing at a common collision point, a first opening being provided in the reactor housing through which a gas, a evaporating liquid, a cooling liquid or a cooling gas can be introduced to maintain the gas atmosphere inside the reactor, in particular at the point of collision of the liquid jets, or to cool the resulting products, and a further opening is provided for removing the resulting products and excess gas from the reactor housing is.
- a gas, an evaporating liquid or a cooling gas is therefore introduced into the reactor space via an opening in order to maintain a gas atmosphere in the interior of the reactor, in particular at the point of collision the liquid jets or to cool the resulting products and the resulting products and excess gas are removed through an opening from the reactor housing by overpressure on the gas inlet side or by negative pressure on the product and gas outlet side.
- a solvent / non-solvent precipitation in such a microjet reactor for example as in the EP 2 550 092 A1 is carried out, a dispersion of the precipitated particles is obtained. With such a reactor it is possible to generate particularly small particles.
- a solvent / non-solvent precipitation is understood to mean that a substance is dissolved in a solvent and collides as a liquid jet with a second liquid jet, the dissolved substance being precipitated again.
- a disadvantage of solvent / non-solvent precipitations is the fact that the dissolved and reprecipitated substance is in particulate form in the solvent-non-solvent mixture after the precipitation.
- the solvent content has the effect that, in many particles, an Ostwald ripening occurs in a time-dependent manner, which causes the particles to grow.
- a device for emulsifying at least two liquids which comprises an emulsion reactor which has an outlet for removing the emulsion resulting from the mixing of the liquids and in which a plurality of nozzles are provided for injection at a substantially common collision point, each Nozzle is assigned a feed line and a pump, each of which pumps a liquid from an assigned tank through the feed line into the emulsion reactor.
- the WO 99/28020 A1 describes a method of making heat sensitive emulsions or dispersions in which the components are pressurized, passed through a first high pressure mixing zone, then cooled in a heat exchanger and then passed through a second high pressure mixing zone.
- the DE 26 04 610 A1 describes a process in which oil and water are sucked in from separate containers in the desired volume ratio and, as a mixture under high pressure in a pipe-nozzle system, is accelerated and decelerated several times at short intervals from a constant low base speed to about ten to twenty times the flow speed and then sprayed directly into the combustion chamber for burning.
- the pressure at the basic flow rate is 130 to 180 bar.
- the GB 331 928 A describes an apparatus for the production of emulsions or dispersions by spraying the components against one another. The pressure of the liquid jets is not specified here.
- the object of the invention is therefore to create a new process for the production of emulsions which also enables the production of asymmetrical emulsions.
- This object is achieved according to the invention in that in a first step at least one pre-emulsion is generated from at least two immiscible liquids and then in a second step at least two liquid streams of the at least one pre-emulsion are pumped through separate nozzles with a defined diameter in a microjet reactor, whereby the pressure of the liquid jets is between 5 and 500 bar in order to achieve the flow velocity of the liquid flows of more than 10 m / s and that the liquid flows meet at a collision point in a room, the room being filled or acted upon with gas and the gas pressure in the space is 0.05 to 30 bar, preferably 0.2 to 10 bar and particularly preferably 0.5 to 5 bar.
- Gas in particular inert gas or inert gas mixtures, but also reactive gas, can be fed into the space through a gas inlet.
- Such a microjet reactor is from EP 1 165 224 B1 famous.
- the droplet size of the emulsion depends on the system and operating parameters, in particular the nozzle size in the microjet reactor and the pump pressure of the conveying pumps for the two liquid flows.
- the collision energy in the microjet reactor does not cause any precipitation reactions, but rather emulsions are formed.
- a homogeneous emulsion with an oil droplet size of less than 1 ⁇ m is achieved due to the kinetic energy, which is also very stable. No additional energy input, such as shear forces, is required for this. It can be carried out in the aqueous phase at temperatures between 0.degree. C. and 100.degree. C., preferably at temperatures between room temperature and 70.degree. C., particularly preferably at temperatures between room temperature and 50.degree.
- the pressure of the liquid jets is between 5 and 5,000 bar, preferably between 10 and 1,000 bar and particularly preferably between 20 and 500 bar.
- the flow rate of the liquid streams and the temperature, the oil droplet size in the emulsion can be influenced.
- the resulting emulsion is discharged from the room through the outlet. There is thus a continuously operating process.
- the diameter of the nozzles is identical or different and is 10 to 5,000 ⁇ m, preferably 50 to 3,000 ⁇ m and particularly preferably 100 to 2,000 ⁇ m. It is possible to work with nozzles of different diameters, for example on one side of a nozzle with a diameter of 100 ⁇ m and on the other side of a nozzle with a diameter of 300 ⁇ m. Of course, the diameters of the nozzles can also be the same on both sides.
- the flow velocities of the liquid streams after the nozzle are identical or different and are more than 20 m / s, preferably more than 50 m / s and particularly preferably more than 100 m / s.
- one of the liquid flows can have a higher flow velocity than the other liquid flow, for example on the one hand 50 m / s and on the other hand 100 m / s.
- the flow speed of the liquid streams after the nozzle can reach 500 m / s or 1,000 m / s.
- the distance between the nozzles is preferably less than 5 cm, preferably less than 3 cm and particularly preferably less than 1 cm.
- the gas pressure in the space is 0.2 to 10 bar and preferably 0.5 to 5 bar.
- the droplet size can also be influenced via the gas pressure.
- a solvent is introduced into the space through a further inlet.
- propylene glycol can be introduced into the room as a further solvent through the further inlet.
- One embodiment of the invention consists in the fact that during the collision there is a pressure of less than 100 bar, preferably less than 50 bar and particularly preferably less than 20 bar in the space.
- the emulsion produced is encapsulated in a further step.
- Examples 1 to 4 show the effects of varying individual parameters, while Examples 5 to 21 contain examples of possible encapsulation processes.
- Oil flow rate (ml / min) Water flow rate (ml / min) Oil droplet size (nm) 10 50 596 20th 100 427 30th 150 348 50 250 294 100 500 257
- the oil droplet size within the emulsion formed thus decreases with increasing flow rates.
- the influence of the diameter of the nozzles was determined by testing various nozzle diameters while using an oil flow rate of 50 ml / min and a water flow rate of 250 ml / min and the gas pressure was 2 bar.
- Nozzle diameter ( ⁇ m) Oil droplet size (nm) 200 294 300 318 400 567 500 785
- Oil and water phases were pre-emulsified and pumped through the two inlets in a closed cycle in order to determine the influence of the number of cycles on the oil droplet size within the emulsion.
- a flow rate of 250 ml / min and a gas pressure of 2 bar prevailed in the room.
- Number of cycles Oil droplet size (nm) 1 650 2 540 3 420 4th 355
- the oil droplet size within the emulsion therefore also decreases with the number of cycles.
- An essential oil to be encapsulated is emulsified at a flow rate of 67 g / min in the microjet reactor with an aqueous sodium caseinate solution (22.4 mg / ml) at a flow rate of 200 g / min in the microjet reactor.
- this emulsion is processed at a flow rate of 200 g / min against an aqueous xanthan solution (0.25%) at 25 g / min.
- the oppositely charged side groups of the protein and the polysaccharide attach to each other. This interaction is strengthened by lowering the pH to pH 4 with 10% citric acid, whereby microcapsules are formed.
- the microcapsules are 50-100 ⁇ m in size.
- An essential oil to be encapsulated is emulsified at a flow rate of 50 g / min in the microjet reactor in an aqueous whey protein isolate solution at a flow rate of 200 g / min. After adding 20% maltodextrin as a carrier material, the emulsion is spray-dried. Drying creates a powder that contains microencapsulated essential oil.
- Example 7 Melt dispersion / matrix encapsulation
- a fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C.
- This oil phase is emulsified at 68 ml / min in a 20 ° C. aqueous Tween 20 solution (0.5-1.5%) at 200 ml / min.
- the rapid cooling of the fat results in the formation of particles and thus matrix encapsulation of the fragrance when the emulsion is formed.
- the microcapsules are on average 5 ⁇ m (0.5% Tween 20) or 2 ⁇ m (1.5% Tween 20).
- Example 8 Melt dispersion with modified surface
- a fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C.
- This oil phase is emulsified at 68 ml / min in a 20 ° C. cold gum arabic solution (2.5%; 200 ml / min). Due to the rapid cooling of the fat, particles form immediately after the emulsion has formed.
- microcapsules are modified by processing this melt dispersion (200 ml / min) in the microjet reactor against a gelatin solution (2.5%; 150 g / min) at 50 ° C. By lowering the pH to pH 4 with 10% citric acid, the ionic interactions are strengthened and gelled by cooling.
- a hydrophilic polyalcohol to be encapsulated (active ingredient) is added to an aqueous ammonia solution (1%) (water phase) and in the MJR reactor against an emulsifier-containing (polyetheralkyl-polymethylsiloxane) 1% encapsulation solution (TEOS) in Isoparaffin (oil phase) processed.
- a process pressure of 40 bar is set upstream of the nozzles.
- the result is a stable emulsion, at whose phase boundary the encapsulation material is formed by hydrolysis of the precursors.
- the capsules can be separated by simple sedimentation or centrifugation and are between 5 and 10 ⁇ m in size.
- the method indicated in FIG. 1 is applied to the encapsulation substances OTMS, PTMS. With a constant flow rate, the microcapsules obtained have approximately the same properties with a reduced reaction time.
- the method given in FIG. 1 is applied to variable flow rates. By varying the flow rate, ratios of the disperse phase (active substance) to the oil phase of 30:70, 40:60 and 60:40 can be achieved. The size of the microcapsules obtained increases as the proportion of disperse phase (active substance solution) increases.
- the method indicated in FIG. 1 is applied to an encapsulation solution containing TEOS with the modification that the concentration of the emulsifier used was reduced to 50% or 25% of the original concentration.
- the microcapsules obtained are larger than those obtained according to Example 1.
- Example 17 The method given in Example 17 is used with the modification that the capsule hardening by means of trimesoyl chloride solution takes place in situ by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor.
- the capsules obtained have approximately the same properties as those obtained according to Example 9.
- Oil-soluble actives Examples 19-20
- Example 5 The procedure given in Example 5 is applied to oil-soluble encapsulants.
- An oil-soluble active substance to be encapsulated is added to a 20% solution of the encapsulation material (OTMS) in isoparaffin and mixed by stirring at room temperature for 5 min.
- the solution obtained in this way is processed in the MJR reactor at a process pressure of 40 bar against a 2% aqueous emulsifier solution.
- the result is a stable, homogeneous emulsion which, by adding the catalyst dibutyltin laurate (0.5%), hardens the capsules, which can be separated after hardening by means of centrifugation or sedimentation.
- Example 19 The method given in Example 19 is used with the modification that the capsule hardening takes place in situ by means of dibutyltin laurate by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor.
- the capsules obtained have approximately the same properties as those obtained according to Example 19.
- Step 2b (as an alternative to step 2a):
- Step 3b (as an alternative to step 3a):
- pre-emulsion a warm non-solvent
- This pre-emulsion is introduced into the MJR on the right and left with a flow rate ratio of 1: 1.
- the loaded polymer is precipitated on a microscale.
- Step 3c (as an alternative to step 3a or step 3b):
- the modified melt is mixed with part of the heated non-solvent to reduce the melt viscosity.
- the mixture is precipitated with the cold residual non-solvent in the MJR process with precipitation of the polymer beads.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Colloid Chemistry (AREA)
Description
- Die Erfindung betrifft ein Verfahren zum Herstellen von Emulsionen.
- Unter Emulsionen werden nachfolgend sowohl kolloide Emulsionen als auch technische Emulsionen verstanden, wobei letztere sich von den kolloiden Emulsionen durch erheblich größere Partikeldimensionen im Mikrometerbereich unterscheiden.
- Eine Vielzahl von Industriezweigen, beispielsweise die Nahrungsmittelindustrie, die Pharmaindustrie und die Kosmetikindustrie, verzeichnen einen hohen Bedarf an der Verkapselung, dem Schützen oder zielgerichteten Freisetzen hydrophober Substanzen, wie bioaktiven Lipiden, Geruchsstoffen, Antioxidantien und Pharmaka.
- Emulsionen werden gebildet, wenn zwei oder mehr unmischbare Flüssigkeiten miteinander vermischt werden. Eine dieser Flüssigkeiten ist in der Regel wasserlöslich und die andere ist eine lipophile Flüssigkeit, die nicht mit Wasser mischbar ist. Je nach den Mischverhältnissen und dem verwendeten Oberflächenmodifikator können entweder Wasser-in-Öl-Emulsionen oder Öl-in-Wasser-Emulsionen hergestellt werden. Ein Nachteil von Emulsionen ist ihre Instabilität, die auf physikochemischen Mechanismen, wie Schwerkrafttrennung, Flockenbildung, Koaleszenz und Ostwald-Reifung beruht. In Öl-in-Wasser-Emulsionen ist der häufigste Grund für die Instabilität die Schwerkrafttrennung in Form des Auscremens ("Creaming"), die aufgrund der niedrigeren Dichte der Ölpartikel auftritt.
- Es gibt verschiedene konventionelle Verfahren zum Herstellen von Emulsionen. Diese Verfahren sind insbesondere Mischen mit hohen Scherkräften ("high shear mixing", Rotor/Stator-Systeme), Hochdruckhomogenisation ("high pressure homogenization"), Mikrofluidisierung ("microfluidization"), Ultraschallhomogenisation ("ultrasonic homoginazation") oder Membranemulsifikation ("membrane emulsification"). Die meisten dieser Verfahren erfordern einen hohen Energieeintrag in das System, um die Tröpfchengröße der gebildeten Öltröpfchen zu kontrollieren. Dieser Energieeintrag kann auf unterschiedliche Weise erfolgen, beispielsweise durch Erhitzen, Scherkräfte, Druckerhöhung oder Druckabsenkung. Die Stabilität der Emulsion erhöht sich mit sinkender Tröpfchengröße. Emulsionen mit einer Öltröpfchengröße von mehr als 10 µm tendieren dazu, in kurzer Zeit in zwei getrennte Phasen überzugehen, während bei einer Öltröpfchengröße von weniger als 1 µm sich die Stabilität der Emulsion mit sinkender Öltröpfchengröße erhöht. Allerdings wird bei einer Öltröpchengröße von weniger als 1 µm ein viermal größerer Energieeintrag notwendig ist, um die Öltröpfchengröße um 50 % zu reduzieren, was die erreichbare minimale Öltröpfchengröße beschränkt. Zudem besteht aufgrund des Energieeintrags die Gefahr eines Temperaturanstiegs auf Temperaturen über 70°C, bei denen eine Zerstörung der Emulgatoren eintreten kann.
- Bei einer weiteren Technik, der Membranemulsikation ("membrane emulsification") sind die limitierenden Faktoren die Porengröße der verwendeten Membranen und der Druck, der sich aufgrund der Viskosität der Ölphase ergibt.
- Bei der Mikrofluidisierung sind auch unter Hochdruckbedingungen mehrere Durchläufe erforderlich, um die Öltröpfchengröße unter 1 µm zu bringen. Da die Emulsionsbildung in Mikrokanälen erfolgt, ist das Blockieren dieser Mikrokanäle eines der häufigsten Probleme bei dieser Methode.
- In der
DE 10 2009 008 478 A1 wird ein Verfahren beschrieben, in dem eine Solvent-/Anti-Solvent-Fällung in Anwesenheit von oberflächenaktiven Molekülen erfolgt, wobei ein Mikrojetreaktor entsprechend derEP 1 165 224 B1 zum Einsatz kommt. Ein solcher Mikrojetreaktor weist mindestens zwei sich gegenüberliegende Düsen mit jeweils zugeordneter Pumpe und Zuführleitung zum Spritzen jeweils eines flüssigen Mediums in einen von einem Reaktorgehäuse umschlossenen Reaktorraum auf einen gemeinsamen Kollisionspunkt auf, wobei eine erste Öffnung in dem Reaktorgehäuse vorgesehen ist, durch die ein Gas, eine verdampfende Flüssigkeit, eine kühlende Flüssigkeit oder ein kühlendes Gas zur Aufrechterhaltung der Gasatmosphäre im Reaktorinneren, insbesondere im Kollisionspunkt der Flüssigkeitsstrahlen, bzw. zur Kühlung der entstehenden Produkte einleitbar ist, und eine weitere Öffnung zum Entfernen der entstehenden Produkte und von überschüssigem Gas aus dem Reaktorgehäuse vorgesehen ist. Es wird also über eine Öffnung in den Reaktorraum ein Gas, eine verdampfende Flüssigkeit oder ein kühlendes Gas zur Aufrechterhaltung einer Gasatmosphäre im Reaktorinneren, insbesondere im Kollisionspunkt der Flüssigkeitsstrahlen, bzw. zur Kühlung der entstehenden Produkte eingeleitet und die entstehenden Produkte und überschüssiges Gas durch eine Öffnung aus dem Reaktorgehäuse durch Überdruck auf der Gaseintrittsseite oder durch Unterdruck auf der Produkt- und Gasaustrittsseite entfernt. Wenn in einem solchen Mikrojetreaktor eine Solvent/Nonsolvent-Fällung, beispielsweise wie in derEP 2 550 092 A1 beschrieben, durchgeführt wird, erhält man eine Dispersion der gefällten Partikel. Mit einem solchen Reaktor gelingt es, besonders kleine Partikel zu generieren. Unter einer Solvent/Nonsolvent-Fällung versteht man in diesem Zusammenhang, daß ein Stoff in einem Solvent gelöst und als Flüssigkeitsstrahl mit einem zweiten Flüssigkeitsstrahl kollidiert, wobei der gelöste Stoff wieder gefällt wird. Nachteilig bei Solvent/Nonsolvent-Fällungen ist die Tatsache, daß sich der gelöste und wieder gefällte Stoff nach der Fällung partikulär in dem Solvent-Nonsolvent-Gemisch befindet. Dabei bewirkt der Solventanteil, daß sich bei vielen Partikeln zeitabhängig eine Ostwald-Reifung einstellt, die ein Wachstum der Partikel bewirkt. - Aus der
DE 10 2009 036 537 B3 ist eine Vorrichtung zum Emulgieren von mindestens zwei Flüssigkeiten bekannt, die einen Emulsionsreaktor umfaßt, der einen Auslaß zur Entnahme der bei der Mischung der Flüssigkeiten entstehenden Emulsion und in dem eine Mehrzahl von zum Einspritzen auf im Wesentlichen einen gemeinsamen Kollisionspunkt ausgerichteten Düsen vorgesehen ist, wobei jeder Düse jeweils eine Zufuhrleitung und eine Pumpe zugeordnet ist, die jeweils eine Flüssigkeit aus einem zugeordneten Tank durch die Zuführleitung in den Emulsionsreaktor pumpt. - Die
WO 99/28020 A1 - Die
DE 26 04 610 A1 beschreibt ein Verfahren, bei dem Öl und Wasser aus getrennten Behältern im gewünschten Volumenverhältnis angesaugt und als Gemisch unter hohem Druck in einem Rohr-Düsensystem in kurzen Abständen mehrmals von einer etwa gleich bleibenden geringen Grundgeschwindigkeit auf eine etwa zehn- bis zwanzigfache Fließgeschwindigkeit beschleunigt und verzögert wird und danach zum Verbrennen unmittelbar in den Brennraum gesprüht wird. Der Druck bei Grundfließgeschwindigkeit beträgt 130 bis 180 bar. DieGB 331 928 A - Die Aufgabe der Erfindung besteht somit darin, ein neues Verfahren zum Herstellen von Emulsionen zu schaffen, das auch die Herstellung asymmetrischer Emulsionen ermöglicht.
- Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in einem ersten Schritt mindestens eine Voremulsion aus mindestens zwei miteinander nicht mischbaren Flüssigkeiten erzeugt wird und dann in einem zweiten Schritt in einem Mikrojetreaktor mindestens zwei Flüssigkeitsströme der mindestens einen Voremulsion durch getrennte Düsen mit definiertem Durchmesser gepumpt werden, wobei der Druck der Flüssigkeitsstrahlen zwischen 5 und 500 bar beträgt, um Fließgeschwindigkeit der Flüssigkeitsströme von mehr als 10 m/s zu erreichen und daß die Flüssigkeitsströme an einem Kollisionspunkt in einem Raum aufeinandertreffen, wobei der Raum mit Gas gefüllt bzw. beaufschlagt wird und der Gasdruck in dem Raum 0,05 bis 30 bar, bevorzugt 0,2 bis 10 bar und besonders bevorzugt 0,5 bis 5 bar beträgt.
- Gas, insbesondere Inertgas oder Inertgasmischungen, aber auch Reaktivgas kann durch einen Gaseinlaß in dem Raum zugeführt werden.
- Da bei einer Vielzahl von Emulsionen, nämlich den asymmetrischen Emulsionen, bei denen die Öl- und die Wasserphase nicht im Verhältnis 1:1 vorliegen, hat es sich im Rahmen der Erfindung als vorteilhaft herausgestellt, zunächst aus der Öl- und der Wasserphase eine Voremulsion herzustellen. Dies kann beispielsweise über normale Rührprozesse, Ultraschallbehandlung, Ultraturrax, eine Dissolverscheibe, etc. erfolgen. Diese Voremulsion wird dann in Form von zwei Flüssigkeitsströmen in eine Vorrichtung eingeführt, in der beide Flüssigkeitsströme an einem Kollisionspunkt in einem Raum aufeinandertreffen, beispielsweise einen Mikrojetreaktor.
- Ein solcher Mikrojetreaktor ist aus der
EP 1 165 224 B1 bekannt. - Durch die im Mikrojetreaktor angewandte Methode der Kollision der Strahlen unter erhöhtem Druck ist die Tropfengröße der Emulsion abhängig vom System und Betriebsparametern, insbesondere der Düsengröße im Mikrojetreaktor und dem Pumpendruck der fördernden Pumpen für die beiden Flüssigkeitsströme. Im Gegensatz zu der üblichen Anwendung von Mikrojetreaktoren werden bei dem erfindungsgemäßen Verfahren durch die Kollisionsenergie in dem Mikrojetreaktor keine Fällungsreaktionen hervorgerufen, sondern es werden Emulsionen ausgebildet.
- Durch die Kollision der Flüssigkeitsströme mit hohen Fließgeschwindigkeiten, bei denen sich eine tellerförmige Kollisionsplatte im Kollisionspunkt ausbildet, wird aufgrund der kinetischen Energie eine homogene Emulsion mit einer Öltröpfchengröße von weniger als 1 µm erreicht, die entsprechend auch sehr stabil ist. Es wird hierzu kein weiterer Energieeintrag, wie z.B. Scherkräfte benötigt. Es kann in wässriger Phase bei Temperaturen zwischen 0°C und 100°C gearbeitet werden, vorzugsweise bei Temperaturen zwischen Raumtemperatur und 70°C, besonders bevorzugt bei Temperaturen zwischen Raumtemperatur und 50°C. Der Druck der Flüssigkeitsstrahlen beträgt zwischen 5 und 5.000 bar, vorzugsweise zwischen 10 und 1.000 bar und besonders bevorzugt zwischen 20 und 500 bar.
- Da die Kollision in dem Raum erfolgt, besteht nicht die Gefahr eines Blockierens, wie dies der Fall bei Mikrokanälen ist. Über den Durchmesser der Düsen, die
- Fließgeschwindigkeit der Flüssigkeitsströme und die Temperatur kann die Öltröpfchengröße in der Emulsion beeinflußt werden. Die entstehende Emulsion wird durch den Auslaß aus dem Raum abgeleitet. Es liegt somit ein kontinuierlich arbeitendes Verfahren vor. Um möglichst kleine Öltröpfchengrößen zu erhalten, ist es möglich, eine bereits erhaltene Emulsion nochmals unter den gleichen Bedingungen durch beide Einlässe in den Raum zu leiten, was gegebenenfalls mehrfach wiederholt werden kann.
- Es besteht auch die Möglichkeit, den Auslaß des Raumes mit dem Gaseinlaß eines zweiten Raumes zu verbinden, in dem weitere Flüssigkeitsströme in die gebildete Emulsion eingeleitet werden, beispielsweise um die Oberflächeneigenschaften der Emulsion zu verändern. Kollidieren zwei Flüssigkeitsströme, so schließen sie vorzugsweise einen Winkel von 180° ein, bei drei Flüssigkeitsströmen beträgt der Winkel vorzugsweise 120°, usw. Bei drei Flüssigkeitsströmen sind zwei Flüssigkeiten nicht miteinander mischbar, usw.
- Es wird gemäß der Erfindung bevorzugt, daß der Durchmesser der Düsenidentisch oder unterschiedlich ist und 10 bis 5.000 µm, vorzugsweise 50 bis 3.000 µm und besonders bevorzugt 100 bis 2.000 µm beträgt. Es ist möglich, mit Düsen unterschiedlichen Durchmessers zu arbeiten, beispielsweise auf einer Seite einer Düse mit einem Durchmesser von 100 µm und auf der anderen Seite einer Düse mit einem Durchmesser von 300 µm. Selbstverständlich können auch die Durchmesser der Düsen auf beiden Seiten gleich sein.
- Erfindungsgemäß ist vorgesehen, daß die Fließgeschwindigkeiten der Flüssigkeitsströme nach der Düse identisch oder unterschiedlich sind und mehr als 20 m/s, bevorzugt mehr als 50 m/s und besonders bevorzugt mehr als 100 m/s beträgt.
- Auch hier kann einer der Flüssigkeitsströme eine höhere Fließgeschwindigkeit als der andere Flüssigkeitsstrom aufweisen, beispielsweise einerseits 50 m/s und andererseits 100 m/s. Auch hier ist es möglich, daß die Fließgeschwindigkeiten beider Flüssigkeitsströme gleich groß sind.
- Die Fließgeschwindigkeit der Flüssigkeitsströme nach der Düse kann 500 m/s oder auch 1.000 m/s erreichen.
- Vorzugsweise beträgt der Abstand zwischen den Düsen weniger als 5 cm, vorzugsweise weniger als 3 cm und besonders bevorzugt weniger als 1 cm.
- Es wird bevorzugt, daß der Gasdruck in dem Raum 0,2 bis 10 bar und bevorzugt 0,5 bis 5 bar beträgt.
- Auch über den Gasdruck kann die Tröpfchengröße beeinflußt werden.
- Es kann sinnvoll sein, das Gas vor seinem Eintritt in den Raum zu erhitzen oder abzukühlen, um die Temperatur in dem Raum zu beeinflussen.
- Weiterhin liegt es im Rahmen der Erfindung, daß ein Lösemittel durch einen weiteren Einlaß in den Raum eingeleitet wird.
- Beispielsweise kann Propylenglykol als weiteres Lösemittel durch den weiteren Einlaß in den Raum eingeleitet werden.
- Eine Ausgestaltung der Erfindung besteht darin, daß während der Kollision in dem Raum ein Druck von weniger als 100 bar, bevorzugt von weniger als 50 bar und besonders bevorzugt von weniger als 20 bar herrscht.
- Es ist auch möglich, die Flüssigkeitsströme und/oder die entstehende Emulsion durch einen Wärmetauscher zu führen, um die Temperatur der Flüssigkeitsströme vor der Kollision bzw. die der Emulsion nach der Kollision zu kontrollieren.
- Im Rahmen der Erfindung liegt auch, daß in einem weiteren Schritt die hergestellte Emulsion verkapselt wird.
- Ebenfalls liegt es im Rahmen der Erfindung, daß in einem weiteren Schritt die hergestellte und eventuell verkapselte Emulsion mit einer Oberflächenmodifikation versehen wird.
- Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
- Die Beispiele 1 bis 4 zeigen die Auswirkungen der Variation einzelner Parameter, während die Beispiele 5 bis 21 Beispiele für mögliche Verkapselungsverfahren enthalten.
- Die Auswirkung des Gasdrucks wurde untersucht, indem ein Flüssigkeitsstrom von Öl und ein Flüssigkeitsstrom von Wasser, welches Lecithin enthält, unter verschiedenen Gasdrücken miteinander in einem Raum zur Kollision gebracht wurden, in dem über einen Gaseinlaß Gas mit unterschiedlichen Gasdrücken eingebracht wurde. Das Öl wurde mit einer Flußrate von 50 ml/min und die wässrige Phase mit einer Flußrate von 250 ml/min gepumpt. Die Öltröpfchengröße wurde über DLS bestimmt. In allen Fällen wurde eine Öltröpfchengröße von weniger als 500 nm erreicht. Die Ergebnisse zeigen, daß die Öltröpfchengröße mit zunehmendem Gasdruck abnimmt.
Druck (bar) Öltröpfchengröße (nm) 1 455 1,5 368 2 294 2,5 274 3 268 - Es kann daraus gefolgert werden, daß der über den Gaseinlaß auf das System wirkende Druck einen direkten Einfluß auf die Öltröpfchengröße hat.
- Die Auswirkung der Flußrate wurde untersucht, indem verschiedene Flußraten für die Ölphase und die Wasserphase bei gleichbleibendem Verhältnis der Flußraten verwendet wurden. Ein Druck in dem Raum von 2 bar wurde bei allen Versuchen verwendet.
Ölflußrate (ml/min) Wasserflußrate (ml/min) Öltröpfchengröße (nm) 10 50 596 20 100 427 30 150 348 50 250 294 100 500 257 - Die Öltröpfchengröße innerhalb der gebildeten Emulsion verringert sich somit mit steigenden Flußraten.
- Der Einfluß des Durchmessers der Düsen wurde bestimmt, indem verschiedene Düsendurchmesser getestet wurden, während eine Ölflußrate von 50 ml/min und eine Wasserflußrate von 250 ml/min verwendet wurde und der Gasdruck 2 bar betrug.
Düsendurchmesser (µm) Öltröpfchengröße (nm) 200 294 300 318 400 567 500 785 - Je kleiner der Düsendurchmesser ist, desto kleiner ist die Öltröpfchengröße innerhalb der gebildeten Emulsion.
- Die Öl- und die Wasserphase wurden voremulgiert und durch die beiden Einlässe in einen geschlossenen Zyklus gepumpt, um den Einfluß der Zahl der Zyklen auf die Öltröpfchengröße innerhalb der Emulsion zu ermitteln. Eine Flußrate von 250 ml/min und ein Gasdruck von 2 bar herrschten hierbei in dem Raum.
Zyklenzahl Öltröpfchengröße (nm) 1 650 2 540 3 420 4 355 - Die Öltröpfchengröße innerhalb der Emulsion nimmt somit auch mit der Zyklenzahl ab.
- Ein zu verkapselndes ätherisches Öl wird mit einer Flussrate von 67 g/min im Mikrojetreaktor mit einer wässrigen Na-Caseinat-Lösung (22,4 mg/ml) mit einer Flussrate von 200 g/min im Mikrojetreaktor emulgiert. Im nächsten Schritt wird diese Emulsion mit einer Flussrate von 200 g/min gegen eine wässrige Xanthan-Lösung (0,25%) mit 25 g/min prozessiert. In diesem Schritt lagern sich die gegenläufig geladenen Seitengruppen des Proteins und des Polysaccharids aneinander. Durch pH-Absenkung auf pH 4 mit 10%iger Zitronensäure wird dieses Interaktion verstärkt, wodurch Mikrokapseln entstehen. Die Mikrokapseln sind 50-100 µm groß.
- Ein zu verkapselndes ätherisches Öl wird mit einer Flussrate von 50 g/min im Mikrojetreaktor in eine wässrige Molkenproteinisolat-Lösung mit einer Flussrate von 200 g/min emulgiert. Nach der Zugabe von 20 % Maltodextrin als Trägermaterial wird die Emulsion sprühgetrocknet. Durch die Trocknung entsteht ein Pulver, welches mikroverkapseltes ätherisches Öl enthält.
- Ein zu verkapselnder Duftstoff (15-30 %) wird bei 85 °C in geschmolzenem Compritol AO 888 gelöst. Diese Ölphase wird mit 68 ml/min in eine 20 °C kalte wässrige Tween 20-Lösung (0,5-1,5 %) mit 200 ml/min emulgiert. Durch die rasche Abkühlung des Fetts kommt es direkt bei Emulsionsbildung zur Partikelbildung und somit Matrixverkapselung des Dufstoffs. Die Mikrokapseln sind im Durchschnitt 5 µm (0,5 % Tween 20) bzw. 2 µm (1,5 % Tween 20).
- Ein zu verkapselnder Duftstoff (15-30 %) wird bei 85 °C in geschmolzenem Compritol AO 888 gelöst. Diese Ölphase wird mit 68 ml/min in eine 20 °C kalte Gummi Arabicum-Lösung (2,5 %; 200 ml/min) emulgiert. Durch die rasche Abkühlung des Fetts kommt es direkt nach der Emulsionsbildung zur Partikelbildung.
- Eine Modifizierung dieser Mikrokapseln wird vorgenommen, indem diese Schmelzdispersion (200 ml/min) im Mikrojetreaktor gegen eine 50°C warme Gelatine-Lösung (2,5 %; 150 g/min) prozessiert wird. Durch pH-Absenkung auf pH 4 mit 10%iger Zitronensäure werden die ionischen Wechselwirkungen verstärkt und durch Abkühlung geliert.
- Ein zu verkapselnder hydrophiler Polyalkohol (Aktivstoff) wird zu einer wässrigen Ammoniaklösung (1%) gegeben (Wasserphase) und im MJR - Reaktor gegen eine emulgatorhaltige (Polyethyeralkyl-polymethylsiloxan) 1% Verkapselungslösung (TEOS) in Isoparaffin (Ölphase) prozessiert. Bei gleicher Flussrate der beiden Lösungen (50:50) wird ein Prozessdruck vor den Düsen von 40 bar eingestellt.
- Es entsteht eine stabile Emulsion, an deren Phasengrenzfläche sich das Verkapselungsmaterial durch Hydrolyse der Vorstufen ausbildet. Die Kapseln können durch einfache Sedimentation oder Zentrifugation abgetrennt werden und sind zwischen 5 und 10 µm groß.
- Das in 1 angegebene Verfahren wird auf die Verkapselungsstoffe OTMS, PTMS angewendet. Bei gleichbleibender Flussrate besitzen die erhaltenen Mikrokapseln etwa gleiche Eigenschaften bei reduzierter Reaktionszeit.
- Das in 1 angegebene Verfahren wird auf variable Flussraten angewendet. Durch Variation der Flussrate können Verhältnisse von disperser Phase (Aktivstoff) zu Ölphase von 30:70, 40:60 und 60:40 realisiert werden. Die Größe der erhaltenen Mikrokapseln steigt mit wachsendem Anteil an disperser Phase (Aktivstofflösung).
- Das in 1 angegebene Verfahren wird auf eine TEOS haltige Verkapselungslösung angewendet mit der Abwandlung, dass die Konzentration des eingesetzten Emulgators auf 50% bzw. 25% der Ursprungskonzentration reduziert wurde. Die erhaltenen Mikrokapseln sind größer als wie sie nach Beispiel 1 erzielt werden.
- Das in 1 angegebene Verfahren wird auf eine andere Verkapselungschemie angewendet. Eine 20% Lösung eines zu verkapselnden wässrigen Aktivstoffs, die 10 meq NH2 der Verkapselungskompente HMDA enthält wird im MJR gegen eine 1% Emulgatorlösung in Isoparaffin prozessiert. Die so erhaltene Emulsion wird durch Zugabe von 40 meq COCl einer 20% Trimesoyl chlorid - Lösung in Isopar ausgehärtet. Die erhaltenen Kapseln sind 2 bis 30 µm groß.
- Das in Beispiel 17 angegebene Verfahren wird angewendet mit der Abwandlung, dass die Kapselhärtung mittels Trimesoylchlorid-Lösung in situ durch kontinuierlichen Eintrag der Lösung in die Reaktorkammer über die fünfte Öffnung des MJR - Reaktors erfolgt. Die erhaltenen Kapseln haben in etwa die gleichen Eigenschaften wie sie nach Beispiel 9 erhalten wurden.
- Das in Beispiel 5 angegebene Verfahren wird auf öllösliche Verkapselungsstoffe angewendet. Eine zu verkapselnder öllöslicher Aktivstoff wird in eine 20% Lösung des Verkapselungsmaterials (OTMS) in Isoparaffin gegeben und bei Raumtemperatur für 5 min durch Rühren gemischt. Die so erhaltene Lösung wird im MJR - Reaktor bei einem Prozessdruck von 40 bar gegen eine 2% wässrige Emulgatorlösung prozessiert. Es entsteht eine stabile homogene Emulsion, die durch Zugabe des Katalysators Dibutylzinnlaurat (0.5%) erfolgt die Härtung der Kapseln die nach Aushärtung mittels Zentrifugation oder Sedimentation abgetrennt werden können.
- Das in Beispiel 19 angegebene Verfahren wird angewendet mit der Abwandlung, dass die Kapselhärtung mittels Dibutylzinnlaurat in situ durch kontinuierlichen Eintrag der Lösung in die Reaktorkammer über die fünfte Öffnung des MJR - Reaktors erfolgt. Die erhaltenen Kapseln haben in etwa die gleichen Eigenschaften wie sie nach Beispiel 19 erhalten wurden.
- Schmelzdispersion/Matrixverkapselung: Beispiel 21
- Aufschmelzen eines Polymeres (z.B. PEGs, Wachse, Fette, ...) Durch Wahl des aufzuschmelzenden Stoffes kann somit entweder eine hydrophile oder eine oleophile Schmelze generiert werden.
- Einrühren der festen Aktivstoffe in die Schmelze (z.B. Tenside, Peroxo-Verbindungen, Enzyme, ...)
- Einrühren der flüssigen Aktivstoffe in die Schmelze
- Überführen der modifizierten Schmelze in den MJR-Prozess unter Verwendung eines kalten Non-Solvents als zweiter Flüssigkeitsstrom unter Präzipitation von beladenen polymeren Mikrokugeln
- Mischen der modifizierten Schmelze mit einem warmen Non-Solvent (Voremulsion). Diese Voremulsion wird rechts und links mit einem Flussratenverhältnis von 1:1 in den MJR eingebracht. Unter Verwendung der kühlenden Wirkung des inerten Trägergases wird das beladene Polymer mikroskalig ausgefällt.
- Die modifizierte Schmelze wird zur Verringerung der Schmelzviskosität mit einem Teil des erwärmten Non-Solvents gemischt. Die Mischung wird mit dem kalten Rest-Non-Solvent im MJR-Prozess unter Ausfällung der Polymer-Kügelchen ausgefällt.
Claims (11)
- Verfahren zum Herstellen von Emulsionen, wobei in einem ersten Schritt mindestens eine Voremulsion aus mindestens zwei miteinander nicht mischbaren Flüssigkeiten erzeugt wird und dann in einem zweiten Schritt in einem Mikrojetreaktor mindestens zwei Flüssigkeitsströme der mindestens einen Voremulsion durch getrennte Düsen mit definiertem Durchmesser gepumpt werden, dadurch gekennzeichnet, dass der Druck der Flüssigkeitsstrahlen zwischen 5 und 500 bar beträgt, um Fließgeschwindigkeit der Flüssigkeitsströme von mehr als 10 m/s zu erreichen und daß die Flüssigkeitsströme an einem Kollisionspunkt in einem Raum aufeinandertreffen, wobei der Raum mit Gas gefüllt bzw. beaufschlagt wird und der Gasdruck in dem Raum 0,05 bis 30 bar beträgt.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Durchmesser der Düsen identisch oder unterschiedlich ist und 10 bis 5.000 µm, vorzugsweise 50 bis 3.000 µm und besonders bevorzugt 100 bis 2.000 µm beträgt.
- Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fließgeschwindigkeit der Flüssigkeitsströme identisch oder unterschiedlich ist und mehr als 20 m/s, bevorzugt mehr als 50 m/s und besonders bevorzugt mehr als 100 m/s beträgt.
- Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Abstand zwischen den Düsen weniger als 5 cm, vorzugsweise weniger als 3 cm und besonders bevorzugt weniger als 1 cm beträgt.
- Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Gasdruck in dem Raum 0,2 bis 10 bar und bevorzugt 0,5 bis 5 bar beträgt.
- Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Gas vor seinem Eintritt in den Raum erhitzt oder abgekühlt wird, um die Temperatur in dem Raum zu beeinflussen.
- Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Lösemittel durch einen weiteren Einlaß in den Raum eingeleitet wird.
- Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß während der Kollision in dem Raum ein Druck von weniger als 100 bar, bevorzugt von weniger als 50 bar und besonders bevorzugt von weniger als 20 bar herrscht.
- Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Flüssigkeitsströme und/oder die entstehende Emulsion durch einen Wärmetauscher geführt werden, um die Temperatur der Flüssigkeitsströme vor der Kollision bzw. die der Emulsion nach der Kollision zu kontrollieren.
- Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß in einem weiteren Schritt die hergestellte Emulsion verkapselt wird.
- Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß in einem weiteren Schritt die hergestellte und eventuell verkapselte Emulsion mit einer Oberflächenmodifikation versehen wird
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016101232.7A DE102016101232A1 (de) | 2016-01-25 | 2016-01-25 | Verfahren zum Herstellen von Emulsionen |
PCT/DE2017/100046 WO2017129177A1 (de) | 2016-01-25 | 2017-01-25 | Verfahren zum herstellen von emulsionen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3408015A1 EP3408015A1 (de) | 2018-12-05 |
EP3408015B1 true EP3408015B1 (de) | 2021-08-11 |
Family
ID=58094095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17706142.1A Active EP3408015B1 (de) | 2016-01-25 | 2017-01-25 | Verfahren zum herstellen von emulsionen |
Country Status (9)
Country | Link |
---|---|
US (1) | US20190030497A1 (de) |
EP (1) | EP3408015B1 (de) |
JP (1) | JP7031103B2 (de) |
KR (1) | KR20180101573A (de) |
CN (1) | CN108495708B (de) |
DE (1) | DE102016101232A1 (de) |
DK (1) | DK3408015T3 (de) |
ES (1) | ES2893124T3 (de) |
WO (1) | WO2017129177A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10912326B2 (en) | 2018-08-22 | 2021-02-09 | Rachelle MACSWEENEY | Nanoformulations containing encapsulted omega-3 fatty acids |
CA3063417C (en) | 2018-12-04 | 2023-01-03 | Leon-Nanodrugs Gmbh | Nanoparticles comprising tacrolimus |
DE102019112382A1 (de) * | 2019-05-13 | 2020-11-19 | MyBiotech GmbH | Verwendung eines MikroJet-Reaktors zum Zellaufschluss |
CA3141534A1 (en) | 2019-05-23 | 2020-11-26 | Helm Ag | Nanoparticles comprising enzalutamide |
EP3915544A1 (de) | 2020-05-25 | 2021-12-01 | Leon-Nanodrugs GmbH | Verfahren zur herstellung einer liposomendispersion |
CN114010541B (zh) * | 2021-11-03 | 2022-08-30 | 江苏久膜高科技股份有限公司 | 一种薰衣草精油乳液的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009036537B3 (de) * | 2009-08-07 | 2011-02-17 | Cannon Deutschland Gmbh | Vorrichtung und Verfahren zur Emulgierung von Flüssigkeiten |
DE102011113413A1 (de) * | 2010-09-17 | 2012-08-09 | Synthesechemie Dr. Penth Gmbh | Dispersionen von Halbleitermaterialien |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB331928A (en) * | 1929-04-13 | 1930-07-14 | Ici Ltd | Apparatus for the manufacture of emulsions or dispersions |
DE2604610C3 (de) * | 1976-02-06 | 1978-07-13 | Hans 7209 Aldingen Messner | Vorrichtung zur Erzeugung eines unmittelbar verbrennbaren, emulgieren Öl-Wassergemisches |
US5927852A (en) * | 1997-12-01 | 1999-07-27 | Minnesota Mining And Manfacturing Company | Process for production of heat sensitive dispersions or emulsions |
DE50000534D1 (de) * | 1999-04-08 | 2002-10-24 | Bernd Penth | Verfahren und vorrichtung zur durchführung chemischer und physikalischer prozesse |
DE10123092B4 (de) * | 2001-05-07 | 2005-02-10 | INSTITUT FüR MIKROTECHNIK MAINZ GMBH | Verfahren und statischer Mischer zum Mischen mindestens zweier Fluide |
DE20306915U1 (de) * | 2003-05-05 | 2003-08-07 | HAAGEN & RINAU Mischtechnik GmbH, 28307 Bremen | Dispergiervorrichtung |
US20060133955A1 (en) * | 2004-12-17 | 2006-06-22 | Peters David W | Apparatus and method for delivering vapor phase reagent to a deposition chamber |
CA2696441A1 (en) * | 2007-07-23 | 2009-01-29 | Yamato Ecology Corporation | Water emulsion production apparatus |
JP2010043212A (ja) | 2008-08-15 | 2010-02-25 | Karasawa Fine Ltd | 油中水滴型エマルションの製造方法、油中水滴型エマルションの製造装置、および油中水滴型エマルション燃料の製造装置 |
CN101513595B (zh) * | 2009-01-15 | 2012-01-25 | 中国纺织工业设计院 | 多级、多向y型射流撞击混合器 |
DE102009008478A1 (de) | 2009-02-11 | 2010-08-19 | PHAST Gesellschaft für pharmazeutische Qualitätsstandards mbH | Vorrichtung und Verfahren zur Herstellung pharmazeutisch hochfeiner Partikel sowie zur Beschichtung solcher Partikel in Mikroreaktoren |
CA2799519C (en) | 2010-03-22 | 2017-04-25 | Mjr Pharmjet Gmbh | Method and device for producing microparticles or nanoparticles |
DE102010056345B4 (de) | 2010-12-29 | 2017-01-19 | Siegfried Zech | Verfahren zur Herstellung einer Öl-Wasser-Emulsion |
CN103349937B (zh) * | 2013-07-05 | 2015-09-30 | 江南大学 | 一种连续乳化装置 |
CN103495356A (zh) * | 2013-09-22 | 2014-01-08 | 黄光智 | 一种快速溶氧的射流器的标准化加工方法及其装置 |
CN103990406B (zh) * | 2014-05-16 | 2018-04-24 | 江苏大学 | 基于形状记忆聚合物的流体混合器 |
-
2016
- 2016-01-25 DE DE102016101232.7A patent/DE102016101232A1/de not_active Ceased
-
2017
- 2017-01-25 CN CN201780007945.8A patent/CN108495708B/zh active Active
- 2017-01-25 JP JP2018538631A patent/JP7031103B2/ja active Active
- 2017-01-25 EP EP17706142.1A patent/EP3408015B1/de active Active
- 2017-01-25 DK DK17706142.1T patent/DK3408015T3/da active
- 2017-01-25 WO PCT/DE2017/100046 patent/WO2017129177A1/de active Application Filing
- 2017-01-25 US US16/072,208 patent/US20190030497A1/en not_active Abandoned
- 2017-01-25 KR KR1020187024004A patent/KR20180101573A/ko unknown
- 2017-01-25 ES ES17706142T patent/ES2893124T3/es active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009036537B3 (de) * | 2009-08-07 | 2011-02-17 | Cannon Deutschland Gmbh | Vorrichtung und Verfahren zur Emulgierung von Flüssigkeiten |
DE102011113413A1 (de) * | 2010-09-17 | 2012-08-09 | Synthesechemie Dr. Penth Gmbh | Dispersionen von Halbleitermaterialien |
Also Published As
Publication number | Publication date |
---|---|
CN108495708B (zh) | 2021-07-30 |
CN108495708A (zh) | 2018-09-04 |
ES2893124T3 (es) | 2022-02-08 |
EP3408015A1 (de) | 2018-12-05 |
JP2019508233A (ja) | 2019-03-28 |
DK3408015T3 (da) | 2021-11-01 |
US20190030497A1 (en) | 2019-01-31 |
JP7031103B2 (ja) | 2022-03-08 |
KR20180101573A (ko) | 2018-09-12 |
DE102016101232A1 (de) | 2017-07-27 |
WO2017129177A1 (de) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3408015B1 (de) | Verfahren zum herstellen von emulsionen | |
EP2978515B1 (de) | Vorrichtung und verfahren zum herstellen von dispersionen und feststoffen | |
EP2550092B1 (de) | Verfahren zur herstellung von mikro- oder nanopartikeln | |
DE60132094T3 (de) | Verfahren zur Herstellung von gereinigten Partikeln | |
DE69528062T2 (de) | Verfahren zum herstellen von emulsionen aus einem emulgator | |
EP2432580A2 (de) | Verfahren zur herstellung von nanopartikeln unter verwendung von mini-emulsionen | |
EP0570335B1 (de) | Einrichtung und Verfahren zum Beimischen einer schüttbaren Feststoffkomponente zu einer flüssigen Grundmasse | |
DE10206083B4 (de) | Verfahren zum Erzeugen monodisperser Nanotropfen sowie mikrofluidischer Reaktor zum Durchführen des Verfahrens | |
DE1900865A1 (de) | Verfahren zur Herstellung von Mikrokapseln | |
DE102017110292A1 (de) | Verfahren und Vorrichtung zum Herstellen von Reaktionsprodukten | |
DE2746489A1 (de) | Vorrichtung und verfahren zum herstellen von mikrokapseln mit fluessigkeits- und/oder feststoff-fuellungen durch spruehtrocknung | |
DE69609462T2 (de) | Verfahren zur kontinuierlichen Herstellung von Organopolysiloxanemulsionen | |
EP1728814B1 (de) | Verfahren zum Herstellen von Nanopartikeln unter Verwendung poröser Membranen | |
DE2010110A1 (de) | Verfahren zur Herstellung von Mikrokapseln mit Hilfe von synthetischen Koazervaten | |
EP4431176A2 (de) | Verfahren und vorrichtung zur herstellung eines im wesentlichen im wässrigen milieu lösbaren cannabinoid-granulats | |
DE69419707T2 (de) | Verfahren zur Herstellung von nicht-zerstäubenden Kunststoffhohlkugeln | |
WO2003027170A1 (de) | Verfahren zur herstellung feinster partikel aus schmelzbaren feststoffen | |
DE102017110293A1 (de) | Verfahren zur Oberflächenmodifikation von verkapselten Stoffen | |
WO2023148405A1 (de) | Verfahren und vorrichtung zur polymerfällung | |
DE10065068A1 (de) | Mehrstufen-Verfahren zur Herstellung von gasgefüllten Mikrokapseln mit definiert enger Größenverteilung durch definierte Fremdbegasung während des Mikrokapselaufbaus | |
DE102009009060B3 (de) | Verfahren zur Herstellung einer Dispersion und Vorrichtung hierzu | |
DE3041555C2 (de) | Verfahren zur aerodynamischen Gewinnung von flüssigen oder festen dispersen Aerosolen | |
DE102017119569A1 (de) | Rotierender Ring Reaktor | |
DE102004049850A1 (de) | Verfahren und Anlage zur Herstellung von Mikropartikeln oder Nanopartikeln, Verwendung der Nanopartikel und damit hergestellte Suspension oder Emulsion | |
DE10241305A1 (de) | Verfahren zur Herstellung feinster Partikel aus schmelzbaren Feststoffen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHIRRA, HERMANN Inventor name: BAUMSTUEMMLER, BERND Inventor name: TUERELI, AKIF EMRE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191203 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210316 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017011162 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1418812 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20211026 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017011162 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0013000000 Ipc: B01F0033000000 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2893124 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211112 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017011162 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240123 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240122 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240118 Year of fee payment: 8 Ref country code: ES Payment date: 20240216 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240118 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 8 Ref country code: GB Payment date: 20240124 Year of fee payment: 8 Ref country code: CH Payment date: 20240202 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240131 Year of fee payment: 8 Ref country code: DK Payment date: 20240123 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241216 Year of fee payment: 9 |